
Three Logics for Branching Bisimulation

ROCCO DE NICOLA

Unu)erslti dl Roma “La Sapienza”, Rome, Italy

AND

FRITS VAANDRAGER

CWI, Amsterdam, The Netherlands

Abstract. Three temporal logics are introduced that reduce on labeled transition systems the same
identifications as branching blsimulation, a behavioral equivalence that aims at ignoring invisible
transitions whale preserving the branching structure of systems. The first logic is an extension of
Hennessy–Milner Logic with an “until” operator, The second one E another extension of

Hennessy–Milner Logic, which exploits the power of backward modalities. The third loglc is
CTL* without the next-time operator. A relevant side-effect of the last characterization is that it

sets a bridge between the state- and action-based approaches to the semantics of concurrent
systems.

Categories and Subject Descriptors: F. 1.1 [Computation by Abstract Devices]: Models of Compu-

tation; F.3. 1 [Logics and Meanings of Programs]: General:

General Terms: Theory, verification

Additional Key Words and Phrases: Backward modahtles, branching bisimulatlon equwalence,
concurrency, CTL*, doubly labeled transition systems, Hennessy–Milner logic, Kripke structures,
labeled transition systems, reactive systems, semantics, stuttering equivalence, until operations

R. De Nicola was partially supported by Esprit Basic Research Action Program, Project 3011
CEDISYS, by CNR Progetto Finalizzato Sistemi Informaticl e Calcolo Parallelo contract number
91.00894.69.

The research of F. Vaandrager was supported by RACE Project 1040, SPECS.

Part of the research was carried out whale R. De Nicola was with the Institute dl Elaborazione

dell’Informazlone.

An extended abstract of this paper appeared as DE NICOLA, R., AND VAANDRAGER, F. W. 1990.
Three logics for branching bisimulation (extended abstract). In Proceedings of the 5th Annual

Symposum on Logic m Computer Sctence (LICS ). IEEE Computer Society Press, New York, pp.
118–129; this a revised version of CWI Report CS-R9012, Amsterdam 1990.

Authors’ addresses: R. De Nicola, Dlpartlmento d] Sclenze dell’Informazione, University di
Roma, “La Sapienza”, Vla Salana 113, 1-00198 Rome, Italy, e-mad: DENICOLA@VM.CNUCE.
CNR.IT, F. Vaandrager, CWI. P.O. Box 4079, 1009 AB Amsterdam, The Netherlands, e-mail:
FRITSV@CWI.NL.
Permission to make digital\hard copy of all or part of this material without fee 1s granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing MachineV, Inc. (ACM). To copy
other-wine, to republish, to post on servers, or to redistribute to hsts requires prior speclf]c
permission and/or a fee,
(!3 1995 ACM 0004-541 1/95/0300-0458 $03.50

Journal of the A>socmtlon for Computing Mdchmery, Vul 42, No 2, March 1W5, pp 458-487

http://crossmark.crossref.org/dialog/?doi=10.1145%2F201019.201032&domain=pdf&date_stamp=1995-03-01


Three Logics for Branching Bisimulation 459

1. Introduction

The operational semantics of concurrent systems has often been described by

means of labeled transition systems. However, these descriptions are frequently

too concrete and do not always give the same account of systems that exhibit

identical observable behavior. The addition of plausible notions of behavioral

equivalences permits one to overcome these problems. These notions make it

possible to relate systems described at different levels of abstraction and to

verify, for example, the correctness of an implementation with respect to a

more abstract specification of a given system. The interested reader is referred

to De Nicola [1987] and van Glabbeek [1990] for comparative presentations of

many such equivalences.

Among the best known behavioral equivalences are the bisimulation equiva-

lences (also called observational equivalences) of Milner [1989] and Park [1989].

Intuitively, two systems are bisimulation equivalent whenever they can perform

the same sequences of actions to reach bisimulation equivalent states. Bisimu-

lation equivalences are called strong when all labels of transitions are consid-

ered as visible, and weak when they ignore some actions, considered internal

and thus invisible. Bisimulation equivalences have proved of fundamental

importance for working with structures used to describe nondeterministic

systems. Indeed, two of the major schools of concurrency theory, that of CCS

[Milner 1989] and ACP [Baeten and Weijland 1990] consider bisimulations as

the basic equivalence notation, and have developed a rich and powerful theory

around them. The existence of a bisimulation of some type between two

structures, means that at a deep level they are very much alike. The definition

of bisimulations already suggests a useful method for showing equivalence of

two systems: one guesses a relation among the states of the systems, and

verifies that it is a bisimulation relation. Checking this is local and involves

only one or a few computation steps at the time. In the case of finite state

systems, one can alternatively use one of the efficient algorithms based on

partition refinement for deciding bisimulation. Finally, there are elegant com-

plete equational axiom systems for a wide variety of bisimulation based process

algebras, see Baeten and Wejland [1990] for applications. In spite of some

theoretical concerns (e.g., bisimulations are too fine, capable of distinguishing

systems that ought to be identified [Abramsky 1987; Bloom et al. 19891),

bisimulations are a central part of concurrency theory.

In parallel with the definition of behavioral equivalences, different attempts

have been made towards defining (modal and temporal) logics that permit

specifying specific properties of concurrent systems. The logics having the

advantage over behavioral equivalences of not always requiring to specify the

full behavior of a system; they permit one to concentrate on specifying

particular properties of a system, like safety, fairness, etc., that are of interest.

Indeed, modal and temporal logics have been proved useful formalisms for

specifying and verifying properties of concurrent systems (see, e.g., de Bakker

et al. [1989] and Manna and Pnueli [1992]), and different tools have been

developed to support such activities [Clarke et al. 1986; Cleveland et al. 1990].
However, to date, there is no general agreement on the type of logic to be

used. Since a logic naturally gives rise to equivalences (two systems are

equivalent if they satisfy the same formulas) often the proposed logics have

been contrasted with behavioral equivalences for a better understanding and
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evaluation. In general, establishing a direct correspondence between a logic

and a behavioral equivalence provides additional confidence in both ap-

proaches.

A well-known result relating operational and logical semantics is that report-

ed in Hennessy and Milner [1985]. In that paper, a modal logic, now known as

Hennessy–Milner Logic (HML), is defined which, when interpreted over (arc-)

labeled transition systems with and without silent actions, is proved to be in full

agreement with the two operational equivalences called strong and weak

observational equiljalence. Other correspondences have been established in

Browne [1988], where two equivalences over Kripke structures (node-labeled

transition systems) are related to two variants of CTL* [Emerson and Halpern

1986]. It is first shown that a variant of strong observational equivalence

coincides with the equivalence induced by CTL*; and then that CTL* without

the next operator (CTL*-X) is in full agreement with stuttering equiz,’alence, an

equivalence based on the idea of merging adjacent states that have the same

labelling.

Recently, a new notion of behavioral equivalence for labeled transition

systems, called branching bisimulation ( =~ ), has been proposed [van Glabbeek

and Weijland 1989]. It aims at generalizing strong observational equivalence to

ignore silent actions while preserving the branching structures of systems.

Branching bisimulation considers two systems as equivalent only if every

computation, that is, every alternating sequence of (visible and silent) actions

and states, of one system has a correspondent in the other. By correspondent

computations it is meant computations with the same sequence of visible

actions and such that all their intermediate states have equivalent potentials.

Branching bisimulation is more restrictive than weak observational equiva-

lence but has a pleasant axiomatic characterization that leads to a complete

canonical-term rewriting system [Akkerman and Baeten 1990; De Nicola et al.

1990] and does indeed preserve the branching structures of systems. In Groote

et al. [1990] an O(m X n) algorithm—m is the number of transitions and n is

the number of states in the transition system—for branching bisimulation is

presented; a trial implementation of this algorithm runs faster than existing

tools for deciding weak observational equivalence. An additional pleasant

properties of branching bisimulation is that it is resistant to refinement of

actions while weak bisimulation is not [Darondeau and Degano 1990; van

Glabbeek and Weijland 1989/1991].

In this paper, we propose three logical characterizations of branching bisimu-

lation, that on one hand permit a deeper understanding of the equivalence

itself and on the other hand permit using existing tools to tackle the problem of
mechanical support to the verification of properties of concurrent systems. The

three logics we will present are (natural extensions of) well-known and thor-

oughly studied logics. The first logic we will consider, L”, is obtained from

HML by replacing the indexed operator (a) with a kind of “until” operator.

The new binary operator, written ~(a)~’, tests whether a system can reach, by

exhibiting a visible action “a”, a state that satisfies q’ while moving only

through states that satisfy ~. The second logic, L ~~, stems from the characteri-

zation of =~ as a back and forth bisimulation equil)alence [De Nicola et al,,

1990]. It extends HML with reverse modalities that permit inquiries to be made

about the past of computations (see, e.g., Liechtenstein et al. [1985], Stirling

[1992], Street [1982]). The third logic that we use to characterize =~ is a
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variant of CTL*. More specifically it is CTL*-X interpreted, as in the original

proposal (see Emerson and Srinivasan [1989]), over all paths of Kripke struc-

tures and not just over maximal ones.

The actual proof of the correspondence between CTL*-X and =~ has

interesting side-effects. It requires establishing precise connections between

branching bisimulation and the stuttering equivalence over Kripke structures

(=, ) defined by Browne et al. [19881; these connections permit clarifying the
relationships between the state- and action-based approaches to the semantics

of concurrent systems also in presence of invisible events. We set up a general

construction that, given a labeled transition system, yields an enriched system

that has essentially the same structure of the original one, but carries labels on

both states and transitions. We prove that a divergence blind version of

stuttering equivalence and

bisimulation and =,

= ~ , and a divergence sensitive version of branching

induce the same identifications on the enriched transi-

tion systems.

The different logics characterizing the same equivalence over a given class of

systems can serve different (complementary) purposes. Indeed, as they are at

the moment, L” and L ~~ cannot really be used to specify systems properties

(they would need at least adding a recursion operator). However, due to their

closeness to the operational description, they are optimal for explaining the

differences between inequivalent systems. CTL, on the other hand, has been

successfully used to specify systems properties.

Since their publication in the conference version of this paper [De Nicola

and Vaandrager 1990b], its results have inspired subsequent work.

—Korver [1992] has defined an algorithm that, given two states of a finite

automaton that are not branching bisimulation equivalent, produces an L u
formula that distinguishes between them. Such an algorithm provides a

useful extension of the algorithm of Groote and Vaandrager [1990] since it

helps a user in understanding why certain finite state systems are inequiva-

lent. Polak [1992] describes an implementation of the algorithm of Korver

[1992] on the top of that of Groote and Vaandrager [1990].

—The intermediate structures we had to introduce to prove that CTL* is an

adequate logic for branching bisimulation led us to define also an action-

based version of CTL, [De Nicola and Vaandrager 1990a] that we called

ACTL. This logic can naturally be used to describe safety and liveness

properties of systems and permits reasoning in terms of the actions they can

perform, rather than in terms of the properties of their states.

—Minor modifications of the translation functions between Kripke Structures

and Labeled Transition Systems have also allowed us to build a model

checker for ACTL that completely relies on the existing model checker for

CTL and guarantees linear model checking for action-based formulas [De

Nicola et al. 1993]. This has permitted the implementation of a verification

environment where both logical and behavioral properties can be proved by

relying on a single underlying model, namely that of Labeled Transition

Systems (see, e.g., LITE [Bolognesi et al. 1995]).
—The alternative characterization of =, in terms of divergence blind stutter-

ing equivalence has been used as a key step towards the O(m X n) algo-

rithm for deciding stuttering equivalence of Groote and Vaandrager [1990],

which is a definite improvement of the 0( ns ) algorithm of Browne et al.

[1988].
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—In Laroussinie et al. [1995], it has been shown that, for each L” formula,

there is a logically equivalent L ~~ formula, and vice versa. The (rather

complex) proof uses an auxiliary logic L~u that combines the modalities of

L ~ and L ~F, and gives effective procedures by which Lu formulas can be
rewritten into L ~~ formulas, and vice versa, via rewrite steps that preserve

logical equivalence.

The rest of the paper is organized as follows: In the next section, we present

branching bisimulation and two of the Iogics that will be used to characterize

it; namely, HML with the until operator and HML with backward modalities.

In the third section, we consider CTL and CTL* and show that minor variants

of them are in full agreement with branching bisimulation; to do this we define

transformations that permit us to move freely between state labeled systems

and transition labeled ones. The final section contains concluding remarks,

comparisons with related works and pointers to further research.

2. Branching Bisimulation and Hentles~–Milner Logics

In this section, we introduce two logical characterizations of branching bisimu-

lation equivalence based on Hennessy-Milner Logic, HML for short. The first

logic relies on a kind of until operator which, given a sequence of transitions

(run), permits testing not only what is true after that run but also what are the
properties that hold along it. The second logic introduces a backward modality

and permits to test both for properties that hold after the execution of a

particular visible action and for properties that were enjoyed before the

execution of the action.

2.1. LABELED TRANSITION SYSTEMS AND BRANCHING BISIMULATION. We will

now provide the necessary background definitions about transition systems and

their runs and introduce branching bisimulation. The actual definition of the

latter is slightly simpler and apparently less restrictive than the original one

proposed in van Glabbeek and Weijland [1989/1991]; however, it can be easily

proved that our equivalence does indeed coincide with the original one.

Definition 2.1.1 (Notation for strings). Let K be any set. K* stands for the

set of finite sequences of elements of K; K” denotes the set of infinite

sequences of elements of K; Km stands for K” U K*. Concatenation of a

sequence in K* with a sequence in K“ is denoted by juxtaposition; ● denotes

the empty sequence; Iu I denotes the length of a sequence u.

Definition 2.1.2 (Labeled Transition Systems). A labeled transition system (or
LTS) is a triple & = (S, A, +) where:

—S is a set of states;

—A is a set of actions; also a silent action ~ is assumed that is not in A;

— + G S x (Y4 u ~) x s is the transition relation. An element (r, a, s) of + ,

usually written as r ~ s, is called a transition.

We assume ● @ A and use A, to denote A U {T} and A, to denote A U {c}.

Moreover, we let r, s,... range over S; a, b,... range over A; a, ~,... range

over AT; and h, k,. . . range over A,. We will also make use of the mapping

(“~: AT -+ A, defined by a“ = a if a E A and a“ = ● otherwise.
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Definition 2.1.3 (Runs oler L7’SS). Let M = (S, A, -+ ) be an L’TS.

—a run of M is a finite, nonempty alternating sequence p = SOa,, s ~a 1 “””

sn—la . _ ~sn of states and actions, beginning and ending with a state, such

that, for O s i < n, s, ~ Si+l. We say also that p is a runfiorn so;

—If p=soaoslal Oi. S,l_la,, _l ,,s is a run then first( p) = so and last( p) = s,,;

—We write runti,~,, or just run(s), for the set of runs from s;

—We write runti for the set of runs in M.

Weletp, ~,... range over runs. With abuse of notation, we will sometimes

write s for the run consisting just of state s.

Definition 2.1.4 (Many step transitions and bounded norzdeterrninism). Let

M = (S, A, --+) be an LTS.

(i) With ~ we denote the transitive and reflexive closure of ~ , For a GA,

we define the relation ~ on S, by r ~s iff there exists r’ and s’ in S such

that r~r’ $s’ ~s.

(ii) M has bounded nondeterminism iff for all s = S and k e A, the set {r ~ r}

is finite.

Definition 2.1.5 (Branching bisirmdation). Let M = (S, A, - ) be an LTS.

—A relation R c S X S is called a branching bisirrudation if it is symmetric

and satisfies the following transfer propeity: if r Rs and r S r’, then either

a = ~ and r’ R s, or 2,s’, ,s” such that s & s’ ~ s“, r R S’ and r’ R s“.

—Two states r, s of S are branching bisimilar, abbreviated & r =b s, or

r =~ s, if there exists a branching bisimulation relating r and s.

The diagrams shown in Figure 1 summarize the main transfer properties of

branching bisimulation. We have used the dotted lines to represent the

relations that have to be established in order to conclude that the two states

connected by the plain line are equivalent.

It can be easily proved [van Glabbeek and Weijland 1989] that the arbitrary

union of branching bisimulation relations is again a branching bisimulation,

and that =~ is the maximal branching bisimulation and an equivalence relation.

We could have strengthened the above definition of branching bisimulation by

requiring all intermediate states in s S s’ to be related with r. The following

lemma implies that this would have led to the same equivalence relation. The

same would have happened if we had allowed for extra T-moves after reaching

s“ and required that all reached states be related to r’.

LEMMA 2.1.6 (Stuttering lemma). Let JY = (S, A,) be an LTS and let SOTSIT
. . .

S,, _lTS,l, n > 0, be a run in d with so =~ s,,. Then, for all O < i s n,

so =b St.

r –T+ r’ r –a-+ r’
/

/

II FIG. 1. Transfer diagrams for branching
/

II
bisimulation.

/
s or

s =&=> s’ –(y+ s“
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PROOF. This lemma is due originally to van Glabbeek and Weijland [1989].

In its present form, it has been proved in De Nicola et al. [1990]. It is reported

in the appendix for the sake of completeness. ❑

We would like to note that the definition of weak bisinudation [Milner 1989]

is similar to that for the branching one; it only relies on a slightly less

demanding transfer property, namely:

—if r R s and r ~ r’, then 3s’ such that s ~ s’ and r’ R s’.

This means that two states are considered equivalent if they lead, via the same

sequences of visible actions, to equivalent states; the intermediate states are

not questioned. Formally, two states r, s of an LTS a? are weakly bisimilar,

notation .ti r =W s, or r =W s, if there exists a weak bisimulation relating r

and s.

The diagram shown in Figure 2 summarizes the transfer property for the

weak bisimulation. We have used the same notational conventions of Figure 1.

2.2. HENNESSY–MILNER LOGIC. In the rest of the paper, we will study the

equivalences induced by different logics. For this, the following general defini-

tion will be useful.

Given a logical language L and an associated satisfaction relation =

interpreted over states of a labelled transition system ~, the equivalence - ~

on the states of .ti, induced by L-formulas, is given by:

The main aim of this paper is to show that, for three significantly different

logics L, the equivalence W~ coincides with branching bisimulation equiva-

lence.

In the following definitions, we will present syntax and semantics of the

original Hennessy–Milner Logic (HML) and state the main characterization

theorem, which establishes the strict correspondence between HML and weak

bisimulation. In the definitions, and in the rest of the paper, we will use T to

denote the Boolean value true.

Definition 2.2.1 (Hennessy-A4ilner Logic). Let A be a given alphabet of

symbols. The syntax of HML is defined by the following grammar, where

~, #,. . . range OVer HML-formulas and k ranges OVer A,:

~::= Tlm PIY A YIl(k)p.
Dejlnition 2.2.2 (The satisfaction relatio~l for HA4L). Let @’ = (S, A, -+ ) be a

LTS. Satisfaction of a HML-formula P by a state s = S, notation a?, s % P, or

just s P P, is defined inductively by:

—sI=T always
—S>lp iff s%p

—sl=(.p A(p’ iff s=qands!=q’

‘S > (k)q iff there is an s’ such that s ~ s’ and s’ > q.

r =k=> r’

I
FIG. 2. Transfer diagram for weak bisimulation. I I

s =k=> S’
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For labeled transition system with bounded nondeterminism, the above logic

has been proved to be in full agreement with weak observational equivalence

[Hennessy and Milner 1985],

THEOREM 2.2.3 (HA4L and =. induce the same identifications on bounded

LTSS). Let M = (S, A, +) be a LTS with bounded nondeterminisrn. Then, for

all r, s in S:

2.3. UNTIL OPERATORS. We are now set to introduce the variant of Hen-

nessy–Milner Logic, which, rather than a family of diamond operators, has

indexed until operators. Within the new version of HML, in order to take also

the properties of the intermediate states of a run into account, we replace the

diamond operator (k )q with a binary operator, written P( k)q’, which is used

to test, whether a system can reach via action k, a state which satisfies # while

moving only through intermediate states that satisfy q.

Definition 2.3.1 (Hennessy-Milner Logic with Until: Lu). Let A be a given

alphabet of symbols. The syntax of the language L” is defined by the following

grammar where p, q’ “c” range over L ~-formulas and ( k ) ranges over A.:

P::= TIT dq A p’lp(k)(p’.

Definition 2.3.2 (The satisfaction relation for Lu). Let .@’= (S, A, +) be an

LTS. Satisfaction of an L “-formula p by a state s = S, notation W,s > p, or

just s t= p, is defined inductively by:

It is possibleto define, within L”, other temporal operators. For example,

we will write (k)q for T(k)q, p[klq’ for 7(1 q(k)l ~’) and [kl~ for

~ T[k]q. The original HML can be recovered from Lu in the sense that the

diamond operator “( k)q” of HML is rendered by our (k) ( ~ )q or, more

directly, by T( k)(T( e )q). In the latter formula, we need to have (e) after (k)

because the relativized until operators are interpreted only over runs which

always end with the action which indexes them. In HML, this restriction is not

present and, when defining satisfaction of (k) p, runs are considered which

may continue with sequences of invisible actions. Clearly, if no silent action is

present, the logics Lu and HML are equivalent.

We exhibit now two pairs of systems and two formulas that show the
additional power of L “ when compared with the original Hennessy–Milner

Logic. The two pairs ( r,s ) and (p, q ) of Example 2.3.3 are just two instances

of the second and third ~-law (see, e.g., Milner [19891), respectively. Thus, since

r =W s and p =W q, these states are certainly not differentiated by HML.

However, we will see that there exist Lu formulas that can tell them apart.
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Example 2.3.3 ( Lu can distinguish weakly equivalent states). Consider L,TS

-d2 js, as shown in Figure 3.

If we let p = (( b) T)(a) T, then s & p while r # q.

If we let p’ = [a]((c)T), then p 1= p’ while q & p’.

For the first pair of systems, we have that on the one hand from state s it is

possible to perform an a-step such that, at any point before the a actually

takes place, it is still possible to perform a b-step. On the other hand, from

state r, there is only one execution possible that contains an a, and in this

execution, the option of performing a b-step is lost after the initial T-step.

For the second pair of systems, we have that if an a-step is performed from

state p, then always immediately after this, the option is left of performing a

c-step; this is not the case for state q.

We are now ready to establish the relationships between branching bisimula-

tion equivalence and the equivalence induced by Lu. In the theorem below, we

will restrict attention to bounded LTSS simply for a matter of separation of

concerns. We do not foresee many problems in generalizing our results by

resorting to infinitary logics in the same vein of Milner [1989]. However, the

addition of such infinita~ connective would have complicated definitions and

proofs without adding much insight,

THEOREM 2.3.4 (Lu and =~ induce the same identifications on bounded

LTSS). Let d = (S, A, + ) bean LTS with bounded nondetenninism. Then, for

all r,s in S:

Q: r =~ s ifandonly ifd: r N Lus.

PROOF. “ + “ Suppose r =~

induction on the structure of p

r

s and let p E L. With rather straightforward

we prove that r + p iff s 1= q.

c.

A‘t b

P

‘t b
a

5
rz ‘1

1
‘3

‘2

a a

13 e
%

P*

p4&

q

p
a

a
?5

ql

#AJ

b
‘t c

● q3
I

“%

FIG. 3. Two pairs of threes that are not branching blsimdar.
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(1) If q = T, then obviously s I= p and r R p.

(2) If P = m q’, then, by definition r i= P iff r !# q’. By induction r % q’ iff
s # q’. Again by definition s 1# q’ iff s != p.

(3) If p = PI A qz, then by definition we have s I= ql and s i= Pz and the

claim follows by straightforward induction.

(4) If q = Pl(k)qz, suppose that r 1= p. We will prove that s = p. The

reverse implication then follows by symmetry. We have to distinguish two

cases:

In case (i), by the inductive hypothesis, we have s t= Pz; hence, s != p

follows.

In case (ii), by repeatedly applying the transfer property of branching

bisimulation equivalence, we can construct a matching execution from s. The

simplest case is when k = e and r.+ ~ =~ s. In this case, the matching run

consists just of s and s 1= p follows by induction. Otherwise, there exists a run

So~SIT ““” S,~_lrS~ ~S~+ , with s = SC) and by the stuttering lemma (Lemma

2.1.6) r =~ s, for all i s m and r,, +l =~ s~l+l. From the inductive hypothesis,

we have that s, I= PI for all i s m, and that s~ +, R Pz. From this, s s p

follows.

“ ~” Suppose r N ~” s. We prove that -~” is a branching bisimulation.

Clearly the relation is symmetric. Suppose p ~~(, q and p – a + p’. A first

possibility is that both a = ~ and p’ =~u q. In this case the transfer property

holds trivially. So suppose that either a # ~ or not p’ =~u q.

Consider the set Q of all runs from q of the form qo~ql “o. q.- ~~q. aq’ with

qO = q such that there are no cycles in the ~-part (i.e., Vi, j: q, = q, implies

i = j). We claim that Q is finite. To see this, consider the set St) of states that

occur in a nonfinal positiofl of a run of Q, and the set S1 of final states of runs

of Q. Since d has bounded nondeterminism and since q ~ q’, for all states

q’ = SO, we have that So is finite. Similarly, we can deduce that also S1 is finite,

because q ~ q’ for all states q“ = S1. Finiteness of SI and So together with the

fact that there are no repetitions of states of SO in the ~-part of the runs in Q

implies that Q is finite.

In order to prove the transfer property, it is sufficient to show that there is a

run in Q with the property that all states on the run, except for the last one,

are related via -~ to p, and the last state is related via = ~” to p’. Suppose

that there is no su~h run. We will derive a contradiction. We can split Q into

two subsets Q, and Qf such that for any run m, in Q, there is a formula pm,

that holds in p but not in all nonfinal states of u.., and for any run Of in Q ~

there is a formula qm, that holds in p’ but not in the last state of m~. Let p, be

the conjunction of the formulas qm with m, in Q, and let p~ be the

conjunction of the formulas qm~ with of in Qf. Now we can distinguish

between two cases.

(1) a = I-. In this case, since not (p’ W,u q), there exists a PO such that
p’ 1= PO but q k cpO.Consider the formula q = P,( @)( Pf A PO). We have

that p > q while q w q and thus a contradiction.
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(2) a + r. Now we take p = P,(a) q~ and we have a contradiction because
p*(pbutq!#q. ❑

2.4. BACKWARD MODALITIES. In this section, we present a new kind of

bisimulation that we call back-and-forth bisirnuladorz. It not only requires the

futures of equivalent processes to be equivalent but constrains also their pasts.

This new bisimulation has been put forward in De Nicola et al. [1990], where it

is proved that it induces on LTSS the same identifications as branching

bisimulation. Here, we take advantage of this result and introduce a variant of

Hennessy–Milner Logic with a backward modality that permits analyzing the

past of computations. The spirit of this generalization of HML is similar to that

proposed by Hennessy and Stirling [1985]; the relevant difference is that, here,

the possibility that some of the actions might be invisible is also taken into

account. In Hennessy and Stirling [1985], only visible actions are considered,

and thus partially controlled state changes are not permitted. Indeed, the past

operator is introduced in Hennessy and Stirling [1985] only to capture noncon-

tinuous properties (e.g., fairness) of generalized transition systems. There it is

also proved that, in the case of classical (limit-closed) transition systems

without silent moves, the equivalence induced by the logic with the past

operator coincides with strong bisimulation equivalence.

Before actually introducing the new logic, we need additional notation. Since

we want to talk about the past of systems, we need to define transition

relations on runs rather than on single states; this enables us to go back from a

state along the run that represents its histov. We can easily generalize the

definition of the transition relation from states to runs:

—p S u, if there exists a state s such that o = pas;

—p ~ u, if there exists pO, pi, ..., p., n > 0, with p = po, p,, = u and

Pljp,+l forall O<i <n;

—p * U, if there exist p’, u’ such that p S p’ $ V’ G cr.

In Definition 2.4.1, we present the definition of back-and-forth bisimulation;

more detailed discussions and motivations of the new bisimulation and its

consequences can be found in De Nicola et al. [1990]. Here, we would only like

to stress, once again, that we do not define this new bisimulation as a relation

between states but as a relation between runs.

Definition 2.4.1 (Back-and-forth bisimulation). Let & = (S, A, + ) be an

LTS. Two states r, s G S are back-and-forth bisimilar, abbreviated w r =~~ s

or r =~~ s, if there exists a symmetric relation R G run ~ x runw, called a

back-and-forth bisimulation, satisfying:

(i) r R s;

(ii) if p R u and p Z p’, then %’ such that m ~ U’ and p’ R v’;

(iii) if p R u and p’ ~ p, then Elo’ such that m’ ~ m and p’ R a’.

The diagram of Figure 4 illustrates that, in order to prove that two states are

back and forth bisimulation equivalent, we need to prove that both their past

and their future are in the same relation. As in the diagrams for weak and

branching bisimulation, we have used the dotted lines to represent the rela-

tions that have to be established in order to conclude that the two states

connected by the plain line are equivalent.
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r“ =h=> r =k=> r’

I I
FIG. 4. Transfer diagram for back-and-forth bisimulation.

I I

t“ =h=> s =k=> S’

THEOREM 2.4.2 (Back-and-forth and branching bisimulation induce the same

identifications). Let d = (S, A, +) be a LTS. Then for r,s in S: .W r =~ s if

and only if& r =~~ s.

PROOF. This lemma has been proved in De Nicola et al. [1990]; it is

reported in the appendix for the sake of completeness. ❑

Definition 2.4.3 (Hennes~–Milner Logic with backward modalities: LE~). Let

A be a given alphabet of symbols. The syntax of Back-and-Forth Logic L ~~ is

defined by the following grammar where q and p’ denote generic formulas

and k ranges over A,:

Definition 2.4.4 (The satisfaction relation for L~~). Let JZZ= (S, A, +) be an

LTS. Satisfaction of an L~~-formula q by a run p of M, notation M, p + p, or

just p != q, is defined inductively by:

—pRT always;

—p>. q iff p K q;

—pK(p A(p’ iff pl=pandp!= q’;

‘p 1= (k)p iff there exists a run p’ such that p ~ p’ and p’ > q;

—p k ( ~ k) q iff there exists a run p’ such that p’ 4 p and p’ i= p.

It is worth pointing out that, when interpreted over transition systems

without silent actions, the above logic does not provide us with any additional

discriminating power with respect to HML. This consideration agrees with

Hennessy and Stirling [1985] where it is shown that for the class of transition

systems we are considering here, when no silent action is present, HML and

L ~~ do coincide. Thus, we have that HML, L~~ and Lu induce the same

identifications on systems without silent actions. However, the example below

shows that also L~~ is able to differentiate the systems of Example 2.3.3 and

thus that, when dealing with systems with silent action, L ~F is more expressive

than HML.

Example 2.4.5 (L ~~ can distinguish weakly equiljalent states). Let p, q, r, and

s be as in Example 2.3.3, and let [k] = n(k)m and [+k] = -(-k)m.

If p = (a)[+a](b)T, then s i= q while r 1# q.

If # = [a][b](+b)(c)T, then p i= p’ while q 1# q’.

THEOREM 2.4.6 (L~~ and =~ induce the same identifications on bounded

LTSS). Let d = (S, A, +) be an LTS with bounded nondeterminism. Then for

all r,s in S:

M: r =~ s ifandonly if@: r -~,r s.
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PROOF. Given an LTS d, we can build a new one, BF(Jz?), which is

obtained by replacing the single step transition relation of M with the corre-

sponding many step forward and backward arrows between runs of M. More

precisely, we define BF(J/) = (runti, xt~~, - ~~) where xt~~ = AC u { - klk G

Ae} and for p, p’ E run-d and k G A,, p ~ bfp’
k

iff p~p’ and p~bfp’ iff

p’ =$ p. We can now prove that M r =bf s if and only if BF(&): r = s,

where = stands for Milner’s strong observational equivalence. The claim then

follows directly from Theorem 2.4.2 and from the HML characterization of =

in Hennessy and Stirling [1985]. ❑

3. Branching Bisimulation and CTL*

In this section, we shall study the relationship of branching bisimulation with a

different type of logic, the temporal logic known as CTL*. This will be achieved

by relating branching bisimulation to a variant of the stuttering equivalence

defined and related to CTL* in Browne et al. [1988].

3.1 CTL* AND ITS MODELS. First of all, we introduce the relevant notation

for the class of structures that have been used to interpret CTL* and to define

stuttering equivalence.

Definition 3.1.1 (Kripke structures). Let AP be a fixed nonempty set of

atomic proposition names ranged over by p, q, . . . . A Kripke structure (or KS) is

a triple % = (S, $?, --+) where:

—S is a set of states:

—9: S + 2AP is the proposition labeling;
— + c S x S is the transition relation; an element (r, s) G + , usually written

as r --+ s, is called a transition.

Weletr, s,... range over states of Kripke structures.

Definition 3.1.2 (Notation for Kripke structures). Let %’= (S, 9, + ) be a

Kripke structure.

—A nonempty (finite or infinite) sequence soSI Sz . . . c S’ such that s, -+ s,+ ~,

with i > 0, is called a path from so; if the sequence of pairs of states is

maximal the path is called a fullpath.

—We write path%(s), or just path(s), for the set of paths from s, and

wpath%(s), or just Kpath(s), for the set of maximalpaths (fullpaths) from s.

—We let p, V, (3, q,... range over paths.

—If P = SOSISL. . . is a path then jirst( p) = SO: if p is finite then last( p)

denotes the last state of p.
—With p < 0 and p < $ we indicate that path (3 is a proper suffix, respec-

tively a suffix, of path p.

Definition 3.1.3 (CTL* and CTL ). The set of formulas CTL* is defined as

the smallest set of state formulas such that:

—if p E AP, then p is a state formula;
—if ~ and q’ are state formulas, then 7 q and ~ ~ p’ are state formulas;

—if m- is a path formula, then 3T is a state formula;

—if ~ is a state formula, then p is a path formula;

—if v and rr’ are path formulas, then 7 n-, w ~ rr’, XT and nUr’ are path

formulas.
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Welet p,... range over state formulas and T, . . . over path formulas.

CTL is defined as the subset of CTL* in which we restrict path formulas to

be:

—if q and p’ are state formulas, then X9 and pUp’ are path formulas;

—if m is a path formula, then so is 1 n.

Below, when we write CTL*-X and CTL-X, we refer to the subsets of CTL*

and CTL, consisting of formulas without the next (X) operator. Moreover, we

write T for 1 ( pO A --I po), where pO is some arbitrarily chosen atomic pro-

pOSitiOII name, rr V m’ for 1(1 m A T +), m + # for 1 n A m’, Vm for

131rr, Fnfor TU7r, and G~for1F1~.
Now, we present two different satisfaction relations for CTL*. This will be

done by relying on different structures to interpret formulas. In one case, we

will use only maximal paths of Kripke structures to interpret path formulas; in

the other, we will use both finite and infinite paths. Due to its ability of

describing noncontinuous properties like fairness, the generally accepted inter-

pretation of CTL*, is that based on maximal paths only, The less restrictive

interpretation, however, has a series of interesting properties and is the version

of CTL* that was originally proposed (see Emerson and Srinivasan [1989].

Definition 3.1.4 (Two satisfaction relations for CTL* ). Let 3?= (S, J?, -+) be

a Kripke structure.

(i) Satisfaction of a state formula p by a state s, notation Z, s K p or just

s 1= q, and of a path formula m by a path p, notation Z, p i= n or just

p 1= w, is defined inductively by:

—S!=p iff p =5?(s)

—Si=lp iff si#q

—sl=(p A(p’ iff ,sKpands%q’

—s i= % iff there exists a path p c path(s) such that p t= T

—pwp iff first( p) l.= p

—p* .T iff pl#m

—pl=v A# iff pl=n-andpb#

—p!= mum-’ iff there exists a O with p s 6 such that 9 R rr’ and

forallp<q<t):q%m

—p != Xtr iff there exists a state s and a path 9 such that p = s(3

and 9> m.

(ii) Satisfaction with respect to maximal paths of a state formula q by a state
s, notation %,s !=W qJ (or briefly s I=W p), and of a path formula m by a

maximal path p, notation %, p k=~ m (or briefly p kP m) is defined by

replacing in the above definition R by i=W and the definition of s 1= %-

by:

—s *W% iff there exists a path p G ~path(s) such that p !=M m.

3.2. CTL* AND STUTTERING EQUIVALENCES. We will now introduce stutter-

ing equivalence. Actually, our definition of stuttering equivalence, although

similar in spirit, is slightly different from that of Browne et al. [1988] they
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consider only structures whose states are never deadlocked; if systems that

contain states without outgoing transition have to be modeled, they assume the

presence of a transition from the final state to itself, thus all maximal paths of

a system are infinite. We will take a somewhat complementary approach and

rather than avoiding deadlocked states, we do emphasize their presence.

We will present two variants of stuttering equivalence that differ in the way

they deal with divergent processes. These two variants will be proved to be in

direct correspondence with the two interpretations of CTL* described above.

Definition 3.2.1 (Divergence blind stuttering equivalence). Let %’= (S, L?, + )

be a Kripke structure.

(i) A relation R G S X S is called a dil)ergence blind stuttering bisimulation

(DBSB) if h is symmetric and whenever r Rs then:

—J?(r) =5?(s) and

—if r + r’, then there exist, with n > 0, SO,SI, . . . . S,l such that SO= s and

for all i < n: s, + s,+l, rRs, and r’ Rs,,.

(ii) Two states r,s are divergence blind stuttering equivalent, abbreviated Z
r =~~~ s or r = ~~, s, if there exists a divergence blind stuttering bisimula-

tion relating r and s.

(iii) TWO paths p, o and divergence blind stuttering equivalent, notation z

P ‘dbs ~ or P ‘db-, ~Y ‘f P can be partitioned as PI P2 ““” and ~ can be

partitioned as ml U2 “”” in such a way that, for all j, sequences p, and m,

are both nonempty and every state in p, is divergence blind stuttering

equivalent to every state in 0,.

As in the case of branching bisimulation, we have that the arbitrary union of

DBSBS in again a DBSB, and that =db, is the maximal DBSB and an

equivalence relation.

LEMMA 3.2.2. Let Z = (S, Y, + ) be a Kripke structure, let r, s c S with

r= dbs s> af~d let P E Path(r). T~~en there e~lsts a ~ ‘= pat~l(s) such that P ‘db, u.

PROOF. The actual proof k easy, only rotationally somewhat cumbersome;

h k left to the reader. ❑

THEOREM 3.2.3. Let 3?= (S, 1%’, + ) be a Kripke stmcture and let r, s G S

with r =~~, s. Then for evey CTL”-X formula p: r != q iffs k p.

PROOF. Suppose r =~b, s. Let p G path(r) and o ● path(s) with p =~~, m

and let x be either a state formula or a path formula that does not contain any

X-operator. We will prove the following statements by induction on the

structure of x.

(i) If x is a state formula, then r ~ x if and only if s ~ x

(ii) If x is a path formula, then p + x if and only if 0-> X.

First, we consider the case of state formulas.

(1) x = p: r > p iff p C.J?(r), the latter is equivalent to p ●%(s) by defini-
tion of r =~~, s, and p =S?(s) iff s > X.

(2) x = ~ q: r + v q iff r % q, this by induction is equivalent to s % q,
which in turn is equivalent to s @ 1 q.

(3) x = q A q’: the fact that r k p A ~’ iff s 1= q A p’ follows since, by
induction, r & q and r I= @ iff s > p and s 1= q’.
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(4) x== 3-r: Suppose r * +r. Then there exists a path p’ = path(r) such that
p’ > m. By Lemma 3.2.2, we can find a path m‘ ● path(s) such that

P’ ‘dh’, O_’; moreover, b induction, we have that u ~ ~. Thus, s * ~~.

The other direction is symmetric.

Next, we consider the four cases of path formulas.

(5) x = q: We have p i= q iff first( p) = r = p, which by induction is equiva-
lent to first(a) = s ~ p. By definition, the last statement is equivalent to

fli=q.

(6) x = 1 n: Easy induction.

(7) x = m A n’: Easy induction.

(8) x = n Lb-’: Suppose p 1= T U m’. Then, there exists a path 6 with p s O
such that % > w’ and for all p s v < 13,v i= T. Since p =~b~ U, there
exists a partition pl P1 c”o of p and a partition o-l Uz “”. of o- such that for

all j, p] and u! are both nonempty and every state in pj is stutteringly

bisimilar to every state in ~. Now, let p~ be a suffix of p in which the first

state of 6 occurs. One can easily check that 9 ‘&~ ah oh +, “““ . Thus, by

induction we have Wh~k + ~ ““” t= n’. Let q be a path such that m< q <

‘k”k+l “””, and let U1 be the block in which the first state of q occurs; we

have p, p,+ ~ .“. =~~, q. Since 1 <k, we have also p< PIP,+, ““” < 0

and thus pl P1+l > ~. By induction, we obtain also q > m. The other

direction is symmetric. ❑

THEOREM 3.2.4. Let 3?= (S, 9, _ ) be a jinite state Kripke structure and let

s E S. Then there exists a CTL-X fotmula p such that for all r E S: r k p iff

r =~~, s.

PROOF. The actual proof is based on the algorithm for deciding divergence

blind stuttering equivalence that is presented in Groote and Vaandrager [1990].

—For B, B’ c S the set pos(B, B’) is defined as the set of states in B from

which, after some initial stuttering, a state in B’ can be reached:

pos(B, B’) = {s GBEln >0,3 s.,.. ., s,, GB,3s’ GB’ such thats = so and

—Call B’ a splitter of B if and only if 0 # pos(B, B’) # B.

—If P is a partition of S with B, B’ e P and B’ is a splitter of B, define

RefP(B, B’) as the partition obtained from P by replacing B by pos(B, B’)

and B – pos(B, B’).

—A partition is stable if for no B, B’ G P, B’ is a splitter of B.

Consider the following algorithm:

P := {{r G S\_%’(r) =S(s)}1s ~ S};
while P is not stable do

choose B, B’ G P such that B is a splitter of B;
P Z= RefP(B, B’)
od

In Groote and Vaandrager [1990], it is shown that two states are in the same

block of the final partition exactly when they are divergence blind stuttering

equivalent. The idea of our proof is that, while executing the algorithm, we

maintain a mapping that associates a CTL-X formula to each block that only
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holds for the states in that block. This is trivial for the initial partition. Since

states in the same block have the same labeling while states in different blocks

have different labeling, one can easily give a propositional formula for each

block that only holds for its states. Suppose that, at one moment, during the

execution of the algorithm, B’ is a splitter for B and this is split into
B1 = pos(B, B’) and Bz = B – pos(B, B’). Let # be the formula associated to

B’ and let q be the formula associated to B. In the new partition we associate

to B1 the formula q A (3 p U p’) and to Bz the formula p A (13 q U p’). For

the other blocks, the associated formulas remain unchained. Now, if we

associate to every state the formula ~ that is associated to the block of the

final partition in which the state occurs, then ~ will have the required

property. ❑

THEOREM 3.2.5 (Divergence blind stuttering, CTL*-X and CTL-X agree for *).

Let Z = (S, 9, +] be a finite state Kripke structure and let r,s E S. The

following statements are equivalent:

(i) r =~~, s,

(ii) For every CTL”-X formula p: r * p iffs t= p, and

(iii) for every CTL-X formula q: r != p iffs H p.

PROOF. We have that (i) + (ii) follows from Theorem 3.2.3; (ii) = (iii) is

immediate; while (iii) = (i) follows from Theorem 3.2.4. ❑

Now, we introduce the new version of stuttering equivalence which, for finite

state Kripke structures, can be proved to coincide with the original stuttering

equivalence of Browne et al. [1988] and does not ignore divergence. The new

version is defined in terms of the divergence blind one, and relies on adding to

Kripke Structures a fresh state that is used as sink-state for deadlocked or

divergent states.

Definition 3.2.6 (Extending Kripke structures with liuelocked state). Let Z =

(S, -57, +) be a finite state Kripke structure, let SObe a state not in S and let
pO be an atomic proposition such that for all s c S we have pO @&?(s). Define

the Kripke structure L(%) by L(%) = (S’, L?’, + ) where

—s’ = s u {s.},
—L?’ =_5?U {(sO, {pO})} and
—4’= + u {(s, So)ls is on a cycle of states with the same label or has no

outgoing edges}.

Definition 3.2.7 (Diue~ence sensitiue stuttering equivalence). Let Z =

(S, -Y, + ) be a finite state Kripke structure.

(i) TWO states r,s ~ S are stuttering equivalent, abbreviated % r =, s, iff
L(%): r =~~, s.

(ii) Two paths p, G of Z are stuttering equivalent, abbreviated Z p =, u, iff
L(%): p =db, cr.

The next example illustrates the different stress the two equivalence put on

divergence (infinite stuttering), Note that also divergence sensitive stuttering

equivalence does not distinguish between deadlock and divergence; the equiva-

lence is sensitive to any divergence except for that occurring in otherwise

deadlocked states.
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Example 3.2.8 (Differences between =. and =~~, )

Let q = b’ F q. Then S1 I=P q and Sz *W p, whereas s~

and Sj & p.

LEMMA 3.2.9. Let Z = (S, 5?’, + ) be a jinite state

r,s c S with r =, s and let p = prom(r). Then there exists

that p =, o-.
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&#qY, s,&(p, s2kq

Kripke structure, let

a u E ~run(s) such

PROOF. Given any maximal path p from r in Z then it is also a path in

L(%). Since L(%): r =~~, s, we can use Lemma 3.2.2 to find a path o from s

in L?(Z) which is equivalent to p, It must be that u is also a path of 2

because if SO was in u then the latter could never be related to p. If ~ is

maximal in Z, then we are done. Now, suppose that it is not; we have to

distinguish whether p is finite or not.

In case p is finite, since it is also maximal it must be that r’ = last(p) is a

deadlocked state. Thus, in L(%), there is the transition (r’, so). Let s’ = last(o),

since p =~~, u we have L(Z): r’ =~~, s’. We can now rely on the fact that

=~~$ is a divergence blind stuttering bisimulation to find, for some n > 0, a

sequence Ut)ul ..” u. such that s’ = U. and for all i < n, u, + Uz+l and

r’ = dbs U* and S0 ‘db~ Un. But this means that u. = SO so that, in =, u,, _ ~ is

either deadlocked or occurs in a cycle of states with the same label. In case

Ll n—1 is deadlocked, consider path m’ = u UI .”0 u._ ~u. _ ~. One can easily

check that O’ is maximal in S and p =, m’. In case u._ ~ occurs in a cycle of

states with the same label, let the path T = U. u ~ -”” LIH, be a cycle of states

with the same label starting in um_ ~ (i.e., u,, _ ~ = Uo, Vi < m: ZI, + u,+ ~ and
u~l + UO). One can easily show that all states in a cycle of states with the same

label are divergence blind stuttering equivalent. Now consider the path m“

obtained by concatenating u u, “”” u,, _z with (m)@; it is maximal and we have

P ‘, fl”-
The case of p infinite is dealt similarly and is left to the reader; it relies on

the fact that %? has only a finite number of states. ❑

THEOREM 3.2.10. Let Z = (S, 3, + ) be a finite state Kripke structure and let

r,s~Swith r=, s. Then for elley CTL*-X formula p: r tiv p iffs I=P p.

PROOF. Copy the proof of the corresponding Theorem 3.2.3 for divergence

blind stuttering equivalence and replace Lemma 3.2.2 by Lemma 3.2.9. ❑

THEOREM 3.2.11. Let Z = (S, L?, +) be a jlnite state Kripke structure and let

s E S. Then there exists a CTL-X formula p such that for all r = S; r +W p iff
r = , s.

PROOF. Similar to the proof of Theorem 3.2.4. Now, we apply the partition

refinement algorithm on the structure L(%). We associate a formula to each

block different from {s.}, which when interpreted over %, only holds for the
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states in that block. The interesting case is the one where a block B with

associated formula q, is split into a block B1 of states, from which after some

stuttering there is a transition to SC], and into a block B. = B – BI.

Now associate the formula q A (3 G q) to B1 and the formula q ~ (V F 1 q)

to B,. ❑

By combining Theorem 3.2.10 and 3.2.11, we obtain the following results:

THEOREM 3.2.12 (Stuttering, CTL*-X and CTL-X agree for !=W). Let 2? =

(S, L?, + ) be a finite state Kripke structure and let r,s = S. Then the following

statements are equivalent;

(i) r =, s,

(ii) for eLwy CTL*-Xformula p: r *W p iffs H pp, and

(iii) for el’ery CTL-Xformula p: r R, q iffs 1=~ p. ❑

Since a similar result was proved in Browne et al. [1988], we have, as a

corollary of the above theorem, that our version of stuttering equivalence

coincides with that of Browne et al. [1988] for finite state Kripke structures

without deadlocked states, that is, for the class of KSS they consider.

3.3. DIVERGENCE BLIND STUTTERING EQUIVALENCES AND BRANCHING BISIM-

ULATIONS. In this section, we want to study the relationships between branch-

ing bisimulation and CTL*-X. We will do it, by exploiting the relationships

between stuttering equivalence and this logic. Indeed, we get the new logical

characterization of branching bisimulation by relating CTL*-X to the diver-

gence blind stuttering equivalence studied above. We need some preliminary

work that will enable us to relate the different structures on which branching

and stuttering equivalence are defined; namely, Kripke Structures and Labeled

Transition Systems.

We introduce a new kind of structure that can be projected naturally on both

Labeled Transition Systems and Kripke structures. The new structures will be

called Doubly Labeled Transition Systems (Lz TS).

Dej%ition 3.3.1 (Doubly Labeled Transition Systems). An Lz TS is a structure

~ = (S, A, + ,Y) where (S, A, +) is an LTS and L?: S + 2W is a labeling
function that associates a set of atomic propositions to each state. With

LTS(S2) we denote the substructure (S, A, + ) of g and with KS(9) we

denote the substructure (S, J?, +‘) of ~ where r +‘s if and only if 3a: r Ss.

Equivalences defined on the states of an LTS or of a KS can be naturally lifted

to L* TS by ignoring either the labels of the states or the labels of the

transitions:

The actual definition of La TS is too general for our interests. Indeed, the

generalized transition systems which we need have also to guarantee a certain

degree of consistency between the labels of two adjacent states and the labels

of the transitions connecting these states. Because of this, we introduce the

restricted class of consistent L* TSS. Essentially, the restrictions amount to

requiring that the states that are connected by invisible actions have the same

labels and that the only difference between the labels o” adjacent states

connected by a visible transition be the information carried by the label of the

transition connecting them.
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Definition 3.3.2 (Consistent L2 TSS). A L2 TS (S, A, + , J%) is consistent if

there exists a function

—action: 2 ‘p x 2*P + A,

such that, for any subsets P, Q, Q’ of AP, we have:

(i) action(P, P) = 7;

(ii) action(P, Q) = action(P, Q) implies Q = Q;

(iii) r ~s implies a = action(=(r), S7(s))).

The above restriction on L2 TSS, permits performing the first step toward

relating branching bisimulation and CTL*-X; indeed, stuttering equivalence

and branching bisimulation agree when they are defined on consistent L2 TSS.

THEOREM 3.3.3 (Divergence blind stuttering and =~ agree on consistent

L2TSS). If 9 = (S, A, + , J%) is a consistent Lz TS, then for all r,s in S:

9: r ‘db, sifandonly if-.%(r) =-5?(s) and 9: r ‘b s.

PROOF. Immediate from the definitions of the equivalences and from the

consistency requirements on 9. ❑

We can now start studying the relationships between stuttering equivalence

as defined on Kripke structures and branching bisimulation as defined on

labeled transition systems. We set up general construction that given a labeled

transition system or a Kripke structure yields an enriched system, that has a

structure similar to the original one, but carries labels on both states and

transitions. It is worth remarking that one of the main sources of problems in

these transformations is the presence of invisible actions.

First of all, we present a straightforward way of labeling the transitions in a

Kripke structure in such a way that divergence blind stuttering equivalence in

the original structure coincides with branching bisimulation equivalence in the

enriched structure.

Definition 3.3.4 (From KSS to L2 TSS). Let % = (S, S7, +) be a Kripke

structure. The L2TS JZZ) is defined as (S, 2W, +‘, S) where

—r ~‘s if and only if r + s and ~(r) =S’(s);

—r 4’s if and only if r + s and L?(r) +5?(s) and J2?(s) = 1.

In Figure 5, we present an example of the above defined construction.

One can easily verify that z42?) is consistent and moreover that KS(JP(Z))

=%. Theorem 3.3.5 is an immediate consequence of these properties.

Q

FIG. 5. An example translation from KS to L2TS.
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THEOREM 3.3.5. Let Y = (S, -$?, + ) be a Kripke structure. Then for all r, s in

s:
~ r =db, s ifand only if .$?’(r) =$?(s) and ZA(Z): r =~ s.

PROOF. By the above property, we have that Z r =~~, s if and only if

KS(r&7?)): r =~~, s. By definition KS(rZ(JO): r =~~, s if and only if rzx(%):

r =~~, s. Now, since r4Z ) is consistent, it follows from Theorem 3.3.3 that the

latter holds if and only if s(r) =4?’(s) and ;/-(S’): r =~ s. ❑

The construction of a Lz TS from a LTS is less straightforward than the

construction starting from a KS. The first idea that comes to mind is to label a

state with the label of a transition leading to it, if the label is visible, and with

the label of the source state of the transition otherwise. This would not deal

properly with situations where a state is accessed by transitions with different

labels. Moreover, problems arise with structures like those reported in Figure 6

that capture a very different intuition but would be identified by the outlined

naive transformation.

One possible solution is proposed in Clarke et al. [1989]. There, a given LTS

is extended by labeling each state with the set of the labels of the paths which

lead to it; paths are labeled by the set of those actions which are performed an

odd number of times. Unfortunately, this construction does not always lead to

consistent Lz TSS and is not able to cope with systems whose states can be

reached via two paths which contain the same action an even resp. an odd

number of times. Indeed, the authors restrict attention to those LTSS that lead

to unique labeling and this restricted class of LTSS gives rise to consistent

LZTSS only.

The LTS in the left hand side of Figure 7 shows that in general it is not

possible to give a labeling of the states in an LTS such that the resulting LZTS

is consistent. Thus, there exists no transformation function which preserves the

structure of the LTS up to isomorphism.

In De Nicola and Vaandrager [1990b], we presented a transformation that

gives rise to L2TS that have isomorphic unfolding with the original transition

systems; that transformation has the disadvantage that it might lead to a

quadratic blowup in the size of the system (unless one assumes that the

alphabet A is finite and fixed).

Below, we describe an alternative transformation from LTS to LZTS that is

linear in the number of states and transitions. It was suggested in Emerson and

Lei [1984] where it is presented in a setting without silent actions. The price to

be paid for choosing this transformation is that corresponding states in the LTS

and the Lz TS do no longer give rise to isomorphic unfoldings. However, the
structure of the LTS and the L2 TS are still very similar: the Lz TS is obtained

by placing a new state in the middle of each visible transition of the LTS.

a

,/

(!7

a

FIG 6. A pair of transition systems critical for transfor-
mations. ‘e

r’

T

0

a
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a

FIG. 7. An example translation

t

(s,a,s)

from LTS to L2TS.

Definition 3.3.6 (From LTSS to consistent L2TSS), Let M = (S, A, +) be an

LTS. The L2TS rx’(ti) is defined as (S’, A, -+’, J?) where

—S’ = S U {(r, a,s)la GA and r $s};

‘+’ = {(r, 7, s)lr ~s} U {(r, a,(r, a, s))lr $s} u {((r, a,s),a,s)lr $ s};
—For r,s G S and a GA: L?(s) = {1} and &’((r, a, s)) = {a).

It is immediate from the definitions that ZA’(JZ) is a consistent L2 TS. We

report in Figure 7 an example of the above-defined construction.

PROPOSITION 3.3.7. Two states r, s in an LTS @ are branching bisimilar if and

only if they are so in rz’(Jz?).

PROOF. Let M = (S, A, +) be a LTS and rx’(ti) be its translation.

First, suppose M r =~ s. Then there exists a branching bisimulation R

with ( r,s ) = R. Define relation R’ on S’ by

R’ =R U {((t, a,t’), (u, a,u’)) G--*/a GA, tRuandt’Ru’}.

on M

It is routine to check that R’ is a branching bisimulation on zfi’(ti); from this

~fi’(d): r =~ s follows. For the other direction, suppose ~~’(ti): r =~ s. Then

there is a branching bisimulation on zz’(d) with ( r,s ) = R. Define

R’=Rn(Sx S).

Again, it is routine to show that R’ is a branching bisimulation on Q?, and that

tir=~s, ❑

Now, Proposition 3.3.7 and Theorem 3.3.3, together with Theorem 3.2.5,

allow us to prove the following important theorem which says that, via

transformation rfi’, CTL*-X can be viewed as a logic for branching bisimula-

tion equivalence.

THEOREM 3.3.8. Let J& = (S, A, +) be a finite LTS. Then for all r,s in S:

M: r =5 s ifandonly if ‘dq = CTL*-X, ~~’(ti), r t= p =zz’(J%’), s % p.

Clearly, due to Theorem 3.2.5, we can also replace CTL*-X with CTL-X in

the above theorem.
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Example 3.3.9 (CTL*-X can distinguish weaklj equil~alent states). Consider

the LTS til ~,~ of Example 2,3.3.

3.4. STUTTERING EQUIVALENCES AND DIVERGENCE SENSITIVE BRANCHING

BESIMULATION. We conclude this chapter by introducing a new version of

branching bisimulation that for finite systems is in full agreement with the

stuttering equivalence of Browne et al. [1988] and thus with the equivalence

induced by the standard interpretation of CTL* and CTL without the next-time

operator, when interpreted over maximal paths. What we need is nothing more

than a divergence sensitive version of the original definition of Section 2. We

pedantically follow the approach we took to define stuttering equivalence from

its divergence blind version.

Definition 3.4.1 (Extending L2 TSS and LTSS with liz)elocked state).

(i) Let 9 = (S, ~, + , .L?) be a finite LZTS, let so be a fresh state, a. be a
fresh action and let pO be a fresh atomic proposition. The L~TS with

livelocked states L($Z) = (S’, xl’, +‘, .5?”) is given by:

—s’ = s u {s.},
—A’ = A U {ao},
—+’. + U{(s, a(l, so ) Is occurs in a ~-cycle or has no outgoing transi-

tions} and

—4?’ =&u ({so, {p,,})}.

(ii) Let & = (S, xl, + ) be a finite LTS. The LTS with Iivelocked states L(d)
is given by LTS( L( s23’)) where i2Y is the Lz TS(S, ~, --+ , @).

The following facts are immediate from the above definitions and from

Definition 3.2.6.

LEMMA 3.4.2. Let 9 = (S, A, + , Y’) be a finite and consistent Lz TS. Then

(i) L(9) is a finite and consistent Lz TS;

(ii) LTS(L(Q)) = L(LTS(Q));

(iii) KS(L(9J)) = L(KS(&Z)).

Definition 3.4.3 (Diz’ergence sensitiue branching bisimulation). Let & = (S,

A, + ) be a finite LTS. Two states r, s in S are divergence sensitil’e branching

bisimilar, abbreviated (.ti) r = & s, if and only if LLw9: r =~ s.

THEOREM 3.4.4 (STUTTERING EQUIVALENCE AND = ~,, AGREE ON CONSISTENT

LQ TSS). Let S7 = (S, A, + ,3) be a jjnite and consistent LZTS then for all r, s

in S:

SZ:r=, sifandonlyif~: r =~,~ sand_%’(r) =&(s).
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PROOF. The theorem follows from the following chain of double implica-

tions:

~:r=$s + (Definition 3.3.1)
KS(9): r=, s - (Definition 3.2.7)
L(KS(&Z)): r =~~, s = (Lemma 3.4.2 (iii))
KS(L(g)): r =~~, S e (Definition 3.3.1)

L(.9): r =~b, S * (Lemma 3.4.2 (i) and Theorem 3.3.3)

L(g): r =~ s and S?(r) =S(s) @ (Definition 3.3.1)

LTS(L(&Z)): r =b s and Y(r) =$?(s) ~ (Lemma 3.4.2 (ii))

L(LTS($Z)): r =h s and L?(r) =5?(s) ~ (Definition 3.4.3)

LTS(&Z): r =~,~ s and $?(r) =$’(s) e (Definition 3.3.1)

97: r =~,h s and L?(r) =_Z’(s). ❑

The final theorem states that for our transformation IX’ from LTSS to

Lz TSS, divergence sensitive branching bisimulation equivalence coincides with

the equivalence induced by CTL*-X under the standard interpretation over

maximal paths.

LEMMA 3.4.5. Let d = (S, A, +) be a finite LTS. Then for all r,s in S:

.@’: r = d,b s if and only if ~~’(-d): r ‘d,b s.

PROOF. Similar to the proof of Proposition 3.3.7. ❑

THEOREM 3.4.6. Let .w’ = (S, A, +) be a finite LTS. Then for all r, s in S:

PROOF

As always, we can replace CTL*-X with CTL-X in the above theorem.

4. Conclusions and Related Work

In this paper, we have introduced three significantly different logics that are in

full agreement with branching bisimulation equivalence ( =~ ). The first logic,

Lu, is an extension of Hennessy-Milner Logic [Hennessy and Milner 1985]

with a kind of “until” operator; it is close in spirit with the actual definition of

branching bisimulation in van Glabbeek and Weijland [1989/1991]. The second

logic, L~~, is another extension of Hennessy–Milner Logic that exploits the

power of backward modalities; it stems directly from the alternative characteri-

zation of branching bisimulation presented in De Nicola et al. [1990b]. The

third logic is CTL* (see, e.g., Emerson and Srinivasan [1989]) without the
next-time operator (CTL*-X).

The latter characterization exploits the relationships between variants of

stuttering equivalence [Browne et al. 1988] and CTL*. We have established

that branching bisimulation equivalence is in full agreement with CTL*-X by
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proving that it is in full agreement with a divergence blind variant of stuttering

equivalence. The actual proof had to face the problem that the two equiva-

lences are defined on different structures; namely, Kripke structures (KSS) and

Labeled Transition Systems (LTSS). Thus, transformation functions from one

structure to the other were needed.

We defined a transformation function from general LTSS with invisible

labels to KSS. This transformation permits naturally relating branching bisimu-

lation to divergence blind stuttering equivalence and divergence sensitive

branching bisimulation to stuttering equivalence. The transformation enjoys

two important properties; it is linear in the size of the systems and preserves a

close correspondence between the source and the target system. We defined

also a translation from KSS to LTSS, which enjoys the same properties of that

from LTSS to KSS. These two transformations and their properties permit one

to move freely between an action-based and a state-based view of concurrent

system and to use automatic tools that have been designed for reasoning within

either model.

To facilitate the discussion, we also introduce a new kind of structures,

Doubly Labeled Transition Systems (VTS), which were used as target of the

translation functions. We proved that branching bisimulation and stuttering

equivalence are in full agreement on a subclass of Lz TS in which a strong

consistency relation between the labels of the nodes and those of the incoming

and outgoing arcs holds and have proved that our translations always yield

consistent Lz TS. Here, we want to remark that the new structures are interest-

ing in their own in that they permit richer descriptions of systems. It is

certainly worthwhile exploring how much the consistency constraint on Lz TS

can be relaxed while keeping full agreement between the state-based and the

action-based equivalence. It would also be interesting studying the equiva-

lences that are obtained once consistency is lost.

The philosophy behind the backward generalization of HML is very similar

to that of the logic called J ~, introduced by Hennessy and Stirling [1985] to

deal with noncontinuous properties of generalized transition systems with

infinite computations. The relevant difference is that L~~ permits abstracting

from silent actions, while JT does not. Indeed, in the context of traditional

(limit closed) labeled transition systems, .J~ has no more discriminating power
than strong observational equivalence (see also De Nicola et al. [1990b]). The

characterization of =~ in terms of a more abstract version of .l~ gives

strength to the claims that branching bisimulation is indeed a natural general-

ization of strong bisimulation and that it can be easily extended to cope with

infinitary properties.

Stirling [1989] provides a different interpretation of CTL*-X based on LTS

extended with the double arrow relation ~ ; he shows that weak bisimulation

and the newly interpreted CTL* (with the next-time operator) are in full

agreement. This result is weaker than ours and is a direct consequence of the

fact that strong bisimulation and CTL* are in full agreement.

In the literature, various translations functions between Kripke Structures

and Labeled Transition Systems have been proposed. Our transformation

function from general LTSS to KSS was inspired by Emerson and Lei [1985]; we

generalized their proposal to deal with invisible labels. The transformation

function from KSS to LTSS was independently proposed by Koutny [1991]. In

Jonsson et al. [1990], a LTS is translated into a KS by introducing, in
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correspondence of each transition in the LTS, a state in the associated KS with

the obvious labeling, and by introducing a transition in correspondence of each

pair of consecutive transitions in the LTS. This construction does not permit

relating stuttering equivalence and branching bisimulation. Another translation

from LTSS to KSS is described in Clarke et al. [1989] but their construction only

works for a special class of LTSS which does not allow systems with states

reachable via two paths which contain the same action respectively, an even

and an odd number of times. In the paper by De Nicola and Vaandrager

[1990b], we have proposed another transformation that has the advantage over

all the others that it preserves the structure of the source LTS up to isomor-

phism of unfoldings; it however might lead to a quadratic blowup in the size of

the system (unless one assumes that the alphabet A is finite and fixed).

The problem of the complete axiomatization of Lu and L~~ is still open,

and so are the satisfiability and model checking problems for these logics. We

think that, by expressing Lu within the modal mu-calculus of Kozen [1983] and

Pratt [1981] we can answer the latter questions for the logic Lu; the complexity

of the translation algorithm is, however, not clear to us. Since the translations

of Laroussinie et al. [1993] are effective, the connection with the modal

mu-calculus would also give satisfiability and model checking algorithms for

L BF - However, since again the complexity of the translation algorithm is

unclear, and possibly quite high, this might not be the most efficient route.

Appendix A

LEMMA A.1 (Lemma 2.1.6). Let M = (S, A, +) be an LTS and let sO~sl~ o“”

s~.lrs~, n > 0, be a run in -d with SO=b s~. Then for all O s i s n: SO=b s,.

PROOF. Define for i >0.

370 = =b

J??l =@l_l U ((r, r’), (r’, r)l~r”: r ~ r’ 3 r“&r3Z?_l r”)

First, we show that ~W enjoys the property that we want to prove for = ~ .

Let for some n >0, rO~rl “”” r,, _ ~~r~ be a run with rOJ%’@r,,. Indeed, we can

prove by induction on n that for all O s i < n: ro~wr,. If n = 1, the statement

is trivially correct. Now consider the case n > 1. Since rOWO r., there exists an

m < w with rOZm r,,. By definition of ~~ + ~: rOJ%’ml+ ~r,, _ ~. Thus, rOS70 r. -,

and, by induction hypothesis, rOAZ?Wr, for all O < i s n – 1; this together with

the hypothesis proves the claim.

Next, we will prove with induction that, for every n <0, AZ. is a branching

bisimulation. This would suffice to conclude that J7Z’0is a branching bisimula-

tion and that ~. c =~ . But, by construction, we have =~ G 3?0. Hence,
= = go, and we have proved the lemma. 9?0 is a branching bisimulation

be~ause =~ is such. Now, suppose that, for certain n > 0, JZ?._ ~ is a branch-

ing bisimulation. We prove that &Zi?~is a branching bisimulation too. By

construction W,, is symmetric. Suppose r%. r’ and r ~s. If r J2Z._ ~ r’, then the
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transfer property is trivially fulfilled. In the other case, we have that there exist

r“s,, _ , r which is reachable via a single ~ transition either from r or r’. More

specifically, we have two possibilities:

(1) For some r“: r ~ r’ ~ r“ and r J?* –, r“. Using r SZm_ ~ r“, a first possibility

is that a = 7 and s9fl_l r“. But this means that r’ S r’ L r“ with r SZ. r’

and s ~~ r“. Otherwise, there are rl, rz such that r“ ~ rl $ r2, r J2?._ ~rl

and s9,, _lr2. But then r’ ~rl $r2, r~,, r1 and sfi. r2.

(2) For some r“: r’ ~ r ~ r“ and r’ r._ ~ r“. Then r’ ~ r ~s, r %. r and

S&Zns. ❑

LEMMA A.2 (X-prope@). Let (S, A, +) be an LTS and let r,s G S with

r =h~ s. Let 9 G run@ x runti be the maximal weak back-and-forth bisimulation

between r ands. Then ~ has the following X-property

Vp, p G run(r), VU, u = run(s):

PROOF. Define relation

x%” =3E’U ((p’, m’), (u’, p’)lp=nm(r), ~= run(s):

We prove that ~’ is a weak back-and-forth bisimulation. Since W is the

maximal back-and-forth bisimulation and 9? s ~’ by construction, the fact

that ~’ is a weak back-and-forth bisimulation would imply that ~ = ~’. Thus,

&z?has the X-property.

Clearly, W’ is symmetric. Moreover, r ~’s because r &%’s. Suppose p’ &Z” o-’

with p“ G run(r) and m‘ = run(s). If p’&Z?u‘, then the back-and-forth condi-

tions 2 and 3 are trivially fulfilled. Otherwise, there must be a p and a o such

that: p S p’, q; u’, p % u‘, and p’ J%?u. We check transfer property 2.

Suppose p’ ~ p“. Then p $ p“. Since p%cr’, there exists an a“ such that
k

u’ - (r” and p“ J%?’o-”. Next we check transfer property 3. If p“ ~ p’, then,

since p’s o, there exists an o-” such that ~” ~ a and p“ ~’ ~“. Now observe

that o-” ~ o’.

The remaining case that m’ ~’ p’ with m’ ~ run(s) and p’ G run(r) is

symmetric. ❑

THEOREM A.3 (Theorem 2.4.2). Let a? = (S, A, -+) be an LTS. Then for r,s

in S: M r =~ s if and only if& r =~~ s.

PROOF

“ =” Suppose r =b s. Let cct be the mapping that associates to each run p in

M its concrete colored trace, that is, the sequence which is obtained from p by

replacing each state by its branching bisimulation equivalence class. So

Cct(soals, ““” sn_~ ansn) = (so/=b alsl/=~ ““’ sn_~/=~ ansn/=b).
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Let ct be the mapping that associates to each run p in M its (abstract) colored

trace, that is, the sequence which is obtained from cct( p) by removing all

elements (C, I-, C) from the sequence. Define relation ~ by

YZ’= {(p, a), (a, p)lp= run(r), a= run(s) &et(p) = et(u)}.

Using the stuttering lemma (Lemma 2.1.6), it is straightforward to check that

AZ?is a back and forth bisimulation between r and s.

“ *” Suppose r =~f s. Let A2 c run,< X run,. be the maximal back-and-forth

bisimulation between r and s. Define

J%” = {(last( p),last( u))lp JZ’u}.

Clearly r J%’s. We show that J%’ is a branching bisimulation. &%” is symmetric

because ~ is. Suppose r. JZ?’SO.Then there are p, ir with p 9? o, last(p) = rO

and last(m) = SO. Suppose that rO S r’ and let p’ = p a r’. In the proof of the

transfer property, we distinguish between two cases.

(1) a # T. Since p ~ p’ and p J% m, there exist ml, crz, ~’ such that

m ~ al $ Uz ~ U’ and p’ J%?u’, Since ~2 ~ a’, there exists a PI such that

PI ~ PI ~ CT2.But since th: last transition of P’ has label ~> A,= P: so
that p’ J% crz. Because ml + 02, there exists a p2 such that P2 + p + p’

and pz J2Zal. How use that J%?has the X-property (Lemma A.2) to obtain

p JZ ml. But this gives us the transfer property; namely we have

SO~ last( crl) ~ last( mz), r. W’ last( ml) and r’ @“ last( mz).

(2) a = r. Since p S p’ and p J%?m, there is an n >0 and there are u, for

O<i<n such that aO= u, for O<i <n: ml.l~o-,, and P’J2?0.. If

n = O, then r’ 9’ so and we have proved the transfer property. If n >0,

then we can go back with an e-move from cr. to u._,. A first possibility is

that p’ can simulate this step by doing nothing: p’ @o._ ~. If this is the

case, then either n = 1 and we are ready, or we can go back one more

E-step from u._ 1 to u,, _ ~. Repeating this, we either find p’ 9? mO, in which
case we have proved the transfer property for branching bisimulation since

r’ ~’ SO, or, for some m >0 with p’ J% o.,, we have that a backward step to

an_ ~ is simulated by a backward step pl S p ~ p’ with pl ~ cr~_ ~. In this

case we use the X-property (Lemma A.2) to obtain p J%’u~ _ 1. This gives us

the transfer property for branching bisimulation since:

SOS last(m~_ ~) ~ last(u~),

rO J%” last( mn _, ) and r’ J%” last( am). ❑
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