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An efficient bandwidth management and access arbitration scheme for an 1/0 bus in a

multimedia workstation is presented. It assumes that a multimedia workstation consists of a

number of processing modules which are interconnected by a packet bus. The scheme is efficient

in the sense that lt allows the bus to support both continuous media transfers and regular

random transactions in such a way that continuous streams can meet them real-time constraints

independently of random traffic, and random traffic is not delayed significantly by continuous

traffic except when traffic load is very high. Implementation guidelines are provided to show that

the scheme is practical. Finally, the performance of this scheme is compared with alternative

solutions through simulation.
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1. INTRODUCTION

The processing of continuous media (real-time digital video and audio) places

special demands on the hardware architecture of computers. One of the main

features of a multimedia workstation should be the capability of processing

continuous media (CM) as efficiently as discrete data (text, numbers, graph-

ics, etc.). For example, it should be able to receive, transmit, compare, search,

transform, store, and display continuous media in real-time. This requires a

very high bandwidth interconnect. Although the choice of interconnect is not

limited, a bus is a cost-effective interconnect for workstations. This article

This work was supported by the National Science Foundation under grant NCR-9110183 and by

an industrial consortium of Ascom Timeplex, Bellcore, BNR, DEC, Goldstar, Italtel SIT, NEC

America, NTT, and SynOptlcs Communications.

Authors’ addresses. S. Hosseini-Khayat, Computer and Comrnumcatlons Research Center, Cam-

pus Box 1115, Washington University, One Brookmgs Drive, St. Louis, MO 63130-4899; A. D.

Bovopoulos, Chipcom Corporation, 118 Turnpike Road, Southborough, MA 01772-1886,

Permission to make digital/hard copy of all or part of this material without fee is granted

provided that the copies are not made or distributed for profit or commercial advantage, the

ACM copyright/server notice, the title of the publication, and Its date appear, and notice is given

that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy

otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific

permission and/or a fee.

01995 ACM 0734-2071/95/0500-0122 $03.50

ACM TransactIons on Computer Systems, Vol 13, No 2, May 1995, Pages 122-140

http://crossmark.crossref.org/dialog/?doi=10.1145%2F201045.201048&domain=pdf&date_stamp=1995-05-01


A Simple and Efficient Bus Management Scheme . 123

focuses on the requirements of a bus for a multimedia workstation and

proposes an effective and practical solution. The bandwidth of buses in

personal computers and workstations has increased significantly in recent

years. For example, Sun’s XDbus and Intel’s PCI bus support a transfer rate

of up to 320 and 240 MB/see., respectively. However, increasing the band-

width is only part of a solution. A multimedia bus must support a mix of

random and continuous traffic, and a complete solution should include effec-

tive bus bandwidth management to ensure that the real-time constraints of

continuous streams are met. Various bandwidth reservation methods have

been used in telecommunication systems in general and have been proposed

for use in ATM networks in particular [Bae and Suds 1991]. The authors

apply the concept to a bus.

The purpose of this article is to introduce a scheduling and management

policy that supports a mix of periodic and random jobs and to show how it can

be used for a multimedia bus. The bus considered here is a packet-switched

1/0 bus. We assume that a multimedia workstation is a collection of special-

ized processing units that cooperate and are linked together by a packet bus

(Figure 1).

We believe that a multimedia bus needs to satisfy the following require-

ments:

(1) It should have a large bandwidth to support continuous and random
traffic. As we will show later the required bandwidth depends highly on

the bandwidth management method. A well-managed bus requires con-

siderably lower bandwidth than a poorly managed one.

(2) It should provide low latency to random traffic. These transactions arise
due to virtual memory page faults, random network transactions, disk

transfers, or transmission of data between modules. It is important that

they be performed with low latency because they affect the overall

responsiveness of a system.

(3) It must maintain a constant throughput for continuous streams in the
presence of unpredictable random traffic. We believe that this feature is

what a multimedia bus must have to qualify for the name. Ignoring this

requirement leads to random momentary freezes of video or frequent loss

of video packets and results in poor-quality video.

(4) Its management and arbitration algorithm should be simple so that it can

be implemented in fast hardware.

While the fulfillment of the first requirement is currently taking place,

design of a bus that meets all of the above conditions is not a trivial problem.

This work addresses the last three conditions and proposes an effective

solution for a high-bandwidth packet bus.

This article is organized as follows. Section 2 describes a scheduling policy

which is the key idea of this article. This policy is adapted for application in a

bus in Section 3. In Section 4 we present simulation results and compare the

proposed solution with alternative schemes.
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Fig. 2. A server serving two periodic and one random queue.

2. SCHEDULING POLICY

This section describes a scheduling policy that is a key idea in this article.

The presentation is general so that it can be used in other applications. In the

next section the policy will be modified to fit our application, i.e., a packet

bus.

Consider N sources Sl, Sz,..., S~ that periodically generate jobs. Let T, be

the period of source S,, and let C, be the service time of each job generated by

Si for all i. Also consider a source S, that generates jobs at random times

t~,tl,t~... and with corresponding random service times so, Sl, SZ, . . . . sup-

pose that there are N queues PQI, PQZ, . . . , PQ~ dedicated to periodic sources

in corresponding order and that there is a queue RQ for the random jobs

(Figure 2). The jobs are placed in queues when they arrive and are to be
served in such a way that the following objectives are reached:

(1)

(2)

The random jobs are served with minimal waiting time. (Waiting time

equals time of departure minus time of arrival.)

Each periodic job is served before its source generates the next job. This

condition will be referred to as the backlog avoidance condition. (We say a
backlog happens when a periodic source generates a job before the

previous job finishes.)

This is a scheduling problem that needs a rigorous study. In this article we

are not looking for its optimal solution(s).1 Instead we present a practical

approach.

1It is intuitively plausible that the optimal policy is a modified Earliest-deadline-first policy in

which the Earliest-deadline-first (EDF) policy [Liu and Layland 1973] is used to determine
priorities among the pemodic .JObs at any time, and the random jobs delay the EDF schedule so

long as there remains enough time for the periodic jobs to finish before their deadlines. However,

this seems impractical for a bus, and we do not consider it in this article.
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Fig. 3. A periodic Job (top) and service cycles (bottom).

In our scheme there is a single server which performs a periodic service

routine. Its period is ~ and is assumed to be much smaller than any T,. It

does one unit of work per unit time and serves all queues according to the

following rules:

(RI) By default RQ has the highest priority. When RQ is empty, the server
resumes serving PQs.

(R2) In every period ~ a total service time of Z~ ~ c, is allocated to all

periodic sources, and a service time of c, is allocated to each periodic

source, where c, satisfies Cl = cl([T,/~ 1 – 2). The order of service is

arbitrary, e.g., in the order of increasing i. The allocated time may be

unused but not exceeded.

(R3) RQ loses high priority when the remaining time allocated to the periodic

jobs is equal to the remaining time in current period. At this time the

server resumes serving periodic jobs.

Rule (RI) tries to fulfill Condition (l), whereas Rules (R2) and (R3) satisfy

Condition (2). Rule (R2) guarantees that Source i gets C, units of service

every period T,. This is true because it gets c, units of service every period r

and because there are at least [TL\~ 1 – 2 periods of ~ in a period 7’, (Figure

3). This policy breaks the service time of each periodic job into [T,/~ 1 – 2

parts and does each part in one service cycle. In addition, it allows the

random jobs to preempt the periodic jobs. If preemptions are time consuming,

and happen too frequently, the policy becomes inefficient. However, in the

case of a packet bus as described later, preemptions do not incur overhead

time, and the scheme works efficiently. This policy can also be used for

process scheduling as long as the service cycle ~ is much larger than the

context-switching time. In the next two sections the policy is applied with

slight modifications to a packet bus. The next section describes assumptions

that this article makes about the architecture, traffic, and operating system

of a multimedia workstation.

ACM Transactions on Computer Systems,Vol 13, No, 2, May 1995
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Packet Bus

Fig. 4. Bus interface units.

3. ASSUMPTIONS

3.1 Architecture

We assume that a multimedia workstation consists of a number of hardware

modules that are connected together by a packet bus. The modules can range

from specialized processor boards that include CPU, cache, memory, and bus,

to simple peripheral adapters. Every module has a bus interface unit (BIU)

that connects it to the packet bus (Figure 4). Details of a BIU will be given

later. Let us assume that the packets are fixed-sized, and call them cells.

This assumption is important because it makes preemption and resumption

of jobs easier. Interrupting a variable-sized packet and resuming it at a later

time is difficult to manage. A cell has a header, containing the destination

address and other identification information, and a payload, containing data

(Figure 5). The format and size of cells are immaterial for the scheme.

Transmission of a cell is atomic and takes one time slot of the bus. In every

time slot, the bus master in the next time slot is determined. This is done by

a hardware unit called the bus arbiter (BA), which is connected to BIUS in

every module. (Details of a BA will be explained later.) Therefore, arbitration

completely overlaps transmission, allowing back-to-back cell transmission.

Preemptions are not expensive in our scheme because they take place only at

time slot boundaries.

A BIU contains a cell buffer. The buffer is partitioned (logically or physi-

cally) into an input buffer and output buffer, and each partition is divided

into random and periodic buffers. They may have variables boundaries that

can be adjusted depending on the volume of the continuous or random traffic.

One or more of the buffers may not exist depending on the allowable type and

direction of traffic. Details about the implementation and management of

buffers are not discussed here because the scheme does not depend on them.
The scheme only manages the flow of cells from output buffers to input

buffers of different modules across the bus. The input buffers do not have any

special role in the arbitration of the bus. They hold the incoming cells until

ACM Transactions on Computer Systems, Vol. 13, No, 2, May 1995
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Fig. 5. Example of a cell.
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they are consumed by the corresponding module. The size of buffers should

also be properly determined based on the volume of expected traffic. If they

are too small, and the rate of the incoming or outgoing cells is too high, they

may overflow. Issues related to the management and size of buffers are

another direction of research which is not pursued in this article. As far as

the bus management is concerned, those are details that can be skipped.

Let us focus on the output buffer of a BIU. It has two parts: a periodic

queue (PQ) and a random queue (RQ). A periodic queue holds continuous

stream cells, and a random queue holds random cells. Each queue has its own

bus request (BRQ) and bus grant (BGR) signals that are used by the BIU for

arbitration. The signal names are indicated in Figure 6. A BIU contends for

the bus when either of its output buffers is nonempty, The bus arbiter

resolves the contention based on the algorithm that will be explained in

Section 4. When a BIU wins, it transmits a cell in the next bus time slot. This

process repeats until the queues are empty.

3.2 Traffic

We assume that there are two types of traffic on the bus: random and

continuous. The random-traffic type is the usual traffic that exists on buses.

It consists of unpredictable bursts of very short duration that convey mes-

sages and data between the modules. The continuous traffic, on the other

hand, is the result of continuous streams flowing between the modules. A

continuous stream (or stream for short) has a very long duration from several

seconds to hours and is periodic. It conveys continuous media data between
modules that are participating in a multimedia application. As an example

scenario, a video camera module sends a continuous stream from a video

storage module. The video processor then compresses the resulting video and

sends it to a network interface module and a display module. Another

continuous stream comes from the network through the network interface

module heading for the display module. In the meantime, random cells are

transmitted frequently. The continuous streams may have different periods,

but the periods are assumed to be much longer than the bus time slots. This

is true in practice. For a 64-bit 40 MHz bus with a cell size of 64 bytes, a time

ACM Transactions on Computer Systems, Vol. 13, No, 2, May 1995
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slot is 200 nanoseconds, while a

seconds.

Queues in a BIU.

video frame time is on the order of milli-

We make no assumption about the statistical characteristics of random

traffic. The scheme does not depend on this, and in the absence of continuous

traffic the random traffic achieves the same latency that it would without

this scheme. It tries to prevent random traffic from being delayed by the

continuous traffic. We assume on the other hand that a continuous stream is

characterized by two parameters T and C. T is the period of a stream, and C

is the number of cells that need to be transferred in every period T. This is

what the scheme can guarantee for continuous streams. The parameters T

and C completely characterize uncompressed video streams. T is the frame

period, and C is the fixed number of cells per frame. For compressed video,

the number of cells per frame is variable, and C should be the maximum

number of cells in a period T. The resulting unused time slots can be used for

random cells. This way of characterization leaves some flexibility to the

application. For example, a video module may send lMB every 1/30 second

or 0.5MB every 1/60 second.

3.3 Operating System

The operating system is also required to support the scheme. Its support is in

the form of bus bandwidth management. A CM application should pass its

continuous stream parameters to the OS and confirm the availability of the

required bandwidth. It must reserve bus bandwidth for each of its continuous

streams. An operating system daemon, called the bus manager, is in charge
of taking stream parameters, allocating bandwidth if available, and updating

the registers of the bus arbiter. This is done only when a CM application

starts or terminates a stream.

ACM TransactIons on Computer Systems, Vol 13, No, 2, May 1995
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4. PROPOSED SCHEME

4.1 Service Policy

The bus arbiter executesa service algorithm periodically with aperiodof N

time slots. Nis a system parameter intherangelO– 100that should besetat

bootup time. It has the same role as ~ in Section2, but it is discrete. Let us

call N the bus seruice cycle time (Figure 7).

Suppose that there are J modules that transmit, and assume for ease of

discussion that all of them can source both continuous and random traffic. If

there are K, continuous streams being transmitted from Module i, we

assume that they are paced by the sending module and placed in the periodic

queue of BIU,. Let C; and Tj’ be the parameters of Stream j in Module i. The

pacing rule is:

For each Stream j, place in PQZ, M; cells every N times slots, where M; is

the smallest integer that satisfies

C; < M;([T;,/Nl – 2). (1)

Condition (1) is a discrete version of Rule (R2) in Section 2 and will be

explained later. The way pacing is implemented is not important for the bus

and is not considered here. As an example, in a processing module pacing can

be done by DMA operations from the module’s main memory to the BIU

buffer.
TJL and C; are passed by the application to the bus manager. The bus

manager computes Mj’ from (1), applies the admission rule that is presented

later, and if bandwidth is available it passes M; to the application and

updates variable Q = z~= ~~~~ ~M~’ which is the number of time slots in a bus

service cycle that are reserved for continuous streams. Q is updated every

time a stream is admitted or terminated. After Q is updated, its value is

written into a special register in the bus arbiter. Figure 8 shows the flow of

parameters among the bus manager, the bus arbiter, and a continuous media

application.
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Fig. 8. Flow of parameters.

All CM cells outgoing from a module are placed in the periodic queue of the

module’s BIU. Therefore, there are EYJ ~MJ’ CM cells that are supposed to go

out from Module i in every N time slots. Comparing this to the scheme in

Section 2, here there are J queues PQI, PQZ, . . . . PQJ that hold periodic jobs

generated by J sources (i.e., Modules 1,..., J).
The outgoing random cells in a module, on the other hand, are placed in the

random queue of that module. Therefore, there are J random queues that

collectively have the role of RQ in Section 2. Each cell in a random queue is a

random job that must be served by the bus.

PQs and RQs contend for the bus when they have cells. The bus arbiter is

responsible for resolving the contention. It has two hardware registers N and

Q which hold the value of IV (the bus service cycle time) and Q (the number

of reserved time slots for continuous streams) and has two counters n and q

that are reloaded every service cycle from N and Q, respectively. In the

following, n is the value of Counter n and denotes the remaining number of

time slots in a service cycle (initially N), and q is the value of Counter q and

denotes the number of time slots allocated to CM cells that have not been

used by CM cells yet during this service cycle (initially Q). The bus arbiter

does its job in every time slot according to the following rules:

(rl) If n > q, grant the bus to an RQ if any of them is requesting; otherwise
grant the bus to any PQ if any of them is requesting.

(r2) If n. s q, grant the bus to a PQ if any of them is requesting; otherwise

grant the bus to an RQ if any of them is requesting.

(r3) Decrement q if grant is given to a PQ.

(r4) Decrement n. If n = O, reload counter n from register N and counter q

from register Q.

This set of rules is a practical version of Rules (RI), (R2), and (R3). Rule

(rl) gives priority to random cells, when in a service cycle, the remaining time
n is more than q. Rule (r2) gives priority to CM cells when the remaining

time n is less than or equal to q. Therefore, a service cycle is divided into two

intervals. (This is assuming Q < IV, a condition that is ensured with the

ACM Transactions on Computer Systems, Vol. 13, No, 2, May 1995
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admission rule that is explained later.) The first interval starts with the start

of a service cycle and ends when n = q is reached. During this interval,

random traffic has priority. Any time slot unused by random traffic can be

used by a CM cell. If this happens, both n and q are decremented. Otherwise

only n is decremented. The second interval starts when q = n and ends when

a service cycle ends. In this interval continuous traffic gets priority over

random traffic. It is interesting to note that the boundary between the two

intervals moves gradually toward the end of the service cycle when CM cells

are served in the first interval. With moderate random and continuous traffic

load there is a good chance that in the first interval (1) some time slots are

not used by the random traffic and (2) some CM cells are served. When this

happens, q decreases; and as a result the first interval is stretched, and the

second interval (where random cells get low priority) shrinks. This implies

that random traffic tends to remain in high priority most of the time and does

not notice the continuous traffic. In our simulation results, this effect is

clearly shown. The mean delay of random cells in the presence of continuous

traffic can approach the value of mean delay in the absence of continuous

traffic.

The above set of rules does not specify any priority among RQs or among

PQs and leaves this freedom to the designer. It also assumes that the

modules are cooperative and do not exceed the limits assigned by the bus

manager.

4.2 Admission Rule

The admission or rejection of new continuous streams is done by the bus

manager. A request for a new continuous stream is sent to the bus manager.

Let us call its parameters C~,W and T~ew. The bus manager computes M., ~

from (1) and admits the stream if the following condition holds:

where Q is the number of time slots in a cycle reserved for continuous

streams, and a denotes the number of time slots dedicated for random traffic.

a is a system parameter that should be changed only when a change in the

fraction of allowable continuous traffic is desired. 1 – a/N is the maximum

fraction of bandwidth that can be allocated to continuous traffic. Increasing a

increases the responsiveness of the system by devoting more bandwidth to

random traffic.

If the stream is admitted, Q is incremented by M~= ~. Termination of a
stream is signalled to the bus manager by the application. The bus manager

decrements Q by parameter M of the corresponding stream. After any

change in Q, its value is written in Register Q in the bus arbiter.

4.3 Backlog Avoidance

The scheme guarantees backlog avoidance for continuous streams as defined

in Section 2. This is achieved by Rule (r2) in conjunction with the pacing rule.

As explained earlier each stream is paced and puts in every service cycle up

ACM TransactIons on Computer Systems, Vol. 13, No, 2, May 1995,
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to a certain number of cells in a periodic buffer. This prevents it from flooding

the bus. Rule (r2) guarantees that at least those cells are served in a service

cycle.

Let us focus on a single stream with parameters T and C. In order to

ensure that C cells are served every T time slots, the bus must allocate M

times slots to that stream in every N time slots. Condition (1) which

determines M is based on the fact there are at least [T/N] – 2 complete

service cycles in an interval of length T. The service cycles at the two ends of

the interval may be partially covered. Since it is not certain where in a

service cycle a CM cell is served, the partially covered cycles must be

excluded. Allocating M time slots in each of the completely covered service

cycles guarantees that at least M([T/N 1 – 2) cells of the stream can be

served in every period T. This number is larger than C according to Condi-

tion (l). Therefore, a backlog never occurs for the stream in question. The

same argument holds for every stream, and a total of Q = ZM is allocated to

all streams.

Obviously Condition (1) slightly overallocates. There may be service cycles

with a number of CM cells less than the allocated number. For example,

when T = 17500, C = 1650, and N = 85, Condition (1) gives M = 9. In terms

of the percentage of the bus bandwidth, the stream requires 9.4% (obtained

from C/T) while Condition (1) allocates 10.6% (obtained from M\N). There

are at least 204 complete service cycles within one period. Therefore the

stream has 1836 ( = 204 x 9) time slots to use in one period, but it only

generates 1650 cells in one period. Although overallocation exists, it does not

take away time slots from the random traffic. Rule (r2) allows the random

cells to use the bus when there are no CM cells in the allocated time interval,

i.e., the interval where n < q.

4.4 Implementation

The service policy in Section 4.1 has a simple realization. Every module has a

BIU which connects it to the bus and has two output queues: RQ and PQ.

Each queue has its own bus request and bus grant signals and contends for

the bus independently. Figure 9 schematically shows RQs and PQs that are

tied to the bus. Other details, including the input buffers, are left out because

they do not have any role in arbitration. The bus arbiter consists of two

registers, Q and N, and two counters, n and q, and some combinational logic

circuits. At any time slot if PQi (RQ, ) has a cell it asserts a bus request signal

PBRQ, (RBRQ,). The bus arbiter asserts or de-asserts a bus grant signal

PBGR1 (RBGRi) depending on the value of counters n and q.

Two types of implementation are discussed here: serial and parallel. Hy-

brid implementations are also possible. In a parallel design, all bus request

signals are input to a combinational circuit in the bus arbiter which works in

every time slot based on the following logic:

(1) Compare Counters n and q. If n > q and any of RBRQ signals are
asserted, then assert RBG R to RQ with the highest priority. Otherwise if

any of PRBQ signals are asserted, then assert PBGR to PQ with the

highest priority. If no bus request signal is asserted, then assert no PBGR.

ACM Transactions on Computer Systems, Vol. 13, No. 2, May 1995
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PQ, PQi pQi+l

F ---;-----------w b
B- PGI PGI _ PGO

Bus Arbiter

~Q1 RQi RQi+l

Fig. 10. Serial arbitration.

If n < q and any of PBRQ signals are asserted, then assert PBGR to PQ

with the highest priority. Otherwise if any of RBRQ signals are asserted,

then assert PBGR to RQ with the highest priority. If no bus request signal

is asserted, then assert no PBGR.

(2) Decrement q if a PBGR is asserted.

(3) Decrement n. If n = O, reload counter n from register N, and counter q

from register Q.

Note that priorities among RQs (PQs) are not specified in the above. When

the circuit is designed, these priorities can be assigned to signals RBRQ,

(PBRQ,) in the increasing order of index i, and when the system is designed,

those signals can be tied to the BIUS with corresponding priorities.

In a serial design, shown in Figure 10, there are two closed daisy chains.

All RQs (PQs) and the bus arbiter form a closed daisy chain. The priority

order among RQs (PQs) is implicit in the arrangement of the chain. The

queue immediately after (in the directed loop) to the bus arbiter gets the

highest priority, and the one immediately before (in the directed loop) the bus

arbiter gets the lowest priority.

In a closed daisy chain, a bus grant signal is generated by the bus arbiter,

and it passes through every queue in the chain and finally returns to the bus

arbiter. Any queue in a chain can block a grant, if it gets one, and become bus

master.

Every RQ (PQ) has an input signal RGI (PGI) and an output signal RGO

(PGO). These have the following relation with bus request and bus grant

signals:

RGO = RGI V RBRQ

RBGR = RGI V RBRQ

PGO = PGI V PBRQ

PBGR = PGI V PBRQ

where V is the logical OR, and signals are assumed “asserted low.”

ACM Transactions on Computer Systems, Vol 13, No, 2, May 1995.
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if n > q then

assert RGO;

Walt tp ;

if RGI = hxu then

assert PGO;

watt tp;

if PGI = hzgh then

q+q–l;
fi

fi

else

assert PGO;
wait tp;

if PGI = h~gh then

q-q–l;
else

assert RGO;
fi

fi
~+~—1:

Fig. 11. Serial arbitration algorithm.

An RQ (PQ) blocks an RGI (PGI) signal if it has a cell. Let us assume that a

grant signal from the bus arbiter takes tp to propagate around the loop when

no queue blocks it. In every time slot, the bus arbiter performs the algorithm

in Figure 11.

Both serial and parallel implementations presented here are simple and

fast. When a chain propagation delay is larger than a time slot, the serial

design is not practical. In that case, a parallel implementation should be

adopted.

5. SIMULATION AND COMPARISON

We simulated and compared our scheme with two alternative methods.

In the first alternative method, which we call method A, in every module

the continuous streams are paced according to the pacing rule (1) in Section

4.1 and are placed in a single output queue that is shared with the random

cells. There are no dedicated queues for random or continuous traffic, and

there is one bus request and one bus grant signal associated with each queue.

The output queues in each BIU then contend for the bus. A conventional bus
arbitration method (e.g., a single daisy chain, or a distributed contention

resolution circuit [Ward and Halstead 1990]) is used which resolves the

contention based on a fixed priority ranking of the modules. The cells in a

queue are served in FIFO order, so there is no priority between random and

continuous cells.

The second method, which we call method B, uses a different pacing rule

for continuous streams, and uses dedicated output queues (RQs and PQs as

in the proposed scheme) for each type of traffic. The pacing rule is: “Place 1

cell of Stream z with parameters C, and T, in a periodic queue every N, time
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slots where IV, is the largest integer that satisfies C,/T, < I/N, .“ Here there

is no common fixed service cycle, and N, can be different for each stream. A

conventional bus arbiter resolves the contention by giving PQs priority over

RQs. Therefore CM cells always have priority over random cells.

Method A represents the idea that no special treatment is needed for

continuous streams, and “sufficient” bandwidth along with pacing solves the

problem. Method B, on the other hand, represents the idea that continuous

streams must always be given priority over random traffic.

In our simulations there are five modules capable of sending and receiving

continuous and random cells. The continuous traffic consists of five streams

with parameters (T, C) as follows: (2520, 63) from Module 1, (2520, 63) from

Module 2, (2520, 63) from Module 3, (2520, 126) from Module 4, and (1512, 567)

from Module 5. (We did a number of experiments with different parameters.

Those results were consistent with the results obtained from the above

parameters that are reported here.) Note that the destinations need not be

given, because a bus is a broadcast medium. Those figures were calculated

such that they roughly represent a bus with 320MB/sec. bandwidth carrying

four compressed and one uncompressed video in the form of 64-byte cells. The

random traffic was simulated by arrival of cells at RQs according to a

Bernoulli trial model. A cell was placed in an RQ at any time slot with

probability p/5. The total random load p was changed in different runs to

get Figures 12 and 13. A Bernoulli model does not fit real random traffic,

because it lacks burstiness and correlation that exists in practice, but it

should give us an indication of performance of each method.

In our comparison, we were interested in the mean delay of random cells.

The requirement for the continuous streams (backlog avoidance) was met in

our simulations of the proposed scheme. No CM cells missed their deadlines.

Method A does not guarantee deadlines for CM cells, because they are served

in FIFO order with random cells. Method B performs better in this aspect,

because it always gives priority to CM cells. But it does not strictly guarantee

deadlines. The pacing rule in Method B only spreads CM cells in time, but it

does not guarantee that they get through within a specified time. Occasion-

ally some CM cells may miss their deadlines because of contention with other

CM cells. It also results in higher mean delay of random cells.

The mean delay of random cells in the proposed scheme is significantly less

than the two alternative methods. Figure 12 shows mean delay versus total

random load (p). The total continuous load ZC/T and the bus service cycle

time N were kept fixed at 0.5 and 40, respectively. It is seen that at p = 0.3

(a total load of 0.8), our mean delay is very close to 1, while mean delay for
Methods A and B is close to 5. The mean delay at p = 0.4 (a total load of 0.9)

is well above 20 for the alternative methods, while the proposed scheme gives

a mean delay of 1.5. The plot also shows that a mean delay equal to about 15

happens for Methods A and B at a total load of about 0.86 (p = 0.36), while

the same delay happens for the proposed scheme at a total load of 0.98

(p = 0.48). This shows that efficient bus management is much better than
over-engineering (which is the Idea behind Method A). Note that the mean

delay for Method A is always less than mean delay for Method B. The reason
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should be obvious. Method B always gives priority to

A serves in FIFO order.

Figure 13 shows the standard deviation of delay

150.0

CM cells while Method

of random cells in the

sam~ simulation. It shows that uncertainty of delay is also low for the

proposed method.

We did another experiment which is shown in Figure 14. It shows mean

delay versus service cycle time IV for two sets of load values. First, the

continuous streams were shut down, and the delay of random cells was

measured. At total random load of 0.4 and 0.5 the mean delay is 1.36 and 1.6,

respectively. These give the two horizontal lines in Figure 14. (In the absence

of continuous traffic, the size of a service cycle has no effect on the mean

delay of random cells. Therefore mean delay is constant.) Then, the continu-

ous streams were turned on. The total continuous load was kept constant at

0.2, while in each run N was increased starting from 10 in steps of 5. The

mean delay of random cells was measured. The same procedure was done for

two values of total random load: 0.4 and 0.5. The plot is interesting because it

shows that at low N the difference between the two cases (with and without

continuous traffic) is quite visible. As N increases, mean delay decreases

until it becomes very close to the horizontal line (i.e., the mean delay in the

absence of continuous traffic). This effect, which can be called the hiding of

continuous traffic, is due to the fact that the random cells notice fewer and

fewer CM cells as the service cycle of the bus becomes longer. This is possible
because the proposed scheme takes advantage of the trade-off between the

delay of random cells (which should be low) and the delay of CM cells (which
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can be made large up to some point). The same effect was seen with different

values of traffic parameters as long as the total load was not close to 1.

6. CONCLUSION

This article discussed the requirements of a multimedia 1/0 bus and pro-

posed a bandwidth management and arbitration method that guarantees the

timing requirement of continuous streams and does not cause excessive delay

of random traffic. We showed that over-engineering is not a good solution,

because it needs significantly larger bandwidth to provide performance com-

parable to a well-managed bus. The scheduling algorithm presented has the

potential of solving a similar problem in process scheduling.
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