
Effective Cache Prefetching on
Bus-Based Multiprocessors

DEAN M. TULLSEN and SUSAN J. EGGERS

University of Washington

Compiler-directed cache prefetching has the potential to hide much of the high memory latency

seen by current and future high-performance processors. However, prefetching is not without

costs, particularly on a shared-memory multiprocessor. Prefetching can negatively affect bus

utilization, overall cache miss rates, memory latencies and data sharing. We simulate the effects

of a compiler-directed prefetching algorithm, running on a range of bus-based multiprocessors.

We show that, despite a high memory latency, this architecture does not necessarily support

prefetching well, in some cases actually causing performance degradations. We pinpoint several

problems with prefetching on a shared-memory architecture (additional conflict misses, no

reduction in the data-sharing traflic and associated latencies, a multiprocessor’s greater sensitiv-

ity to memory utilization and the sensitivity of the cache hit rate to prefetch distance) and

measure their effect on performance. We then solve those problems through architectural

techniques and heuristics for prefetching that could be easily incorporated into a compiler: (1)

victim caching, which eliminates most of the cache conflict misses caused by prefetching in a

direct-mapped cache, (2) special prefetch algorithms for shared data, which significantly improve

the ability of our basic prefetching algorithm to prefetch invalidation misses, and (3) compiler-

based shared-data restructuring, which eliminates many of the invalidation misses the basic

prefetching algorithm does not predict. The combined effect of these improvements is to make

prefetching effective over a much wider range of memory architectures.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—cache memo-

ries; shared memoq; C. 1.2 [Processor Architectures]: Multiple Data Stream Architectures

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Bus-based multiprocessors, cache prefetching, false sharing,

memory latency hiding

1. INTRODUCTION

Several factors contribute to the increasing need for processors to tolerate

high memory latencies, particularly in multiprocessor systems. Certainly the

widening gap in speed between CPUS and memory increases memory laten-

cies in uniprocessors and multiprocessors alike [Hennessy and Jouppi 1991].

This research was supported by ONR Grant no. NOO014-92-J-1395 and NSF PYI Award no.

MIP-9058-439.

Authors’ address: Department of Computer Science and Engineering FR-35, University of

Washington, Seattle, WA 98195.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

@ 1995 ACM 0734-2071/95/0200-0057 $03.50

ACM Transactions on Computer Systems, Vol 13, No. 1, February 1995, Pages 57-88

http://crossmark.crossref.org/dialog/?doi=10.1145%2F200912.201006&domain=pdf&date_stamp=1995-02-01

58 . D M, Tullsen and S. J. Eggers

Fast processors also increase contention in multiprocessors, lengthening the

actual latency seen by CPUS, because of CPU queuing for the interconnect.

Second, parallel workloads exhibit more interconnect operations, caused by

data sharing among the processors, resulting in more delays and greater

memory subsystem contention. Finally, as processors and memory become

more physically distributed, memory latencies necessarily increase.

Software-controlled cache prefetching is a technique that is designed to

make processors more tolerant of memory latency. In software-controlled

cache prefetching, the CPU executes a special prefetch instruction for data

that is to be loaded at some point in the near future. In the best case, the data

arrives at the cache before it is needed by the CPU, and the CPU sees its load

as a hit. Lockup-free caches [Kroft 1981; Motorola 1990; Scheurich and

Dubois 1991; Sohi and Franklin 1991], which allow the CPU to continue

execution during the prefetch, hide the prefetch latency from the CPU.

In this article we address the issue of prefetching in bus-based, shared-

memory multiprocessors. The goal of our work is to gauge its impact on the

performance of these architectures and to pinpoint the factors responsible.

Our experiments simulate parallel workloads on a bus-based multiprocessor,

coupled with a prefetching algorithm that represents the “ideal” for current

compiler-directed prefetching technology, in that it has an “oracle” to predict

cache misses (apart from misses caused by data sharing). We use this to

identify architectures and workloads where prefetching improves perfor-

mance and where performance degrades. These results give us insight into

the particular problems multiprocessors pose to prefetching and allow us to

introduce changes to the memory subsystem, the prefetching algorithm, and

the shared-data allocation to solve them. Although our studies most closely

model a bus-based system, they should extend to other multiprocessor archi-

tectures for which memory contention is an issue.

We show that prefetching on a bus-based multiprocessor, unlike on a

uniprocessor, is not a universal win. Issues such as increased pressure on the

cache, a parallel machine’s greater sensitivity to memory subsystem utiliza-

tion, and the interaction of prefetching with data-sharing effects can cause

the performance improvements from prefetching to be less than expected or

even nonexistent. With our most basic prefetching scheme, we observe

speedups no higher than 299ZC and degradations as high as 67c. We address

these issues through various architectural and compiler-based techniques:

victim caching, compiler-based shared-data restructuring, and two special

prefetch algorithms for shared data. We show that these techniques make
prefetching effective over a much wider range of memory architectures, and

significantly more effective in those regions where it is already viable. Some

of these techniques are particularly effective in combination; one combination

achieves speedups from 6% to 837o across the range of simulated memory

architectures.

The remainder of the article is organized as follows. Section 2 describes

related work in compiler-directed prefetching and multiprocessor prefetching.

Section 3 describes our methodology and justifies our choice of simulation

environment. Section 4 presents the results of a basic prefetch strategy used

ACM TransactIons on Computer Systems. Vol 13, No 1, February 1995

Effective Cache Prefetching on Bus-Based Multiprocessors . 59

in conjunction with a highly efficient cache miss predictor, and highlights

some of the drawbacks of prefetching with that strategy. The following three

sections explore in detail issues that have prevented better multiprocessor

prefetching performance and present architectural and compiler techniques

that make prefetching more effective. Section 5 examines the problem of

prefetches that do not complete on time, Section 6, cache conflict misses

caused by prefetching, and Section 7, data-sharing issues, principally the

difficulty of predicting invalidation misses. Section 8 shows the effect of

combining these techniques, and the conclusions appear in Section 9.

2. RELATED WORK

This work builds on a previous study [Tullsen and Eggers 1993] in which we

pinpointed the problems with prefetching on a shared-memory machine

(additional conflict misses, data-sharing traffic, a multiprocessor’s greater
sensitivity to memory utilization, and determining the best prefetch distance)

and measured their effect on performance. In that paper, we showed that,

despite high memory latencies, many bus-based multiprocessors do not sup-

port prefetching well, and in some cases prefetching strategy actually causes

a performance degradation. This article extends that work in several ways.

First, we examine conflict misses in more detail and use a new memory

architecture alternative (a victim cache) to eliminate virtually those caused

by prefetching (Section 6). Second, we present a new prefetching that makes

more-effective use of exclusive prefetching (Section 7.3). Third, we make use

of more-sophisticated shared-data restructuring techniques (Section 7.2) that

make prefetching more viable. Fourth, we have improved the methodology of

the previous study in several respects. For example, we trace a different

region of the Pverify application to capture more parallelism. Also, we now

model hardware barriers more accurately; this increased the accuracy of

short-term sharing activity in Topopt (the only application that makes fre-

quent use of barriers).

Although the need to make processors tolerant of high memory latency is

much more severe in multiprocessors than in uniprocessors, most other

studies of cache prefetching have concentrated on uniprocessor architectures

[Callahan et al. 1991; Chen and Baer 1992; Chen et al. 1991; 1992; Mowry et

al. 1992]. DASH [Lenoski et al. 1993] has hardware support for cache

prefetching, but to date they have only published the results of micro-

benchmark throughput tests. A noteworthy exception is Mowry and Gupta

[1991], in which simulations were driven by three parallel programs, provid-

ing analysis of potential speedups with programmer-directed cache prefetch-

ing. However, the multiprocessor architecture they examined (16 DASH

clusters connected by a high-throughput interconnection network, with only

one processor per cluster) avoids the types of contention and interference that

we wish to study. As a result, they did not include the full effects of
contention for a shared bus. We found this effect to be crucial to prefetching
performance for the architectures we examined. In addition, we provide

more-detailed analysis of multiprocessor cache misses, identifying key compo-

ACM Transactions on Computer Systems, Vol 13, No. 1, February 1995.

60 . D. M. Tullsen and S. J. Eggers

nents that affect performance. Their scheme deals with programmer-directed

prefetching, while ours emulates compiler-directed prefetching. They simu-

late only shared-memory references, while we simulate both shared and

private, and the interference between the two in the caches is a key element

of this study.

Mowry et al. [1992] details a compiler-based prefetching algorithm for a

uniprocessor, which is the model that our simulated prefetching algorithms

emulate. It uses several techniques to do very selective prefetching, targeting

only those memory accesses that are very likely to miss in the cache.

Among processors either currently available, or expected to be available

this year, three (Hewlett-Packard PA-7200 [Microprocessor 1994a], Digital

Equipment Corporation Alpha 21164 [Edmondson and Rubinfield 1994], and

Sun Ultrasparc [Microprocessor 1994b]) have some kind of support for

prefetching. Of those, only two (Alpha and Ultrasparc) support exclusive

prefetching, and all three have direct-mapped first-level caches, although the

PA-7200 has a victim cache.

3. SIMULATION ENVIRONMENT

Our prefetching studies use trace-driven simulation. Traces are generated

from coarse-grain, explicitly parallel workloads, and prefetch instructions are

inserted into the traces. We simulate several types of bus-based multiproces-

sors, which differ in the extent to which contention affects memory latency,

i.e., we vary bus speeds. We also examine cache architectures both without

and (in Section 6) with a victim cache. Several prefetching strategies are used

that differ in when, how, and how often prefetching is done. This section

details the simulation environment.

3.1 Prefetching Algorithms

Software-directed prefetching schemes either cache prefetch (which brings

data into the data cache closest to the processor, also known as nonbinding

prefetch) or prefetch data into a separate prefetch buffer (binding prefetch).

Our prefetching study concerns cache-based prefetching.

Our baseline prefetching algorithm contains an optimized prefetcher for

nonshared, i.e., “uniprocessor,” data misses (those that only depend on the

cache configuration). It very accurately predicts nonsharing cache hits and

misses and never prefetches data that is not used. We emulate this algorithm

by adding prefetch instructions to the address traces after they are generated

on a shared-memory multiprocessor. The candidates for prefetching are
identified by running each processor’s address stream through a uniprocessor

cache filter and marking the data misses. The prefetch instructions are then

placed in the instruction stream some distance ahead of the accesses that

miss. The number of CPU instructions between the prefetch and the actual

access is referred to as the prefetch distance. Since it is an off-line algorithm,

the technique represents the “ideal” for current prefetching algorithms, i.e.,

one that prefetches both scalars and array references, and accurately identi-

fies leading references (first access to a cache line) and capacity and conflict

ACM Transactions on Computer Systems, Vol. 13, No. 1, February 1995

Effective Cache Prefetching on Bus-Based Multiprocessors . 61

misses. Mowry et al. [1992] have shown that compiler algorithms can approx-

imate this very well already, predicting compulsory and capacity misses on

array references; and, as existing algorithms improve, they will get closer to

this ideal. Using a prefetcher that is ideal with respect to nonsharing misses

enables us to pinpoint the exact cause of each remaining miss observed by the

CPU after prefetching, as explained in Section 4.

With our baseline algorithm, we strive to emulate a compiler-based algo-

rithm (of which Mowry et al. [1992] is the best example) rather than a

programmer-directed approach (such as Mowry and Gupta [1991]), because

we feel that prefetching will predominantly be the domain of compilers rather

than programmers. Mowry and Gupta show that prefetching inserted by a

programmer intimately familiar with the application can be effective, but

such a methodology does not necessarily indicate what compiler-directed

prefetching would do. Mowry et al. [1992], despite being targeted to a

uniprocessor, represents the best available compiler-directed prefetching al-

gorithm, for any architecture. It is not unreasonable to expect that it would

perform well for a large number of multiprocessor architectures without

enhancement.

The overhead associated with each prefetch in our simulations is relatively

low, a single instruction and the prefetch access itself, as we continue to

assume the existence of effective and efficient prefetching algorithms. Mowry

et al. report overheads for their uniprocessor compiler algorithm as typically

less than 15’% (in increased instruction count; the impact on total execution

time is typically about half that), and Mowry and Gupta’s programmer-

directed scheme experienced overheads between 19Z0and 8920 of total execu-

tion time. Chen and Baer’s [1994] implementation of Mowry et al.’s compiler

algorithm on a multiprocessor (including two of our benchmarks, Mp3d and

Water) experienced prefetch instruction overhead of 2–4% of total execution

time. In our simulations, the overheads are never more than 4% of the

instruction count or 2’% of the total execution time.

On a multiprocessor with a write-invalidate cache coherency protocol, data

can be prefetched in either shared mode (in which case a subsequent write

might require an extra invalidating bus operation) or in exclusive mode

(which would cause all other cached copies of that cache line to be invali-

dated). The latter is referred to as an exclusive prefetch. Our simulations

support both types of prefetches, as in Mowry and Gupta. The base algorithm

will prefetch in shared mode; exclusive prefetching will be considered as an

extension in Section 7.3. We do this for two reasons. Our base prefetcher

strives to emulate Mowry et al. [1992], which does not support exclusive

prefetching, being a uniprocessor algorithm. Also, as discussed in Section 2,

not all processors that support prefetching support exclusive prefetching.

3.2 Workload

The address traces were generated with MPTrace [Eggers et al. 1990] on a
Sequent Symmetry [Lovett and Thakkar 1988], running the following coarse-

grained, explicitly parallel apdkations, all written in C (See Table I). ToPoPt

ACM Transactions on Computer Systems, Vol. 13, No. 1, February 1995.

62 . D. M. Tullsen and S J. Eggers

Table I. Workload Used in the Experiments

Shared Number of Dynamc Data Data Percent Percent

Program Data Set Data Pr0ces8es set size References Reads Pr,vate

Pver,fy C860.21 berkl/2 130 KB

Top.pt

12 128 KB 54 INU1OII 82!Z 59%

J+. lmmm 20 KB 9 20 l<B 58 nulbon 85% 69%

LocusRoute Prmmry 1 1.6 MB 12 709 KB 72 million 75% 87%

Mp3d 10,000 molecules 19MB 12 459 KB 82 mdlmn 69% 75%

Water 313 molecuks 227 KB 12 237 KB 67 nullmn 76?L 94%

[Devadas and Newton 1987] performs topological optimization on VLSI cir-

cuits using a parallel simulated annealing algorithm. Pverify [Ma et al. 1987]

determines whether two boolean circuits are functionally identical. Statistics

on the amount of shared data for these programs can be found in Eggers

[1991]. LocusRoute is a commercial quality VLSI standard cell router. Mp3d
solves a problem involving particle flow at extremely low density. Water

evaluates the forces and potentials in a system of water molecules in liquid

state. The latter three are part of the Stanford SPLASH benchmarks [Singh

et al. 1991] which, in contrast to the other two applications, have been

optimized by the programmers for processor locality.

Restricted by the practical limit on trace lengths in multiprocessor trace-

driven simulations, a balance must be struck between the desire for large

data sets that do not fit in the cache and tracing a reasonable portion of the

program. With a very large data structure, one could easily end up tracing

only a single loop, which may or may not be indicative of the rest of the

program. We attempt to solve this by scaling back both the data sets and the

local cache sizes by about a single order of magnitude relative to what might

be considered a reasonable configuration on current moderately parallel

multiprocessors. Thus we maintain a realistic ratio of data set to off-chip

cache size, ensuring that in most cases neither critical data structures nor

the dynamic cache working sets fit into the simulated cache. The exception is

Topopt, which is still interesting because of its high degree of write sharing

and the large number of conflict misses, even with the small shared-data-set

size. For each application, we begin collecting the traces right after parallel

execution begins. We initially simulate (without collecting statistics) about

500,000 data references to avoid cold-start effects; we then simulate at least 5

million more data references for each application. In Table I, the column

Shared Data gives the total amount of shared data allocated by the applica-

tion, while the column D~amic Data Set Size shows the total amount of both

private and shared data touched by the traced portion of the program. The
number of references simulated for which statistics were kept is given in the

references column. The last two columns show the percent of the data

references that are reads and the percent that are to private data for each

benchmark.

3.3 Multiprocessor Simulations

After the prefetch accesses were added, the traces were run through Charlie

[Eggers 1989], a multiprocessor simulator that was modified to handle

ACM TransactIons on Computer Systems, Vol 13, No 1, February 1995

Effectwe Cache Prefetching on Bus-Based Multiprocessors . 63

prefetching, lockup-free caches, a split-transaction bus protocol, and victim

caches. Besides modeling the CPU, cache, and bus hardware at a low level,

Charlie carries out locking and barrier synchronization; therefore, as the

interleaving of accesses from the different processors is changed by the

behavior of the memory subsystem, Charlie ensures that a legal interleaving

is maintained. So, for instance, processors vie for locks and may not acquire

them in the same order as the traced run; but they still will acquire each in

some legal order and will enter the critical sections one processor at a time.

We have modeled direct-mapped, write-back data caches, assuming in-

structions caches with insignificantly low miss rates. For all of the simula-

tions presented here the caches are 32KB, with a 32-byte block size.1 Our

simulations include both private and shared data, in order to include the

effects of interference between the two in the cache.

The cache coherency scheme is the Illinois coherency protocol [Papamarcos

and Patel 1984], an invalidation-based protocol. Its most important feature

for our purposes is that it has a private-clean state for exclusive prefetches.

We simulate a 16-deep buffer to hold pending prefetches on each processor,

which is sufficiently large to prevent almost always the processor from

stalling because the buffer is full. The bus uses a round-robin arbitration

scheme that favors blocking loads over prefetches. We model a sequentially

consistent memory system, consistent with our approach of concentrating on

low-end multiprocessor systems.

We only consider systems with high memory latency. (Prefetching is less

useful and possibly harmful if there is little latency to hide.) The processors

execute a single instruction per cycle, with 2-cycle data loads. This is coupled

with a memory subsystem latency of 100 cycles. Given this latency we

examine a spectrum of memory architectures from high to low memory

bandwidth, resulting in a range of bus utilizations. Our memory/intercon-

nect model is a split-transaction bus protocol, where the system has enough

parallelism in the memory banks/controllers to make the address bus and

the memory access relatively conflict free and the data bus transfer the

bottleneck. By varying the speed of the data bus, we can vary the maximum

throughput of the memory subsystem. In this way we are able to model a

spectrum of values for the ratio of the bus latency to bus bandwidth, since

that is the factor to which many of the phenomena we describe are most

sensitive. We do this without varying the minimum latency, and thus prevent

our results from being dominated by large changes in the memory latency,

since the effectiveness of prefetching is obviously highly sensitive to that

parameter. While the specific model is a split-transaction bus, our results

should be reflective of any memory architecture that has the potential to

saturate.

1We also ran simulations with larger block sizes. The results are not presented here, because

they did not add a great deal of insight to those already presented. Essentially, larger block sizes

increased the amount of sharing traffic (due to false sharing) and thus increased the importance

of the techniques we use to deal with sharing, but did not otherwise impact the effectiveness of

prefetching.

ACM Transactions on Computer Systems, Vol 13, No 1, February 1995.

64 . D. M Tullsen and S. J, Eggers

In the simulations in this article, the “data transfer” portion of the memory

latency is varied from 4 to 32 cycles out of the total 100 cycles. In the

split-transaction bus architecture described above, a data transfer latency of

4 cycles would make the address transmission and memory lookup 96 cycles;

if the processor cycle speed was 400 MHz, this would model a memory

subsystem with a memory latency of 250 nanoseconds, and a peak through-

put of 3.2 GB/second. The 32-cycle latency corresponds to a memory through-

put of 400 MB/second.

Also, in Section 6, we add victim caches [Jouppi 1990] to the architecture. A

hit in the victim cache takes 4 cycles longer than a hit in the main cache, but

is much less than a memory access and saves at least one bus operation.

4. BASIC PREFETCHING

We simulate each memory architecture with a basic prefetching algorithm.

No prefetching serves as our baseline for calculating speedups for all pre-

fetching algorithms. Execution times for all experiments are given relative to

no prefetching with the same memory architecture and cache configuration.

In the basic prefetch algorithm, prefetch instructions are inserted into the

traces for each potential cache miss identified by the cache filter. For this

algorithm, the prefetch distance is 100 instructions, which means that,

barring any CPU stalls, the code between the prefetch and the associated

load would execute in about 140 cycles, given our processor model. This gives

the memory subsystem, with a minimum latency of 100 cycles, time to

complete the prefetch when contention delays are not large or when the

processor is otherwise slowed down. This, our most basic prefetching strat-

egy, is identified in all figures as PREF. We compare the basic prefetch

strategy to no prefetching, which will be identified as NP.

Results for a 32KB cache with a 32-byte cache line are shown in Figures 1

and 2 and Tables II and III. The effect of prefetching on the miss rates is in

Figure 1. Because some terminology becomes ambiguous in the presence of

prefetching, we will use the following terms. Misses (or total miss rate) refer
to both prefetch and nonprefetch accesses that do not hit in the cache. CPU

misses (CPU miss rate) are misses on nonprefetch accesses and thus are

observed by the CPU. Prefetch misses occur on prefetch accesses only. Be-

cause accesses of prefetches still in progress (since the CPU must stall, we

count these as CPU misses and refer to them as prefetch -in-progress misses)

often comprise a nonnegligible portion of the CPU miss rate, the Adjusted

CPU Miss Rate does not include them. Therefore, the adjusted CPU miss rate

includes all accesses that cause the CPU to stall for an entire memory

latency. The CPU miss rate is the adjusted CPU miss rate plus the prefetch-

in-progress miss rate, and the total miss rate is the CPU miss rate plus the

prefetch miss rate. The miss rates are cumulative in Figure 1, so the total

miss rate is the combined height of the three bars, and the CPU miss rate is

the combined height of the black and diagonally striped bars, Without

prefetching, the total miss rate, the CPU miss rate, and the adjusted CPU

miss rate are all identical. The data in Figure 1 is for an 8-cycle data transfer

ACM TransactIons on Computer Systems, VO1 13, NO 1, February 1995

Effective Cache Prefetching on Bus-Based Multiprocessors . 65

5
LocusRoute Mp3d Pverify Topopt Water

H Total Miss Rate

❑ CPU Miss Rate

❑ Adj. CPU Miss Rate

1

0
NP PREF NP PREF NP PREF

Prefetch Strategy

Fig. 1. Total and CPU miss rates for the five workloads with an 8-cycle data bus latency.

latency. The only component of the miss rate that varies significantly across

memory throughputs is the prefetch-in-progress misses (the difference be-

tween the CPU miss rate and the adjusted CPU miss rate), which rises as the

data bus gets slower.

Several observations can be made from the miss rate results. First, CPU

miss rates fell significantly (32–7 1%, or 35–77% for adjusted) for the results

shown in Figure 1. Because we use an oracle prefetcher, one might naively

expect even more misses to have been covered. There are three reasons why

this did not happen. First, the prefetch-in-progress misses account for a

significant part of the CPU miss rate in some of the applications. Second,

prefetching introduces actually additional cache conflict misses. Last, and

most importantly, data sharing among processors produces invalidation

misses, which in most cases are the largest single component of the CPU miss

rate. Our oracle prefetcher does not predict misses that are the result of

invalidations.

Total miss rates increase in all simulations with prefetching. Previous

studies for both uniprocessors and multiprocessors have focused on CPU miss

rates. On a uniprocessor it is likely that the memory interconnect has the

bandwidth to absorb extra memory traffic, so the increase in total miss rate is

not significant relative to the decrease in the CPU miss rate. But for some

multiprocessor systems total miss rate is a more important metric, indicative

of the demand at the bottleneck component of the machine. This can be

particularly true for a bus-based multiprocessor, but also for any multiproces-

sor where contention for memory or the interconnect is significant. As the

bus becomes more and more saturated, system performance will track the
throughput of the bus; speeding up the CPUS has no beneficial effect. Since

bus demand is a function of the total miss rate rather than the CPU miss

ACM Transactions on Computer Systems, Vol. 13, No, 1, February 1995.

66 . D. M. Tullsen and S J, Eggers

Table II. Selected Bus Utlhzatlons

Pref. Data Transfer Latency

Program Alg. 4 cycles 8 cycles 16 cycles 32 cycles

Locus NP .21 .33 .56 89

PREF .27 .42 .70 .97

Mp3d NP .48 .65 .90 100

PREF .64 .83 .99 1.00

Pverif y NP .46 .68 .96 1 00

PREF 63 .88 100 1 00

Topopt NP .13 .20 33 ,51

PREF .17 .26 .41 .61

Water NP .10 .14 .22 .38

PREF .11 .16 .25 .43

rate, the total miss rate will be a better indicator of performance on these

architectures. In a bus or memory bottlenecked system, prefetching, which

reduces the CPU miss rate at the expense of the total miss rate, may hurt

performance.

In Table II we see how the miss rates affect data bus utilization as the

memory architecture is varied. Bus utilization is the number of cycles the bus

was in use divided by the total cycles of the simulation. Bus utilization

results can be misleading if not interpreted correctly. There are two reasons

why bus utilization can increase: one is that the same workload produces

more bus operations; the second is that the same number of bus operations

occur but over a shorter time period. So, for instance, bus utilization in-

creased with prefetching for the 4-cycle Pverify simulation, both because the

total miss rate increased and because the execution time was reduced as a

result of prefetching successfully.

In order to see the bus demand independent of execution speed, Table III

gives the bus demand per access (BDPA), which is the total number of bus

cycles used divided by the total number of memory accesses (both cache hits

and misses). BDPA, unlike bus utilization, is independent of execution time,

and thus gives a better indication of the additional demand placed on the

memory subsystem by prefetching. Results in Tables II and III indicate that,

for all applications, the bus demand increased with prefetching, as expected,

given the total miss rates from Figure 1. The data in Table III is for the

8-cycle data transfer latency. The data for the other bus speeds is not shown,

because for all practical purposes it scales linearly with bus speed.

In Figure 2, we see the effects of prefetching on execution time for the

different memory subsystems. In this figure, the execution time with pre-
fetching for each bus speed is normalized to the execution time with no

prefetching for that same memory architecture. If we examine Table II and
Figure 2, we see that whenever the bus utilization is greater than 90%

without prefetching, the use of prefetching resulted in an increase in execu-

tion time. In this region, there is not enough spare bus bandwidth to absorb

the extra demand prefetching has placed on it. The increases in execution

time when the bus is saturated are not too dramatic, however, because total

miss rates rise by small amounts.

ACM TransactIons on Computer Systems, Vol 13, No 1, February 1995

Effective Cache Prefetching on Bus-Based Multiprocessors . 67

Table III. Bus Demand Per Access (BDPA) for the 8-Cycle Data Bus Latency

I Workload II I I

m

LocusRoute

~ 1.05 -
G
G 1.00- - -------------------
C

2 0,95- f~ /’

J 0.90

.: 0.85
* : 1x

~ 0.80

I [I I

0 8 16 24 32

Data Bus Latency

Toot

R

-----.-.---.-------

II I I I t

0 8 16 24 32

Data Bus Latency

1.05

1.00

0.95

0.90

0.85

0.80

1.05

1.00

0.95

0.90

0.85

0.80

Mp3d

r

------------ ------

; /
/

0 8 16 24 32

Data Bus Latency

Water

------------------ .

x x

I I I I

O 8 16 24 32

DataBusLatency

1.05

1.00

0.95

0.90

0.85

0.80

Pveri+

: ‘[11

d

0 8 16 24 32

DataBusLatency

Fig.2. Relative execution time forthefive workloads withprefetching (PREF), normalized to no

prefetching [NP).

Prefetching has an increasingly positive effect on execution time as bus

loads become lighter (as the bus gets faster), but in general the performance

improvements are not large. There are two reasons for this. First, as already

discussed, prefetching causes an increase in memory latency due to increased

contention between processors for the bus. In addition, there is an overhead

for prefetching in CPU execution time, although it is relatively small in our

experiments (no more than 19??of execution time for the PREF scheme). In
summary, the execution time results indicate that, even using a highly

efficient cache miss predictor, the benefits of prefetching in a bus-based

multiprocessor can be marginal, except in the case of a very high bandwidth

ACM Transactions on Computer Systems, Vol 13, No 1, February 1995.

68 . D. M. Tullsen and S, J. Eggers

memory subsystem. The largest gain in execution time observed is a 29%

speedup, and the largest degradation is 6%.

In order to gain insight into how much improvement was actually possible

with prefetching, we can look at processor utilization without prefetching. For

instance, the average processor utilization for Water is 0.82 with the fastest

bus and 0.81 with the slowest bus. Since the best any memory-latency-hiding

technique can do is to bring processor utilization to 1, the best speedup that

could have been achieved for Water is about 1.2. On the other hand, the

processor utilization for Mp3d ranged from 0.39 to 0.22, so it had room for a

speedup of 2.5 with the fast bus and 4.5 with the slow bus, ignoring the

overhead of prefetch instructions. So, while Mp3d had some of the best

speedups, it still falls far short of its maximum potential. For the other

workloads, the average processor utilization (without prefetching) for Locus-

Route ranged from 0.64 to 0.54; Pverify ranged from 0.36 to 0.17, and Topopt

from 0.13 to 0.11. In Topopt, which makes use of hardware barriers, much of

the low processor utilization is due to synchronization delays.

It should also be noted that predicting the effectiveness of prefetching for a

particular workload can be difficult, because the same workloads achieve

both the largest improvement and the largest degradation, depending upon

the memory subsystem architecture. This is because applications that put a

heavy load on the memory system will see a larger memory latency due to

contention and will benefit more from hiding that latency. Those same

applications, however, are the first to enter bus saturation and begin degrad-

ing with prefetching. In our simulations, this is exemplified by Mp3d and

Pverify.

High bus utilization is one reason that results with prefetching are disap-

pointing. Another is the large number of CPU misses despite the use of an

oracle miss predictor. In order to understand the various sources and magni-

tudes of the remaining CPU misses, we analyze the different types of CPU

misses. Figure 3 shows the breakdown of the CPU misses for three of the

applications—Topopt, Pverify and Mp3d—with an 8-cycle data transfer la-

tency. The misses shown fall into the following categories. They are either

invalidation misses (the tags match, but the state has been marked invalid)

or nonsharing misses (this is a first use, or the data has been replaced in the

cache). A miss of each type is either prefetched (and disappeared from the

cache before use) or not prefetched (the miss was not predicted), The fifth

type of miss is prefetch-in-progress, which means that the prefetch access

was presented to the memory subsystem but did not complete by the time the
CPU requested the data. The sum of these five types of misses (the combined

height of the five bars) is the CPU miss rate. The other component of the total

miss rate (for PREF) is prefetch misses, not shown here. Prefetch misses are

those misses that are effectively hidden (turned into hits from the perspective

of the CPU) by a prefetch access. The goal of prefetching is to turn as many of

the misses in NP into prefetch misses as possible, hopefully without incurring

many additional cache misses. It is our use of an oracle for predicting

nonsharing misses that allows us to categorize nonsharing misses so pre-

cisely. With an imperfect prefetcher, it would not necessarily be clear whether

ACM TransactIons on Computer Systems, Vol 13, No 1, February 1995

Effective Cache Prefetching on Bus-Based Multiprocessors . 69

Mp3d Pverify

r-

Topopt
,. —-,

non-sharing, not prefetched

non-sharing, prefetched

invalidated, not prefetched

invalidated, prefetched

prefetch m progress

Prefetch Strategy

Fig. 3. Sources of CPU misses for Mp3d, Pverify, and Topopt with an S&cycle data bus latency.

a miss was caused by prefetches permuting the memory reference pattern or

by imperfections in the prefetcher.

From these results, we observe that there remain a significant portion of

nonsharing CPU misses that are not covered by prefetching. Since our

“oracle” prefetcher predicts nonsharing misses perfectly in the absence of

prefetches, those that remain are either caused by a prefetch access replacing

data that is still being used (nonsharing, not prefetched in the figure) or a

prefetched cache line being replaced before its use (nonsharing, prefetched in

the figure). This implies that the degree of conflict between the prefetched

data and the current working set can be significant. These two components of

the CPU miss rate are particularly important, because they not only repre-

sent cache misses not covered by prefetching, but also because they result in

bus accesses that were not necessary without prefetching. The nonsharing,

prefetched misses require an extra bus access because the prefetch access was

wasted, and the nonsharing, not prefetched misses because without prefetch-

ing the access was a cache hit. Therefore, each remaining nonsharing miss

represents an increased demand on the bus due to prefetching.

The prefetch-in-progress misses represent as much as 27% of the CPU

misses in this figure, and for the slowest data bus (32 cycles), as much as

62%. Their total contribution to the observed memory latency is less than

that, however, because a prefetch-in-progress miss latency is typically much

less than an entire memory access latency (see Section 5).

Perhaps the most conspicuous result from Figure 3 is that the prefetch

algorithm has not affected the invalidation misses. One concern that moti-

vated this study is the hypothesis that, by increasing the interval over which

each cache seeks to hold a cache line, prefetching would exacerbate the

data-sharing problem, resulting in more invalidate operations and more

invalidation misses. Our results do not bear that out for the PREF prefetch-

ing strategy. But what is seen is that prefetching has not reduced the number

of invalidation CPU misses at all. Clearly there is a limit to how effective

prefetching can be if it does not address invalidation misses. While it maybe

ACM Transactions on Computer Systems, Vol. 13, No. 1, February 1995.

. D. M. Tullsen and S. J. Eggers

Pverlfv

$2~g
&

Prefetch Strategy

I I non-shamrg, not prefetched

~~ non-shar]ng, prefetched

% mvahdated, not prefetched

I~ mvalldated, prefetched

❑ prefetch In p~ogress

lq~
&

Fig. 4. Sources of CPU misses in Mp3d, Pverify, and Topopt with the Long Prefetch D]stance

strategy (LPD) and a data bus latency of 8 cycles.

true that prefetching did not exacerbate the data-sharing problem, it has

exposed the performance of the applications to the effects of data sharing to a

much greater extent.

The results presented so far suggest three primary opportunities for im-

provement in our multiprocessor prefetcher: the large number of prefetch-in-

progress misses, the conflict misses (and additional bus load) introduced by

prefetching, and the inability to hide or reduce the latencies due to data

sharing. These areas will be investigated in the following sections.

5. REDUCING PREFETCH-IN-PROGRESS MISSES

In PREF, the prefetch distance is relatively close to the best-case memory

latency of 100 cycles. Contention can cause the real latency to be much

higher, however. For this reason, Mowry et al. [1992] suggest using a larger

prefetch distance to ensure that the prefetched data has time to arrive. In

this section, we examine the effect of increasing the prefetch distance to 400

instructions, and we will label this prefetching strategy LPD. For the LPD

strategy, we wanted a prefetch distance that was high enough to cause the

prefetch-in-progress misses to have only an insignificant impact on execution

time for most of the bus speeds, without necessarily removing them all.

Lower values for the prefetch distance did not quite achieve this. Figure 4

presents the effect of the longer prefetch distance on individual components

of the miss rate, and Figure 5 shows the effect on execution time. Figure 4,

for the sake of consistency, is given for a data bus latency of 8 cycles, where

the prefetch-in-progress misses are not as serious a problem. With the

32-cycle bus, the number of prefetch-in-progress misses is increased in each

application by at least a factor of four over those shown.
Increasing the prefetch distance from 100 to 400 will successfully eliminate

the majority of prefetch-in-progress misses (for the bus speed shown, they are

virtually eliminated; in the worst case, the 32-cycle bus, the LPD strategy

eliminates on average 63% of the prefetch-in-progress misses), but at the cost

ACM TransactIons on Computer Systems, Vol. 13, No 1, February 1995.

Effective Cache Prefetching on Bus-Based Multiprocessors . 71

0 1,05
E!
~ 1.00
a
0

‘g 0.95
0

J 0.90

LocusRoute

!./++-
I I I 1

0 8 16 24 32

Data Bus Latency

Topopt

: --y~-

- ./

I I I [

1,05

1,00

0,95

0.90

0.85

0,80

1.05

1.00

0,95

090

085

080

Mp3d

. ------------ -----

/r

; /

- /
&“

I

0 8 16 24 32

Data Bus Latency

Water

D

~====

1.05

1.00

0.95

0.90

0.85

080

Pvenfy

: ,[”, ~

‘~

------ . . ------ ----

x“

0 8 16 24 32

DataBusLatency

PREF

—G— IRD

0 8 16 24 32 0 8 16 24 32

Data Bus Latency Data Bus Latency

Fig.5. Relative execution time, withthe Long Prefetch Distance strate~.

of more conflict misses. The earlier the prefetch is begun, the more likely it is

to replace data that is still being used. Also, the longer the prefetched

data sits in the cache before it is used, the more likely it is to be replaced. The

numbers for Pverify and Topopt indicate that the latter is particularly

critical.

Trading prefetch-in-progress misses for conflict misses is not wise. Pre-

fetch-in-progress misses are the cheapest type of miss, because the processor

has only to wait for an access in progress to complete instead of the entire

access time. In Mp3d, for example, while the prefetch-in-progress misses

represent 279Z0 of the CPU misses for the 8-cycle bus, they only add 290 to the

total execution time. Also, incurring a prefetch-in-progress miss does not

increase the load on the bus, while a prefetch-induced conflict miss repre-

sents an extra bus operation (as compared to no prefetching). Even with

Mp3d, where LPD adds the least number of conflict misses, there is no

improvement in execution time for LPD over PREF. Our results indicate that

increasing the prefetch distance to the point that virtually all prefetches

complete does not pay off. This argues that prefetching algorithms should

strive to receive the prefetched data exactly on time. The penalty for being

just a few cycles late is small, because the processor must stall only those few

cycles, much less than the time of a full access. The penalty for being a few

ACM Transactions on Computer Systems, Vol. 13, No. 1, February 1995.

72 . D. M. Tullsen and S. J, Eggers

cycles early is also small, because the chances of losing data before its use are

slight over that period. Mowry et al. [1992] also studied prefetch distance,

noting that only one of their programs degraded with increasing prefetch

distance, but they manually restructured four others to avoid the conflicts

that are causing this phenomenon.

The inability of the long prefetch distance to improve prefetching perfor-

mance is closely tied to the more general problem of prefetch-induced conflict

misses; therefore, we will reexamine the LPD strategy in the next section,

where we look at one cache architecture that is designed to reduce conflict

misses.

6. VICTIM CACHING TO REDUCE CONFLICT MISSES

We have shown that prefetching can increase the number of replacement

misses in the cache due to the conflict between the current working set and

that part of the future working set that is being prefetched. Those results are

based on a direct-mapped cache. In this section, we investigate how a

modified cache organization can reduce the magnitude of that conflict and,

consequently, whether that improves the effectiveness of prefetching.

In order to see the effect of an alternate cache organization on the magni-

tude of the prefetch-induced conflicts, we here simulate the same configura-

tion with the addition of a small (8-entry) fully associative victim cache

[Jouppi 1990]. Although caches with higher levels of associativity (greater

than one) should also lessen the impact of prefetch-induced conflicts, we

chose to examine victim caches, because they seem to represent a less-costly

approach (in terms of critical-path cache access time, if not size and complex-

ity) that appears to be ideally suited to the problem of prefetch-induced

conflicts. Chen [1993] showed that a victim cache matched the performance of

a 2-way set-associative cache in the context of hardware prefetching. Our

tests showed actually that while an 8-line victim cache was, in general,

somewhat less effective than a 2-way set-associative cache at reducing the

number of conflict misses, it all but eliminated the particular problem of

prefetch-induced conflicts, as this section will show.
A victim cache is a small cache of the blocks most recently replaced in the

main cache. It is a good match for prefetch-induced conflicts, because it

targets conflict misses on data recently replaced in the cache. When we incur

a prefetch-induced conflict miss, the number of instructions between the time

the block is replaced in the cache and is then accessed (resulting in a conflict

miss’) is bounded by the prefetch distance; therefore, prefetch-induced con-

flicts occur over a very short interval.

A victim cache may in some cases require more hardware than adding

2-way set-associativity to a cache. For example, in our case an 8-line victim

cache requires 8 lines of data, tags, and state (on the order of 8 x 285 = 2280

bits for a 32-byte line size and 32-bit addresses), while a 2-way set-associative

cache will require one extra tag bit per cache line and an LRU bit per set

(1536 bits in our configuration). However, caches of the same configuration
that are 64KJ3 or larger would require (increasingly) more storage than an

ACM Transactions on Computer Systems, Vol 13, No 1, February 1995

Effective Cache Prefetching on Bus-Based Multiprocessors . 73

8-line victim cache. In a cache-coherent multiprocessor, the victim caches are

slightly more complex than on uniprocessors, because they need hardware

support for snooping on the victim cache tags.

A victim cache has the distinct advantage that it does not add any delay to

the critical path of a cache lookup in a direct-mapped cache, which is not true

for a conventional associative cache. A victim cache lookup occurs only on a

main cache miss. Access to the victim cache takes longer than an access to

the main cache and ties up the cache longer (for a swap between the main

and victim caches), but is much less costly than a main memory access and

does not require a bus operation.

In Figure 6 we see that victim caching does indeed have a significant

impact on the number of replacement misses caused by prefetching. For

example, with the PREF strategy and no victim cache, the prefetch-induced

conflict misses (that is the combination of the prefetched and nonprefetched

nonsharing misses) represent 22’%o of the CPU miss rate for Topopt (8-cycle

results); with the same strategy and a victim cache, they account for only 1%

of the CPU miss rate.

Figure 7 shows the execution time results with victim caches. These results

are normalized to the NP results without victim caches. From these results,

we make several observations. First, although we still see some small perfor-

mance degradations with prefetching, they are much smaller than without

the victim caches. In fact, in the worst case PREF.vict is no more than 1%

above NP.vict, perhaps small enough to allow us to ignore the prefetch-in-

duced conflict problem when the architecture supports an appropriate cache

configuration (e.g., set-associative cache or direct-mapped with a victim cache)

at each level.

Second, we observe that in nearly all the cases the combined effect on

speedup of prefetching and the victim cache together is greater than the sum

of their individual contributions. The effect is that prefetching has more

benefit with a victim cache than without. For example, with Topopt on a

4-cycle bus, PREF provides a 14% speedup over NP, while PREF.vict pro-

vides a 22% speedup over NP.vict. There are two reasons why this occurs. As

already discussed, the victim cache eliminates a negative side-effect of

prefetching (the additional conflict misses), which previously detracted from

the potential speedups with prefetching. Also, because the victim cache

lowers the overall miss rate, it decreases the load on the bus. This means that

the same configuration will be less sensitive to bus contention effects, which

we have shown to limit the effectiveness of prefetching. For example, a region

that without the victim cache saturated the bus (Pverify at 16 cycles is a case

in point) and thus saw no benefit from prefetching may with a victim cache

no longer be in bus saturation. We would expect that the increase in prefetch-

ing effectiveness due to the victim cache would be even greater in a real

prefetching system without an oracle to determine potential cache misses,

since conflict misses are more difficult for a compiler to identify than capacity

misses.

The third observation is that increasing the prefetch distance is no longer

clearly harmful. In only one of the applications (Topopt) is LPD.vict notice-

ACM Transactions on Computer Systems, Vol. 13, No 1, February 1995

Effective Cache Prefetching on Bus-Based Multiprocessors . 75

LocusRoute

1.05

z
& 1.00

1-

. -------- . . .

,? 0.95

: 0.90

$ 0.85
z

.~ 0.80

TJ 0.75

0.70

Mp3d

1.05

F

1,00 -- .--

0.95

0.90

0.85

0.80

0.75

0.70

Pverify

:~=
0.95

0.90

0.85

0.80

0.75

0.70

0 8 16 24 32 0 8 16 ~4 ~2 O 8 16 24 32

Data Bus Latency Data Bus Latency Data Bus Latency

Topopt Water

,8 l,05- 1.05

F

::: D

+ PREF
1.00 --------------------

~ 1.oo- - ---------------...-

“g 0.95- 0.95 ~ NP,v]ct

~ 0.90 - 0.90
w ~ PREF.vict
.U 0.85 - 0.85

“~ 0.80

~ 075; ~ ~~

~ LPD.vlct

0.70 0.70

0 8 16 24 32 0 8 16 24 32

Data Bus Latency Data Bus Latency

Fig. 7. Execution times (relative tonoprefetching andnovictim cache) for the five workloads

with a victim cache.

ably inferior to PREF.vict. The victim cache now catches most of the addi-

tional conflicts caused by the increased prefetch distance. In the one case

(LocusRoute) where increasing the prefetch distance is effective (comparing

LPD.vict to PREF.vict), it is most effective at high bus utilization (but short of

saturation), where the number of and the delays associated with prefetch-in-

progress misses are greatest. But in most cases, LPD.vict is not clearly better

or worse that PREF.vict, because the performance loss due to the prefetch-

in-progress misses was never very great. Perhaps the most important aspect

of this result, then, is not that it allows the compiler to place the prefetches

earlier, but that the performance of prefetching is less sensitive to the exact

placement of prefetches when the cache is not strictly direct mapped. This

should allow the compiler much more flexibility in prefetch placement. These

results are for an 8-line victim cache. A 4-line victim cache was not found to

be sui%cient to eliminate enough of the prefetch-induced conflicts for these

applications in our studies, as PREF still visibly outperformed LPD for most

of the applications.
Finally, we observe that although we have eliminated some of the draw-

backs (which resulted in occasional performance degradations) of prefetching

with the victim cache, prefetching still does not provide significant speedups

ACM Transactions on Computer Systems, Vol. 13, No. 1, February 1995.

76 . D. M. Tullsen and S, J. Eggers

when the bus is saturated (the bus is more than 90% utilized with NP.vict for

Pverify at 16–32 cycles and Mp3d at 24 and 32 cycles). So, although a cache

organization that is more forgiving of cache conflicts mitigates some of the

drawbacks of prefetching, in a memory-bottlenecked system prefetching still

does not attack the problem at the bottleneck component, which is the total

number of interconnect/memory operations.

A victim cache also fails to help with the largest single component of the

CPU miss rate, which is the invalidation misses. These are dealt with in the

following section.

7. REDUCING SHARED-DATA LATENCIES

We currently know of no available compiler-based prefetching algorithms for

dealing with invalidation misses. We show in this section that some simple

heuristics (simpler, for instance, than dataflow analysis across processes),

such as recognizing write-shared data and blindly prefetching it more often,

prefetching writes differently than reads, and recognizing read-modify-write

patterns, can improve performance.

There are several opportunities to reduce the impact of sharing traffic

observed with the PREF scheme. Certainly, if we can do a better job of

predicting and prefetching invalidation misses, we can achieve much better

miss coverage. It is clear from Figures 3, 4, and 6 that our current miss

predictor, although it is extremely efficient at predicting nonsharing misses,

is inadequate for predicting invalidation misses. This is because the prefetch

algorithm we emulate is tailored for a uniprocessor. But even as better

algorithms appear, predicting invalidation misses will remain a much more

difficult problem than predicting nonsharing misses due to the nondetermin-

istic nature of invalidation traffic. We investigate three mechanisms for

making prefetching more effective in the presence of data-sharing traffic.

Section 7.1 examines a better heuristic for prefetching invalidation misses,

and Section 7.2 studies the effect on prefetching performance of a compiler

algorithm that reduces invalidation misses by restructuring shared data.
In addition, prefetching can increase sharing traffic in ways not obvious

from the data shown so far. A successful prefetch of a write miss to shared

data can increase the bus traffic, even if it causes no CPU misses, by causing

an unnecessary invalidate operation. In Section 7.3 we show that exclusive

prefetching can solve not only this problem, but also the more general

problem of unnecessary invalidate operations.

7.1 Prefetching Invalidation Misses

We saw in Section 4 and Figure 3 that a clear limit to the effectiveness of

prefetching is invalidation misses on shared data. None of the traditional

(uniprocessor-based) prefetching strategies we have looked at so far success-
fully reduces the less-predictable invalidation misses, which are the larg-

est component of CPU misses in each of the workloads. In fact, the more

effectively we prefetch nonsharing misses, the more critical invalidation

misses become to the performance of the application with prefetching. For

ACM TransactIons on Computer Systems, Vol 13. No 1, February 1995

Effective Cache Prefetching on Bus-Based Multiprocessors o 77

Pvenfy

[-1

!2$$
& &

Pretetch Strategy

non-shanrrg, not prefetched

non-sharing, prefetched

invahdated, not prefetched

mvahdated, prefetched

prefetch in progress

Fig. 8. Sources of CPU misses with enhanced write-shared data prefetching.

example, as seen in Figure 3, without prefetching, invalidation misses repre-

sent 29’% of the CPU miss rate for Mp3d, but with prefetching they represent

70% of the CPU miss rate and 96% of the adjusted CPU miss rate. In other

words, prefetching has made the applications much more sensitive to the

data-sharing problem.

To improve the coverage of these externally caused and therefore less-

predictable misses, we introduce some redundant prefetches to cache lines

known to be write-shared. They are redundant in the uniprocessor sense, i.e.,

they are issued for data that would reside in the cache, were it not for

invalidations. To emulate a prefetch algorithm that prefetches write-shared

data that exhibits poor temporal locality (under the premise that the longer a

shared cache line has resided in the cache without being accessed, the more

likely it is to have been invalidated), we ran the write-shared data from each

trace through a 16-line associative cache filter to get a first-order approxima-

tion of temporal locality, selecting the misses for prefetching. These are

prefetched in addition to all prefetches identified by PREF. This strategy,

labeled PWS, increases the prefetching instruction overhead (but is still less

than 4?%), but improves our coverage of invalidation misses. A compiler

algorithm could obtain the same effect by using the Mowry et al. [1992]

algorithm, but assuming a much smaller cache size when dealing with data

known to be write-shared.

We can see from Figure 8 that the coverage of invalidation misses improves

considerably with PWS, as the invalidation portion of the CPU miss rate

drops significantly, betweem 20’%. and 91$Z0 (on average a 56% drop). As a

result, over the range of bus utilizations (data transfer Iatencies) for which

prefetching is already viable, improvements in execution time are achieved

for most of the workloads, as seen in Figure 9. The fastest bus (4-cycle)

results allow us to see the benefit of the improved prefetching of write-shared

data most clearly in isolation from the memory contention effects. For that

architecture, the speedup of PWS relative to PREF ranged from 0% (Water)

to 15% (Pverify, where PREF is 27% faster than no prefetching, while PWS

ACM Transactions on Computer Systems, Vol. 13, No 1, February 1995.

78 . D. M. Tullsen and S. J. Eggers

LocusRoute Mp3d Pverrfv

0105
E!
&loo

/

..-.----..--------

5 095

“: 0.90
/

; ::; /

g 075

M 070

I I 1 (

105

100

I__

------------,2==

095

090
/

j’
085 /5

J

/
0.80 /’

075
/

070

.0 8 16 24 32 0 8 16 24 32

Data Bus Latency

Topopt

~lo5
E
$ 1.00

E

.

g 095
s
: 0.90 ~~fl

J 0.85 ~

.! 0.80

75 075
g

070

Data Bus Latency

Water

1,05

10Q

c

.

095 ~

090

0.85

080

0.75

070

105

100

095

0.90

0,85

080

0.75

070

0 8 16 24 32

Data Bus Latency

— PREF

Pws

O 8 16 24 32 08162432

Data Bus Latency Data Bus Latency

Fig. 9. Execution times (relative to no prefetching) for the five workloads with the enhanced

write-shared data prefetchmg,

achieves a 47~0 speedup over no prefetching), and CPU miss rates for PWS

are 11% to 6470 lower than PREF. One reason for the consistent reduction in

CPU misses by the write-shared algorithm is that, although PWS increases

the number of prefetches, it does not significantly increase the number of

prefetch-induced CPU conflict misses.

7.2 Restructuring of Shared Data

Because of the nondeterministic behavior of interprocessor sharing, predict-

ing invalidation misses on multiprocessors is more difficult than predicting

nonsharing misses, where the algorithm will be the same for both uniproces-

sors and multiprocessors. In this section, we investigate the extent to which

reducing sharing traffic through compiler-based shared-data restructur-

ing can eliminate or reduce the need for multiprocessor-specific prefetching

algorithms.

Sharing traffic consists of both true and false sharing. While the amount of

true sharing is inherent to the algorithm used by the program, false sharing

can be reduced by improved processor locality of shared data. False sharing

occurs when a cache line is shared between two processor caches, but each is

ACM TransactIons on Computer Systems, Vol 13, No 1, Februarv 1995

Effectwe Cache Prefetching on Bus-Based Multiprocessors .

Table IV, Total Invalidation and False-Sharing Miss Rates with No Prefetching

u

Total Total Invalidation Total False

Workload Mi.. R.t. Mis. %te Sharing Miss Rate

r%

1.1170

k
-. 4.52 1.18’

Topopt I 4.16 1 .90% 1 1.39%

Locus 0.88 0.14% 0.08%
Mn’W 1 2.00 0.5870 o.19%

f 0.30 O.otwo o.049io. .- .”.

79

accessing different data in it. When one processor modifies a data location, it

causes an invalidation in the other’s cache, because cache coherency is

maintained on a cache block basis. We record a false-sharing miss if an

invalidation miss is caused by a write from another processor to a word in the

local cache line that the local processor has not accessed.z Table IV shows

that for most of the benchmarks, over half of the invalidation misses could be

attributed to false sharing, even for the SPLASH benchmarks, which have

been hand-tuned for processor locality, although the total amount of false

sharing in those benchmarks is rather low. We show results for a 32-byte

cache line; previous work [Eggers and Jeremiassen 1991; Torellas et al. 1994]

demonstrates that false sharing goes up significantly with larger block sizes.

In Jeremiassen and Eggers [1992; 1994], an algorithm is presented for

restructuring shared data to reduce false-sharing, While the technique im-

proves overall performance, for the purpose of this study we are only inter-

ested in whether doing so makes prefetching more viable. Table V and Figure

10 show the result of some of the prefetching strategies on restructured

Topopt and Pverify. The other programs are improved less significantly,

because they have already been optimized for processor locality by program-

mer-based restructuring.

The restructured programs experience a 6’% decrease in the total miss rate

for Pverify and a 679Z0 decrease for Topopt. These reductions are achieved for

the most part by significant reductions in the false-sharing miss rate. In

Pverify that reduction is offset somewhat by an increase in the nonsharing

miss rate, while in Topopt an increase in data locality is achieved as a side

effect of the data restructuring, causing the nonsharing miss rate to decrease

also. Because we use trace-driven simulation, it is difficult to compare

execution times of different traces accurately, since it is not always clear

exactly what fraction of the total execution time was captured. This means

that we cannot calculate the raw performance improvement of restructuring.

However, we can measure the incremental performance of prefetching on a

program that has been restructured. This is exactly what makes restructur-

ing interesting for this research, since the invalidation misses were shown to

2Dubois et al.’s definition of false sharing [Dubois et al. 1993], in that it calculates false sharing

over the lifetime of a cache line, is more accurate than the defimtion we use. However, we have

measured only small differences between that definition and ours. Here, at any rate, we are less

concerned with exactly how much false sharing exists and how it is measured than with how

many sharing misses we can ehminate.

ACM Transactions on Computer Systems, Vol 13, No 1. February 1995

80 . D. M. Tullsen and S. J, Eggers

Table V. Miss Rates for Restructured Programs with a Data Transfer Latency of 8 Cycles

Prefetch CPU Total Total Total

Workload Discipline MR MR Inval MR FS MR

Pverify NP 4.2670 4.26~o 0.12% o.09yo
PREF 1.91% 4.54~o 0.18’%0 ().l)9~o

Pws 1.91% 4.59% 0.18% 0.1070
Topopt NP 1 .37% 1.37% 1).15?to ().(15~o

PREF 0.37% 1.48% tl.1’f~o 0.07%
Pws 0.35% 1.48% 0.18y0 0.07%

110

1.00

090

080

0.70

060

Pvenfy

: ‘[.

.---..----

0 S 16 24 32

Data Bus Latency

+ PREF.restr

PWS.restr

110

.g 070

73
& 060

0 8 16 24 32

Data Bus Latency

Fig, 10 Execution times (relative to no prefetching on the restructured program) for Pverify

and Topopt, applying two prefetching strategies to restructured programs,

be a limiting factor in the performance of our prefetching strategies, particu-

larly PREF. Figure 10 shows the performance of the PREF and PWS strate-

gies applied to the two restructured programs. In this figure, the results are

normalized to the execution times of the restructured programs without

prefetching.

Despite the fact that both restructured programs are less sensitive to

memory latencies (due to a lower total miss rate), they experienced, in

general, greater improvements from prefetching than the original programs.

This can be seen by comparing Figure 9 with Figure 10; for example, Pverify

at 4 cycles experiences speedups with the PREF strategy of 2770 without

restructuring (PREF, relative to NP) and 69% with (PREF.restr, relative to

NP.restr), and with the PWS strategy, 47% without and 70% with restructur-

ing. This validates our assertion that invalidation misses limit the effective-

ness of our prefetching algorithms.

Although PREF.restr and PWS.restr both show more improvement over

NP.restr than PREF and PWS showed over NP for both programs, the

improvement is much more significant in PREF.restr. Consequently, the

distinction between PREF and PWS is almost nonexistent in the restructured

programs. This is not surprising in that both the PWS algorithm and the

restructuring are attempting to attack the same problem. We conclude that

when restructuring is effective at significantly reducing the invalidation miss

ACM TransactIons on Computer Systems, Vol 13, No 1. February 1995

Effective Cache Prefetching on Bus-Based Multiprocessors . 81

rate, a simpler, uniprocessor-based prefetch algorithm can be used in place of

one tuned for multiprocessor data sharing.

7.3 Exclusive Prefetching

In the prefetching strategies simulated thus far, prefetches have looked to

the bus like reads. In the Illinois coherency protocol a line is read into the

cache in exclusive mode if no other cache holds that line currently; otherwise

it is cached in shared mode on a read. In that case a prefetch of a write miss

would fetch (shared) data in shared mode; the write (now likely a hit) would

then require an invalidate operation on the bus. This turns one bus operation

(read with intent to modify, which loads the data and invalidates in one

operation) into two. This can be avoided by an exclusive prefetch, which

prefetches data into the cache in exclusive mode, invalidating copies in other

caches. In migratory sharing (where only one processor at a time is typically

accessing cache line), exclusive prefetching saves a bus operation; however,

when there is interprocessor contention for cache lines, an exclusive prefetch

to write-shared data can cause many more invalidation misses.

The problem of unnecessary invalidate operations is not limited to shared-

mode prefetching, but is a more general problem in parallel applications. The

WREX prefetching strategy targets the extra invalidates caused by shared-

mode prefetching, while the RDEX strategy also targets the general problem.

In the WREX prefetching strategy, if the expected miss is a write, the

algorithm issues an exclusive prefetch for that line. If the prefetch misses, the

line is brought into the cache in exclusive mode, invalidating any copies in

other caches. If the prefetch hits in the cache, no bus operation is initiated,

even if the cache line is in the shared state. With the Illinois protocol, all

reads of cache lines that are not currently in another cache enter the

exclusive state immediately, so there is only a difference between PREF and

WREX when a miss occurs for a line that is shared among caches.

In Figure 11, we see that the WREX prefetching strategy is ineffective at

reducing execution time over PREF for four of the five applications (with

Topopt, execution time dropped about 2%). The primary reason is that there

are few write misses, since many writes are preceded over a short distance by

a read to the same location. In other words, the WREX strategy only targets

unnecessary invalidate operations caused by prefetching write accesses, a

problem which is only evident in one of the applications.

With more aggressive use of exclusive prefetching, we can attack the more

general problem of unnecessary invalidates caused by both prefetch and

nonprefetch accesses. An unnecessary invalidate operation occurs when a

read-modify-write pattern results in a read miss followed by a write hit for a

cache line currently shared by another cache. The result is two bus operations

(a shared read, followed by an invalidate). If preceded by an exclusive

prefetch, the write hit will not require a second bus operation, as long as
there are no intervening accesses by another processor to the cache line

between the prefetch and the write. If the compiler can recognize a read-mod-

ify-write pattern over a short span of instructions, it can issue an exclusive

ACM Transactions on Computer Systems, Vol 13, No 1, February 1995

82 . D. M. Tullsen and S. J Eggers

110

050

LocusRoute

: /’

[I I I

O 8 16 24 32

Data BUS Latency

Topopt

--------.-.-----.---

..n+!
~F–+>A

,!
*–A

I I [I

110
Mp3d

1

08162432

Data Bus Latency

Water

1’0~
100

k-’”

--.----------- -----
—

090

080

070

060
I

110

100

090

080

070

060

050 I
I [1 I

O 8 16 24 32

DataBusLatency

PREF

WREX

RDEX

––~ RDEX.PWS

O 8 16 24 32 0 8 16 24 32

Data BUS Latency Data Bus Latency

Flg 11. Execution times (relative to no prefetching) for the five workloads with exclusive

prefetching.

prefetch for the Ieading readmits. Mowryand Gupta [1991] take advantage

of this in their programmer-directed prefetching study.

Therefore, in the RDEX prefetching strategy, we modify the WREX algo-

rithm to do exclusive prefetching also when a read miss is followed by a write

to the same word within 100 instructions. We chose to recognize the read-

modify-write pattern for words rather than cache lines, because we felt that

when access patterns were complex, it would be difficult for a compiler to

recognize these patterns on a cache line basis, and when the access patterns

were simple (e.g., uniform access to array elements), the results (analysis by
word or by cache line) would be identical.

In Figure 12 we see that RDEX, like WREX, does not reduce miss rates.

This is not surprising since the goal was to eliminate invalidate operations

(which are not shown in the miss rate graphs). The effect of the reduced

invalidation traffic can be observed in that execution times decrease without

any reduction in the miss rate. The RDEX strategy can potentially increase

the invalidation miss rate, but in our measurements those increases were

very small, so there was no significant cost to issuing invalidations early.

This is not guaranteed to always be true, however, so exclusive prefetching

ACM Transactions on Computer Systems, Vol 13, No 1, February 1995

84 . D M Tullsen and S J. Eggers

Table VI. Bus Demand Per Access for the 8-Cycle Data Bus Latency

needs to be done with some caution; in particular, it should be avoided when

interprocessor contention for a cache line is expected to be high.
This is the first application of prefetching in this article that can actually

decrease the number of bus operations relative to no prefetching. We can see

in Table VI and Figure 11 that bus demands have improved with the more

aggressive exclusive prefetching strategy; the consequence is improved execu-

tion time for all bus speeds. The significance of this result is that it shows

that prefetching can be a win, even on a memory-saturated multiprocessor.

We also see from Figure 11 that the RDEX strategy, when used in

conjunction with PWS, made the write-shared algorithm significantly more

effective. The two work well together for two reasons. First, the exclusive

prefetching lowers bus demands, thus making PWS (which is not useful when

the bus is saturated) effective over a wider range of bus speeds. Second, PWS

allows RDEX to attack the component of misses responsible for the vast

majority of unnecessary invalidate operations—invalidation misses. So, for

instance, we see that RDEX_PWS provides speedups as high as 28% over

RDEX alone (up to 34% over PWS alone), and the combination provides

speedups as high as 459Z0 over PREF. In fact, in all five applications RDEX_

PWS outperforms all other strategies noticeably, even with the slowest

memory subsystem.

8. PUTTING IT ALL TOGETHER

We have demonstrated several architectural and compiler-oriented tech-

niques which increase the effectiveness of prefetching. In this section, we

want to see how far we have come. In other words, when we use these

techniques together, how effective can prefetching be over the range of

memory architectures and applications that we have been studying? In

Figare 13, we have applied several (but not all) of these techniques. In

particular, we have applied a combination of the PWS and RDEX prefetching

strategies to an architecture with victim caches. In this figure, the PREF

result is normalized to NP, and the first RDEX_PWS.vict result is normal-

ized to NP.vict. This allows us to see the overall increase in effectiveness of

the enhanced prefetching strategy, independent of the benefits of the victim

cache.

With this combination (RDEX_PWS.vict), we achieved speedups due only

to prefetching that were much more significant than our original basic

prefetcher (PREF), as high as 83%. In addition, we no longer experienced any

performance degradations, the minimum speedup being 6%. These results

ACM TransactIons on Computer Systems, Vol 13, No 1, February 1995

Effective Cache Prefetching on Bus-Based Multiprocessors . 85

indicate that, with the right cache architecture and with careful application

of prefetching by the compiler, performance improvements can be both exten-

sive (covering a wide range of memory bandwidths) and, in some cases, very

significant.

The third line in Figure 13 shows the absolute performance gain achieved

from the combination of using a victim cache and the composite prefetching

algorithm. Applying both architectural and prefetching techniques achieved

speedups between 9?Z0 and 95?Z0 over the base architectures, as opposed to a

maximum speedup of 2970 and slowdowns as much as 69Z0 with the base

uniprocessor-style prefetcher.

What we see, then, is that while none of the individual solutions provided

very dramatic improvements, taken together, the total solution is significant.

This is due to the fact that the different techniques attack different aspects of

the prefetching problem, and in some cases there was synergy among the

different approaches.

In interpreting these results, it should be remembered that our oracle-based

prefetch algorithm is likely to underestimate prefetch instruction overhead

and overestimate the ability to identify nonsharing misses. The latter will

have a mixed effect; more prefetching minimizes the CPU miss rate but also

maximizes bus demand due to cache conflicts. Nonetheless, these results give

us high confidence that, with a combination of techniques, prefetching can be

made profitable across a very wide array of multiprocessor memory architec-

tures.

9. SUMMARY AND CONCLUSIONS

In a multiprocessor system with limited memory bandwidth, compiler-di-

rected prefetching algorithms are not guaranteed to improve performance,

even if they reduce the CPU-observed miss rate successfully. They can

increase the load on the memory subsystem (through prefetch-induced cache

conflicts and unnecessary invalidate operations) and have difficulty hiding

invalidation misses. Not only are slowdowns possible, but performance can be

unpredictable. We found that the applications that benefited most from

prefetching were the same applications that suffered the most when the

architecture was varied by changing bus speeds. We show also that when

prefetching is effective at reducing the effect of nonsharing cache misses, it

makes the applications more sensitive to the data-sharing problem. With an

assortment of architectural and compiler techniques, however, each of the

drawbacks of prefetching can be alleviated.

For the systems we simulated, we have shown the following techniques to

be successful in increasing the effectiveness of prefetching. (1) A cache design

that is more forgiving of cache conflicts than a direct-mapped cache, in this

case an additional victim cache, eliminates most of the prefetch-induced

conflict misses that both increase the CPU miss rate and the load on the bus

and memory. This both increases the effectiveness of prefetching, and makes

the application less sensitive to prefetch distance, allowing the compiler more
freedom in prefetch placement. (2) A prefetch algorithm that is targeted at

invalidation misses as well as nonsharing misses can greatly increase the

ACM Transactions on Computer Systems, Vol 13, No 1, February 1995

-u
V?

5$

o

c

-il-nl-

Effective Cache Prefetching on Bus-Based Multiprocessors . 87

coverage of prefetching on a shared-memory multiprocessor. (3) A prefetch

algorithm that makes effective use of exclusive prefetching can significantly

reduce the number of invalidate operations, and thus reduce the load on the

memory subsystem. (4) When restructuring shared data is effective at in-

creasing processor locality (and thus reducing the number of invalidation

misses), it enhances the performance of prefetching and allows the use of a

simpler, uniprocessor-oriented prefetching algorithm. Two of these tech-

niques (a victim cache as an architectural improvement and restructuring of

shared data as a compiler algorithm) that have been shown elsewhere to

improve performance independent of prefetching also make prefetching more

effective after they have been applied.

Although the individual contribution of any one of these techniques is not

very dramatic, the combined effect of several of these techniques can be very

significant. With a combination of these techniques, then, prefetching can be

made viable across a much wider range of parallel applications and memory

subsystem architectures, even when the memory subsystem represents the

bottleneck in the multiprocessor system.

ACKNOWLEDGMENTS

The authors would like to thank Jean-Loup Baer for insightful comments on

this article at several stages of the work. The reviewers for this journal

provided many useful comments that improved the presentation of this

article. Tor Jeremiassen provided the execution traces for the restructured

executable.

REFERENCES

CALLAHAN, D., KENNEDY, K., AND PORTERFIELD, A. 1991. Software prefetching. In The 4th

International Conference on Architectural Support for Programming Languages and Operating

Systems. ACM, New York, 40-52.

CHEN, T.-F. 1993. Data prefetching for high-performance processors. Tech. Rep. No. UW
TR-93-07-01, Ph.D. thesis, Univ. of Washington, Seattle, Wash. July.

CHEN, T.-F. AND BAER, J.-L. 1994. A performance study of software and hardware data

prefetching schemes. In 21st Annual International Sympo.wum on Computer Architecture.

ACM/IEEE, New York, 223-232.

CHEN, T.-F. AND BAER, J.-L. 1992. Reducing memory latency via non-blocking and prefetching

caches. In The 4th International Conference on Architectural Support for Programmz ng La n-

guages and Operating Systems. ACM, New Yorkj 51-61.

CHEN, W. Y., BRINGMANN, R. A., MAHLJSE, S. A., HANK, R. E., AND SICOLO, J. E. 1992. An

efficient architecture for loop based data preloading. In 25tlz Znternattonal Sympostum on

Microarchztectw-e. ACM/IEEE, New York, 92–101.

CHEN, W. Y., MAHLKE, S. A., CHANG, P. P.j AND Hwu, W. W. 1991. Data access microarchitec-

tures for super-scalar processors with compiler-assisted data prefetching. In 24th Interna-

tional Symposwm on Mzcroarchitecture. ACM/IEEE, New York, 69–73.

DEVADAS, S. AND NEWTON, A. R. 1987. Topological optimization of multiple level array logic.

IEEE Trans. Comput. Aid. Des. (Nov.), 915-941.

DUBOIS, M., SKEPPSTEDT, J., RICCIULLI, L., RAWURTHY, K., AND STENSTROM, P, 1993. The

detection and elimination of useless misses in multiprocessors. In 20th Annual International

Symposium on Computer Architecture. ACM/IEEE, New York, 88-97.

EDMONDSON, J. AND RUBINFIELD, P. 1994. An overview of the 21164 AXP microprocessor. In

Hot Chips VI, 1-8.

ACM Transactions on Computer Systems, Vol. 13, No, 1, February 1995,

88 . D. M. Tullsen and S. J. Eggers

EGGERS, S. J 1991 SImphc@ versus accuracy m a model of cache coherency o, erhead IEEE

Trans Coznput 40, 8 (Aug), 893-906

EGGERS, S, J. 1989. Simulation analysm of data sharing m shared memoq, multiprocessors.

Tech Rep No UCB/CSD 89/501 Ph D thesis, Uruv of Cahforma, Berkele~ Mar

EGGERS, S J. ANrZ J~REMIASSEN, T E 1991 Elimmating false sharing In International

Conference on Parallel Proeessmg. Vol. 1. IEEE, New York, 377-381.

EGGERS, S. J., KEPPEL, D. R,, KOLDINGER, E. J., AND LEVY, H. M. 1990. Techmques for inline

tracing on a shared-memory multiprocessor. In F’roceedmgs of the 1990 ACM Szgmetrzcs ACM,

New York, 37-47.

HENNESS~, J. L. AND JOUPPI, N. P. 1991. Computer technology and architecture: An evolving

interaction. LEEE Comput. 24, 9 (Sept), 18–29.

JER~MIASSEN, T. E AND EGGERS, S. J. 1994. Static analysis of barrier synchronization in

exphcltly parallel programs. In In terna tlonal Conference on Parallel Archztectu res and Comp~-

Iatzon T’echuques. ACM, New York, 171-180

JEREMIASSEN, T. E. AND EG~ERS, S. J. 1992. Computing per-process summary side-effect

mformatlon. In 5th In terna tzonal Workshop on Languages and Compders for Parallel Comput-

mg. Lecture Notes on Computer Science, vol. 757. Springer-Verlag, New York, 175–191.

JOUPPI, N P. 1990. Improving direct-mapped cache performance by the addition of a small

fully-associative cache and prefetch buffers. In 17thAnnual International S.vmposlum on

Computer Architecture. ACM/IEEE, New York, 364-373.

KROFT, D. 1981. Lockup-free mstructlon fetch/prefetch cache orgamzatlon, In 8th Annual

Znternatzonal Sympo.wurn on Computer Architecture ACM/IEEE, New York, 81-87

LENOSIiI, D., LAUDON, J., JOE, T., NAKAHIRA, D., STEVENS, L., GCTPTA,A., AND HENNESSY, J. 1993.

The dash prototype: Logic overhead and performance. IEEE Trans. Parallel Dtstr~b, Syst, 4, 1
(Jan.), 41-61.

LOVETT, R, AND THARRAR, S. 1988. The symmetry multiprocessor system. In Internahoncd

Conference on Parallel Processing. IEEE, New York, 303-310.

MA, H.-K. T., DEVADAS, S., WEI, R., AND SANGIOVANNI-VINCENTELLI, A. 1987. Logic verification

algorithms and their parallel implementation. In 24th Design Autoznatzon Conference. 283–290.

MICROPROCESSOR. 1994a. M~croprocess, Rep. 8, 2, 1-8,

MICROPROCESSOR. 1994b. M~croprocess. Rep, 8, 13, 1-9.

MOTOROLA. 1990. MC881OO RISC Microprocessor User’s Manual Prentice-Hall, Englewood

Cliffs, NJ.

MOWRY, T. C. AND GUPTA, A. 1991, Tolerating latency through software-controlled prefetchmg

m shared-memory multiprocessors. J Parallel Dzstrzb. Comput. 12, 2 (June), 87–106,

MOWRY, T. C., LAM, M, S., AND GUPTA, A. 1992. Design and evaluation of a compiler algorithm

for prefetchmg, In The 5th International. Conference on Architectural Support for Programmmg

Languages and Operating Systems. ACM, New York, 62-73.

PAPAMARCOS, M. S. AND PATEL, J. H. 1984. A low-overhead coherence solution for multiproces-

sors with prwate cache memories. In 11th Annual In ternatLonal Symposz urn on Computer

Architecture. ACM/IEEE, New York, 348-354,

SCHEURICH, C. AND DUBOIS, M. 1991. Lockup-free caches in high-performance multiprocessors.

J. Parallel Dwtnb. Comput. 11, 1 (Jan.), 25-36.

SINGH, J. P., WEBIIR, W., ANEZ GUPTA, A. 1991. SPLASH: Stanford parallel applications for

shared-memory. Tech Rep. CSL-TR-9 1-469. Comput, Syst. Lab., Stanford Umv., Stanford,

Cahf.

SOHI, G. S. AND FRANKLIN, M. 1991, High-bandwidth data memory systems for superscalar

processor. In The 4th International Conference on Architectural Support for Programmmg

Languages and Operating Systems. ACM, New York, 53-62

TORELLAS, J , LAM, M. S , AND HENNESSY, J L. 1994. False sharing and spatial locality in

multiprocessor caches. IEEE Trans. Comput. 43, 6 (June), 65 1–663.

TULLSTJN, D. M. AND EGGERS, S. J. 1993. Llmltatlons of cache prefetching on a bus-based

multiprocessor, In 20th Annual International S.vmpostum on Computer Architecture. ACM/

IEEE, New York, 278-288.

Received August 1993; revised April 1994; accepted October 1994

ACM TransactIons on Computer Systems, Vol 13, No 1, February 1995

