
Multiple FPGA Partitioning with Performance Optimization

Kalapi Roy-Neogi and Carl Sechen

Dept. of Electrical Engineering, FT-10

University of Washington

Seattle, WA 98195

We address the problem of partitioning a technology mapped
FPGA circuit onto multiple FPGAs of a specific target technology.
The physical characteristics of the multiple FPGA system (MFS)
pose additional constraints to the circuit partitioning algorithms:
the capacity of each FPGA, the timing constraints, the number of I/
Os per FPGA, and the pre-designed interconnection patterns of the
MFS. Existing partitioning techniques which minimize just the cut
sizes of partitions fail to satisfy the above challenges. We therefore
present a rectilinear partitioning algorithm which efficiently and
accurately handles timing specifications. The signal path delays
are estimated during partitioning using a timing model specific to
a multiple FPGA architecture. The model combines all possible
delay factors in a system with multiple FPGA chips of a target
technology. A new dynamic net-weighting scheme was incorpo-
rated to minimize the number of pin-outs for each chip. Finally, we
have developed a graph-based global router for pin assignment
which can handle the pre-routed connections of our MFS structure.
We successfully partitioned the MCNC Xilinx FPGA benchmarks
producing 100% routable designs with high utilization levels in all
cases. Using the performance optimization capabilities in our
approach we have successfully partitioned these benchmarks satis-
fying the critical path constraints and achieving a significant
reduction in the longest path delay. An average reduction of 17%
in the longest path delay was achieved at the cost of 5% in total
wire length. We have proved the effectiveness of our performance
optimization technique by verifying the timing predictions of our
partitioner with the actual delays obtained after placement and
routing of a partitioned MFS. Partitioning results obtained with
the Xilinx mapped MCNC benchmarks are encouraging.

1 Introduction

Field Programmable Gate Arrays (FPGAs) are becoming a main-
stream technology in board, system and application specific inte-
grated circuit (ASIC) design processes. System-level ASIC
designers are turning to FPGAs for design verification to take
advantage of their low cost and fast prototyping. Current FPGA
architectures can handle a maximum of only 6000 to 9000 gates
compared to ASIC devices which offer hundreds of thousands. As
a result, designers utilize multiple FPGAs when a single FPGA is
not sufficient for a design implementation.

Multiple re-programmable FPGAs have been configured on
multichip modules (Figure 1) and on PCBs [9, 10]. Amultiple

Chip I/O SlotsMCM I/O Slots

Inter-chip
connects

Fig.1 A Multiple FPGA System on an MCM.

FPGA system (MFS) can be modeled as a collection of FPGA
chips configured on a single board or a package to realize a design.
In order to effectively use MFSs and benefit from shorter time-to-
market, users require an automatic method to partition a large
design among multiple FPGAs. The quality of the partitioning
results will influence several aspects of the design implementation:

1) Capacity: The partitioner must ensure that each chip con-
tains afeasibly implementable amount of logic guided by the max-
imum gate capacity of the target FPGA architecture and utilization
levels that can be handled by the placement and routing tools.

2) Congestion in inter-chip communication: The partitioner
must be able to minimize the amount of inter-chip communica-
tions. The inter-chip connections of the packaging or the board
design may or may not be fixed. The signals external to individual
chips must be routed using the limited number of inter-chip con-
nections to produce a feasible partitioning solution duringpin
assignment at the chip level. Any overflow generated during pin
assignment will lead to a design which is not implementable

3) Delay introduced for intra-chip and inter-chip communica-
tions: High utilization of logic in individual chips causes conges-
tion in intra-chip routing. This leads to longer paths and thus longer
delays for signals internal to the chips. Also, the signals which
cross one or more chip boundaries in the MFS will accumulate a
substantial amount of delay associated with the I/O buffers and the
inter-chip wire which can range from high, as in the case of PCBs,
to moderate as in MCM based systems. The system cycle time will
be determined by the length of the longest path from a primary
input to the primary output of the entire MFS. The partitioner must
satisfy the timing specifications for the MFS.

Thus the constraints of the MFS partitioning problem are: 1)
Set of FPGA chips with their locations, dimensions and maximum
capacity; 2) Configurations of the chip level I/O frames for inter-
chip signals; 3) Configurations of the MFS package level I/O slots
for the system I/O signals. In addition, the following design con-
straints need to be satisfied during MFS partitioning: 4) The timing
constraints of the system being implemented; 5) Additional user
constraints such as the utilization levels within the chips and the
preplaced logic which must remain within a particular chip.

MFS partitioning over multiple chips can be performed
before technology mapping onto the target FPGA or after technol-
ogy mapping. If the partitioner manipulates the gate level netlist
(as in [11]) before technology mapping, estimation of chip utiliza-
tion and routability is difficult without the exact count of the target
technology logic blocks. Also, there is no information at this level
regarding delay of logic blocks and interconnects for an unmapped
circuit. This is a major limitation because timing problems and
achieving minimum system delay are very important for large
complex designs which would typically be partitioned over multi-
ple FPGAs. After technology mapping, the partitioner can take into
account the target FPGA technology specific details such as total
logic block count, the routing resources associated with each group
of logic blocks assigned to each partition, and the actual timing
information during the partitioning process. Hence, the partitioning
process should follow the technology mapping stage.

Several approaches partition technology-mapped FPGA cir-
cuits onto multiple chips using multi-way netlist partitioning strat-
egies [1,2,10]. These strategies only minimize the nets cut between
partitions and do not understand the notion of distance between
partitions. Thus, these methods cannot be deployed successfully to
this problem since issues such as total wire length and the length of

http://crossmark.crossref.org/dialog/?doi=10.1145%2F201310.201333&domain=pdf&date_stamp=1995-02-15

critical signal paths cannot be controlled. Minimization of the
number of pinouts on a partition is just one of the several impor-
tant objectives of an MFS partitioning system. A cone partition-
ing/clustering approach [4] was used to partition Actel mapped
FPGAs. Though this approach has the potential to minimize the
critical paths while clustering, the path delay in this method can be
calculated only based on intrinsic delay of the logic blocks. With-
out maintaining physical positions of the components during parti-
tioning, it is difficult to estimate any routing delay which is an
important component of the total delay of a path. Thus, timing
cannot be ascertained accurately enough to be useful.

We therefore propose a rectilinear partitioning solution to the
MFS partitioning problem which maintains the relative position of
the partitions with respect to each other and thus maintains physi-
cal positions of the logic blocks during partitioning. This approach
efficiently and accurately handles timing specifications. The signal
path delays are estimated during partitioning using a timing model
which combines all the possible delay factors involved in a system
with multiple FPGA-based chips of a target technology. No previ-
ous work has offered a complete timing-driven model. We have
incorporated a new dynamic net-weighting scheme to minimize
the number of pin-outs for each chip. In order for each of the
FPGAs to be placed and routed independently, pin assignment is
performed on the I/O frames of each FPGA after partitioning. We
have developed a graph-based global router for pin assignment
which can handle the pre-routed connections of our MFS struc-
ture. Using the performance optimization capabilities in our
approach, we have successfully partitioned these benchmarks sat-
isfying the critical path constraints and achieving a significant
reduction in the longest path delay. An average reduction of 17%
in the longest path delay was achieved at the cost of only 5% in
total wire length. Although our main interest was not minimizing
the total dollar cost of FPGAs used, our results have outperformed
the only results [1] which are available on the Xilinx mapped
MCNC benchmarks by 7.5% in cost.

Our MFS partitioning system consists of two main phases:
multi-FPGA partitioning and pin assignment, as shown in Figure
2. This paper is organized as follows. In section 2, we will discuss

the previous work related to FPGA partitioning. In section 3, we
describe the general features of our simulated-annealing based
partitioning algorithm. Our new method of explicitly minimizing
the number of chip-level I/Os is presented in section 4. Our new
timing-driven capability specifically for multiple FPGA systems is
described in section 5. The pin assignment stage is described in
section 6. We present the results of the MCNC partitioning bench-
marks in section 7. We conclude in section 8.

2 Previous Work

A review of general approaches to partitioning can be found in
[16]. The earliest partitioning work specifically targeted for multi-
ple FPGA partitioning approach was reported by Thomaeet al
[10]. They developed the Anyboard rapid prototyping system for
digital hardware designs consisting of the Anyboard PC card made
of multiple Xilinx FPGAs. A recursive mincut algorithm extended
with additional FPGA constraints in which the total dollar cost of
the FPGA devices was minimized for a set of Xilinx mapped
ISCAS benchmarks was proposed in [1]. Another multiple FPGA
partitioning approach based on group migration was proposed in
[2]. This approach explicitly used the pin constraints during parti-
tioning. Motivated by the new challenge of multiple FPGA parti-
tioning, a gate replication technique was proposed to reduce the
cut size of partitions [3]. A cone partitioning/clustering approach
[4] was used to partition Actel mapped FPGAs and demonstrated
better results than the classical mincut algorithm. This approach

Multi-FPGA Partitioning

Pin Assignment

Fig.2 The MFS Partitioning System.

has the potential to minimize the critical paths while clustering.
Several approaches applicable to technology mapping of logic cir-
cuits onto FPGA technologies have capability of performance
optimization during partitioning of logic circuits [5, 6, 7, 8]. How-
ever, the path delay in the above methods can be calculated only
based on intrinsic delay of the logic blocks.

Several commercial vendors have developed tools for parti-
tioning FPGAs. The Prism software tool [12] from NeoCAD pro-
vides an environment to perform timing-driven partitioning over
multiple FPGAs. InCA has an FPGA partitioner named Concept
Silicon [13] which partitions an FPGA or PLD netlist onto multi-
ple FPGAs. Quickturn’s RPM emulation system [14] creates a
hardware prototype from an ASIC or full-custom chip netlist. A
hierarchical partitioner is used to partition the design over as many
FPGAs as necessary.

3 Simulated-Annealing based Multiple FPGA
Partitioning

The need to handle signal path timing constraints on very large
designs forces us to base our MFS partitioning algorithm on a
derivative of simulated annealing. Each chip in thisN-(multiple)
FPGA combination is considered a partition and each partition is
subdivided into bins. Figure 3 shows an example of bin configura-
tions for an MFS with six FPGAs. During the partitioning process,
a component to be partitioned will move from bin to bin. Its loca-
tion at any instant is taken to be the center of the bin to which it
currently belongs. The finer the grid the cut lines produce, the
higher the number of bins they generate. A large number of bins
make the wire length calculations more precise, especially with
respect to timing. However, with a large number of bins, the search
space for component moves is large. This makes annealing more
expensive in terms of CPU time. An effective trade-off between
the accuracy of wire length and CPU time was obtained by using a
number of bins on the order of four per partition on average. For

new state generation, the algorithm only picks moves which are
feasible in order to condense the search space of new states. The
feasibility of a move is determined in terms of a pre-defined target
utilization for each FPGA in the MFS structure. The system-level
pin assignment or pad placement must be performed with respect
to direct I/O connectivity of the logic blocks and thus is performed
simultaneously during partitioning. The new state generation func-
tion picks moves which involve both logic blocks and system I/O
pads in order to accomplish pad placement at the same time as the
MFS partitioning. The annealing schedule used is a statistically
derived schedule proposed by Lam [15]. We have formulated a
new cost function which explicitly minimizes cutsize and thus
number of I/Os on each FPGA and handles FPGA specific delay
models to minimize the critical timing paths.

The cost function consists of two terms as shown in (1). The
first term is the total weighted wire length, represented byW. The
second term is the timing penalty function, represented byPt.

(1)

4 Dynamic Net Weighting Scheme

At the end of partitioning, it is desirable to obtain the lowest num-
ber ofpin-outs or I/Os possible for each chip, since there are a lim-
ited number of chip level I/O slots. If each net has the same

Clusters of logic blocksSystem pad assigned
System I/O slots

to I/O slot

Cut line

Fig.3 Physical definition of the MFS partitions.

Partitions/FPGAs Bins

C W Pt+=

weight, minimizing the total wire length would not generally min-
imize the number of I/Os. We therefore introduce a new dynamic
net-weighting scheme which minimizes the number of pin-outs. In
our scheme, nets which traverse two adjacent bins but are in two
different chips (e.g. N2 in Figure 4) must be penalized more than
nets which traverse two bins in a single chip(e.g. N1). Thus, our a
net-weighting scheme is guided by the number of I/O’s a signal
needs if the net traverses more than one chip. The nets which are
restricted to one chip, or thesingle-chip nets, do not need any I/Os
and thus have a weight equal to 1.

Figure 5a) shows the situation when a net traverses two adja-
cent chips. This net needs at least two I/Os to make the connection
between the two chips. Figure 5b) shows a net which traverses
four chips and needs at least six I/Os. For each net topology
encountered in a given MFS, integral weights are designed
depending on the number of I/Os the net needs for inter-chip con-
nections. The number of inter-chip connections, , is computed
from the number of edges required to connect the net by the recti-
linear minimum spanning tree. The weight of a net,n, is

. A constant, , increases the differences in
weight from thesingle-chip nets. We use . We use an effi-
cient bit manipulation technique to update the net weights dynam-
ically during annealing. A look-up-table is maintained to store the
weights for each net topology in an MFS. At any point during the
annealing, the new topology of a moved net is determined and the
corresponding weight is looked up and used to compute the
weighted wire length. The summation of the half perimeters of the
nets weighted by the dynamic net weight is the total weighted wire
length, (as in (2)) for a particular configuration of cells.W is given
by:

, (2)

whereSx(n) andSy(n) are the width and height of the minimum
bounding rectangle of the net, respectively, andwn is the weight of
netn.

5 Timing Penalty

The timing penalty in the cost function is calculated based on the
slacks in the critical paths. A critical path may consist of several
nets. The timing penalty is minimized dynamically during parti-
tioning. We will first describe the propagation delay model for a
timing path over multiple FPGAs. Based on this model, we will
define the timing penalty.

The total delay on a path over multiple FPGAs is the sum
of the delay generated in the configurable logic blocks (CLBs) in
each chip, , and the total interconnect delay, .

(3)

 is the sum of the constituent net routing delays, ,
due to theintra-chip andinter-chip connections of the net.

N2

Chip1 Chip2

Chip4 Chip5

N1

N2 N2

N1

Chip3

Chip6

Fig.4 Comparing two nets of same length but
different weights.

IOn

wn 2IOn= K+ K
K 2=

Chip1 Chip2

Chip4 Chip5
a)

Fig.5 Net weighting scheme.

Chip3

Chip6

Chip1 Chip2

Chip4 Chip5
b)

Chip3

Chip6

W Sx n() Sy n()+() wn⋅
n 1=

Nn

∑=

p

TL p() TR p()

Tpd p() TL p() TR p()+=

TR p() TR n()

(4)

Logic Delay: The total logic delay of a path is:

, (5)

where is the number of logic levels or depth of the particular
critical path. is the intrinsic delay of the CLB. For a given
technology and CLB design of an FPGA, is constant and
independent of the configuration, number of inputs and outputs.

Routing Delay: The total routing delay of a net , , is the
sum of the delay due to the intra-chip, , and inter-chip con-
nections, , of a net.

(6)

Intra-chip routing delay: is a function of: the routing
architecture of the FPGAs used, fanout of a connection, length of a
connection, the process technology, and the programming technol-
ogy. The two main components of are delay due to the
switches in the interconnect path and the parasitics of the wire seg-
ments. The delay due to the switches can be modeled for a particu-
lar programming technology and the number of switching stages
between CLBs in the routing architecture as shown in [20]. (For
the anti-fuse technology and single segment routing, the number of
switches between two logic blocks were taken to be 2 and the RC
model was formed accordingly in [20]). The total switching delay
including the parasitics seen by the wire segments (used by the
net) can be modeled as a lumped RC:

(7)

 is the equivalent drive resistance or the switching ON resis-
tance and is the total load capacitance seen by the driver.

 consists of the gate input capacitance, , and the parasitic
capacitance, , of the wire segments used to form the intercon-
nection. depends on the process technology used for the wiring
segments and can be computed using the lumped capacitance
model and is proportional to wire length. The wire length of a net
can be estimated at the partitioning stage using the half-perimeter
bounding box:

(8)

 and are the capacitances (per unit length) of the vertical
and horizontal tracks or busses in the routing architecture. Thus (7)
can be expanded as:

(9)

Inter-chip routing delay : In addition to the delay in the FPGA
chips, a net acquires an additional delay when it crosses the chip
boundaries. Depending on the type of MFS, MCM or PCB, the
modeling of an interconnect between two chips will differ [18].
Interconnect wires on PCBs are usually wider (60-100) and
thicker (30-50) than thin-film MCMs (where the wire width is
in the range of 10-25 and thickness 5-8). Figure 6 shows
a generalized model for the interconnect of an inter-chip connec-
tion in an MFS following the macro-model described in [18]. The
model consists of a transmitter capacitance, receiver capacitance
and a transmission line modeling the wire segment in between
them. The capacitor at the driving end, , models the output
capacitance of the driver and the pad capacitance of the chip on the
MFS, while the capacitor on the receiving end, , consists of the
input capacitance of the receiver and the pad capacitance of the
receiver. PCB interconnects usually have low resistance per unit
length and thus behave like distributed LC transmission lines
(lossless). These lines are generally terminated with a resistor that
matches the characteristic impedance, Zo, to avoid reflections. The
total resistance of MCM interconnect lines is comparable to the
characteristic impedance (which depends on the structural proper-
ties of the substrate) and are thus lossy. MCM interconnect lines
are usually unterminated [19]. The inductance of the chip-to-MCM
bond is assumed to be negligible which is typical for flip-chip-
attached integrated circuits. The line parametersR, L, andC of the
MFS interconnect will depend on the material properties such as
the dielectric constant of the insulator (), the resistivity of the
metal (), the permittivity () of free space and the line geometry
of the wire.

Based on this model, the delay for a chip-to-chip intercon-
nect, , appropriate to the particular MFS is pre-computed. We
assume that a net which connects to more than one chip will be
connected by the shortest path tree between the chips and we let

TR p() TR n()
n p∈
∑=

p

TL p() ND TCLB⋅=

ND TCLB TCLB

n TR n()
TS n()

TM n()
TR n() TS n() TM n()+=

TS n()

TS n()

TS n() RSWCSW RSW Cg Cp+()= =

RSW CSWCSW CgCpCp

Cp CxSx n() CySy n()+=

Cx Cy

TS n() RSWCg RSW CxSx n() CySy n()+[]+()=

µ 'm
µ 'm

µ 'm µ 'm

CD

CL

ε
ρ µ

TCC

 be the number of inter-chip connections a net requires under
this assumption. In our MFS modelling, the spacing between the
chips in Figure 7 is comprised of inter-chip connections which run
perpendicularly to the cell edges. Hence, the total inter-chip con-
nection delay for a net is:

(10)

The total path delay over all nets is:

The total timing penalty is computed as the sum of the penalties
over all specified critical paths. For each critical timing path, the
user supplies an upper bound and a lower bound
on the required arrival times. The penalty assigned for a pathp is
the amount the delay deviates from satisfying the bounds.

The total timing penalty is the sum of the penalties for all the criti-
cal paths specified.

6 Pin Assignment

In this section we will describe the second phase of the partition-
ing system. At the end of annealing, the system-level I/Os have
been placed and each partition contains unplaced logic blocks.
Following the rectilinear partitioning of the netlist, each of then
partitions (FPGAs) are converted into complete and independent
layout problems in this phase. Pin assignment is performed on the
chip-level I/O frames so that the chips in the MFS can be intercon-
nected consistently using the pre-wired connections between the
chips and those between the chips and system I/Os. This phase is
mandatory for MFS partitioning in order to make the application
complete. The signals which cross one or more chip boundaries
areexternal signals. Given the total number of pin-outs for each
partition, the objective is to assign the external signals to the chip
level I/O’s in a way such that there is no overflow.

We employ a graph-based global router in this phase. An
example of the global routing graph for an MFS is shown in
Fig.10a. A node is placed at the center of each bin. In order to
route nets which connect pad pins, additional nodes are defined
outside the MFS core as shown. All rectilinearly adjacent node
pairs inside the core are connected by edges. However, to avoid
route segments connecting adjacent pads, the edges connecting the

Transmitter Receiver

Transmission Line

....
CL

R L
CCD

Zo

Fig.6 The inter-chip interconnect structure
and the circuit used in delay modeling.

Tcc

TccTcc
Chip1 Chip2

Chip4 Chip5

Chip3

Chip6

Fig.7 Inter-chip connection delay.

IOn

TM n() IOn TCC⋅=

Tpd p() TL p()=

RSWCg RSW CLh
Sx n() CLv

Sy n()++
 
  IOn TCC⋅+

 
 

n p∈
∑+

Tub p() Tlb p()

P p()

Tpd p() Tub p()– if Tpd p() Tub p()>

Tlb p() Tpd p()– if Tpd p() Tlb p()<

0 otherwise





=

Pt P p()
p 1=

Np

∑=

nodes which represent pads are excluded from the graph. A capac-
ity is assigned to each edge. The edges which intersect any chip
boundary are assigned a capacity equal to the number of pre-
placed interconnect wires or I/O slots available on that boundary
within the range of that edge. All internal edges are assigned a
large capacity to encourage the router to use these edges over the
external edges if possible. Initially, the weight of an edge is equal
to the length of the edge.

The global router seeks the shortest possible routes while
minimizing the overflow over available routing resources. The glo-
bal routing algorithm is shown in Figure 8. Initially, the shortest
path routes are found for all external signals. Based on these
routes, the total overflow is calculated. The function
Update_edge_weight is used to update the weights of the edges
with overflow. Routes which use edges with overflow are dis-
carded and the corresponding signals are re-routed using an itera-
tive rip-up and re-route scheme. The pseudo-code for generating a
route for a net is shown in Figure 9.

Pin assignment is performed based on the final routes given
by the global router for the external signals as shown in Fig.10b.
For each route obtained for a net, we generate an I/O pin at each
intersection of a chip boundary and a route segment. Let a net con-
sisting of logic blocks inChip1, Chip2, Chip3 andChip4 be routed
using the T-shaped route as shown in Fig.10a). I/O pinsa, b andc
are assigned at each of the intersection points of the route seg-
ments with the chip edges. Pina is assigned toChip3 andChip2,
pin b is assigned toChip1 andChip2 and pinc is assigned toChip2
andChip4. Since the routes follow the grid lines, a group of pins
are likely to be produced at the same intersection point if several
nets share that segment. In such cases, the pins are assigned in the
same order on a shared chip boundary. N independent layout prob-
lems are created at the end of the global routing/pin assignment,
such that they can be independently placed and routed.

Fig.8 Global Routing Algorithm.

Set of external nets: ; Set of edges with overflow ;
Set of routes for net :
Algorithm Global_Route_for_Pin_Assignment

for all
 = generate_a_route(, 0);

; /* add to the set of routes for net */
Calculate overflow on all edges and form ;
Main_iteration = 0;
While (total overflow > 0 OR Main_iteration≤ MaxIteration)

for all
Update_edge_weight();

for all
for all

 = generate_a_route(, Max_improve);
;/* add to the set of routes for net */

Random_interchange();
Increment Main_iteration;

Subroutine Update_edge_weight(edge)
if overflow(edge) > 0

weight(edge) = ;
else

weight(edge) = length(edge);
Subroutine Random_Interchange(Rand_Iteration)

iteration = 0;
While (iteration < Rand_iteration)

Randomly pick a net ;
Randomly pick a route ;
Estimate total overflow with in place of current route();
if (total overflow decreases)

current route() = ;
update ;

Increment iteration;

Nex Eo
n Rn

n N∈ ex
r n
Rn Rn r∪= n

Eo

e E∈ o
e

e E∈ o
n e∈

r n
Rn Rn r∪= n

Main_iteration Nex⋅

∞

n N∈ ex
r R∈ n

r n

n r
Eo

7 Results

Our MFS partitioning system,MFSP, has been developed in C
with an X11 graphics interface. Although the implementation and
formulation of MFSP was general, we used MFS structures con-
sisting of Xilinx FPGAs to demonstrate its effectiveness. We used
the MCNC partitioning93 benchmarks which were the ISCAS
benchmark circuits mapped onto the Xilinx 3000 series devices.
The parameters for the five classes of the XC3000 device family
we used in our experiments are shown in Table 1. CLB represents
the number of configurable logic blocks and IOB represents the
number of I/Os in each device. The cost in dollars is normalized to
the smallest device and shown in the last column. The characteris-
tics of the mapped ISCAS circuits are shown in Table 2.

Performance Optimization
We first tested the timing-driven capabilities of the partitioner on
the MCNC benchmark circuits. Multiple FPGA configurations
using Xilinx devices on a PCB were used to obtain these results.
The critical path constraints for MFSP are normally user-specified.
Due to lack of any standard timing constraints available for these
benchmarks, we conducted the following experiment to verify the

Fig.9 Subroutine Generate_a_route for a net.

Set of pins for net : ; Set of trees for net :
Subroutine Generate_a_route(netn, Max_improve)

Make each node corresponding to a tree and
form ;

while ()
Find a shortest cost path between two nodes, and

 and ;/* and
*/

Merge the trees and path into one tree ;
;

if (Max_improve > 0) Improve_route_tree(,
Max_improve);

return ();

Subroutine Improve_route_tree(T, Max_improve)

iteration = 0;
while (iteration < Max_improve)

Select a random edge ;
Create a path by tracing to nodes with degree

;
Create two trees and by removing from ;
Find the shortest cost path between two nodes

 and ;
If cost() < cost() then ;
else ;
Increment iteration;

n P n() n T n()

pin P∈ n()
T n()

T n() 1>
p vivj

vi Tk∈ vj Tl∈ Tk T n()∈
Tl T n()∈

Tk Tk Tl p+ +=
T n() T n() Tl–=

T n()

T n()

e T∈
p1 e

d 2>
T1 T2 p1 T

p2vi T1∈ vj T2∈
p2 p1 T T1 T2 p2+ +=

T T1 T2 p1+ +=

Node
Edge
Chip boundary

Route segment
Assigned pin

b)

Chip3

Chip1 Chip2

Chip3

Chip2
Chip1

Chip4

Chip4

a

b c

a)

Fig.10 a) A global route on the graph. b) Pin
assignment based on a route.

effectiveness of the timing penalty of the partitioner. For each cir-
cuit we first used MFSP to find a partitioning without imposing
any delay bounds. Using the nominal net lengths obtained from
this run, we extracted (in order) them most delay critical primary
input (PI) to primary output (PO) pin pairs. (The value ofm was
limited so as to not more than double the overall CPU time versus
the case when no delay bounds are imposed. We verified that none
of the non-included pin pairs gave rise to a critical delay at the
conclusion of the partitioning).

We extract the current longest path between these pins. These
constitute the set of critical paths used in our timing penalty func-
tion described in section 5, and we impose the delay bound on
these paths. Because a particular critical path may not always be
the critical path for a pair of pins, we update the set of critical
paths once every iteration during the course of the annealing based

partitioning.

We compared the results with the timing penalty deactivated
versus the results obtained with the timing penalty activated for
each circuit. In Table 3 we have shown the number of paths which
were within specifications and the number of paths which were
outside the specifications in both cases. Column 1 shows the vector

Table 1 Devices used from Xilinx 3000 series.

Device Type No. CLB IOB Cost ($)

XC3020xx-xx 1 64 64 1.00
XC3030xx-xx 2 100 80 1.36
XC3042xx-xx 3 144 96 1.84
XC3064xx-xx 4 224 110 3.15
XC3090xx-xx 5 320 144 4.83

Table 2 XC3000 mapped ISCAS circuits.

Circuits CLBs #nets IOB
s #pins

c1355xc3 70 115 73 399
c1908xc3 116 191 58 683
c2670xc3 150 361 221 1006
c3540xc3 283 489 72 1645
c5315xc3 377 699 301 2409
c6288xc3 833 1472 64 3438
c7552xc3 489 921 313 2924
s1196xc3 143 226 30 850
s1238xc3 158 251 30 934
s1423xc3 112 188 24 647
s5378xc3 381 628 86 2332
s9234xc3 454 716 43 2671
s15850xc3 915 1377 154 4977
s13207xc3 842 1265 102 5309
s38584xc3 2901 3884 292 17483

Table 3 Performance driven partitioning.

Circuits #FPGAs
used

#
Critical
 PI/PO
pairs

No constraints With
constraints

Within
 Spec.

Outside
 Spec.

Within
 Spec.

Outside
 Spec.

c1355 {2,0,0,0,0} 100 100 0 100 0
c1908 {2,0,0,0,0} 100 53 47 100 0
c2670 {0,0,4,0,0} 100 97 3 100 0
c3540 {0,0,3,0,0} 81 50 31 81 0
c5315 {0,2,2,0,0} 540 32 508 540 0
c7552 {0,0,4,0,0} 450 108 342 450 0
s1196 {0,2,0,0,0} 110 28 82 110 0
s1423 {2,0,0,0,0} 40 24 16 40 0
s1238 {0,2,0,0,0} 67 46 21 67 0
c6288 {0,0,0,6,0} 81 53 28 81 0

which accounts for the number and type of devices used with the
vector index corresponding to the type number in Table 1. Using
our timing penalty function, MFSP successfully partitioned these
circuits satisfying the timing constraints in all cases. As shown in
Table 4 in all the circuits, MFSP achieved a significant reduction
in the longest path delay by using the timing penalty function. The
average reduction was 17%. These results were obtained at the
cost of 17% in nets cut and 5% in wire length on average.

We also verified the effectiveness of the performance optimization
capabilities in MFSP. Since we do not have available a tool which
can determine the actual delays over a multiple-chip combination
on a PCB, we determined the longest path delay for each chip
using the Xilinx tools and summed these to obtain a worst-case
upper bound on delay. When we ran MFSP on circuit c3540xc3
with no critical path constraints, the upper bound on the actual
delay corresponds to point P in Figure 11. We then ran MFSP four
additional times, the first time with the nominal delay bound (cor-
responding to point S) and then reducing (or tightening) the criti-
cal path delay bounds (by 12%, 25% and 30%). Notice from
Figure 11 that the initial application of the delay bounds reduces
the upper bound on the actual delay by 5% and then that each step
of tightening the bounds monotonically reduces the upper bound
yet further, ultimately by 24%. We have therefore shown that a
monotonic tightening of the delay bounds in MFSP corresponds to
a monotonic reduction in the upper bound on the actual delay of a
placed and routed multiple FPGA system.

Cost Comparison
The only other partitioner for this problem whose results are avail-
able for this set of benchmarks isNC from North Carolina State
University [1]. This approach minimized the total dollar cost of
devices used to implement a circuit onto multiple FPGAs. Though
we do not explicitly minimize the dollar cost of devices used, we
used MFSP to partition the nine largest circuits from Table 2 to
compare our costs with NC. Each circuit was partitioned inton
FPGAs on an MFS structure. The output of MFSP isn circuit.map
files corresponding to the n FPGAs. Each of the FPGAs was
placed and routed using the automatic placement and routing tools

Table 4 Performance driven partitioning.

Circuits
Critical

PI/PO
pairs

Increase
(nets cut) %

Increase
(wire

length) %

Reduction
(longest
path)%

c1355 100 5 3.4 30
c1908 100 22 4.5 21
c2670 100 3 3.7 7
c3540 81 16 1 10
c5315 540 8.6 1.6 30
c7552 450 26 12 32
s1196 110 17 3.2 19
s1423 40 23 8.6 12.5
s1238 67 24 5.6 3
c6288 81 23 2.6 4

Upper Bound on Actual Delay
Upper Bound on Constraints

D
el

ay
 n

or
m

al
iz

ed

1 2 3 4 50.4

0.6

0.8

1.0

-5%

-17% -22% -24%

-12%

-25%
-30%

0%S

No constraints

B
ou

nd
 n

or
m

al
iz

ed

0.6

0.8

1.0
P

0.4

Fig.11 Delay reduction with constraint tighten-
ing on the circuit c3540xc3.

from Xilinx, apr, which was executed in the default mode. We
present the partitioning results in Table 5. Column 2 shows the dis-
tribution of the Xilinx devices used in each case. Note the distribu-
tion of the devices is determined by using the minimum size
device which would fit each partition obtained from our program.
We note the total dollar cost of devices used by each circuit in col-
umn 3. The average CLB and IOB utilizations are listed in col-
umns 4 and 5 respectively. For all partitions for each circuit, we
obtained 100% routable FPGA chips. The total CPU time required

the on the largest circuit s38584 is less than 45 minutes on a DEC
5000. Note this includes the CPU time required for automatic sys-
tem pad placement and the pin assignment stage.

We show the results from [1] in Table 6. Although our
approach does not explicitly minimize the total dollar cost of
devices used, we improved the cost by 7.5% on average over NC.
We also compared our cost with the theoretical lower bound of
cost calculated in [1] by an integer programming technique,
lp_solve. Although it may be unrealistic to expect that we can
achieve the lower bounds of cost obtained fromlp_solve which
had no constraints on the terminals or pinouts on a partition nor on
the number of nets cut between partitions, on average our approach
achieved only 7% higher cost than the theoretical lower bound.
Figure 12 compares the costs between the lp_solve, MFSP and NC
programs.

However, in addition to the dollar cost, the average CLB uti-
lization (total number of CLBs in a circuit divided by the total
capacity of the FPGAs used) and average IOB utilization (total
number of IOBs required by the partitions divided by the total
number of IOBs on the FPGAs used) are two important factors
which reflect on the effectiveness of a partitioner. In Figure 13 we
compare our average CLB and IOB utilization with the results
from NC. For all circuits except s15850, MFSP achieved higher
utilization than NC. On average the improvement was 7% in CLB
utilization. IOB utilization achieved was 7.5% higher than NC on
average. But since all the partitions obtained from MFSP were
hundred percent routable, the additional usage of IOBs is not a dis-
advantage.

8 Conclusions

We have presented a new multiple FPGA partitioning system. This
approach efficiently and accurately handles timing specifications.
The signal path delays are estimated during partitioning using a
timing model which combines all possible delay factors in a sys-

Table 5 MFS partitioning results.

Circuits Device
distribution

Total
cost

CLB
utilization

IOB
utilization

c3540 {0,2,1,0,0} 4.56 0.84 0.95
c5315 {0,2,2,0,0} 6.4 0.77 0.92
c6882 {0,0,4,2,0} 13.66 0.81 0.68
c7552 {0,0,4,0,0} 7.36 0.85 0.90
s5378 {0,3,1,0,0} 5.92 0.86 0.90
s9234 {0,1,3,0,0} 6.88 0.85 0.91
s13207 {0,0,0,2,2} 15.96 0.81 0.89
s15850 {0,0,5,0,1} 14.03 0.81 0.85
s38584 {2,10,0,0,7} 49.41 0.86 0.58

Table 6 Cost Comparison with [1].

Circuits
NC MFSP Cost

Reduction
 (%)

Device
distribution

Total
cost

Device
distribution

Total
cost

c3540 {0,0,3,0,0} 5.52 {0,2,1,0,0} 4.56 17
c5315 {2,1,2,0,0} 7.03 {0,2,2,0,0} 6.4 9
c6882 {0,0,4,2,0} 13.66 {0,0,4,2,0} 13.66 0
c7552 {0,0,4,0,0} 7.36 {0,0,4,0,0} 7.36 0
s5378 {0,0,1,0,1} 6.67 {0,3,1,0,0} 5.92 11
s9234 {0,0,0,1,1} 7.98 {0,1,3,0,0} 6.88 14
s13207 {3,5,4,0,0} 17.16 {0,0,0,2,2} 15.96 7
s15850 {0,0,2,2,1} 14.80 {0,0,5,0,1} 14.03 5
s38584 {0,5,15,4,1} 51.83 {2,10,0,0,7} 49.41 5

tem with multiple FPGA-based chips of a target technology. Fur-
thermore, we have incorporated a new dynamic net-weighting
scheme to explicitly minimize the number of chip-level I/Os.
Finally, we have developed a graph-based global router for pin
assignment which can handle the pre-routed connections of our
MFS structure. Using the performance optimization capabilities in
our approach we have successfully partitioned these benchmarks
satisfying the critical path constraints and achieving a significant
reduction in the longest path delay. An average reduction of 17%
in the longest path delay was achieved at the cost of 5% in total
wire length. We have proved the effectiveness of the performance
optimization technique by verifying the timing predictions of our
partitioner with the actual delays obtained after placement and
routing of a partitioned MFS. In comparison to the only other par-
titioning system which was applied to the Xilinx mapped MCNC
benchmarks [1], we produced partitioned results with 7.5% lower
total dollar cost.

In order to overcome the pin limitations in a multiple FPGA
structure, several new interconnect designs for inter-FPGA com-
munications have been proposed [9,14,21,22,23]. The rectilinear
nature of MFSP, makes it very appropriate for application in these
high performance prototyping environments. The graph used by
the global router in the pin assignment stage needs to be appropri-
ately modified to accommodate new interconnect patterns. Hence
future work will be directed toward accommodating new MFS
designs with new interconnect wiring designs.

9 References

[1] R. Kuznar, F. Brglez, and K. Kozminski, “Partitioning Digital
Circuits for Implementation in Multiple FPGA ICs,” Technical
Report TR93-03, MCNC, 1993.
[2] N. Woo and J. Kim,“ An Efficient Method of Partitioning cir-
cuits for Multiple-FPGA Implementation”, Proceedings of Design
Automation Conference, pp. 202-207, 1993.
[3]J. Hwang and A. E. Gamal, “Optimal Cell Replication”,Pro-
ceedings of IEEE International Conference on Computer-Aided
Design, pp. 432-435, November 1992.
[4] G. Saucier, D. Brasen, and J. P. Hiol, “Partitioning with Cone
Structures”,Proceedings of IEEE International Conference on

Fig.12 Comparison of total cost of devices used.

2.5

12.5

22.5

32.5

42.5

52.5
lp_solve

MFSP
NC

c3
54

0

c5
31

5

c7
55

2

s5
37

8

c6
28

8

s9
23

4

s1
32

07

s1
58

50

s3
85

84

Fig.13 CLB Utilization and IOB utilization.

0.0

0.2

0.4

0.6

0.8

1.0

c3
54

0
c5

31
5

c7
55

2

s5
37

8

c6
28

8

s9
23

4
s1

32
07

s1
58

50
s3

85
84

MFSP
NC

c3
54

0

c5
31

5

c7
55

2

s5
37

8

c6
28

8

s9
23

4
s1

32
07

s1
58

50
s3

85
84

0.0

0.2

0.4

0.6

0.8

1.0

IOB utilizationCLB utilization

Computer-Aided Design, pp. 236-239, November 1993.

[5] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“On Clustering for Minimum Delay/Area,”Proceedings of IEEE
International Conference on Computer-Aided Design, pp. 6-9,
November 1991.

[6] R. Rajaraman and D. F. Wong, “Optimal Clustering for Delay
Minimization”, in Proceedings of Design Automation Conference,
1993, pp. 309-314.

[7]P. Sawkar and D. Thomas, “Performance Directed Technology
Mapping for Look-up table based FPGAs”, inProceedings of
Design Automation Conference, 1993, pp. 208-212.

[8]J. Cong and Y. Ding, “On area/depth trade-off in LUT-based
FPGA technology mapping”, inProceedings of Design Automa-
tion Conference, 1993, pp. 213-218.

[9] P. K. Chan, M. Schlag, and M. Martin, “BORG: A Reconfig-
urable Prototyping Board for FPGAs,” FPGA 92, First Interna-
tional ACM/SIGDA Workshop on Field Programmable Gate
Arrays, 1992, pp. 47-51.

[10] D. Thomae, T. Petersen, and D.E. Van den Bout, “The Any-
board Rapid Prototyping Environment,” in Carlo H. Sequin, editor,
Advanced Research in VLSI, pp. 356-370, MIT Press, 1991.

[11] W. O. Mcdermith, “A Bottom-Up Approach to FPGA Parti-
tioning,” in Proc. IEEE Custom Integrated Circuit Conference,
1992, pp. 5.4.1-5.4.4.

[12] K. Perry, “Eliminating Barriers to FPGA use by Timing
Driven Partitioning,” Electronic Engineering, Jan. 1993, pp. 41-
44.

[13] “Concept Silicon Partitions your Design onto Multiple
FPGAs,” Integrated Circuit Applications Pamphlet, InCA Inc.,
Campbell CA 95008, 1992.

[14] S. Walters, “Computer-aided Prototyping for ASIC-based
Systems,” IEEE Design and Test of Computers, June 1991, pp. 4-
10.

[15] J. Lam and J. M. Delosme, “Performance of a New Annealing
Schedule,” in Proc. 25th Design Automation Conference, 1988,
pp. 306-311.

[16] K. Roy and C. Sechen, “A Timing DrivenN-way Chip and
Multi-Chip Partitioner”,Proceedings of IEEE International Con-
ference on Computer-Aided Design, pp. 240-247, November 1993.

[17] S. Singhet al., “Optimization of Field Programmable Gate
Array Logic Block Architecture for Speed,” inProc. IEEE Custom
Integrated Circuit Conference, 1991, pp. 6.1.1-6.1.6.

[18] A. I. Kayssi and K. A. Sakallah, “Delay Macromodels for
Point-to-Point MCM Interconnections,” inProc. IEEE Multi-chip
Module Conference, 1992, pp. 79-82.

[19] C. W. Hoet al., “The Thin-film Module as a High Perfor-
mance Semiconductor Package,” inIBM J. Res. Develop, 26,
1987, pp. 286.

[20] J. L. Kouloheris and A. E. Gamal, “FPGA Performance ver-
sus Cell Granularity,” inProc. IEEE Custom Integrated Circuit
Conference, 1991, pp. 6.2.1-6.2.4.

[21] I. Dobbelaere, “Peripheral Circuit Design for Field Program-
mable MCM Systems,” inProc. IEEE Multi-chip Module Confer-
ence, 1992, pp. 119-22.

[22] R. Guoet al., “A 1024 Pin Universal Interconnect Array with
Routing Architecture”,Proc. Custom integrated Circuits Confer-
ence, 1992, pp.4.5.1-4.5.4.

[23] J. Babbet al., “Virtual Wires: Overcoming Pin Limitations in
FPGA-based Logic Emulators”,IEEE Workshop on FPGAs for
Custom Computing machines, Napa, CA, April 1993.

	Compendium95
	FPGA95
	Front Matter
	Table of Contents
	Session Index
	Author Index

