
Notes on “A Methodology for Implementing
Highly Concurrent Data Objects”

JOSEPH P. SKUDLAREK

Mentor Graphics Corporation

1. INTRODUCTION

Recently, a novel pair of process synchronization instructions, load-linked
and store–conditional, were introduced into the computing repertoire. These
instructions were used to define two notable protocols for process synchro-
nization: a lock-free and a wait-free protocol. These protocols do not require
critical sections, and can be used for fault-tolerant processing. The lock-free
protocol guarantees that at least one process will make progress; the wait-free
protocol guarantees that all processes will make progress.

Herlihy [1993] presents and illustrates these concepts and ideas. However,
there are a number of issues and errors concerning correctness, clarity, and
completeness that were left unaddressed, and they are identified and re-
solved in Skudlarek [1994]. A summary of the issues and their resolution is
presented below.

2. ISSUES AND RESOLUTIONS

The protocols described in Herlihy [1993] require a memory reference be-
tween the load–linked and store–conditional in order to validate the in-
tegrity or identity of the copied block. However, neither the MIPS [Kane and
Heinrich 1992, p. A-64] nor the Alpha [Digital Equipment 1992, p. 4-9]
architectures support such an interleaved memory fetch, and the protocols as
presented can lock up. This persistent failure is different from the intermit-
tent spurious failure discussed in Herlihy [1993, section 4.2]. One solution is
to check and update both the pointer and the version id atomically, a
technique similar to the one described in IBM [1980, p. 7-11; p. A-37-A-38]
using the CDS (Compare Double and Swap) instruction. The Alpha architec-
ture supports 64-bit load–-linked and store–conditional instructions.

Herlihy [1993, section 4.2, p. 754] points out that special care in processing
is required if storage is allowed to hold objects of different types—a second
fetch is used to verify an object’s identity. However, special care in storage
layout is also required. In particular, the storage layout in which the check
fields follow the sequential object allows the check fields to be overwritten
arbitrarily, which can defeat the verification of object identity. Putting the

Author’s address: Mentor Graphics Corporation, 8005 S. W. Boeckman Road, Wilsonville, OR

97070-7777; work email: jskud@wv.mentorg.tom; personal email: jskud@teleport. corn.
Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
01995 ACM 0164-0925/95/0100-0045 $03.50

ACM T,ansactsons on Pmgmmm,ng Languages and Sy~tems, Vol 17, NO 1, Jannarv 1995, Pages 45–46

http://crossmark.crossref.org/dialog/?doi=10.1145%2F200994.200999&domain=pdf&date_stamp=1995-01-01

46 . Jose~h P. Skudlarek

check fields at the front of the storage and requiring the check fields to be
increased and never reset (even across object type changes) provide a solution
for this problem.

The lock-free protocol adds just two check fields to the sequential object
and avoids copying the check fields when block copying the concurrent object.
The wait-free protocol requires a per-object response array which must
remain synchronized with the sequential object. Yet the code given in Herlihy
[1993, Figure 10, p. 761] copies only the sequential object. This problem is
solved if the sequential object is redefined to include the response array for
the wait-free protocol.

Skudlarek [1994] has more complete explanations as to why the double
comparison avoids races in the wait-free protocol, and why the wait-free
protocol requires operations which are totally defined for every valid object
state.

A number of minor errors and issues, mostly typographical, are also
identified and corrected in Skudlarek [1994]. For example, Herlihy [1993,
Figure 2, line 11, p. 753] should be changed from

old _ pqueue – > check[l 1+ +; / * mark consistent * /

to

new_ pqueue – > check[l 1+ +, / * mark consistent * /

Herlihy [1993] assumes a strongly ordered memory model, in which all

loads and stores are reflected in memory in the order they were issued by the

processor; yet this is becoming a less common memory model. The standard

memory model for recent SPARC Architectures is total store order (in which
loads can occur ahead of stores), not total access order—a strongly ordered

memory model is not provided. See SPARC [1992] and Weaver and Germond
[1994].

ACKNOWLEDGMENTS

A number of people, including John F. Reiser, Michael T. Y. McNamara, and
the referees, were very helpful in the preparation of this article. Maurice
Herlihy, in his initial article, provided the foundation which serves as the
context for these notes.

REFERENCES

DIGITAL EQUIPMENT 1992. Alpha Architecture Handbook/Preliminary. Digital Equipment
Corporation, Maynard, Mass

HERLIHY, M. P. 1993. A methodology for implementing highly concurrent data objects ACM

Trans. Program. Lang. Syst. 15, 5 (Nov.), 745-770,

IBM 1980. IBM System/370 Prmczples of Operation, 7th ed. GA22-7000-6. IBM Corporation,
Poughkeep~ie, N.Y.

KANE, G. AND HEINRICH, J. 1992. MIPS RISC Architecture. Prentice-Hall, Englewood Cliffs,
N.J.

SKUDL~REK, J. P. 1994. Remarks on a methodology for implementing highly concurrent data
objects. ACM SIGPLAN Not. 29, 12 (Dec.), 87–93.

SPARC 1992. The SPARC Archztectzme Manual, Verszon 8. Prentice-Hall, Englewood Cliffs,
N.J.

WEAVER, D. L. AND GERMOND, T. (Eds.) 1994 The SPARC Archztectzme Manual, Version 9.

Prentice-Hall, Englewood Cliffs, N J

Recewed June 1994; revised November 1994; accepted November 1994

ACM TransactIons on Programmmg Languages and Systems, Vol 17, No 1, January 1995.

