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Abstract. A program correctness checker is an algorithm for checking the output of a computation.

That is, given a program and an instance on which the program is run, the checker certifies

whether the output of the program on that instance is correct. This paper defines the concept of a
program checker. It designs program checkers for a few specific and carefully chosen problems in

the class FP of functions computable in polynomial time. Problems in FPfor which checkers are
presented in this paper include Sorting, Matrix Rank and GCD. It also applies methods of
modern cryptography, especially the idea of a probabilistic interactive proof, to the design of
program checkers forgroup theoretic computations.

Two structural theorems are proven here. One is a characterization of problems that can be

checked. The other theorem establishes equivalence classes of problems such that whenever one
problem in a class is checkable, all problems in the class are checkable.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program verification-cor-

rectness proofs; reliability; F.2.0 IAnalysis of Algorithms and Problem Complexity]: General; F.3.1
[Logics and Meanings of Progrmas]: Specifying and Verifying and Reasoning about Programs;

G.3 [Probability and Statistics] -probabilistic algorithms (including Monte Carlo)

General Terms: Algorithms, Design, Reliability, Theory, Verification

Additional Key Words and Phrases: Interactive proofs, probabilistic algorithms, program check-

ing, program verification, testing

1. Introduction

In this paper, we introduce the concept of a program checker. A program

checker for a program P is itself a program C. For any instance 1 on which

program P is run, C is run subsequently. C either certifies that the program P

is correct on 1 or declares P to be buggy.

There have been other methods proposed for gaining confidence in the

output of programs. For example, program L’erijlcation [Boyer and Moore 1981]

seeks to achieve this by proving that a program is correct. Program verification

suffers from the problem that it is very hard to prove programs correct. It has
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also been argued that proofs of correctness of programs do not improve our

confidence in their correctness because of the nature of these proofs [DeMillo

et al. 1979]. For a recent discussion of the role of verification in software

development, see Barwise [1989].

In program testing [De Millo et al. 1987], we run the program on test inputs

for which the output is known and see if the program output matches the

expected output. Testing is a fairly ad hoc technique. There are no general

methods for generating test data and no theorems are proven about the

behavior of a program that passes the tests.
In addition, there has been work in the theoretical computer science commu-

nity on the concept of helping [Ko 1987; Schoning 1985], which may be

regarded as a deterministic version of checking.

Program checking is easier to do than verification; it yields mathematical

proofs about program behavior unlike testing; it allows coin-tossing, greatly

enhancing the power of the checker in comparison to the model of helping

above.

The ideas in this paper arise from cryptography, probabilistic algorithms, and

program testing. Particularly important for this work are the interactive proofs

of Goldwasser et al. [1989] and subsequent related work. As will be seen,

several of the correctness checkers constructed in this paper use probabilistic

interactive proofs as a first step in the design. Equally important for this work

are the papers on randomized algorithms of Rabin [1976] and Freivalds [1979].

The latter, remarkably enough, includes excellent program checkers for inte-

ger, polynomial, and matrix multiplication. The works of Budd and Angluin

[1982] and Weyuker [1988] are relevant in that they too seek to give program

testing a rigorous mathematical basis.

The notion of program checking as used in this paper was first formally

defined by Blum and Kannan [1989]. This paper draws heavily from Blum and

Kannan [1989]. In that paper, the concept of program checking was defined,

checkers were exhibited for some group-theoretic problems and for selected

problems in P, and the class of problems having polynomial-time checkers was

characterized.

Since then several papers have shed light on this problem. Blum et al.

[1990/1993] extend the notion of program checking one step further in several

directions. They focus on a large collection of numerical problems that in-

cludes integer multiplication and modular multiplication. For these problems,

they show that it is not only possible to detect errors in programs, but also to

correct errors in programs that are “mostly correct. ” They also provide efficient

tests for determining whether a program is “mostly correct.” In the process,

their results yield some of the few program testers with proL)abZe performance.
If a program passes a self-test a la Blum et al. [1990/1993], on instances of

some size n, then it will be possible to prove a theorem that says that with high

probability, P is correct on “most” instances of size ~Z, where “most” can be

precisely quantified.

Another concept introduced in Blum et al. [1990/1993] is that of a library of

programs. This allows a checker for one problem in the library to call programs

for other problems in the library as long as all the programs in the library can

be checked by these means. This extension allows for the design of efficient

and simple checkers for problems, which had hitherto had much more complex

checkers.
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Adleman et al. [to appear], provide checkers for several number-theoretic

problems including integer greatest common divisor. In Blum and Kannan

[1989], it was conjectured that an efficient checker for greatest common

denominator would be hard to find. Lipton [1991] considers programs that have

been tested in some way to ensure that they are mostly correct and shows how

one can correct the errors in the program by transforming a given instance to

several random instances and computing the answer to the given instance from

the answers to the random instances. Lipton [1991], building on the work of

Beaver and Feigenbaum [1990], shows how polynomials in general and the

permanent in particular are amenable to this technique. Rubinfeld [1990]

extends the notion of checking to parallel checking while Blum et al.

[1991/1994] extend it to programs that store and retrieve data from unreliable

memory. Kannan and Yao [1991] have considered the problems of checking

coin-tossing programs that produce specified output probability distributions.

There are several concepts in complexity theory that are intimately related to

checking. Two such concepts are coherence and random-self-reducibility. These

concepts have been considered extensively in the literature. Definitions of

these concepts and their relation to program checking can be found for

example in Beigel and Feigenbaum [1992] and Feigenbaum [1993].

The rest of this paper is organized as follows: A more formal description of

the program checking model is given in Section 2. In Section 3, we illustrate

the concept with the prototypical example of the graph isomorphism problem.

In Section 4, we derive structural theorems that allow us to derive checkers for

one problem from checkers for others. In Section 5, we present some program

checkers for group-theoretic problems. This section demonstrates the close

connections between the design of program checkers and the design of interac-

tive proofs. In Section 6, we present checkers for a number of common

functions that can be computed in FP. The specific problems considered are

Extended GCD, Sorting, and Matrix Rank. Finally, in Section 7, we character-

ize the class of problems that have polynomial-time checkers.

2. Program Checkers

Let m denote a (computational) decision or search problem. For x an input to
m, let T(X) denote the output of m. Let P be a deterministic program

(supposedly) for m that halts on all instances of w. We say that such a program
P has a bug if some instances x of m, P(x) # n-(x).

Define an efjicientprogram checker C= for problem m- as follows: C~(l; k) is

any probabilistic (expected-poly-time) oracle Turing machine that satisfies the

following conditions, for any program P (supposedly for ~) that halts on all

instances of m-, for any instance 1 of m, and for any positive integer k (the

so-called “security parameter”) presented in unary:

(1) If P has no bugs, that is, P(x) = n-(x) for all instances x of m-, then with

probability k 1 – l/2k, C~(I; k) = CORRECT (i.e., P(I) is CORRECT).

(2) If P(I) + T(I), then with probability z 1 – l/2~, C~(I; k) = BUGGY
(i.e., P is BUGGY).

This probability is computed over the sample space of all finite sequences of

coin flips that C could have tossed.
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Some remarks are in order:

(i) The running time of C above includes whatever time it takes C to submit
inputs to and receive outputs from P, but exchldes the time it takes for P

to do its computations.

(ii) In the above definition, if P has bugs, but P(I) = T(I), i.e., buggy

program P gives the correct output on input 1, then c~(l; k) may output

CORRECT or BUGGY.

It is assumed that any program P for problem m halts on all instances of m.

This is done in order to help focus on the problem at hand. In general,

however, programs do not always halt, and the definition of a “bug” must be

extended to cover programming errors that slow a program down or cause it to

diverge altogether. In this case, the definition of a program checker must also

be extended to require the additional condition:

(3) If p(x) exceeds a precomputed bound O(x) on the running time, for x = 1
or any other value of x submitted by the checker to the oracle, then the

program checker is to sound a warning, namely C~(l; k) = TIME.

In the remainder of this paper, it is assumed that any program P for a

problem T halts on all instances of ~; so condition (3) is everywhere sup-

pressed.

It is possible to extend the notion of program checking to probabilistic

algorithms in BPP. In order to do this, we simply run the program sufficiently

often to make the probability of error of (a correct) program much smaller

than 1/2 ~. Then we simply treat the program as though it were a deterministic

program and check it accordingly. In the rest of the paper, we only consider

deterministic programs with the assurance that all of the results about checkers

for deterministic programs can be extended to checkers for probabilistic

programs.

In this approach to program correctness the question naturally arises: If one

cannot be sure that a program is correct, how then can one be sure that its

checker is correct? This is a very serious problem!

One solution is to proue the checker correct. Sometimes, this is easier than

proving the original program correct, as in the case of the Extended GCD

checker of Section 6. Another possibility is to try to make the checker to some

extent independent of the program it checks. To this end, we make the

following definition: Say that a (probabilistic) program checker C has the little

oh property with respect to program P if and only if the (expected) running

time of C is little oh of the running time of P. We shall generally require that

a checker have this little oh property with respect to any program it checks.
The principal reason for this is to ensure that the checker is programmed

differently from the program it checks. For instance, if there are two programs

for a problem with the same running times this definition disallows the checker

from running one as a “check” for the other. This is what we desire in our

checker. However, this definition does not necessarily constrain us to design

ejficient checkers, for although the running time of the checker is little oh of

the program’s running time, this does not account for the time spent in calls to

the program. If the checker only made one call to the program, running the

checker would not result in an increase in the asymptotic running time of the

program. In general, this is hard to achieve, but for a significant subclass of
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problems (such as the ones considered in Blum et al. [1990/1993]), one can

design checkers that run in time that is no worse than a constant time the

running time of the program being checked, taking into account the time spent

running the program being checked.

3. An Example: Graph Isomo~hism

We present an example of a good checker. Our checker is an adaptation of

Goldreich et al.’s [1991] interactive proof system for Graph Isomorphism. The

model in Goldreich et al. [1991] relies on the existence of an all-powerful

prover. The prover is replaced here by the program being checked. The power

of the program turns out to be sufficient to simulate the prover for this

application. The checker that results in a practical way to check computer

programs for graph isomorphism. Graph isomorphism is a problem with a lot of

heuristics that work on most instances. Appending a checker to a heuristic

gives us confidence in the output of the (possibly unproven) heuristic.

The Graph Isomorphism decision problem is defined as follows:

Graph Isomorphism (GI):
Input: Two graphs G and H.

Output: YES if G is isomorphic to H; NO otherwise.
The checker C&(G, H; k) checks program P on input graphs G and H.

Begin
Compute P(G, H).

if P(G, H) = YES, then
Use P (as if it were bug-free) to search for an “isomorphism” from G to H.

(This is done by a standard self-reduction as in Hoffmann [1982, pp. 24-27].)
Check whether the resulting correspondence is an isomorphism.
If not, return BUGG~ if yes, return CORRECT

if P(G, H) = NO, then
Do k times:

Toss a fair coin.
if coin = heads then

generate a random permutation G’ of G.
Compute P(G, G’).

if P(G, G‘) = NO then return BUGGY

if coin = tails then

generate a random permutation H’ of H.

Compute P(G, H’).
if P(G, H’) = YES then return BUGGY.

End-do
Return CORRECT.
End

The above program checker correctly checks any computer program whatso-

ever that is purported to solve the graph isomorphism problem. Even the most

bizarre program designed to fool the checker will be caught, when it is run on

any input that causes it to output an incorrect answer. The following theorems

proves this formally:

THEOREM 3.1. If P is a correct program for graph isomo~hism, then C~I

always outputs correct. If P(G, H) is inconect, then Prob(C~l outputs correct) s

l/2k. Moreover, C~I runs in polynomial time.

PROOF. Clearly C& runs in polynomial time in our way of counting the

running time of the checker.



274 M. BLUM AND S. KANNAN

If P has no bugs and G is isomorphic to ~, then C&( G, H; lc) constructs an

isomorphism from G to ~ and (correctly) outputs CORRECT.

If P has no bugs and G is not isomorphic to ~, then C& (G, H; k) tosses

coins. It discovers that P(G, G‘) = YES for all G‘ and P(G, H‘) = NO for all

H’, and so (correctly) outputs CORRECT.

If P(G, H) is incorrect, there are two cases:

(1) If P(G, H) = ITS, but G is not isomorphic to 11, then C& fails to
construct an isomorphism (since none exists) and (correctly) outputs

BUGGY.

(2) If P(G, H) = NO, but G is isomorphic to ~, then the only way that C will
return CORRECT is if P(G, G‘ or H’) = YES, whenever the coin comes

up heads and NO when it comes up tails. But G is isomorphic to H. Since

G and H are permuted randomly to produce G’ and H’, G’ and H’ have

the same probability distributions. Therefore, P correctly distinguishes G‘

from H’ only by chance, that is, for just 1 of the 2k possible sequences of

coin tosses. ❑

4. Beigel’s Theorem

The following theorem is due to Richard Beigel:

THEOREM 4.1 (BEIGEL). Let ml, Vz be two polynomial-time equivalent deci-

sion problems. Then, from any polynomial time checker for w ~, it is possible to

construct a polynomial-time checker for II-z.

PROOF. For simplicity assume initially that WI and rr2 are decision prob-

lems, reducible to each other by Karp reductions. We have a checker Cvl for

ml and a program PQ for mz. We also have two-way polynomial-time transfor-

mations, fl, ~ and f2,, going from n-l to m-2 and from m? to n-l respectively.

The existence of fl, ~ gives us a program PI for ml defined in terms of fl, ~ and

Pz. Pi(x) is defined to be Pa( fl, 2(.x)). In our way of counting the running time

of the checker checking program P2, a call to PI can be accomplished in

polynomial time since fl, ~ is a polynomial-time function and a call to P2

counts as one step.

To check Pz on instance y we compute Pz(y) and transform y to an

instance z for ml using the function fz, ~. We then use the checker Cm, to

check the correctness of PI on z. Any call that the checker makes to PI,

including the call on the instance Z, is transformed in polynomial time to a call

to PI by the procedure described above. Being convinced about the correct-
ness of PI on z convinces us to the correctness of Pz on y. If Pz is correct,

then PI, which is defined in terms of Pz, will be too. Thus, the checker will find

that PI is correct on z, convincing us that Pz is correct on y. If P? is wrong on

y, there are two classes. If PI is correct on z, we will discover the contradiction

immediately. If PI is wrong on z the checker CT, is designed to catch precisely

this situation and it will declare PI to be buggy. Thereby we will be convinced

of the bugginess of Pz.

The checker for n-z described above runs in polynomial time. Let n be the

length of the instance of Tz being checked. The running time of the checker

for Tz can be broken down into the following three components.
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—The running time of the checker for rrl on an instance whose length is

polynomial in n.

—One application of the transformation ~z, ~ on an input of length n.

—A polynomial number of applications of the transformation ~1,~ on inputs

whose lengths are polynomial in n.

We show now that the theorem holds even when the problems are possibly

search problems and the reductions between the problems are Cook reduc-

tions. In this case also, we have a program PI for ml defined in terms of 1’2.

The proof of correctness of the checker essentially follows along the lines of

the proof in the case of Karp reductions. There are just more details to check.

The program PI will make polynomially many calls to P2 on each input. The

transformation ~1,z is replaced by a program which takes an instance of ml

and in polynomial-time produces the set of instances of m2 to be queried. So

also the transformation ~2, ~. ❑

One particular application of Beigel’s theorem is to graph isomorphism.

Since graph isomorphism is known to have a polynomial-time checker, all of

the problems that are polynomial-time equivalent to graph isomorphism also

have such checkers.

It is important to note that the statement of BeigeI’s theorem requires the

equivalence of n-~ and rr2. The following example suggests that a reduction in

one direction is not sufficient.

Observe that Group Isomorphism (GI) reduces to Extended Group Isomor-

phism (EGI) where

(1) groups are given by multiplication tables, and

(2) GI differs from EGI in that a YES answer in the former is an explicit
isomorphism in the latter.

We know an efficient checker for EGI but not for GI.

4.1. GENERALIZING BEIGEL’S THEOREM. Let Z be a complexity class and let

m-l and m2 be problems that are reducible to each other in X Suppose we
have a checker for ml in 3 Under what conditions does that give LIs a checker

for Tz in = We consider the situation in which ~ is a deterministic-time

complexity class. The situation is similar if we replace time complexity by

circuit size or circuit depth.

Time Complexity Classes and NC. Let fi & e N be a time complexity func-

tion. Suppose having an algorithm whose running time is bounded by f(n) on

inputs of length n puts a problem in ~ Then, we will call ~ a time complexity

function for X

We will call a complexity class F robust if for any two time complexity

functions f and g for ~, f + g, fog, and f(g) are all time complexity functions

for.% In other words, ~ is a robust class if the sum, product, and composition

of any two time complexity functions for&is a time complexity function for%

Examples of robust time complexity classes include P and logo(l)(n).

THEOREM 4.1.1. Let T be a robust time complexiy class, rrl, and ITZ mO
problems reducible to each other in Fand C=, a checker for m-~ in ~? Then, there

is a checker, Cnz for W2 in S?

PROOF (SKETCH) The checker Cm, is constructed along the same lines as

the checker constructed in Beigel’s theorem. For the running time analysis,
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note that the definition of robustness is precisely the one needed to guarantee

that Cm, lies in ~ This uses the fact that an algorithm with a running time of

~(n) can make at most ~(rz) calls to an oracle (such as the program being

checked) and can only produce outputs (transformed instances) whose lengths

are bounded by ~(n) on an input of length n. Thus, the running time of the

checker for nz can be bounded by sums, products, and compositions of the

running times of the two reductions and of the checker for ml. This is true

even in the case that the reductions between the problems are Cook

reductions. ❑

COROLLARY 4.1.2. If n-l and Vz are equivalent under NC-reductions and m-l

has an NC-checker, then so does Vz.

PROOF. Although NC is not a time complexity class, the proof follows from

the robustness of the class NC. A “complexity function” for NC can be thought

of as an ordered pair of functions, (size(n), depth(n)), size(n) is a function from

the class P and depth(n) is a function from logo(l)rz. Sums, products, and

compositions of complexhy functions are computed component-wise on the

ordered pair representing the function since the arguments in the theorem

about the robustness of a time-complexity class holds for depth and size as

well. The robustness of the classes, P and Iogo(l ‘n establishes the robustness of

the complexity functions in NC. This, in turn, implies that the checker for n-z is

in NC. ❑

4.2. NC-CHECKERS FOR PROBLEMS IN P. Using the generalized version of

Beigel’s theorem, we can prove that all P-complete problems have checkers in

NC.

THEOREM 4.2.1. All P-complete problems haue checkers in NC.

PROOF. In the light of the generalized version of Beigel’s theorem, it is

sufficient to prove that some P-complete problem has a checker in NC. This is

because all P-complete problems are NC reducible to each other. The particu-

lar P-complete problem for which we provide an NC-checker is the Lexico-

graphically First Maximal Independent Set (LFMIS) [Cook 1985] problem. ❑

4.3. AN NC-CHECKER FOR LFMIS

Lexicographically First Maximal Independent Sel ( LFMIS)

Input: A Graph G with the vertices numbered from 1 to n and a vertex L’ of the graph.

Output: “Yes” if the LFMIS contains the vertex [ and ‘< No” if the LFMIS does not.
We will present the NC-checker informally as an algorithm for a PRAM. For details on

the PRAM model, see, for instances, Karp and Ramachandran [1990].

Step (1). The tth processor asks whether u, is in the LFMIS. Thus, the processors
determine the LFMIS.

Step (2). For this step, associated with each vertex is a group of n processors. The ith
group of processors are associated with u,. They assume that the answers obtained in
Step (1) on queries on ~1, . . . . u_l are correct. With this assumption, they check to
see if the answer to the query on [, is correct. This can be done in O(1) time, since v,
is in the LFMIS iff there is no edge from u, to a smaller numbered vertex in the
LFMIS.

Thus, in the CRCW PRAM model the above checker runs in 0(1) time and

uses O(n z) processors. Doing Step (2) more carefully allows us to reduce the

processor count to O(n + m).
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As already mentioned finding an NC checker for LFMIS gives us NC-check-

ers for all P-complete problems. It is interesting that we can prove that the

“most difficult” problems in P have checkers in NC, although we don’t know

whether all the decision problems in P have checkers in NC. Although there

are NC-checkers for all P-complete problems, a big open question is whether

all NP-complete problems have checkers in P. In fact, there is some negative

evidence on this question [Feigenbaum and Forthow 1993].

5. Checkers for Group Theoretic Problems

Many group theoretic problems have checkers resembling that for graph

isomorphism. Subsection 5.1 shows this for two fairly general classes of exam-

ples. Subsection 5.2 gives a general approach to checker construction that

works particularly well for group theoretic problems.

Why all the work on group theoretic problems? Group theory is a rich source

of problems with checkers. Very elementary properties of groups such as

Lagrange’s theorem can often be exploited in the design of checkers. The

structure of groups often implies relationships among the correct answers to

different instances. These relationships can be used to check the consistency of

programs. Sometimes these consistency checks can be proven to be sufficient

for ensuring the correctness of a program. For instance, the checker for graph

isomorphism that was described in the introduction can be viewed as a group

theoretic checker since the problem of graph isomorphism is polynomial-time

equivalent to the problem of determining the automorphism group of a graph

[Mathon 1979]. For graph isomorphism, we essentially check the consistency of

the program in the case that the program says that the input graphs G and H

are not isomorphic. The structure of the problem implies that

(1) G and a random permutation of G are isomorphic and

(2) If G is not isomorphic to H, then G is not isomorphic to a random
permutation H’ of H.

Computation has been used extensively as a tool in group theory. In fact, the

classification of finite simple groups [Gorenstein 1982] has both motivated and

been aided by computer calculations. The classification has shown that there

are just 26 groups that do not belong to any infinite family of groups. These 26

groups are referred to as the sporadic groups. The existence of some of these

sporadic groups was confirmed only by computer construction. For all of these

reasons, checking group theoretic problems is a very fruitful endeavor.

5.1. THE EQUIVALENCE SEARCH AND CANONICAL ELEMENT PROBLEMS. The

problems (and corresponding checkers) described in this subsection are all

stated in terms of a set S of elements and a group G acting on S.

For a, b in S, define a - ~b if and only if g(a) = b for some g 6 G.

Let ESP(S, G) denote the

Equivalence Search Problem
Inpnt: a, b in S
Output: g such that g(a) = b if a =G b;

NO otherwise.
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PROPOSITION 5.1.1. Let ESP(S, G) be the Equivalence Search Problem for

given S and G. Suppose there exists an ejficient probabilistic algorithm to find a

random g = G according to the uniform distribution. Then there is an eficient

progam checker C~sP(s, ~, for the problem ESP(S, G).

Examples of the Equivalence Search Problem include graph Isomorphism,

quadratic residuosity, a generalization of discrete log and games such as

Rubic’s cube. Other examples arise in knot theory, block designs, codes,

matrices over GF(q), Latin Squares [Leon 1984, page 32] and in applications of

the Burnside and Polya theorems [Polya and Read 1987].

Related to the Equivalence Search Problem is the Equivalence Decision

Problem defined by:

Equivalence Decision Problem (EDP)

Instance: a, b G S

Questiou: Is a =~ b?

It would be nontrivial to prove a similar proposition for EDP because ESP

does not seem reducible to EDP as the following argument indicates:

Recall that for N a positive integer, Z; denotes the group of positive

integers less than N that are relatively prime to N under the group operation

of multiplication mod N. For p a prime, let S = Z; and G = Z;. ~, where the

action of g ● G on a = S maps a to ag mod p. Observe that a -~ b if and

only if b = ag mod p for some g in Z;. ~.

Now suppose we are given an oracle A for factoring. To find g such that

b = ag mod p is essentially to solve the discrete log problem which in

cryptographic circles is believed to not be solvable in polynomial time, even

given the oracle for factoring. On the other hand, the EDP is solvable in

polynomial time given an oracle for factoring. The proof consists in showing

that b = ag mod p for some g if and only if order(b) lorder(a). This is because
~order[~j = 1 mod p has exactly order(a) solutions, namely a, a2, . . . . aor~er(a) = 1.

Finally, order(a) and order(b) can be determined from the factorization of

p–1.

Canonical Element Problem (CEP)
Input: a ~ S

Output: (c, g) where c is the (unique) canonical element in the equivalence class of a, and

g 6EG satisfies g(a) = c.

PROPOSITION 5.1.2. There is an efjicient program checker for the canonical

element problem, prouided there is a probabilistic procedure to select a random

g G G efjicient~.

Remark. If the CEP program should fail by having two or more canonical

elements in some class, then we define the (true) canonical element of that

class to be the unique element, if any, to which more than half the elements of

the class are mapped by the program.

5.2. GROUP INTERSECTION PROBLEM. We use a two-step approach in design-
ing a checker for group intersection. We first design an interactive proof

system and then show that this interactive proof system can be converted into a

checker. Babai and Moran [1988] have independently (and earlier) provided an

interactive proof system for group intersection.
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We use the checker for group intersection and Beigel’s trick to obtain

checkers for several problems that are known to be polynomially equivalent to

group intersection.

First, we briefly discuss the various representations of groups on the com-

puter. Three common representations are used. In increasing order of difficulty

of manipulation, they are: The multiplication table representation, the permu-

tation group representation, and the abstract group representation.

The multiplication table representation explicitly specifies the product of

each pair of group elements. In the permutation representation, the group is

thought of as acting on a set. The group elements are permutations and the

group operation is composition. Usually, the group is specified by specifying a

few (polynomially many in the size of the set) generating permutations. In the

abstract group representation, the group is presented by generators that are

related by the relations specified almongst them. Only relations implied by the

specified relations hold between the generators. This completely specifies the

group.

We now describe the checker for the group intersection problem which is the

following:

Group Intersection Problem

Input: Two permutation groups G and H specified by generators.

Output Generators for G n H.

Let n be the size of the set S on which G and H act. In general, the

specification of a generating set for G requires Ll(n) bits and can be done in

poly(n) bits. Hence, we take the input length to be n. No probabilistic

polynomial-time algorithm is known for solving the group intersection problem.

This is not surprising since graph isomorphism is polynomial-time reducible to

group intersection. The following interactive proof protocol works for group

intersection:

5.2.L 1P Protocol

(1) The prover sends the verifier a set of permutations of [1, 2,..., n], which
supposedly generate G n H.

(2) The verifier checks that the elements sent by the prover actually lie in
G n H. This involves testing membership in G and H which the verifier

can do by the methods of Furst et al. [1990]. As a consequence the verifier

is convinced that the elements sent by the prover either generate G n H or

a proper subgroup of it.

(3) The verifier sends the prover an element n-= GH, which he obtains by

selecting random elements a = G and b = H and multiplying them to-

gether.

(4) The prover sends back a factorization of m- as a’b’ with a’ c G and

b’ =H.

(5) The verifier checks that a-l a‘ is an element of the group generated by the

generators that the prover provided in step (l).

THEOREM 5.2,1. The abozle protocol with Steps (3)–(5) repeated k times allows

the prover only a 1 /2k probability of cheating the verijier.

PROOF. Denote the group generated by the generators that the prover

sends in Step (1) by kf. It is clear after step (2) that &l c G n H. Steps (3) and
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(4) are aimed at giving the verifier a random element of G n H. We have the
following lemma to that effect.

LEMMA 5.2.2. With the notation as in the protocol, a- ‘a’ is a random element

of G~H.

PROOF. Suppose n- = ab with a = G and b = H and x E G n H. Then

– I b = H. Thus, from these two factoriza-fi = (ax)(x–lb), Where ax ~ G and x

tions of n-, the element recovered by computing a- ‘a’ is x = G n H. Thus, for

each x e G n H, there is a unique factorization of m, which along with the

factorization v = ab yields x.

All that remains to be proved is that every pair of factorization of n

correspond to an element of G n H. Again suppose that m- = ab and z = a ‘b’

are two factorization of w. Then, ab = a ‘b’. Rearranging we have a-la’ =

b(b’) -1. On the left-hand side of the last equation, we have an element of G

and on the right hand side an element of H. Since they are equal, both

elements must belong to G n fl.

The randomness of the factorization ab of T implies the randomness of the

element of G n If obtained by this procedure since the prover does not know

the factorization ab used by the verifier. ❑

The proof of Lemma 5.2.2 essentially completes the proof of the theorem.

We use Lagrange’s theorem to note that if M is a proper subgroup of G n H

then a random element of G n H belongs to M with probability at most a

half. Performing k repetitions of Steps (3)–(5) reduces the error probability to

at most (1/2)~. ❑

5.2.2. Concerting the [P Protocol into a Checker. The verifier in the above

protocol asks the prover to factor certain elements of GH. To convert this 1P

protocol into a checker one must show that a program for group intersection

can be used to factor elements of GH. If the Factorization Search Problem

(FSP) were shown equivalent to the group intersection problem, one could use
a program for group intersection to factor. FSP is the following problem:

Factorization Search Problem (FSP )

Input: Two permutation groups G and H have a permutation v.

Output: No, if rr is not in GEL a G G, b = H such that ab = rr otherwise.

The associated Factorization Decision Problem (FDP) is known to be equiva-

lent to group intersection [Hoffman 1982, pages 236-241]. The following

lemma shows the equivalence of FSP and FDP.

L~NIiMA 5.2.3. FDP is equivalent to FSP.

PROOF, It is obvious that FDP reduces to FSP. All that remains to be

shown is that FSP reduces to FDP. The proof relies on the notion of “strong

generators” introduced by Furst et al. [1980].

Assume that we have strong generators for G and H as defined in Furst et

al. [1980]. This can be assumed without loss of generality because any set of

generators can be converted to a set of strong generators in polynomial time.

Here is a brief description of the notion of strong generators, ikl~, for the

group G. M~ is an n X n matrix where n is the size of the permutation
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domain. The matrix has no entries below the diagonal. Above the diagonal, in

position ij we have an entry if and only if there is a permutation in G that fixes

(pointwise) the elements 1,2,..., i – 1 and moves i to j. In case such a

permutation exists, the zjth entry is any such permutation in G. It is convenient

(and customa~) to make the diagonal entries be the identity permutation.
Some properties of this representation are given here without proof. Every

element of G can be expressed in a unique way as a product, n. n-. – 1 .”” ml

where m-, is from row i of kl~. We are using the convention here that in a

string of permutations the leftmost one acts first and the rightmost one last. As

a consequence of the previous fact, \G I is the product of the numbers of

nonempty entries in each row of itl~. Another consequence is that a random

element of G can be obtained by multiplying together random elements in

each of the rows of MG. Also, GI, the subgroup of G that fixes the point 1, is

generated by the entries in rows 2 through n of lf~. Finally, membership in G

of a permutation u can be tested as follows: If m moves 1 to j, we look in

position lj for an entry. If none exists, o is not in G. Otherwise, if ml is the

entry, cmr~ 1 fixes the point 1 and we move on to the second row and check it

for membership in G1. Proceeding thus we will either find that m is not in G

or find an expression for ~ as a product of entries in MG.

Suppose now that T is in GH. We consider Hl, the subgroup of H consisting

of all permutations that fix the point 1. Since n- is in GH, m- = ab with a in G

and b in H. Also b is equal to some product, u. u. _ 1 “.” al where q is in the

ith row of M~. Thus, there is a permutation, al, in the first row of M~ such

that abu~ 1 is in GH ~. We can use the oracle for FDP to find out which entry

in the first row of M~ has the above property. If this entry is al, we consider

– 1 and factor it in GH ~. A factorization in GH ~ will yield a factorization in7TU1

GH of m-. It can be seen that, if this technique is applied recursively, it yields a

factorization of rr in GH. This completes the reduction and shows that the 1P

protocol described can be converted into a checker. ❑

6. Problems in FP

In this section, some program checkers use their oracle just once (to determine

O = P(I)) rather than several times. In such cases, instead of the program

checker being denoted by C~(l; k), itwill be denoted by CT(l, O; k). The

latter notation has the advantage of clarifying what must be tested for. In cases

in which the checker is nonprobabilistic, it will be denoted by Cm( 1, O) instead

of Cm(I, O; k).

Many problems in FP have efficient program checkers, and it is a challenge

to find them. In what follows, we give a fairly complete description of program

checkers for just three problems in FP: Extended GCD (because it has one of

the oldest nontrivial algorithms on the books), Sotiing (because it is one of the

most frequently solved problems), and Matrix rank (because it is most unusual

in that it seems to require a multicall checker with two-sided error).

6.1. EXTENDED GCD. The problem of integer GCD is, given two integers a
and b find the gcd d of a and b. Adleman et al. [to appear] have recently given
a probabilistic checker for the problem. An extension of the problem makes it

easy to check. The idea of extending a problem (without incurring additional

running time to solve the extended problem) is an important one in the area of

program checking.
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Extended GCD
Input: Two integers a and b.

Output: An integer d = gcd(a, b) and integers u, u such that d = u a + b L.
To check that d is the gcd, the checker has to perform only 5 arithmetic operations!

—Check that d divides a and b. The validity of this check is obvious from the definition

of the gtd. At this point, we are convinced that d is a divisor of a and b.
—Check that d = u . a + L b. This is done with three arithmetic operations. To justify

this check and show why these two checks should convince us that d is the gcd, we refer

to the following (standard) lemma.

LEMMA 6.1.1. Let a and b be positive integers. Then the smallest positive

integer that can be expressed as an integer combination of a and b is their gcd, d.

6.2. SORTING. It is hardly necessary to mention that sorting is one of the

most commonly solved problems in computer science. Because of this, a large

number of algorithms are available for sorting, some of which are fairly

complex to program. Thus, it is necessary to check the output of these sorting

programs.

Sorting is trivially checked in the comparison tree model. In this model, the

inputs are the variables xl, Xz, . . . . X. while the output is given by an ordering

of the input variables: For some permutation u of [1, . . . . n], the output is

Xu(l) ~ Xa(z) ~ “”” s xm(~). The checker for sorting has only to confirm that the

output inequalities are all valid. This can be done using n – 1 comparisons, in

fact, using a linear number of operations in any reasonable model of computa-

tion. In general, if we assume that the outputs point to the inputs that they

came from, we can check sorting merely by checking that the outputs are in the

right order. In the RAM model of computation, it is again easy to check sorting

in linear time. But the RAM does not reflect many sorting scenarios. We

define the problem of sorting and provide a reasonable model of computation.

Sorting:

Inpnt: An array of integers X = [xl,. . . . x.] representing a multiset.

Output: An array Y consisting of the elements of X listed in nondecreasing order.
Model of Computation: The computer has a fixed number of tapes, including one that
contains X and another that contains Y. X and Y each have at most n elements and each

element is in the range [0, a]. The random access memory has O(log n + log a) words of
memory and each of its words is capable of holding an integer in the range [0, a]; in

particular, each word can hold any element of X u Y.

—Single precision operations: +, –, x , /, <, = each take one step. Here, / denotes
integer divide.

—Multi-precision operations: +, –, <, = take m steps on integers that are m words long.
On such integers, X, / take m2 steps.

In addition, the machine can do the usual operations. Each shift of the tape

and each copy of a word on tape to the RAM or vice versa takes one step.
In the model of computation described above, it is easy to check that the

output list Y is in order in O(n) steps. We need also to check that X = Y as

multisets. This can be done probabilistically in O(n) steps, but the right

method depends on the relative sizes of a and n. If n > 2“ a simple bucket

sort works. We need a buckets for numbers in the range [0, a]. Since a < log n,

the random access memory has space enough for a buckets. Thus, we could

run through the values in X and put each one in its appropriate bucket. We

could then run through the elements in Y and take each one out of its

appropriate bucket. If at any time the bucket we try to take a value out of turns

out to be empty, the checker declares the program to be buggy.
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The situation when n <2’ is more interesting. For this case, we present the

following two methods for checking multiset equality.

Method 1. This method (but not the specific and important choice of hash

function) was first suggested by Wegman and Carter [19811: Compute n = 1X1

and check that IY I = n. If so, select a hash function h: Z ~ {O, 1} and compare

h(xl) + . . . +h(x~) to h(yl) + “.” + h( y.). If h is random and X + Y, then,

with probability at least 1/2, the above sums will differ. To see this, remove

from X and Y any largest submultiset of elements that is common to both. The

resulting X and Y are still the same size and their intersection is empty.
Compute ~ i + lh(x,) and ~ ~h( y,). If the two sums are equal, then setting

h(xl) to 1 will distinguish X from Y. If the sums are different, setting h(xl) to

O will distinguish the two. In either case, h has a probability of 1/2 of

distinguishing between the two sets. Since a random function requires an

enormous number of random bits, we have to replace the random function h

above by a suitably chosen hash function.

Choosing an easy-to-compute hash function is difficult. The Wegman–Carter

has function in particular requires a random access memory and hence it

cannot be implemented in our model of computation. Here is a different hash

function that does work. Recall that n = 1X1 = IYI. Let m = n + 1. Select a

random prime p from the interval [1,3 “ a “ log m]. Set h(x) = m’ mod p.

Observe that X = Y if and only if ~ rn’ = ~ rnYC. Indeed if X = Y, then

~(mx) mod p = ~(nz’) mod p for all primes p. If X #Y, then ~m’

# ~ my, and, as pointed out by Karp and Rabin [1987], ~ m’ mod p # ~ m‘1

mod p for at least half of all primes in the interval [1,3 oa . log m]. The choice

of the interval size arises from an estimate of how large ~ m“ can get. Since

the sum is over n terms and each term is bounded by m“, the sum is no bigger

than n . ma. Since m = n + 1, a bound for the sum is ma+ 1. The interval has

then to be chosen to be a suitable constant times log ma+ 1. Thus, Karp and

Rabin [1987] show that, for primes randomly chosen in the interval [1,3 “ a “

log m], the hash function has a probability of at least 1/2 of catching an error.

Method 2. This idea was first suggested by Lipton [1991] and more recently

by Ravi Kannan (personal communication through S. Rudich). Let jlz) = (z

- X1)(Z - x,) -“. (Z - x.) and g(z) = (z - yl)(z - Yz) ““” (Z – Y.). Then, X =

Y as multisets, iff ~ = g. Since ~ and g are polynomials of degree n, either

~(z) = g(z) for all z or ~(z) = g(z) for at most n – 1 values of z. A

probabilistic algorithm can decide if f = g by selecting k values at random
from a set of 2n (or more) possibilities, say from [1, 2n], then comparing f(z)

to g(z) for these k values. The computations can be kept to a reasonable size

by doing the arithmetic operations modulo randomly chosen small primes. In

the computation of the product f(z), each term is bounded in absolute value

by a + 2n and hence the product is bounded by (a + 2rz)n. Thus, according to

Karp and Rabin [1987], the primes have to be chosen approximately in the

range [1, n log(a + 2n)l.

We now compare the two methods and show that, regardless of the relative
values of a and n, one method will always run in time O( n log n).

Comparison of methods 1 and 2. Recall that each multiset has at most n

integers, each in the range [0, a]. Also recall that if n > 2“ bucket sort can be

used to check the computation. Since word sizes in our model are O(log a), if

n s 2’, the primes in method 1 fit in a constant number of words. The number
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of words, w, required to hold a prime in method 2 is

The running time of method 1 is O(n log a). We need to perform log a

multiplication to compute nZXI for each i. These are all constant time opera-

tions since the prime moduli are just a constant number of words long. The

running time of method 2 is a function of the number of words, w, and is equal

to rzwz since n multiplications are performed on numbers which are w words

long. This is the overriding cost of method 2.

We now describe the transition from one method to another as a decreasing

function of n. When n >2’ we use bucket sort. When n becomes less than 2’

and as long as n log a is o(n log n) we use method 1, which has running time

O(n log a). For instance, we could use method 1 as long as n is greater than

ai”g ‘“g’. At this threshold value of n, log n is log a log log log a and hence log a

is o(log n). When n dips below this threshold, the primes in method 2 fit in

log log a words and method 2 runs in time O(n(log log a)z) Notice that in the

most typical case for sorting, n < a, and for this case method 2 runs in linear

time. Thus, all the algebraic finagling is mainly to prove the existence of a little

oh checker for all relative values of n and a.

6.3. CHECKING MATRIX RANK. In this subsection, we describe a checker for

matrix rank. Our checker for rank is mainly of theoretical interest. It satisfies

the little oh property as required. However, it makes 0(n2 ) calls to the

program being checked and hence would be highly inefficient to implement in

practice. Blum et al. [1990/1993] have subsequently discovered a very practical

checker for matrix rank. However, their checker does not conform to the

original definition of checking. Instead, they use the idea that, if a program for

matrix multiplication has been checked, then in checking rank, one can call the

matrix multiplication program and count the call as one step.

We consider matrices, M, whose entries are drawn from some finite field, F.

Let P be a program that takes such a matrix as input and outputs as integer, r,

which is supposedly the rank of M. We describe here a checker for P. The

checker is given an integer k in unary. k is the desired confidence in the

checker’s output, that is, the probability of the checker’s being wrong should be

at most O(l\2k).

We describe the checker in three parts. The first part of the checker

produces an r X r submatrix of M, which is supposedly of full rank. It does this

by a process of self-reduction, using the program to obtain intermediate

answers. Part 2 of the checker checks that the resulting r X r matrix is indeed
of full rank. This incidentally proves that the rank of the original matrix A4 is

at least r. Finally, we also need to ensure that the rank of &f is no more than r

and this is done by Part 3 of the checker.

6.3.1. Self-Reduction. Let M be an n x m matrix input to P and suppose P

on M outputs r. Let Ul, Uz, . . . . u~ be the columns of &f.

fori:=l tomdo
delete u, from M and feed the resulting matrix to P
if P says (the rank is) < r put u, back

endfor
if the number of columns remaining # r return
BUGGY
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By self-reduction, we have obtairled r column vectors that are supposedly

linearly independent. Each of these r columns is an n-vector and, by self-

reduction on the rows of the n X r matrix that we have, we arrive at an r X r

matrix that is supposedly of full rank. Of course, we do not want to take the

program’s word that this matrix is of full rank. We need to check that this

matrix is actually of full rank. Thus, even if the program returned some wrong

answers in the course of this self-reduction, we detect this and declare that the

program is bad. This is done in Part 2 of the checker.

6.3.2. Lower Bounding the Rank. If we have an r x r matrix of full rank, the

columns of the matrix form a basis for F’. In this case, every vector in F’ has a

unique representation as a linear combination of the column vectors of the

matrix. In this part of the checker, we exploit the uniqueness of the representa-

tion.

Let Ul,. ... ~:, be the columns of the r X r matrix that is supposedly of full

rank. The idea is to create k linear combinations, x,, Xz, ..., x~ of the r

columns of the matrix. Suppose, for example, that

xl =Clz)l + c2v~ + ““” +Crur.

We toss a fair coin. If it comes up heads, we subtract CIUI from xl. Otherwise,

we choose a random a # c1 in F and subtract au 1 from xl.

We expect that xl – Clul cannot replace u, in the basis, but xl – aul can if

a # c1. This is clearly true if the U, form a basis. Suppose now that the U, do

not form a basis. Then, let L; be the first of the Ui>s that has a nonzero

coefficient in a dependence relation among the u, ‘s. ~lj could have any coeffi-

cient at all in a linear combination to produce xl and this coefficient of u, is

not affected by the values of coefficients for u ~ through L)_ ~. Thus, the

program has no way of distinguishing the situation when we subtract c, times

Uj, from the situation when we subtract some other multiple of L). Thus, for

each linear combination xi the program has only a probability of 1/2 of

escaping undetected if it is wrong about its claim that L]~, V2, ..., vr are

independent. The above ideas yield the required algorithm, which is described

below:

Generate k random linear combinations of L)~, ..., 1’,.
Let these k random combinations be xl . . . . . x~.
fori:=ltokdo
forj:=ltordo

begin
Toss a fair coin;
if Heads then

y :=x, – Cll;

else

y := X, — a[~ where a is random # Cl

Replace Uj by y in the original matrix
and ask the program for the rank of this new matrix.
if Heads and (rank # r – 1)return “Program is bad”.

if Tails and (rank # r) return “Program is bad”.
endfor
endfor
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It is clear that a program that wrongly claims that u ~, V2, ..., u, are indepen-

dent has at most a probability of l/2~ of escaping detection.

6.3.3. Upper Bounding the Rank. We go back to the original matrix M with

columns ul, uz, . . ..u~. By self-reduction, we are left with r columns, say,

Ul, . ..>ur. that are supposedly linearly independent in n-dimensional space.

We randomly pick vectors X.+ ~,. . . . x. such that the vectors u ~,. . . . x. form a

basis for the n dimensional space. We use the program’s help in deciding if the

set of n columns we have, are of full rank. If the program says they are not, we

redo the experiment of picking vectors, x,+ ~, ..., x.. We have the following

lemma:

LEMMA 6.3.1. Ifal,..., a, are independent, then with probability greater than

a positive constant (~ “ ~ “ ~ “.s = “28 “.” ), the n vectors obtained by augmenting

al, ..., a, with random vectors b, ~ ~, . . . . b. form a basis for F“.

PROOF. The worst-case occurs when F is GF(2) and r = O that is, when we

are required to build up the random basis from scratch. In this case the

number of good choices for the ith vector (out of a total of 2n choices) is

(2’ – 2’- ‘). This works out to a probability of

for the ith vector to be independent of the first i – 1.This yields the result in

the lemma. ❑

It is clear from the above lemma that each random trial has a constant

probability of succeeding, that is, producing a basis. If we perform this

experiment O(k) times and the program always says that the set of vectors is

dependent, we report that the program is buggy. We know that we will be

correct in doing so with overwhelming probability. There is however, a small

chance ( < 1/2 k), that the program is right but we were unlucky enough not to

hit upon any basis.

Next, we need the following lemma.

LEMMA 6.3.2. If U,+ ~,..., u. are dependent on Ul,. . . . u,, then any linear

combination of u,+ l,..., u. is dependent on Ul, ..., u~. If one of u,+l, ..., u. is

not dependent on Ul, . . . . u,, then a random linear combination of u,+ ~, ..., u,, is

dependent on UI, ..., u, with probability at most a half.

PROOF. The first statement of the lemma is obvious. For the second part,

suppose that Ur+, is independent of u ~, . . . . Zlr. Then, if some linear combina-

tion, x is dependent, changing the coefficient of u,+] to anything else besides

the one in x will make the new vector independent. This counting establishes

that there are at least as many independent combinations as dependent ones,

equality occurring in the case of a vector space over GF(2). ❑

By Lemma 6.3.2, it suffices to check that k random linear combinations,

Yl:. ... yk~ ‘f ‘r+l>...>”rz> are dependent on UI, ..., u,. This will ensure that

with probability > 1 – 1\2k, the program is correct.
Suppose one of y ~,.. . , yk, say Yl, is independent of Ul, ..., u,. we will

denote yl by y in what follows. Let the unique expression of y as a linear
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combination of Ul, ..., u,, X,+l, ..., x. be

r n

LEMMA 6.3.3. In the aboue representation of y each c, for r + 1 < i < n has a

probability > ~ of being nonzero.

PROOF. Let ~ be the vector space generated by the first i vectors in the

basis. Let W be the complement of ~. By taking appropriate components of

vectors in W, our problems can be restated as follows: Suppose we have a

random basis Zl, . . ., zl for W’, an l-dimensional space, and a nonzero vector y

in W. For each basis vector, its coefficient in the unique representation of y as

a linear combination of the basis vectors will be nonzero with probability > ~.

We now prove the above statement. Having a fixed vector with respect to a

random basis can be thought of as equivalent to having a random vector with

respect to a random basis. For, let A be a random nonsingular 1 X 1 matrix.

Consider the 1–1 correspondence from the set of bases to the set of bases that

takes the basis, Zl, ..., Z1 to the basis, Azl, ..., Azl. Let y‘ = Ay be the image

of y under the linear transformation A. By the nonsingularity of A, y‘ is a

random vector in W and the new basis is a random basis of W because of the

1–1 correspondence above.

Now given a basis, a random vector in W is generated by randomly picking

coefficients for the basis vectors. Thus, for a random vector, the probability

that any coefficient is zero is s ~. This result can be translated back to the

fixed vector y. ❑

As a result of Lemmata 6.3.2 and 6.3.3, we note that if u,+ ~,. . . . u,, are not

all dependent on Ul, ..., u,, then with very high probability, one of yl, . . . . y~

can replace one of x,+l, . . ..x. +~ in the basis, Ul, . . ..u. x,x, + I,. .. ,x.. This

idea yields the following checker.

fori:=ltok
forj,=k+ltok+r

repeat k times
Toss a fair coin;
if Heads then

w := a random linear combination of the original basis

with a non-zero coefficient for xl

else

w ‘= a random linear combination of the
original basis, without xl
and with y, having a nonzero coefficient.

Replace x, by w and feed the resulting matrix to P;
if Heads and rank # r reject program;

if Tails and rank # r – 1 reject program;
endrepeat
end for
endfor

It is clear that if the program was wrong in its original claim that u,+ ~,. . . . u~

were dependent, it can escape detection with probability at most 1/2k, Thus,

lThis probability is over the choice of the random extension of the basis, x,+ ~,. ... x.. Although

the program has some influence over the distribution of these random extensions, the statement
of the lemma still holds.
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the checker has an error probability of 0(1/2~) in a number of places. The

overall probability of error is bounded by the sum of these probabilities and is

therefore 0(l\2~).

6.3.4. Analysis of Running Time. The most expensive operation is the

creation of random linear combinations of many vectors. Care has been taken

here to keep the number of such operations down. Part 1 of the checker, the

self-reduction, runs in O(n) time. In part 2, generating k linear combinations

takes time 0(kn2 ). The loop is repeated 0( nk) times and each run of the loop

takes time O(n). Thus, the overall running time of part 2 k O(krzz ). In part 3,
generating the random basis takes O(kn2) time since we might generate kn

different vectors before we finish. Creating k linear combinations again takes

O(knz) time. The bottleneck however is the loop that is repeated 0(k3) times,

each pass taking O(rzz) time. Thus the overall complexity of the checker is

O(kjrzz).

A point of discussion is the amount of time charged to each call of the

program. The above analysis has been made with each call being charged one

step. This can be justified at least in the theoretical sense as follows: We

assume a model in which the checker has a query tape to write down instances

on which the program is run. Each call to the program could justifiably be

charged the amount of time it takes to modify the query tape in order to

produce the new instance from the previous instance queried. It is then

possible to use suitable data structures to implement such modifications in

0(1) steps in all of the above computation.

7. Checker Characterization Theorem

In this section, we characterize the set of problems that can be checked in

polynomial time. For the purpose of this section, a checker running in polyno-

mial time will be called efticient.

We take as our definition of 1P (Interactive Proof-System) the definition

appearing in Goldwasser et al. [1989], except that we replace “for all suffi-

ciently large x” in that definition by “for all x”. This modification of

Goldwasser et al. [1989] conforms with the commonly accepted definition of 1P

as it appears, for example, in Goldwasser and Sipser [1989], and Tompa and

Well [1987].

Define function-restricted 1P ( CO-fcwzction-restricted 1P) = the set of all deci-

sion problems, n, for which there is an interactive proof system for YES-

instance (NO-instances) of w satisfying the conditions that prover ( = any

honest prover) must compute the function m and prover ( = any dishonest

prover) must be a function from the set of instances of T to {YES, NO}. This
restriction implies two things:

(1) verifier may only ask questions that are instances of n-, and

(2) prover (and prover) must answer each of verifier’s questions with an answer

that is independent of prover’s (prover’s) previous history of questions and

answers.

THEOREM 7.1. An ejficient program checker C. exists for decision problem
~ w ~ lies in finction-restricted 1P n co-flwzction-restricted IP.

The proof of the above theorem is immediate from the definitions of

efficient program checkers and the complexity class function-restricted 1P.
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Let NP-search denote the class of problems n such that T(X) = NO if x is a

NO-instance; YES together with a proof that x is a YES-instance, otherwise.

Co~ouA~~ 7.2. Let T be an NP-search problem. An efficient program

checker CW exists for v w T is in function-restricted CO-1P.

The main purpose of the above corollary is to point out that if NP # CO-

function-restricted 1P, seems likely, then there can be no efficient program

checker Cm (in the above sense) for NP-complete problems! Note that the

results of Lund et al. [1992] and Shamir [1992] do not give function-restricted 1P

proofs for NP-complete languages.

8. Overview and Conclusions

The thrust of this paper is to show that in many cases, it is possible to check a

program’s output on a given input, thereby giving quantitative mathematical

evidence that the program works correctly on that input. By allowing the

possibility of an incorrect answer (just as one would if computations were done

by hand), the program designer confronts the possibility of a bug and considers

what to do if the answer is wrong. This gives an alternative to proving a

program correct that may be achievable and sufficient for many situations.

One way to develop this theory would be to require that the program

checker itself be proved correct. This paper however, is about pure checking,

meaning no proofs of correctness whatsoever. Instead, we require the checker

C to be different from the program P that it checks in two ways: First, the

input –output specifications for C are different from those for P (C gets P‘s

output and it responds CORRECT or BUGGY). Second, we demand that the

running time of the checker be o(S), where S is the running time of the

program being checked. This prevents a programmer from undercutting this

approach, which he could otherwise do by simply running his program a second

time and calling that a check. Whatever else the programmer does, he must

think more about his problem.
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