
Automatically Mining Program Build Information via
Signature Matching

Charng-Da Lu
Buffalo, NY 14203

Abstract

Program build information, such as compilers and li-
braries used, is vitally important in an auditing and bench-
marking framework for HPC systems. We have devel-
oped a tool to automatically extract this information using
signature-based detection, a common strategy employed
by anti-virus software to search for known patterns of data
within the program binaries. We formulate the patterns
from various ”features” embedded in the program bina-
ries, and the experiment shows that our tool can success-
fully identify many different compilers, libraries, and their
versions.

1 Introduction

One important component in an auditing and benchmark-
ing framework for HPC systems is to be able to report the
build information of program binaries. This is because the
program performance depends heavily on the compilers,
numerical libraries, and communication libraries. For ex-
ample, the SPEC CPU 2000 Run and Reporting Rules [2]
contain meticulous guidelines on the reporting of the com-
piler of choice, compilation flags, allowed and forbidden
compiler tuning, libraries, data type sizes, etc.

However, in most HPC systems, program build infor-
mation, if maintained at all, is recorded manually by sys-
tem administrators. Over time, the sheer number of soft-
ware/library packages of different versions, builds, and
compilers of choice can grow exponentially and become
too daunting and burdensome to document. For exam-
ple, at our local center we have software packages built
from 250 combinations of different compilers and numer-
ical/MPI libraries. On larger systems such as Jaguar and
Kraken at the Oak Ridge National Laboratory, the number
can be as high as 738 [13].

In addition, there is no standard format of document-
ing program build information. Many HPC systems use
Modules [3] or SoftEnv [4] to manage software pack-

ages, and a common naming scheme is to incorporate
the compiler name (as a suffix) in the package name.
There is usually additional textual description to indi-
cate build information, such as compiler version, de-
bug/optimization/profiling build, and so on. Mining these
free-form texts, however, requires the understanding of
each HPC site’s software environment and documentation
style and is not generally applicable.

In this paper, we present a signature-matching approach
to automatically uncover the program build information.
This approach is akin to the common strategy employed
by anti-virus software to detect malware: search for a set
of known signatures. We exploit the following ”features”
of program binaries and create signatures out of them:

• Compiler-specific code snippets.

• Compiler-specific meta data.

• Library code snippets.

• Symbol versioning.

• Checksums.

Our approach has several advantages. First, we only
need to create, annotate, and maintain a database of sig-
natures gathered from compilers and libraries, and we can
then run the signature scanner over program binaries to
derive their build information. Second, unlike the anti-
virus industry where the malware code must be identi-
fied and extracted by experts, our signature collection pro-
cess is almost mechanical and can be performed by non-
experts. Third, our approach does not rely on symbolic
information and thus can handle stripped program bina-
ries.

Our implementation is based on the advanced pattern
matching engine of ClamAV [11], an open-source anti-
virus package. We choose ClamAV for its open-source
nature, signature expressiveness and scanning speed.

The remainder of this paper begins by describing the
features in the program binaries. Section 3-4 provide the
implementation details and experimental results. We then

1

ar
X

iv
:1

30
2.

15
91

v1
 [

cs
.S

E
]

 6
 F

eb
 2

01
3

discuss potential improvement and related work in § 5-6,
followed by a conclusion in §7.

2 Program Binary Characteristics

On most modern UNIX and UNIX-related systems, the
executable binaries (programs and libraries) are stored in
a standard object file format called the Executable and
Linking Format (ELF) [5, 6]. An ELF file can be divided
into named ”sections,” each of which serves a specific
function at compile time or runtime. The sections rele-
vant to our work are:

• .text section contains the executable machine
code and is the main source for our signature iden-
tification.

• .comment section contains compiler and linker
specific version control information. More on this
in §2.2.

• .dynamic section holds dynamic linking informa-
tion, including file names of dependent dynamic li-
braries, and pointers to symbol version tables and re-
location tables.

• .rel.text and .rela.text sections consist of
relocation tables associated with the corresponding
.text sections. More details in §3.2.

• .gnu.version d section comprises the version
definition table. More on this in §2.4.

There is a wealth of information embedded in these sec-
tions, and in the following we explain these characteristics
in detail.

2.1 Compiler-Specific Code Snippets

It is not news that certain popular compilers on the Intel
x86 platform insert extra code snippets unbeknownst to
the developers [7]. We will illustrate with three examples.

The first example is the so-called ”processor dispatch”
employed by certain optimizing compilers. As the x86
architecture evolves with the addition of new capabilities
and new instructions such as Streaming SIMD Extensions
(SSE) and Advanced Vector eXtensions (AVX), an op-
timizing compiler will produce machine code tuned for
each capability. Since the new instructions are not rec-
ognized by older generations of x86 processors, to avoid
”illegal instruction” errors and to re-route the execution
path to the suitable code blocks, an extra code snippet is
inserted to perform this task.

Both Intel and PGI compilers, when invoked with opti-
mization flags enabled (and -O2 is used implicitly), in-
sert the processor dispatch code which is executed be-
fore the application’s main function. These code snip-
pets invariably use the cpuid instruction to obtain pro-
cessor feature flags. For example, the core processor
dispatch routine used by the Intel compiler is called
intel cpu indicator init. It initializes an in-

ternal variable called intel cpu indicator to dif-
ferent values based on the processor on which the pro-
gram is running [7]. This information is later used to ei-
ther abort program execution immediately, with an error
like ”This program was not built to run on the processor in
your system,” or execute different code blocks (tuned for
different generations of SSE instructions) in Intel’s opti-
mized C library routines such as memcpy and strcmp.

A second instance of compiler-inserted code is to en-
able or disable certain floating-point unit (FPU) features.
For example, when GCC is invoked with -ffast-math
or -funsafe-math-optimizations optimization
flags, it inserts code to turn on the Flush-To-Zero (FTZ)
mode and the Denormals-Are-Zero (DAZ) mode in the
x86 control register MXCSR. When these modes are on,
the FPU bypasses IEEE 754 standards and treats de-
normal numbers, i.e. values extremely close to zero,
as zeros. This optimization trades off accuracy for
speed [8]. The GNU C Compiler, GCC, also accepts
-mpc{32|64|80} flags, which are used to set the
legacy x87 FPU precision/rounding mode. Again, GCC
uses a special prolog code to configure the FPU to the re-
quested mode.

A third instance of compiler-inserted code is to initial-
ize user’s data. For example, one of the C++ language
features requires that static objects must be initialized, i.e.
their constructors must be called, before program startup
[9]. To implement this, the C++ compiler emits a special
ELF section called .ctors, which is an array of pointers
to static objects’ constructors, and inserts a prolog code
snippet which sweeps through the .ctors section before
running the application’s main function.

2.2 Compiler-Specific Meta Data

ELF files have an optional section called .comment
which consists of a sequence of null-terminated ASCII
strings. This section is not loaded into memory during
execution and its primary use is a placeholder for ver-
sion control software such as CVS or SVN to store control
keyword information. In practice, most compilers we ex-
amined will also fill this section with strings which are
unique enough to differentiate the compilers and the ver-

2

sions (see §4.1). The compiler adds string data by using
the .ident assembler directive when generating the as-
sembly code, and then the assembler pools these strings
and saves them into the .comment section. Unlike the
debugging and symbolic information embedded in other
ELF sections, the .comment section is not removed by
the GNU strip utility, so we can mine it to obtain the
compiler provenance.

For example, using the GNU readelf tool with
command-line option -p .comment on GCC-compiled
programs could have the following output:

GCC: (GNU) 4.1.2 20080704 (Red Hat 4.1.2-50)

2.3 Library Code Snippets

If a program calls library functions, the linker will bind the
functions to libraries to create the executable. The linking
mode is either static or dynamic. In the former, the linker
extracts the code of called functions from libraries, which
are simply archives of ELF files, and performs the relo-
cation (see §3.2) to merge the user’s code and the library
functions code into a single executable. In the latter, the
linker does not use any code from the libraries, but instead
creates proxy/stub code which can locate the entry point
of each called library function at runtime.

Static linking, although it has drawbacks such as code
duplication and is no longer the default mode of linking
on most platforms, is still used in cases where dynamic
linking is problematic. For example, unlike C, C++ and
Fortran do not have an agreed API and ABI (application
binary interface), so not only object files created by differ-
ent C++/Fortran compilers can seldom be linked together,
object files created by different versions of the same com-
piler are not guaranteed to interoperate either [14, 15] For
this reason, Fortran compilers in particular, tend to use
static linking. It is also not uncommon for independent
software vendors (ISVs) to ship only statically linked bi-
naries to avoid portability and library dependency issues.

On some platforms where the operating system is de-
signed to be simple and efficient, e.g. Cray XT’s Cata-
mount and IBM Blue Gene/L’s Compute Node Kernel
(CNK), dynamic linking is usually not an option and static
linking has to be used [17].

A third case for static linking is the aforementioned
compiler-specific code snippets. They exist as object files
or libraries and are almost always statically linked.

For all of above reasons, library code snippets are the
most important source of signatures in our program build
discovery tool.

2.4 Symbol Versioning
Some dynamic libraries are self-annotated with version
information in a uniform format, and we use this informa-
tion to identify both the library and its version.

As mentioned in §2.3, dynamic linking has the is-
sue of interoperability. Historically, this was partly
solved by having unique file names for the dy-
namic libraries. The file names usually incor-
porate major and minor release numbers, such as
lib<name>.so.<major>.<minor>. The linker
will then record the exact file names in the resulting bi-
naries’ .dynamic section. In 1995 Sun introduced a
new and fine-grained versioning mechanism in Solaris
2.5, which the GNU/Linux community soon adopted [12].
In this scheme, each function name and symbol can be as-
sociated with a version, and at the library level, a chain of
version compatibility can be specified. The version of the
library is then the highest version in the version chain.

As an example, in the GNU C runtime library (glibc)
source tree, one can find version definition scripts contain-
ing the following

libc { libc {
GLIBC_2.0 { GLIBC_2.0

malloc; GLIBC_2.1
free; ...
... GLIBC_2.10

} ...
... }
GLIBC_2.10 {

malloc_info;
}

}

The left-hand side specifies that malloc and free are
versioned GLIBC 2.0 and malloc info GLIBC 2.10.
The right-hand side indicates GLIBC 2.10 is com-
patible with GLIBC 2.1, which is compatible with
GLIBC 2.0. All of the versioning data are encoded in
the .gnu.version d section (d for definition) of dy-
namic libraries when they are built. When a user program
is compiled and linked, a version-aware linker obtains ver-
sions of called functions from the dynamic libraries and
stores them in the resulting binaries’ .gnu.version r
section (r for reference). At runtime, the program loader-
linker ld.so first examines whether all version refer-
ences in the user’s program binary can be satisfied or not,
and determines to either abort or continue.

Symbol versioning is used extensively in the GNU
compiler collection (C, C++, Fortran, and OpenMP run-
time libraries), Myrinet MX/DAPL libraries, and Open-
Fabrics/InfiniBand Verbs libraries. All of these instances
adopt the same version naming scheme: a unique label,

3

e.g. GLIBC, GLIBCXX, or MX, followed by an underscore
and the version. Hence, our tool can recognize them us-
ing a hard-coded list of labels and obtain their version by
traversing the version chain.

2.5 Checksums
Most dynamic libraries are less sophisticated and do not
use symbol versioning. Therefore, to recognize them, we
resort to the traditional approach of checksums. Md5sum
is a commonly used open-source utility to produce and
verify the MD5 checksum of a file, but it is file-structure
agnostic and fails to characterize ELF dynamic libraries
on platforms (e.g. Red Hat Enterprise Linux) where the
prelinking/prebinding technology [18] is used. Prelinking
is intended to speed up the runtime loading and linking of
dynamic libraries when a program binary is launched. To
achieve this, a daemon process will periodically update
the dynamic libraries’ relocation table. The side effect
of prelinking is MD5 checksum mismatch, as part of the
file content has been changed. To defeat this effect, we
calculate the MD5 checksum over the .text section only
for ELF files.

3 Implementation
Our implementation is based on the pattern matching en-
gine of the open-source anti-virus package ClamAV [11],
with additional code to support symbol versioning. The
implementation comprises two tools: a signature gener-
ator and a signature scanner. The signature generator
parses ELF files and outputs ClamAV-formatted signature
files. The signature scanner takes as input the signature
files and the user’s program binary and outputs all pos-
sible matches. In the following, we discuss ClamAV’s
signature formats and matching algorithms and how we
leverage ClamAV in our implementation.

3.1 ClamAV Design
ClamAV signatures can be classified as one of the fol-
lowing types, in the order of increasing complexity and
power: MD5, basic, regular expression (regex), logical,
and bytecode. Our implementation makes use of the first
three types because they can be generated automatically
(see §3.2).

A basic signature is a hexadecimal string. ClamAV’s
scanning engine handles this type of signature with a mod-
ified version of the classical Boyer-Moore string search-
ing algorithm called Wu-Manber. A regex signature is a
basic signature with wildcards. Our implementation use

two kinds of wildcards extensively: ?? (to match any
byte) and {n} (to match any consecutive n bytes). Cla-
mAV’s scanning engine handles regex signatures with the
Aho-Corasick (AC) string searching algorithm, which can
match multiple strings concurrently at the cost of consum-
ing more memory. The AC algorithm starts with a prepro-
cessing phase: Take a set of wildcard-free strings to create
a finite automaton. The scanning phase is simply a se-
ries of state transitions in this finite automaton. ClamAV
utilizes the AC algorithm as follows: Every regex signa-
ture is broken into basic signatures (separated by wild-
cards), and a single finite automaton (implemented as a
two-level 256-way “trie” data structure) is created from
all of these basic signatures. If all wildcard-free parts of a
regex signature are matched, ClamAV checks whether the
order and the gaps between the parts satisfy the specified
wildcards.

For completeness we briefly mention the remaining two
signature types. We do not use them because we do not yet
find automatic ways to create them. Logical signatures al-
low combining of multiple regex signatures using logical
and arithmetic operators. Bytecode signatures further ex-
tend logical signatures and offer the maximal flexibility.
Bytecode signatures are actually ClamAV plug-ins com-
piled from C programs into LLVM bytecodes, and hence
allow arbitrary algorithmic detections of patterns.

3.2 Signature Generator

For dynamic libraries (.so files), the signature generator
computes the MD5 checksums over their .text sections
and outputs the ClamAV-conformant MD5 signature files.

Compiler-specific code snippets and static library code
reside in ELF .o (object) and .a (library archive) files.
In the following discussions we only focus on .o file han-
dling because an .a file is just an archive of multiple .o
files. Our signature generator extracts .text sections
from .o files, and outputs, for each .text section, a ba-
sic or regex signature of 16-255 bytes length (excluding
the wildcards.) We describe this process in depth as fol-
lows.

First, a signature is not just bytes from the .text sec-
tion verbatim. When a source file is compiled into an .o
file, the addresses of unresolved function names and sym-
bols in this .o file are unknown and have to be left empty.
It is during the linking phase that these addresses are re-
solved and assigned by the linker. This process is called
relocation [10]. To facilitate the relocation, the compiler
emits one relocation table for each .text section. Each
entry of a relocation table specifies the symbol name to
be resolved, the offset into the .text section which con-

4

tains the address to be assigned, and the relocation type.
When we create a signature from the bytes of a .text
section, we have to mask the bytes which are reserved for
addresses yet to be computed. To illustrate, suppose that
we compile the following source code into an .o file:

#include <stdlib.h>
void foo() {

char *buf = malloc(10);
}

On x86, the disassembly of the generated .o file would
be (using the GNU objdump utility):

000000 <foo>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: 48 83 ec 10 sub $0x10,%rsp
8: bf 0a 00 00 00 mov $0xa,%edi
d: e8 00 00 00 00 callq 12 <foo+0x12>

12: 48 89 45 f8 mov %rax,-0x8(%rbp)
16: c9 leaveq
17: c3 retq

and the corresponding relocation table is:
OFFSET TYPE VALUE
00000e R_X86_64_PC32 malloc+0xffffffff

fffffffc

Together, the above examples illustrate that the target of
the callq instruction should be the address of a function
named ”malloc”, and the address should fill the 4 bytes (as
specified by the R X86 64 PC32 relocation type) start-
ing at offset 0xe (the boxed 00’s). So if foo, as a library
function, is used to create a user program binary, the linker
will take the byte stream 55 48 89 e5 . . .c9 c3 and
fill the bytes at offset 0xe through 0xe+3 with the ac-
tual address of malloc. Thus, to identify foo, we create a
ClamAV regex signature as:

55 48 89 e5 48 83 ec 10 bf 0a 00 00
00 e8 ?? ?? ?? ?? 48 89 45 f8 c9 c3

The second consideration is the signature size. As will
be seen in §4.2 a .text section can be as big as four
megabytes. Using the entire .text section could lead
to long preprocessing time and large disk/memory stor-
age space. Therefore, we impose an upper limit on the
signature size to be 255 bytes. We think 255 is a reason-
able size, as there are 256255 possible distinct 256-byte
streams, which is large enough to have few collisions/false
positives. For a .text section of n > 256 bytes, we use
the tailing 255/3=85 bytes x1x2 . . . x85 of the first third
portion, the tailing 85 bytes y1y2 . . . y85 of the middle
third, and the tailing 85 bytes z1z2 . . . z85 of the last mid-
dle third, and form a regex signature as:

x1x2 . . . x85 {l} y1y2 . . . y85 {m} z1z2 . . . z85

where l = bn/3c−85 and m = l+(n%3). We also ignore
.text sections which are shorter than 16 bytes. This
cut-off is chosen because the size of an x86 instruction
varies between 1 and 16 bytes, and since we do not decode
the bytes back to x86 instructions, we do not know the
instruction boundaries and have to make a conservative
assumption. Besides, signatures that are too short could
result in many false positives.

The third consideration is an .o file could con-
tain more than one .text section. This happens in
GNU Fortran’s static library, which is created with the
-ffunction-sections compiler flag. This flag in-
structs the compiler to put each function in its own .text
section instead of all functions from the same source file
in one single .text section. So for a Fortran func-
tion, say foo, the compiler creates a section named
.text.foo which consists of foo’s code only 1. In
such a situation, our tool emits one signature for one such
.text section.

3.3 Signature Scanner

The signature database is organized as a collection of sig-
nature files, each of which contain signatures from a spe-
cific compiler/library, e.g. Intel Fortran compiler, Intel
MKL, MVAPICH, etc. Each signature file is annotated
manually to indicate the package name and version. The
scanner takes as input this database and the user’s program
binary and outputs all possible matches. For dynamic li-
brary identification, it uses the ldd command to obtain
the library pathnames. It then extracts their symbol ver-
sioning data (if there is any) and compares against a list
of known labels, as explained in §2.4. For those without
symbol versioning, the scanner checks their MD5 check-
sums against those in the database.

For compiler and static library identification, the scan-
ner loads the program binary’s .text and .comment
sections (compiler meta-data are treated as basic signa-
tures) and runs them through the ClamAV matching en-
gine. By default ClamAV stops as soon as it spots a match,
so to find all matches, we modify it by repeatedly zeroing
out the matched area and rerunning the engine, until no
match can be found.

1This optimization reduces the size of statically linked program bi-
naries because it eliminates dead code, i.e. functions which are unused
but included nevertheless because they are in the same source files as the
used functions.

5

4 Evaluation
We evaluate our approach with both toy programs and
real-world HPC software packages from two HPC sites.
We compile toy programs with a variety of compilers to
test the effectiveness of source compiler identification.
We use the existing HPC software packages to assess not
only the compiler and library recognition but also Cla-
mAV’s scanning performance.

4.1 Compiler Identification
We examine fourteen compilers on the x86-64 Linux plat-
form and we summarize our findings in Table 1. We locate
the compiler-specific code snippets by enabling the ver-
bosity flag in building the toy programs. This flag is sup-
ported by all compilers and it can display exactly where
and which .a and .o files are used in the compilation
process. The toy programs we constructed, e.g. ”Hello,
World” and matrix multiplication, are short and use only
basic language features and APIs, so they can highlight
the usefulness of our approach. All test cases are com-
piled with each compilers’ default settings.

As an example, the ”Hello, World” program compiled
with Intel compiler 12.0 yields the following output from
our scanner. It gives the number of matches and total size
of matches against each signature file:

(3 times, 6992 bytes) Intel Compiler Suite 12.0
(2 times, 200 bytes) GCC 4.4.3

We have the following observations. 1. Many com-
pilers strive to be compatible with the GNU development
tools and runtime environment, so they also use GNU’s
code snippets. Therefore, GCC becomes a common de-
nominator and is ubiquitous in the scanning results. The
above output is typical: The Intel compiler locates the sys-
tem’s default GCC installation (version 4.4.3 in this case)
and uses its crtbegin.o and crtend.o in the compi-
lation. These two .o files handle the .ctors section as
discussed in §2.1.

2. As opposed to C, the Fortran compiler space is very
fragmented, with each compiler having its own imple-
mentation of language intrinsics and extensions. Hence,
we can spot a Fortran compiler by just examining the run-
time library code used. The same is true for OpenMP and
UPC.

3. It is possible to recognize different versions of the
same compiler. To demonstrate, we wrote a simple For-
tran program which calls the matmul intrinsic to perform
matrix multiplications and compiled it with PGI 11.0. The
result is as follows:

(58 times, 346766 bytes) PGI Fortran Compiler 11.x
(48 times, 56833 bytes) PGI Fortran Compiler 8.x
(45 times, 118288 bytes) PGI Fortran Compiler 10.x

Compiler Note Version Meta
Data

Code Snippet
Source

Absoft F,O 11.1 liba*.a
Clang C,L 2.8
Cray 7.1, 7.2 V libcsup.a,

libf*.a,
libcray*.a

G95 F,G 0.93 V libf95.a
GNU G 4.1, 4.4,

4.5
V crt*.o, libgcc*.a

Intel 9.x thru
12.0

I libirc*.a, libf-
core*.a

Lahey-
Fujitsu

F 8.1 I fj*.o, libfj*.a

LLVM-
GCC

G,L 2.8 V

NAG F,† 5.2 libf*.a
Open64 O,‡ 4.2 V libopen64*.a,

libf*.a
PathScale O,‡ 3.2, 4.0 V lib*crt.a, lib-

path*.a
PCC C 0.99 V crt*.o, libpcc*.a
PGI 6.x thru

11.x
V libpgc.a,

libpgf*.a,
f90*.o, pgf*.o

Sun
Studio

12.x V crt*.o,
libc supp.a,
libf*.a

Table 1: Compiler identification. C: C/C++ compiler
only. F: Fortran compiler only. G: uses GNU codebase.
I: has unique meta data. L: uses LLVM codebase. O:
uses Open64 codebase. V: meta data have both brand
string and version number. †: is actually a Fortran-to-C
converter with GCC as backend. ‡: inserts FTZ/DAZ-
enabling prolog code (see §2.1) but this code is not in any
.a/.o files so we manually produce its signature.

Library Version
(Compiler)

Code Snippet
Source

Mean and
StdDev
.text size
in KB

ACML 4.4.0 (I,P) libacml*.a 11.1, 70.8
Cray LibSci 10.4.0 (G,I,P) libsci*.a 3.4, 4.9
Intel MKL 8.0, 8.1, 9.1 libmkl*.a 4.6, 9.0

10.x libmkl core.a 4.2, 16.6
Cray MPI 3.5.1 (G,I,P) libmpich*.a 1.3, 2.6
MPICH 1.2.7mx (G,I) libmpich.a 1.2, 2.7
MVAPICH2 1.4, 1.5 (I) libmpich.a 2.6, 4.8

Table 2: Library identification. G: GNU. I: Intel. P: PGI.

6

(42 times, 49895 bytes) PGI Fortran Compiler 7.x
(32 times, 82808 bytes) PGI Compiler Suite 11.x
(29 times, 57166 bytes) PGI Compiler Suite 7.x
....
(2 times, 200 bytes) GCC 4.4.3

The matches include both the Fortran runtime library
and compiler-specific code snippets, which are shared by
C/C++ and Fortran compilers. The result also implies that
PGI reuses a significant amount of code across each re-
lease. We scrutinized the code snippets which matched
both versions 7.x and 11.x and found their functionality
includes memory operations (allocate, copy, zero, set),
I/O setup (open, close), command-line argc/argv han-
dling, etc.

4. Compilers which share codebase are not easily dis-
tinguishable. Examples include Open64 and PathScale,
GNU and LLVM-GCC, etc. In these cases, only the
compiler-specific meta data can tell them apart, and Clang
is thus far the only compiler which defies our inference ef-
forts.

4.2 Library Identification
We applied the scanner to a subset of HPC applications
(Amber [20], Charmm [21], CPMD [22], GAMESS [23],
Lammps [24], NAMD [25], NWChem [26], PWscf [27])
from two HPC sites (a 3456-core Intel-based commod-
ity PC cluster at our center and a 672-core Cray XT5m
at Indiana University). We gathered signatures from nu-
merical and MPI libraries which we know have been
linked statically in the application builds. The libraries
and the size of their constituent .o files are summa-
rized in Table 2. Numerical libraries tend to have more
.o files and larger code size per .o file. The explana-
tion is various processor-specialization codes and aggres-
sive loop unrolling. For example, ACML 4.4.0-ifort64’s
libacml.a has 4.5K .o files, with the largest (4.1
MB code size) being an AMD-K8-tuned complex matrix
multiplication (zgemm) kernel, and Intel MKL 10.3.1’s
libmkl core.a has 44K .o’s, with the largest (1.4
MB) being an Intel-Nehalem-optimized batched forward
discrete Fourier transform code.

For the test we create a signature database exclusively
from the aforementioned libraries. It has 100K signatures
and the predominant signature type is regex. The 21 HPC
application binaries under test have a mean code size of
13.3 MB and the largest is NWChem 6.0 on Cray (39.4
MB, mainly due to static linking, as in §2.3). We build the
(single-threaded) scanner with Intel compiler 12.0 and we
run the scan on a 2.5 GHz Intel Xeon L5420 ”Harper-
town” node and a 2.8 GHz X5560 ”Nehalem” node. The
results show that the scanner can correctly identify all

used libraries. The scanning time t (in seconds) can be
best described by the linear regressions t = −1.11+7.23x
(Harpertown) and t = −5.44+6.98x (Nehalem) where x
is the code size in MB, and the peak memory usage is 195
MB.

5 Discussion
Our methodology of identifying the source compiler de-
pends on the idiosyncrasies of the x86 platform and
compilers. We also explored the two major compil-
ers, GCC and IBM XL, on the PowerPC platform,
and did not find discernible compiler-specific code snip-
pets. IBM XL compilers do inscribe their brand strings
in the .comment section, but in general, content in
.comment section is subject to tampering. For example,
the following line in a C program:
__asm__(".ident \"foo\"");

will emit “foo” to the .comment section. This makes
.comment section a less reliable source of compiler
provenance from a general perspective of software foren-
sics.

Another issue is that a compiler inserts its character-
istic prolog code only when it is compiling the source
file which contains the main function. So if different
source files are compiled with different compilers, the re-
sulting program binary could lack the compiler-specific
code snippets one would expect. In addition, in Intel com-
piler’s case, it does not insert processor-dispatch code if
the optimization is turned off either explicitly (with -O0)
or implicitly (e.g. with -g).

Our approach cannot discover the compilation flags
used in the program build process. Some compilers of-
fer a switch to record the command-line options inside
either .comment or other sections. For example, In-
tel has -sox, GCC has -frecord-gcc-switches
(recorded in .GCC.command.line section), and
Open64/PathScale and Absoft do it by default. We expect
this self-annotation feature to be more widely embraced
by compiler developers, as they move toward better com-
patibility with GCC, and used by HPC programmers, as it
greatly aids debugging and performance analysis.

6 Related Work
ALTD [13] is an effort to track software and library usage
at HPC sites. It takes a proactive approach by intercept-
ing and recording every invocation of the linker and the
job scheduler. Our work is complementary in that it per-
forms post-mortem analysis and works on systems with-
out ALTD.

7

The work by Rosenblum et al [16] is the first attempt
to infer the compiler provenance. They used sophisticated
machine learning by modeling and classifying the code
byte stream as a linear chain Conditional Random Field.
As in most supervised learning systems, a lengthy training
phase is required. The resulting system can then infer the
source compiler with a probability. Their approach has
several drawbacks, which our method addresses: They
focus solely on executable code and ignores other parts
of ELF files, the preprocessing/training phase, albeit one-
time, is slow and complex, the model parameters cannot
be updated incrementally with ease when a new compiler
is added, and it is unclear if their model can discern the
nuances among different versions of the same compiler.

Kim’s approach [19] is closest to ours in spirit, but it
misses the key feature in our implementation: the relo-
cation table. It produces a signature by copying the first
25 bytes of a library function code verbatim. With such
a short signature and lack of relocation information, his
tool has very limited success in identifying library code
snippets.

7 Conclusion
Compilers and libraries provenance reporting is crucial in
an auditing and benchmarking framework for HPC sys-
tems. In this paper we present a simple and effective
way to mine this information via signature matching. We
also demonstrate that building and updating a signature
database is straightforward and needs no expert knowl-
edge. Finally, our tests show excellent scanning speed
even on very large program binaries.

Acknowledgments
This work is supported by the National Science Founda-
tion under award number OCI 1025159. We would like to
thank Gregor von Laszewski for providing access to Fu-
tureGrid computing resources.

References
[1] T. R. Furlani et al., “Performance metrics and auditing frame-

work using applications kernels for high performance computer
systems.” In preparation.

[2] http://www.spec.org

[3] http://modules.sf.net

[4] http://www.teragrid.org/userinfo/softenv/

[5] M. Wilding and D. Behman, “Self-service Linux: Mastering the
art of problem determination.” Prentice Hall, 2005.

[6] “System V application binary interface - AMD64 architecture pro-
cessor supplement.” http://www.x86-64.org/documentation/

[7] A. Fog, Chapter 13 of “Optimizing software in C++: An
optimization guide for Windows, Linux and Mac platforms.”
http://www.agner.org/optimize/

[8] I. Dooley and L. Kale, “Quantifying the interference caused by
subnormal floating-point values.” The Workshop on Operating Sys-
tem Interference in High Performance Applications (OSIHPA),
2005.

[9] §8.5 of “Working Draft of Standard for Programming Language
C++, Document No. N1905.” http://www.open-std.org

[10] J. R. Levine, “Linkers and loaders.” Morgan Kaufmann, 1999.

[11] T. Kojm, http://www.clamav.net

[12] D. J. Brown and K. Runge, “Library interface versioning in Solaris
and Linux.” The 4th Annual Linux Showcase (ALS) & Conference,
2000.

[13] B. Hadri, M. Fahey, and N. Jones, “Identifying software usage at
HPC centers with the automatic library tracking database.” Pro-
ceedings of the 2010 TeraGrid Conference.

[14] N. Sidwell, “A common vendor ABI for C++ – GCC’s why, what
and not.” Proceedings of the 2003 ACCU Conference.

[15] http://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html

[16] N. Rosenblum, B. Miller, and X. Zhu, “Extracting compiler prove-
nance from program binaries.” The workshop on Program Analysis
for Software Tools and Engineering (PASTE), 2010.

[17] G. Johansen and B. Mauzy, “Cray XT programming environment’s
implementation of dynamic shared libraries.” Cray User Group
(CUG) Conference, 2009.

[18] J. Jelinek, http://people.redhat.com/jakub/prelink.pdf

[19] J. S. Kim, “Recovering debugging symbols from stripped
static compiled binaries.” Hakin9 Magazine, June 2009.
http://0xbeefc0de.org/papers/

[20] D. A. Case et al., “The Amber biomolecular simulation programs.”
J. Comp. Chem. v 26, 1668-1688 (2005).

[21] B. R. Brooks et al., “CHARMM: The biomolecular simulation
program.” J. Comp. Chem. v 30, 1545-1615 (2009).

[22] http://www.cpmd.org

[23] M. W. Schmidt et al., “General atomic and molecular electronic
structure system.” J. Comp. Chem. v 14, 1347-1363 (1993).

[24] S. J. Plimpton, “Fast parallel algorithms for short-range molecular
dynamics.” J. Comp. Phys. v 117, 1-19 (1995).

[25] J. C. Phillips et al., “Scalable molecular dynamics with NAMD.”
J. Comp. Chem. v 26, 1781-1802 (2005).

[26] M. Valiev et al., “NWChem: a comprehensive and scalable open-
source solution for large scale molecular simulations.” Comput.
Phys. Commun. v 181, 1477 (2010).

[27] P. Giannozzi et al., http://www.quantum-espresso.org

8

	1 Introduction
	2 Program Binary Characteristics
	2.1 Compiler-Specific Code Snippets
	2.2 Compiler-Specific Meta Data
	2.3 Library Code Snippets
	2.4 Symbol Versioning
	2.5 Checksums

	3 Implementation
	3.1 ClamAV Design
	3.2 Signature Generator
	3.3 Signature Scanner

	4 Evaluation
	4.1 Compiler Identification
	4.2 Library Identification

	5 Discussion
	6 Related Work
	7 Conclusion

