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Program slicing is a program analysis technique that has been studied in the context of several
different applications in the construction, optimization, maintenance, testing, and debugging of

programs. Algorithms are available for constructing slices for a particular execution of a program

(dynamic slices), as well as to approximate a subset of the behavior over all possible executions of
a program (static slices). However, these algorithms have been studied only in the context of
small abstract languages. Program slicing is bound to remain an academic exercise unless one
can not only demonstrate the feasibility of building a slicer for nontrivial programs written in a
real programming language, but also verify that a type of slice is sufficiently thin, on the
average, for the application for which it is chosen. In this article we present results from using
SLICE, a dynamic program slicer for C programs, designed and implemented to experiment with
several different kinds of program slices and to study them both qualitatively and quantitively.
Several application programs, ranging in size (i.e., number of lines of code) over two orders of
magnitude, were sliced exhaustively to obtain average worst-case metrics for the size of program

slices.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids; D.2.6 [Software Engineering]: Programming Environments—iizteractzue; D.3.4

[Programming Languages]: Processors-compilers; optirnizations

General Terms: Experimentation, Languages, Performance
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1. BACKGROUND

The notion of program slicing originated in the seminal paper by Weiser

[19841, who defined a program slice as a set of program statements that

directly or indirectly contribute to the values assumed by a set of variables at

some program point over all possible executions of the program. For example,

a program slice with respect to the variable i in statement (5) of the program
fragment in Fig-are l(a) is shown in Figure l(b).

Weiser’s algorithm was further refined and extended by Ottenstein and

Ottenstein [1984] and by Horwitz et al. [1988], with the latter group using
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(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(lo)

scanR’’%d,& n); scanf(’’mod”, & n);
i=2; ~= (). 1=2.

while (i ~= (n/2)) { while (i <= (n / 2)) {
if ((n’%i) = = O) { if ((n%i) = = O) {

printil’’%d”, i); printf (%d”, i);

c++;

} )
i++; i++;

} }
printf(’’%d”, c);

(a) (b)

Fig. 1. Example program slice (b) with respect to variable i in statement (5) of the program
fragment (a).

program slices for integrating noninterfering versions of programs. The pro-

gram slices used in these studies are called static slices, since they are

computed statically for all possible executions of the program.

Static slicing was extended to the dynamic case by Korel and Laski [19881,

who defined a dynamic slice as a subprogram that computes the values of

variables of interest in a specific execution of the program. A variant defini-

tion of a dynamic slice was provided by Agrawal and Horgan [1990] where a

dynamic slice is not necessarily an executable subprogram but rather a

collection of statements that affects the values of variables of interest in a

specific execution of the program.

The earlier notions, as well as several new notions of program slices, were

defined and categorized in a formal framework by Venkatesh [ 1991], with the

assumptions that there is no single notion of a program slice that is optimal

for all applications and that one must explore the characteristics of various

types of slices to select the type of slice that is appropriate for a given

application.

2. MOTIVATIONS

Although studies on slicing in the literature (including the ones mentioned in

Section 1) have explained the notion of slicing and its applications and have

provided algorithms, almost all of them have done so in the context of small

abstract languages. We are aware of four slicer implementations that tackle

programs in a realistic language:

(1) an experimental prototype to demonstrate the use of dynamic program
slicing for debugging C programs [Agrawal 1991];

(2) an experimental prototype that uses a static slicer for C or Pascal
programs in a software maintenance tool, Ghinsu [Livadas and Roy

1992];

(3) a prototype static C slicer based on value dependence graphs [Ernst
1994]; and

(4) a C program analysis tool incorporating a static C slicer [Jiang et al.
1991].

ACM TransactIons on Programming Langaages and Systems, Vol. 17, No 2, March 1995,



Dynamic Sllcing of C Programs . 199

The first implementation can only accommodate trivial C programs, due to its

severe limitations in handling procedure calls, varied data structures, etc. It

is also severely limited by speed considerations, due to its dependence on a

debugger to gather execution data. The second implementation handles only

a subset of the ANSI C language (no pointer variables). The third implemen-

tation uses an intermediate representation that is an optimized version of the

program, and hence, the implications of just the slicing algorithm on source

code reduction are not clear. We have been unable to get any information on

the extent of the language considered and on the details of the implementa-

tion of the slicer for the last work mentioned above. None of these works

provide any information on the efficacy of program slicing in terms of the

slice size and/or execution times for realistic programs.

The algorithms for various types of slices differ in the direction and the

extent to which they perform closures on data and control dependence

[Venkatesh 1991]. Extending these algorithms to slice programs in real

languages introduces complexities in determining the data and control depen-

dence for static slicing, and complexities in logging execution behavior for

dynamic slicing. Although research in resolving aliases due to procedure

calls, pointer variables, and array references [Cooper 1985; Cooper and

Kennedy 1989; Horwitz et al. 1989; 1990; Landi et al. 1993; Weihl 1980]

contributes to static slicing, static resolution of aliases that is sufficiently

precise to result in reasonably thin program slices for a general programming

language is yet to be demonstrated. On the other hand, aliasing can be easily

resolved by observing execution behavior for dynamic slicing. However, the

feasibility of building a dynamic slicer that is able to do so with reasonable

time and space considerations for realistic programs had never been demon-

strated.

Program slicing is bound to remain an academic exercise unless one can

not only demonstrate the feasibility of building a slicer for nontrivial pro-

grams written in a real programming language, but also verify that a type of

slice is sufficiently thin, on the average, for the application for which it is

chosen. The SLICE prototype was built to study the feasibility of using

dynamic slicing for practical applications.

3. OUTLINE OF THE ARTICLE

The next section provides an overview of the SLICE prototype and its use.

Section 5 describes the experimental procedure for obtaining quantitative

metrics for the size of program slices. Section 6 contains a summary of the

results, which are analyzed in more detail in Section 7. Section 8 lists the

limitations and work in progress, as well as possibilities for future work.

Section 9 summarizes the article and states the conclusions of the study.

4. THE SLICE PROTOTYPE

Since the major goal of this article is to present the results of the experimen-

tation with dynamic slicing, this section provides just a brief overview of the
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design and functionality of SLICE that is sufficient to place the results in

context.

4.1 Design of SLICE

Dynamic slicing consists of two activities: (1) the execution of a program to be

sliced with a given input in order to obtain a trace about the execution and (2)

the subsequent construction of slices for any variable in the program. To

resolve all aliasing, it is necessary to log every use and definition of a memory

location and to relate it back to the variables in the source code that are

bound to this location.

4.1.1 Execution Traces. The solution used by Agrawal [1991] to gather

execution information through a debugging tool was not considered for execu-

tion of large programs due to its serious speed limitations. There were two

choices for the type of instrumentation: source level or object-code level.

Source-level instrumentation was chosen over object-code-level instrumenta-

tion based on the following assumptions:

—ease of portability to different platforms,

—relative simplicity of instrumentation, and

—ease of mapping slice nodes to the original source.

With hindsight, the object-code level would have been a better choice because

the first two assumptions turned out to be incorrect. We believe that object-

code-level instrumentation would have resulted in significantly faster execu-

tion of the instrumented code. Moreover, object-code instrumentation would

have been much cleaner and more complete in handling system and library

calls. We expect any production-quality implementation of dynamic slicing to

use object-code-level instrumentation.

The instrumented source code maintains the syntactic structure of the

original program only up to the statement level. Each expression and some of

the statements are transformed into operationally equivalent expressions and

statements that log any use or definition of a memory location as they mimic

the execution of the original program. This transformation is transparent to

the user, since the slices are mapped back to the original source.

All system calls are handled in one of two ways. System calls that have

simple input-output dependence on its parameters are listed in a table with

a bitmap representation for the in/out characteristics of its parameters. This

table is compiled along with the tool to generate traces of the appropriate
dependence before and after the execution of such calls. All other system

calls have individualized envelopes over them that call the corresponding

system routine and log the dependence information.

Although the current implementation does not optimize the amount of

tracing required, there are several obvious and some clever techniques to do

so. These include the following:

—Logging just once for each binding of a memory location to a variable along

with the log of an entry to each basic block. This method removes from the
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trace (with no loss of information) entries that record every use or defini-

tion of variables whose bindings do not change in the block.

—Using the optimizations developed by Ball and Larus [1994] to place the

instrumentation in a minimal number of places from which the entire trace

can later be reconstructed.

These optimizations are expected to reduce the size of the trace by a factor of

about 5, compared to exhaustive logging. However, note that there are

significant trade-offs involved between the size of the trace, the speed of

execution, and the speed for slice construction. In the design of SLICE, speed

was given preference over space as long as the space requirements did not

exceed practical limitations.

The trace is first compiled into a dynamic dependence graph that links

each instance of a use of a variable to the corresponding occurrences of its

definition. Each occurrence of a definition is linked to the corresponding

occurrences of the variable uses (if any) in its defining expression, as well as

to the corresponding occurrences of the variable uses (if any) in expressions

on which the definition site is control dependent. This compilation makes the

slicing phase fast enough to enable interactive use, albeit at the expense of

memory.

4.1.2 Types of Slices. SLICE supports both forward and backward slicing.

A backward slice consists of statements (or expressions) that affect the value

of a variable of interest. The example at the beginning of this article is that of

a backward slice. A forward slice, on the other hand, contains statements in

the program whose computation is affected by the value of a variable of

interest. The formal definitions can be found in Venkatesh [ 1991].

For each direction of slicing, SLICE provides four kinds of slices differing

in the extent to which the closures on the dependence are performed:

(1) Data dependence. For backward slicing, this type of slice is a trivial slice
that just contains the previous definition site of a variable of interest. For

forward slicing, it is the set of sites where the current definition for a

variable of interest will be used. We call the former a Def site slice and

the latter a Ref site slice. These have obvious applications in debugging.

(2) Data closure. This slice is obtained by performing a closure over just the
data dependence, starting from a variable of interest. For forward

slicing, we call them Ref closure slices, and for backward slicing, we call

them Def closure slices. In addition to debugging, this type of slice has

applications in program-understanding and maintenance tools.

(3) Data and control closure. This slice is obtained by performing a closure
over both data and control dependence, starting from a variable of

interest. For forward slicing, we call them Ref-Control closure slices, and

for backward slicing, we call them Def-Control closure slices. In addition

to the applications mentioned above, this type of slice has applications in
testing tools. The Def-Control closure slice corresponds to the notion of a

dynamic slice in Agrawal and Horgan [1990].

ACM Transactions on Programmmg Languages and Systems, Vol. 17, No. 2, March 1995.



202 . G. A. Venkatesh

(4) Executable. This slice isobtained byperforming aclosure over both data
and control dependence, including additional statements that are re-

quired to make the slice an executable subprogram that has the same

behavior on execution as the original program for all of the statements

included in it. This type of slice in backward slicing corresponds to the

notion of a dynamic slice in Korel and Laski [1988]. In addition to the

applications mentioned above, this type of slice can be used for program

specialization.

4.1.3 Using SLICE. There are two versions of SLICE: (1)an X windows-

based version that can be used in an interactive mode to query for and to

display various slices for a selected variable and (2) a batch-mode version

that is used to slice programs exhaustively and to collect the results. An

example display of the interactive version is shown in Figure 2. An exe-

cutable backward slice for the variable j in line 21 has been highlighted.

5. THE EXPERIMENT

As mentioned earlier in the article, a major goal of this work was to obtain

empirical data on the typical size of various dynamic slices in realistic

programs. The feasibility of using program slicing in specific applications

could then be determined based on the empirical data. To obtain such data,

several application C programs were selected and executed with a suite of

test inputs for each program. For each such execution, the batch version of

SLICE was used to slice exhaustively with respect to every execution occur-

rence of every variable in the program. Metrics about each individual slice

were output for analysis.

The selected application programs had the following characteristics:

—The larger programs were all locally developed, and the authors were

easily accessible to ensure that reasonable test suites could be constructed

and that the behavior of the instrumented execution could be verified for

correctness, if not obvious from the output. The smaller programs are

available in most UNIXl distributions and were selected based on the

availability of a suite of test cases developed by a software-testing research

group at Bellcore. The test cases were developed to exercise the program as

much as possible and to cover every basic block and branch.z

—The larger programs were all by different authors to ensure that the slice

size data were not skewed by programming styles, as well as to obtain a

representative sample of various programming styles.

—They all varied in size and purpose. The smallest was a 49-line program,

and the biggest was about 7500 lines. They varied in purpose so as to

obtain a representative sample of different language structures and uses.

—The smaller programs were also selected to be useful for possible compari-

son with static slicing algorithms and implementations. The selected pro-

lUNIX is a registered trademark of Novell, Inc.
2The entire set of test suites for the UNIX programs used here can be obtained from the author,
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~~ ~r~ntf (“~d “. datalm) J

23 M

Fig. 2. SLICE user interface.

grams purposefully included language constructs such as arrays, pointer

arithmetic, and procedures, to discourage comparison to static slicers that

only worked on trivial programs.

There were at least three distinct test inputs for each possible functional

mode (selected through switches in the command line or switches in the data)

in which each application program could be executed. Each test input was

designed to exercise as much of the code as possible. Since the purpose was to

explore the upper bounds on slice sizes, trivial executions that would have

resulted in small slices were not considered. For the same reason, none of the

larger universally available programs could be included in the experiment.

Test cases that fully exercise a program are difficult to construct without

some automatic tools and/or some insight from people who are very familiar

with the program. The test suites, if available, are usually designed for

testing small components of the program at a time.

To keep the trace sizes reasonable, it was also necessary to select test cases

that exercised a large number of different parts in the program while

avoiding unusually long repeated executions of the same statements that

contributed no additional information to the construction of slices. For exam-

ple, if the coverage of the dependence in a sort program is independent of the

number of elements sorted (accounting for all possible branch points), sorting

on a smaller set of elements would be preferred. Such a selection of a test

case should not, in any way, affect the generality of the results on slice sizes.

In this article, we present the data obtained from slicing nine C programs.

All programs were run on DEC 5000/200s with 96MB of memory and NFS.
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These programs are as follows:

(1) SUM is a program that computes a checksum for a file. The source code
contains 49 lines. The program performs limited arithmetic and consists

of a single main procedure.

(2) UAVQ is a program that removes or reports adjacent duplicate lines in a
file. The source code contains 143 lines. The program performs mainly

character manipulations and uses some pointer arithmetic.

(3) COMM is a program that displays lines in common (or lines not in

common) between two sorted files. The source code contains 167 lines,

The program performs mostly string comparisons and character opera-

tions and uses pointer arithmetic.

(4) CAL is a program that displays the calendar for a specified month or
year. The source code contains 201 lines. The program performs some

number manipulations and uses limited pointer arithmetic.

(5) JOIN is a relational database operator for text files. The source code
contains 215 lines. The program mainly performs character operations

and uses arrays and pointer arithmetic.

(6) FLEX93 is a medical insurance costs estimation program that helps
Bellcore employees to optimize the selection among the available medical

options. The source code contains about 800 lines in a single file. It is a

small program with limited functionality that does extensive number

manipulations.

(7) SPIFF is a smart file comparison utility similar in function to cliff, but
uses some tolerances and structure information to compare files. The

source code consists of about 4700 lines distributed in 16 files. The

probg-am uses arrays extensively with consequent proliferation of alias-

ing.

(8) DQ is the Bellcore personnel and services database query client program.
The source code consists of about 2700 lines distributed in 3 files. The

program uses extensive terminal 1/0 and network system calls.

(9) ATAC is a testing and coverage measurements tool that is being used in
practice at Bellcore. The source code consists of approximately 7500 lines

distributed in 24 files. The program has multiple functionalities that are

selected by command line options. It performs extensive character manip-

ulations and some arithmetic.

The first five programs are available on most UNIX platforms. The execu-
tions of all of the nine programs over all of the test cases and the exhaustive

slicing for each run required over two months of total CPU time and about

seven months of elapsed computing time on a Decstation 5000/200, primarily

used as a cycle-server.

6. RESULTS OF THE EXPERIMENT

The summarized data for the execution phase of the test programs are shown

in Table I. For comparison across programs, the number of executable nodes
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Table I. Average Execution Data

Executed Nodes

Executable Nodes (Average Percent
Average Execution Time Log Size

Program (Total number) of Executable) ms overhead (Average MB)

SUM
UNIQ
COMM

CAL
JOIN
FLEX93

SPIFF

DQ

ATAC

56

168

189

214

368

997

3385

3722

9080

59.8

56.1

56.0

57.8

51.9

59.9

43.1

35.9

21.9

90.0
59.8
42.1
18.7
48.9

153.6
871.0
136.7

2081.9

3.7
4.0

2.1

3.4
2.0

9.8

16.5

2.0

24.8

0.420

0.230

0.112

0.041

0.148

0.574

4.909

0.573

14.507

(i.e., program points where a memory location is used or defined) is more
useful than the number of lines due to differences in documentation styles,

formatting styles, equivalent languages constructs, etc. For example, the

construct “** ptr” counts as three execution nodes for the three memory

location accesses that it entails. This number for each program is shown in

the second column. The third column provides the number of nodes executed

per run averaged over all test runs as a percentage of the executable nodes.

As expected, smaller programs are more likely to execute a larger fraction of

the program per execution than larger programs that have multiple function-

alities.

The Average Execution Time column provides the average time (sum of

user and system times) for execution of the instrumented program, as well as

the instrumentation overhead relative to the execution of the original pro-

gram on the same inputs. The overhead ranges from a factor of 2 to a factor of

about 25. DQ is a network communication-intensive program where the

communication times and interactive usage times dominate the execution,

and consequently, the overhead is low. ATAC, on the other hand, uses large

data structures, each of whose uses and definitions must be logged.

The numbers for absolute execution time and size of the log are only

meaningful in the context of this experiment for comparison between pro-

grams. First, the test inputs were chosen so as to execute as much of the

program as possible while minimizing the repeated execution of statements

that would not contribute additional information to slicing. Second, the

instrumentation was designed to log, in a single execution, data from which

all types of slices could be constructed. Without the need for executable slices

(forward or backward), the size of the log will be linear in the size of the
program (number of use/clef nodes) [Agrawal and Horgan 1990].

The metrics from exhaustive slicing, averaged over all executions for each

program, are shown in Figures 3 and 4 for quick comparison. The data are

averaged over slices with respect to every execution instance of every variable
in each execution of the program and are only included to provide a very

rough estimate of the order of the metrics. The average slice size is not

weighted by the number of different occurrences of any given variable, since
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Fig. 3. Average slice size (percent of executable nodes).

the weighted average would be too dependent on the design of test inputs.

The trivial backward Def site slice has been left out, since it always contains

exactly one node and can be found in constant time from the dynamic

dependence graph for any variable.

A more detailed analysis of the slice size for each program is provided in

the next section. There are a few things that should be observed from Figures

3 and 4:

—As expected, the larger the number of closures performed in the slice, the

larger the average size of the slice, and the higher the slicing time.

—The average slice size and average slice time are not correlated with the

size of the program.

—Forward slicing is more expensive to compute and results in larger slices

than do the corresponding backward slices,

—The average backward executable slice size is less than 509Z of the exe-

cuted nodes and, when combined with the average number of executed

nodes in Table I, is well within 20% of the entire program. The correspond-

ing numbers are even less for other types of backward slices,

—The average forward slice is less than 65% of the number of executed nodes

and less than 259Z0 of the entire program.
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SUM UNIO COMM GAL JOIN FLEX93 SPIFF OQ

1160

1000

Soo

600

400
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0
SUM UNIQ COMM cAL JOIN FLEx93 SPIFF DQ

Fig. 4. Average slice time (in ins).

—Making a slice executable after considering all of the dependency closures

increases the size of the slice by a factor of 2–3 for backward slicing and a

factor of 5– 10 for forward slicing.

7. ANALYSIS OF RESULTS

While the data pictured in Figure 3 provide a broad picture of the relative

slice sizes, we need to examine the data in more detail to evaluate their

applicability in practice. There are two questions, in particular, that are very

relevant:

(1) What is the size distribution of the slices?

(2) How do the slice sizes relate to the kind of variable being used as the
slicing criterion?

The answer to the first question provides a better indication of what to expect

in an application where variables are randomly selected for slicing. The

average data provided earlier may be skewed by either extremes. The second

question attempts to correlate the size of slices with the intended use of the

variables used as the slicing criterion.

The size distribution of slices are pictured in Figures 5 and 6 for backward
and forward slicing, respectively, The distribution was computed for each test

run and then averaged over all executions.
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Fig, 5, Backward slice distrlbutlon,
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Fig. 5. Continued

An important observation is the clustering of slices at certain slice sizes,

especially for executable slices and for closures of both data and control

dependence. With a few exceptions, slices show a bimodal distribution

clustering at the two ends of the range of slice sizes. A study to correlate the

executable slice sizes and the functionalities of the source code captured by

the corresponding slices yielded the following observations:

(1) The peak at the lower end of the slice size distribution corresponds to
“trivial” slices. These are slices that include none of the basic functionali-

ties of the program, but rather constitute executable programs involving

variables whose values are independent of the basic computations of the

programs. A typical example is the executable slice shown in Figure 2 for

variable j. The quicksort routine that forms the crux of the program is

irrelevant to the computation of the value of the variable j.
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Fig. 6. Continued

The peaks at the higher end correspond to slices that capture one or more

of the functionalities of the program. In programs that have a major

portion of the code involved in every functionality of the program (FLEX93

and SPIFF), there is a rather pronounced peak at the size that includes

the relevant portion of the program (excluding some error-handling and

exception-handling code). There are smaller peaks further at higher slice

sizes for computations that use the results of the core computation. In a

program where there are distinct portions of the program that are exe-

cuted for different executions (ATAC), there are multiple peaks for slices

that include the corresponding portions of the program. (The program DQ

falls within these two extremes.)

These observations suggest a way (albeit an expensive way) to identify and
isolate portions of the program that perform reasonably self-contained sub-

computations. Studying the distribution of code corresponding to such slices
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in relation to the textual/syntactic divisions of the program may provide

useful information about the organization of the code and may be helpful in

program maintenance or reengineering efforts.

For suggested applications of slicing, the bimodal distribution actually

makes it easier to evaluate the suitability of a type of slicing. If the success of

an application depends on more than just trivial slices, then the application

must provide satisfactory results for slices with sizes at the upper end of the

range. Applications such as debugging and testing that can use the smaller

closures can expect the slices to be within 10% of the total program size and,

hence, can benefit from the use of slicing. Program understanding/specialize-

tion tools that require the larger closures will only deal with program

fragments that are less than 257. of the size of the entire program, making

slicing a feasible technique for such applications. Designers of future applica-

tions may refer to the results of this experiment to ensure that their assump-

tions of slice sizes are reasonable for the intended application.

To answer the second question asked at the beginning of this section,

variables in the programs were labeled using Output, Loop Index, Array

Index, Array, Local, Global, Function Argument, and Flag. A variable was

assigned all of the categories that were applicable in the local context of its

use. The categorization was done manually by reading the program code, and

variables did not inherit categories through possible aliasing. FLEX93 was

chosen as the biggest program that was manageable for such an exhaustive

classification of variables. Note that the categories are not precisely defined

and that subjective judgement was used in labeling the variables. Input

variables were not considered, since all input to FLEX93 is given through

command line arguments and such variables constituted a major portion of

the category of flag variables.

For each use of a variable in each category, the slice size was averaged over

the slice data from all test runs. The distribution of slices were then com-

puted as in the earlier case for all variables. However, the number of slices

for each slice size was normalized as a percentage of the total number of

slices in the corresponding category. This distribution was computed for each

of the different kinds of slices considered in this study. The distribution of

slice sizes with respect to variables in each category was then qualitatively

compared with the distribution of slice sizes with respect to all variables.

Only the cases in which the slice distribution for a specific category was

noticeably different from the overall distribution are displayed in Figure 7.

The distribution for the variables that are not displayed in the graph was

essentially the same as the overall distribution. The graphs in Figure 7 show

similar data as the graphs in Figures 5 and 6, but with some changes for

clarity and space efficiency:

—Each rectangle consists of a set of graphs with a common x-axis and the

y-axes stacked vertically.

—The slice size distribution in the bottom stack is for all variables and is the

same as the distribution in Figures 5 and 6 for the corresponding slice
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Fig. 7. Slice distribution and variable categories.

type. Since all variables are considered, the percentage of variables on the

y-axes is equivalent to the percentage of all slices.

—A bar graph, rather than a line graph, is used for the distribution of slice

sizes for each type of variable, since the distribution (unlike that for all

variables) is rather sparse with no slices corresponding to most of the slice

sizes. A continuous line graph connecting the tops of the bars would

present a misleading picture.

The differences were noticeable only for the two data and control closures, for
the two executable slices, and only in certain variable categories for each type

of slice.
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The slice size distribution for variable categories pictured in Figure 7

differs from the overall distribution in two major ways: (1) an absence of

slices in specific variable categories for certain slice size ranges that are

populated in the overall distribution (e.g., pointer variable distribution in

executable slices) and (2) a dominance of slices in size ranges relative to the

rest of the distribution that is at variance with the overall distribution (e.g.,

loop index and local variables have a higher fraction of their backward

executable slices at the high end, as opposed to the overall distribution where

a higher fraction of the variables have small slices).

None of the pointer variables in this program had large slices. Pointer

variables do not appear to have many data dependence (although the objects

referred to by the pointers may have a large number of dependence). The

program had very little pointer arithmetic. Isolating the role of pointers may

prove to be a useful application of dynamic slicing.

8. LIMITATIONS AND FUTURE WORK

The following limitations apply to the prototype implementation:

—Only dependence at the byte level (the lowest addressable memory size)

can be accounted for. Programs that map variables to individual bits

cannot be sliced.

—Dependence through system calls must be simple and through assignments

to memory locations. The semantics of a system call that has complicated

side effects cannot be captured by the slicer, and the constructed slices will

be smaller than what the correct slices should be. System calls that have

dependence through user interaction (interactive programs) or external

databases cannot be handled by the prototype.

—Goto statements result in incorrect executable slices. This limitation is an

artifact of the current implementation and not an intrinsic problem for

dynamic slicing.

One of the currently running experiments is executing a set of standard

UNIX programs over a large number of test cases and constructing a union of

program slices for each variable in the program over all test runs to obtain a

lower bound on the size of static slices. If such a lower bound is significantly

small compared to the size of the program, then there is some hope that static

analysis techniques may improve enough to provide meaningful slices. If the

lower bound happens to be quite large, then static slices may turn out to be

useless even if they could be constructed with great precision.

There are a large number of improvements that can be made to the

implementation for possible use in production-quality tools. Better logging\

tracing techniques, especially at the object-code level, would be highly benefi-

cial and would remove some of the limitations with system calls. The proto-

type was designed to construct multiple types of slices, and hence, several

optimizations that would benefit only some of the slices could not be made.

For example, the logging overhead can be considerably reduced if executable

slices were not required,
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9. SUMMARY AND CONCLUSIONS

This article has reported on the experimental results of using a dynamic

slicer for slicing nontrivial applications written in C. The implementation

demonstrated the feasibility of building such a tool for various types of

slicing. The implementation also indicated that source-level instrumentation

for obtaining trace data is not the most satisfactory solution for dynamic

slicing. Object-code instrumentation may yield better performance. Empirical

data on the size of program slices obtained by using the slicer on several

kinds of programs indicate that dynamic program slices for realistic applica-

tions are, indeed, reasonably small compared to the entire program. The data

demonstrate that it is worthwhile to consider slicing techniques in the

applications for which they have been proposed.

Slice sizes vary considerably within a program as well as across programs.

The slices tend to have clustered slice sizes with code corresponding to

distinct functionalities in the program. The kind of variable that is used as a

slicing criterion also has some effect on the size of a slice. Although most

categories of variables tend to have a distribution that is similar to the

overall distribution of slice sizes, some types of variables (possibly influenced

by programming style) seem to deviate noticeably from the overall distribu-

tion.
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