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A new algorithm, the digital inversive method, for generating uniform pseudorandom numbers is

introduced. This algorithm starts from an inversive recursion in a large finite field and derives

pseudorandom numbers from it by the digital method. If the underlying finite field has q

elements, then the sequences of digital inversive pseudorandom numbers with maximum possi-

ble period length q can be characterized. Sequences of multiprecision pseudorandom numbers

with very large period lengths are easily obtained by this new method. Digital inversive

pseudorandom numbers satisfy statistical independence properties that are close to those of

truly random numbers in the sense of asymptotic discrepancy. If q is a power of 2, then the

digital inversive method can be implemented in a very fast manner.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and Statis-

tics—random number generation

General Terms: Algorithms
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1. INTRODUCTION

Several nonlinear methods of generating uniform pseudorandom numbers in
the interval [0, 1] have been proposed in the literature. Reviews of the
development of this area can be found in Eichenauer-Herrmann [ 1992; 1995]
and Niederreiter [1992a; 1992b]. A particularly attractive nonlinear method
is the (recursive) inversive congruential method with prime modulus. In this
article a digital version of this inversive method, which offers several advan-
tages over the former approach, is introduced and analyzed. First, a detailed
description of this new method is given.

Let p be a prime, and put q = pk for some integer k >1. Denote by F~ the
finite field with q elements and by F; = F~ \ {O} the multiplicative group of
nonzero elements of F~. Identify the set ZP = {O, 1,..., p – 1} of integers with
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the finite field FP = Z/pZ with p elements. For y ~ F: let T = y-l ~ F~* be
the multiplicative inverse of y in F~ and define b = O. For an initial value

y. G Fq and parameters a = F; and /? G Fq an inversive sequence ~ynjn z o ‘f

elements of F~ is defined by the recursion

Yn+I=@n+P, n20. (1)

Obviously, an inversive sequence (M). ~ o is always purely periodic ‘ith
period length less than or equal to q.

Let cr, ~ = FQz be the nonzero roots of the polynomial x 2 – Ox – a ~ p~[ ~1
associated with the inversive sequence (y. )V~ *. Then Theorem 1 in Niederre-
iter [19941 implies that (y.). ~ o has the maximum possible period length
q = p k if and only if the order of the quotient m’ 1 in the multiplicative
group F~2 is equal to q + 1.In this case the polynomial x 2 – Ox – a 6 F,[[ x 1
is called an inversive maximal period (IMP) polynomial over F~. It should be
observed that any primitive quadratic polynomial over F~ is an IMP polyno-
mial. A detailed study of IMP polynomials was carried out by Chou [19951. As
explained by Chou [1995] and Niederreiter [1994], the polynomial X2 – P x –
a ~ F~[ x 1 is an IMP polynomial over F~ if and only if the roots of X2 +
(1-1 + 2)x + 1 have order q + 1 in FJz,where a = 1~2.

In the following, the finite field F~ is viewed as a k-dimensional vector
space over ZP. Then for n >0 let

Cn = (C$yj..., cfq f= z:

be the coordinate vector of y. = F~ relative to a given ordered basis of F~ over

ZP. Now a sequence (x.)., o of digital inversive pseudorandom numbers in
the interval [0, 1) is defined by

(2)

Obviously, the sequences (x,)n ~ o, (c~)n, O, and (Y.). ~ ~ have the same peri-
odicity properties; in particular, the sequence ( Xn )n ~ O of digital inversl~e
pseudorandom numbers is always purely periodic, and it has t_he maximum

k if and only if the polynomial x – ~x – a =possible period length q = P

F~[ x ] is an IMP polynomial over F~.

A very important property that should be asked of pseudorandom numbers
for stochastic simulations is the statistical independence of successive terms
of the generated sequence. A reliable theoretical approach for assessing
statistical independence properties is based on the notion of discrepancy of
s-tuples of successive pseudorandom numbers. For N arbitrary points
to, tl,... , t ~ _ ~ G [0, l)sthe star discrepancy is defined by

)= supl EN(J) -V(J)I,D;(to, tl, ....tl-l ~

where the supremum is extended over all subintervals J of [0, l)s containing
the origin; EN(J) is N“ 1 times the number of points among to, tl, . . . . tN. 1
falling into J; and V(J) denotes the s-dimensional volume of J.
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In the following, for a sequence ( x~)~ ~ ~ of digital inversive pseudorandom
numbers with period length q = p k the abbreviations

Xn = (xn, xn+l,..., xn_l)l) ● [O,l)s, n 20, (3)

and

D:(’) =D:(xo, xl,..., xq_l)

are used. In Section 3 we establish upper and lower bounds for the star
*‘s) Their proofs are based on several auxiliary results that arediscrepancy D~ .

collected in the second section. Section 4 contains a detailed discussion of
computational aspects of the practical implementation of the digital inversive
method. In the last section the features of the digital inversive method are
summarized and discussed.

2. AUXILIARY RESULTS

Let s >2, and denote by C,. k( p) the set of all nonzero s x k matrices
H = (hl~) with integer entries h,~ satisfying –p\2 < h,~ < p/2 for 1< i < s
and 1 s j s k. For H = CXX ~( p) an exponential sum is defined by

where e(u) = e2n~“ for real u. We collect some auxiliary results on these
exponential sums. Lemma 2.1 was shown in the proof of Niederreiter [1994,
Theorem 2], and Lemma 2.2 follows from the proof of Niederreiter [1994,
Theorem 3]. As in Section 1 we put q = pk.

LEMMA 2.1. For all H = C, Xk(p) we have

IS(H) I < (S - 1)(2q’f2 + 1).

LEMMA 2.2. Let H = (h,J) = C, XL(p) with hll = h21 = 1 and all other

entries equal to zero. Let ~ = Fq* be such that the roots of the polynomial

X2 +({-1 +2)x+ 1 =Fq[x] have orderq + 1 inF~,. Let O <t < 1 and

1 – t2 – 2(q – 1)-1
Aq(t) =

4–t2+4q-l/2+ q-1”

Then there exist more than A~(t)(q – 1) values of ~ ~ F; such that with

a = ~/32 in the underlying inversive sequence we have

IS(H) I > tq’/2.

We remark that if a, ~, and ~ are as in Lemma 2.2, then according to a
characterization of IMP polynomials in Section 1 the inversive sequence (1)
has the maximum possible period length q.
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LEMMA 2.3. Let H = (h,j) = C~Xh(p) with hll = hzl = 1 and all other

entries equal to zero. Then

q–1

(

IS(H) I = ~ e ‘(c:) + c~’~l)
)

< 8(7T + l)ql);(s).
~=(j P

PROOF. We apply Niederreiter [1994, Lemma 3] with lif = p, N = q,

d = S,Yn = (C:l), C:~l,..., C:l~, _l )–for O<n<q–l, andh=(l,l, O,..., O)
c Z‘. This yields

IS(H) I < 8(n+ l)q m;xlE,(J) - v(J)I,

where the maximum is extended over all subintervals J of [O, l)s of the form
J = Ii;= ~[0, bl/p) with integers O < b, s p for 1 s i s s, and where EQ(J) is

q-l times the number of points among t~ = p-l y., O s n s q – 1, falling
into J. In view of the definition of the pseudorandom numbers x. in (2), it is
clear that t~ e J if and only if the point x ~ in (3) satisfies x ~ c J. Therefore

and the result of the lemma follows. ❑

3. DISCREPANCY BOUNDS

If the inversive sequence ( y~)~, ~ of elements of F~ has the maximum
possible period length q = q k, then -yO, -yI, . . . . yq _ ~ run exactly through all

elements of F~. Consequently, the corresponding coordinate vectors
Co, cl,..., c q_ ~ run exactly through all elements of Z ~. On account of (2), this
implies that each rational number in [0, 1) with fixed denominator p k ap-
pears exactly once among the pseudorandom numbers XO, xl, ..., x~ ~.
Therefore, the full period of the sequence (x,). ~ ~ shows a perfect equidistri-
bution in the interval [0, 1).

In the following, we establish upper and lower discrepancy bounds for
dimensions s >2 in the case of the maximum possible period length q.

THEOREM 3.1. Let (x. )., o be a sequence of digital inversive pseudoran-

dom numbers with period length q = p‘. Then for any s >2 the star discrep-

ancy D~*‘s) satisfies

(
k–l’

D;(’) < (S – l)(2q- 1/2 + q-l) ~logq + ~k – —
1

forp >3
T P

and

(1
s

D;(s) < (S – l)(2q-1/z + q-l) ; + 1 forp = 2.
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PROOF. By Niederreiter [ 1992b, Theorem 3.12] we obtain

q% l–(l–q-l)s+ !- ~ WP(H)IS(H)I,
qH= C.xk(P)

where the weights WP(H) are as in the quoted theorem. Then an application
of Lemma 2.1 yields

D*(S) <1 _ (1 _q-l)’ + (~ _ l)(2q-1/2 + ~-1)
~— ~ W,(H).

HGc. xk(p)

For p >3 the last sum can be bounded by the first part of Niederreiter
[ 1992b, Lemma 3.13], and if we also observe that the weight of the zero
matrix is equal to 1, then we get

D;(’) < : + (s – l)(2q-1”2 + q-l)
[(

k–l’
~logq+; k–—

))
–1

q IT P

(

k–l’
< (S – l)(2q-1/2 + q-l) ~logq + ;k – —

n )P’

For p = 2 we obtain the desired bound for D~(s) by applying the second part
of Niederreiter [ 1992b, Lemma 3.13]. ❑

T~~O~MVI 3.2. Let ( G F; be such that the roots of the polynomial X2 -t-

(1-1 + 2)x + 1 ~F,[xl have orderq + 1 inF~z. Let O < t <1 and

1 –t2 –2(q – 1)-1
A,(t) =

4–t2+4q-l/2+ q-1”

Then for any fixed ordered basis of F~ over ZP there exist more than A~(t)(q –

1) values of (l ● F: such that with a = ~/32 in the inversive sequence and all

dimensions s >2 the star discrepancy D~cs) for any corresponding sequence of

digital inversive pseudorandom numbers with period length q = p k satisfies

D$s) > t

– 8(m+l)q
‘1/2 forp 23

and

D;(s) > :

4q
–1/2 forp = 2.

PROOF. If a, ~, and ~ are as in the theorem, then any corresponding

sequence of digital inversive pseudorandom numbers has periodlength q, by
a characterization of IMP polynomials in Section 1. For p > 3 the desired
result on D}(s) follows at once from Lemmas 2.2 and 2.3. Now let p = 2, and
observe that for a = {O, 1}we have

#{ OSn Sq–l:c$l)=a}=~.
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Hence, there exists an integer d with

[

~ +d for (a, b) ●{(0,0),(1,1)},
#{o<n<q –l:(c:l), c\l~l )=(a, b)}= ~

~ -d for (a, b) ●{(0,1),(1,0)},

which implies that

q–1

~ e((c+’ + c’”.+1)/2) = 2(; +d] -2[; -d] =41dl.
7L=o

Therefore

D:(’) > Eq([O, 1//2)2 X [0, 1)s-2) - ;

+#{o <n <q – l:(cy, c:ll) = (0,0)} – :
q

= ;IS(H)I,

where H = (h,j) ● C.xh(p) with hll = hzl = 1 and all other entries equal to
zero. Hence, the desired result follows from Lemma 2.2. ❑

We remark that since

l–t’
lim A~(t) == ~ >0 foreach O<t <l,
q+”

the lower bound for D: (‘~ in Theorem 3.2 holds for a positive asymptotic
proportion of all elements ~ ● F$.

4. FAST IMPLEMENTATION OF THE DIGITAL INVERSIVE METHOD

The description of the digital inversive method in Section 1 shows that for the
practical implementation of this method we need a convenient representation
of the finite field F~ with q = p h elements and a good choice of an ordered
basis of Fq over ZP to facilitate the arithmetic in Fg. The coordinate vectors
c ~ in Section 1 wdl then be taken relative to this chosen ordered basis. The
step from the c. to the pseudorandom numbers x. is accomplished in a
straightforward manner according to (2).

Since all we are interested in are the coordinate vectors c ~, it is advisable
to represent the elements of F~ right away by their coordinate vectors
relative to a fixed ordered basis of FQ over ZP. Thus, the problem of the
representation of F~ is then reduced to that of the convenient choice of an
ordered basis of Fq over ZP. Addition of field elements is the same as addition
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of coordinate vectors, and field elements given in terms of coordinate vectors
are multiplied with the help of a precomputed multiplication table for the
basis elements (compare also with a discussion later in this section).

It will turn out in the following that it is advantageous to work with a
special type of basis, namely, a normal basis of ~Fy over ZP, i.e., an ordered
basis of F~ over Zp of the form {A, AP, AP2,. . . . AP } with some A = F~. By a
fundamental result in the theory of finite fields, a normal basis of F~ over Zp
always exists (see Lidl and Niederreiter [1986, Theorem 2.35]).

The most expensive operation in the recursion (1) is the calculation of the
multiplicative inverse ~ = y– 1 of an element y E F~*. The conventional, but
not necessarily most efficient, approach is to use the identity y-1 = y g-2 for
y = F: and then calculate y ~- 2 by the standard square-and-multiply tech-
nique (e.g., see Lidl and Niederreiter [1986, p. 347]), which requires O(log q)
multiplications in F~.

A much faster algorithm for the calculation of y- 1 is available in the case
where q is a power of 2, i.e., where p = 2, which also happens to be the case
of greatest practical interest for the implementation of digital inversive
pseudorandom numbers. This fast algorithm is due to Itoh and Tsujii [1988]
and uses a normal basis B = {A, AZ, A4, . . . . A2k-’} of FQ (with q = 2h) over Z2.
It is a crucial advantage of a normal basis that squaring elements of F~ is a
cheap operation in such a basis: for any y = F~, the coordinate vector of y 2
relative to B is obtained by cyclically shifting the coordinate vector of y
relative to B by one position to the right. More generally, the coordinate
vector of y 2&, d >1, relative to B is obtained by cyclically shifting the

coordinate vector of y relative to B by d positions to the right. The calcula-
tion of y- 1 = y q– 2 for y ● F* proceeds now as follows. In view of the identityq

Y ‘-2 = (Y2’-1-’)2>

it suffices to describe how to compute powers of the form y 2m-1. the idea is to
reduce the calculation of y 2“ -1 to that of y 2’”’”-1, where [u] denotes as
usual the greatest integer < u. This is achieved by the identities

Y ‘m-’ = (Y2m’2-’)2m’2Y2 m’2-’ for even m,

Y
Zm-l = (y2(m-1)/2-l )2(~+1)/2(yz(~-1)/2-l)2y for odd m.

To compute y 2“ -1, these identities are applied repeatedly. According to Itoh
and Tsujii [1988], the resulting algorithm for calculating y ‘~ for y ● F~*

(with q = 2k, k > 2) requires cyclic shifts by altogether k – 1 positions and
[log2(k – 1)] + w(k – 1) – 1 multiplications in Fq, where log2 denotes the
logarithm to the base 2, and w(k – 1) is the Hamming weight of k – 1, i.e.,

the number of 1’s in the binary representation of k – 1.By using a trivial
upper bound for w(k – 1), it is seen that at most 2110g2(k – 1)1 multiplica-
tions in F. are needed. In terms of q this means that only O(log log q)
multiplications in Fq are required, as opposed to O(log q) multiplications in
Fq by the square-and-multiply technique.
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It remains to discuss the efficient implementation of multiplications in F~,

where we now return to the general case q = ~ k with ~a~ arbitrary prime p.

We choose again a normal basis B = {A, hp, hp”, . . . . Ap } of F~ over ZP, and
the elements of F~ are represented by their coordinate vectors relative to B.

If y, 8 = F~ have the coordinate vectors (c(l), ..., C(k’) ~ Z; and (d(l),..., d(~’)
= Z;, respectively, so that

J=l J=]

then
k

y~ = ~ c(l)d(Jkp’-ip’-l.
L, J=]

Thus, to obtain the coordinate vector of y8 relative to B, it suffices to know
the coordinate vectors of Apt- ~P’-’, 1 s i, j s k, relative to B. These are given
by the multiplication table

AP1-jP’-’ = ~ a(h, i,j)APh-’ forl<i, j<h,
h=]

where all a(h, i,j) = ZP. The multiplicative arithmetic in F~ is thus com-
pletely described by the coefficients a(h, i, j). It is clear that multiplication in
F~ by this procedure becomes faster if many of the coefficients a(h, i, j) are
zero. A relevant concept here is that of the complexity C(B) of the normal

basis B, which is defined as the number of ordered pairs (h, j) with 1< h, j

< h for which a(h, 1, j) # O. We always have 2k – 1 < C(B) < k2, where the
lower bound is shown in Menezes et al. [ 1993, Theorem 5. I], and the upper
bound is trivial. The number of ordered triples (h, i, j) with 1< h, i, j < k for
which a(h, i, j) + O is equal to C(.B )k (compare with Menezes et al. [1993,
pp. 94-95]).

Multiplication in F~ by the procedure above becomes particularly efficient
if we choose an optimal normal basis B of Fg (with q = p k ) over Zp, i.e., a
normal basis B of F~ over ZP with complexity C(B) = 2 k – 1. Optimal
normal bases do not exist for all values of p and k, but a complete classifica-
tion of all optimal normal bases is known (see Menezes et al. [1993, Chapter
5]). For p = 2, a table of all values of k <2000 for which there exists an
optimal normal basis of F2, over Zz is available in Menezes et al. [1993,
Table 5.1, p. 100]. For pseudorandom number generation, the following values
of k extracted from this table may be of interest (these values of k are
reasonably close to powers of 2):

k = 30,33,35,36,58,60,65,66, 119,130, 131,251,254,508,509.

Example 4.1. Choose p = 2 and k = 3, so that q = 233. According to
Menezes et al. [1993, Theorem 5.3] and the fact that 2 is a primitive element
of ZGV, an optimal normal basis B of F~ over Z2 is generated by A = q + ~-1,

where q is a primitive 67th root of unity over Z ~. Relative to this normal
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basis B, the algorithm of Itoh and Tsujii for computing y-l for y = F:
requires [log Z(k – 1)]+ W( k – 1)– 1= 5 multiplications in F~ and cyclic
shifts by altogether 32 positions. To calculate the multiplication table for B, it
is convenient to rearrange the elements of B in the form

B={~l+q-]: j=l,2,...,33}.

Then

which is thus equal to an element of B if i = j and equal to a sum of two
distinct elements of B if i #j.

Example 4.2. Choose p = 2 and k = 66, so that q = 266. According to
Menezes et al. [1993, Theorem 5.2] and the fact that 2 is a primitive element

of ZGY, an optimal normal basis B of F~ over Z2 is generated by a primitive
67th root of unity ~ over Zz. Relative to this normal basis B, the algorithm of
Itoh and Tsujii for computing y ‘1 for y G F; requires [logz(k – 1)] + zu(k –

1)– 1= 7 multiplications in F~ and cyclic shifts by altogether 65 positions.
To calculate the multiplication table for B, it is convenient to rearrange the
elements of B in the form

B={qJ:j =l,2,...,66}.

Then q’~~ = q’+J for 1 s i, j <66, which is equal to an element of B if
i + j # Omod 67, whereas

For values of p and k for which an optimal normal basis of F~ (with

q = P k ) over zp does not exist, it may still be possible to find a normal basis
B of F~ over ZP with a relatively low complexity C(B). We refer to Jungnickel
[1993, Section 3.3] and Menezes et al. [1993, Section 5.2] for various construc-
tions of low-complexity normal bases.

Another computational issue that arises in the practical implementation of
the digital inversive method is the calculation of IMP polynomials. As we
have seen in Section 1, an IMP polynomial x 2 – ~x – a over F~ (with
q = p k ) is needed to obtain parameters a, ~ = F~ in the recursion (1) that
yield the maximum possible period length q. We have also noted in Section 1
that any primitive quadratic polynomial over F~ is an IMP polynomial.
Primitive quadratic polynomials over large finite fields F~ are not available
in standard tables,but there are far-reaching tables of primitive polynomials
of large degrees over the finite prime fields ZP; see Hansen and Mullen [ 1992]
for p s 97 and the more extensive table of Zivkovi6 [1994] for the important
special case p = 2. We can therefore proceed as follows to get a primitive
quadratic polynomial over F~. Choose a primitive polynomial over ZP of
degree 2 k; this polynomial defines the extension field F~z of ZP and has a
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primitive element CTof F~2 as a root. Then the minimal polynomial of m over
F~, which is given by

(x – U)(X – CT’) =X2 – (u+ C7’)x + (7’+’,

is a primitive quadratic polynomial over F~. Thus we can take a = —u g+ 1
and ~ = a + a q in (l). Note that even for very large q the element m ~ can
be calculated easily by repeatedly computing pth powers, which is very
simple in characteristic p.

Example 4.3. For the situation in Example 4.1, namely, p = 2 and k = 33,
a primitive polynomial over ZP of degree 2 k is given by x 66 + Xg + X8 + x 6 +

1, and for the situation in Example 4.2, namely, p = 2 and k = 66, it is given
by X132+ x 29 + 1 in both cases according to the table in Hansen and Mullen
[1992]. ‘

5. DISCUSSION AND CONCLUSIONS

The digital inversive method for pseudorandom number generation has sev-
eral attractive properties. First of all, there exists a handy criterion for the
maximum possible period length q = p k, namely, that x 2 – ~ x – CY is an

IMP polynomial over F~. The property that x 2 – j3x – CY is a primitive

polynomial over F~ provides a sufficient condition for the maximum period
length q.

Any digital inversive sequence with maximum period length shows nice
statistical independence properties in the sense of asymptotic discrepancy.
Theorem 3.1 implies that D$ ‘s) = O(q - l/2(log q )s), where the implied con-
stant is absolute. Theorem 3.2 shows that this upper bound is in general best
possible up to the logarithmic factor, since there exist digital inversive
sequences with a star discrepancy D;’s ) of an order of magnitude at least

1‘2 It is in this range of magnitudes where one also finds the discrepancy!7.
of q independent and uniformly distributed random points from [0, l)s, which
is almost always of an order of magnitude q-l/2 (log log q )1/2 according to the
law of the iterated logarithm for discrepancies (see Kiefer [1961]). Digital
inversive pseudorandom numbers have the usual merit of inversive pseudo-
random numbers, namely, that once the maximum possible period length is
achieved, then they satisfy the upper discrepancy bounds irrespective of the
specific choice of the parameters a and /3 in the recursion (l).

The most convenient practical implementation of the digital inversive
method arises if we choose p = 2 and a sufficiently large integer k such that
an acceptable maximum period length q = 2 k is attained. This choice has the
additional advantage that it allows a fast implementation of the necessary
arithmetic. As we have shown in Section 4, one step of the recursion (1)
requires then only O(log log q) multiplications in F~, one addition in F~, and
some cyclic shifts of coordinate vectors. This should be contrasted with the
cost of one step in the (recursive) inversive congruential method with prime
modulus, which in the present setup corresponds to the choice where p is a

large prime and k = 1.In the latter method, the number of required multipli-
cations in FP in one step of the recursion is O(log p). Consequently, for
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comparable maximum period lengths the digital inversive method with p = 2

allows a significantly faster generation of the pseudorandom numbers than
the inversive congruential method with prime modulus. On the other hand,
the theoretical results on the statistical independence properties for these
two types of generators are quite similar (compare with Niederreiter [1992b,
Chapter 8] for the properties of inversive congruential pseudorandom num-
bers with prime modulus).
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