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ABSTRACT

Large datacenter operators with sites at multiple locations
dimension their key resources according to the peak demand
of the geographic area that each site covers. The demand
of specific areas follows strong diurnal patterns with high
peak to valley ratios that result in poor average utilization
across a day. In this paper, we show how to rescue unuti-
lized bandwidth across multiple datacenters and backbone
networks and use it for non-real-time applications, such as
backups, propagation of bulky updates, and migration of
data. Achieving the above is non-trivial since leftover band-
width appears at different times, for different durations, and
at different places in the world.

To this end, we have designed, implemented, and vali-
dated NetStitcher, a system that employs a network of stor-
age nodes to stitch together unutilized bandwidth, whenever
and wherever it exists. It gathers information about leftover
resources, uses a store-and-forward algorithm to schedule
data transfers, and adapts to resource fluctuations.

We have compared NetStitcher with other bulk transfer
mechanisms using both a testbed and a live deployment
on a real CDN. Our testbed evaluation shows that Net-
Stitcher outperforms all other mechanisms and can rescue
up to five times additional datacenter bandwidth thus mak-
ing it a valuable tool for datacenter providers. Our live
CDN deployment demonstrates that our solution can per-
form large data transfers at a substantially lower cost than
naive end-to-end or store-and-forward schemes.
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1. INTRODUCTION

Online service companies such as Amazon, Facebook,
Google, Microsoft, and Yahoo! have made huge investments
in networks of datacenters that host their online services and
cloud platforms. Similarly, hosting and co-location services
such as Equinix and Savvis employ distributed networks of
datacenters that include tens of locations across the globe.
A quick look at any datacenter directory service [2]. reveals
that datacenters are popping up in large numbers every-
where. The trend is driven primarily by the need to be
co-located with customers for QoS (latency directly affects
the revenues of web sites [26]), energy and personnel costs,
and by the need to be tolerant to catastrophic failures [5].

1.1 The problem

The dimensioning of a site in terms of key resources, such
as the number of servers and the amount of transit band-
width to the Internet, depends highly on the peak demand
from the geographic area covered by the site. In addition,
the demand on a datacenter exhibits strong diurnal patterns
that are highly correlated with the local time [21]. The
combination of peak load dimensioning with strong diurnal
patterns leads to poor utilization of a site’s resources.

At the same time, Greenberg et al. [21] report that net-
working costs amount to around 15% of a site’s total worth,
and are more or less equal to the power costs [21]. They
also report that wide-area transit bandwidth costs more
than building and maintaining the internal network of a
datacenter, a topic that has recently received much atten-
tion [22]. The transit bandwidth of a site is used for reaching
end customers and for server-to-server communications with
remote datacenters (Fig. 1). Datacenter operators purchase
transit bandwidth from Telcos and pay based on flat or 95-
percentile pricing schemes, or own dedicated lines.

Peak dimensioning and diurnal patterns hinder the amor-
tization of the investment in bandwidth and equipment. In
particular, with flat rate pricing, transit bandwidth sits idle
when the local demand drops, e.g., during early morning
hours. Similarly, under 95-percentile billing, a datacenter
operator pays a charged volume [30] according to its peak
demand but does not use the already paid for bandwidth
during the off-peak hours. Finally, in the case of owned
dedicated lines, peak dimensioning pushes for constant up-
grades even if the average utilization is low.

1.2 Our approach

The aim of our work is to rescue purchased but unutilized
(leftover) bandwidth and put it to good use for the benefit
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Figure 1: A source datacenter using its leftover tran-
sit bandwidth to perform a bulk backup to a remote
sink datacenter. The two end points are in different
time zones and thus their peak customer hours and
their leftover bandwidth appear during non over-
lapping time intervals. Store-and-forward through
intermediate nodes can solve the problem but needs
to be aware of the constraints of these nodes and
the backbone that connects them.

of backup, bulky updates propagation, and data migration
applications running between different datacenters. Such
applications can improve the fault tolerance and customer
experience of a network of datacenters (Sect. 1.3). Their
importance has been recently highlighted in a large scale
survey of 106 large organizations that operate two or more
datacenters conducted by Forrester, Inc. [10]. A key finding
was that the vast majority (77%) of interviewed organiza-
tions run backup and replication applications among three
or more sites. More than half of them reported having over
a peta-byte of data in their primary datacenter and expect
their inter-datacenter bandwidth requirements to double or
triple over the next two to four years. As a general conclu-
sion, IT managers agreed that the rate at which the price
of inter-datacenter bandwidth is falling is outpaced by the
growth rate of inter-datacenter traffic. Furthermore, Chen et
al. [17] recently reported that background traffic is dominant
in Yahoo!’s aggregate inter-datacenter traffic, and Google is
deploying a large-scale inter-datecenter copy service [37].

By being elastic to delay, the aforementioned applications
can postpone their transfers to non-peak hours when the in-
teractive customer traffic is low. The challenge in efficiently
rescuing such leftover bandwidth is that it can appear in
multiple parts of the world at non-overlapping time win-
dows of the day; such fluctuations in the availability of left-
over bandwidth often relate to time zone differences but can
also appear within the same time zone when mixing different
types of traffic (e.g., corporate and residential traffic). For
example, a sending datacenter on the East Coast has free
capacity during early morning hours (e.g., from 3-6am) but
cannot use it to backup data to another datacenter on the
West Coast. The reason is that during that time the West
Coast datacenter is still on night peak hours.

Our key insight is that we can rescue leftover bandwidth
by using store-and-forward (SnF) algorithms that use relay
storage points to temporarily store and re-route data. The
intermediate datacenters are thus stitching together the left-
over bandwidth across time and different locations. However
to do so, we have to consider both the current and the future
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constraints of the datacenters as well as the constraints on
the backbone network that connects them (Fig. 1).

We have designed, implemented, and validated NetStitcher,
a system that employs a network of commodity storage nodes
that can be used by datacenter operators to stitch together
their unutilized bandwidth, whenever and wherever it ex-
ists. Such storage nodes can be co-located with datacenters
or expanded to other parts of the inter-datacenter network
as needed. The premise of our design is that the cost of stor-
age has been decreasing much faster than the cost of wide
area bandwidth [20].

NetStitcher employs a store-and-forward algorithm that
splits bulk data into pieces which are scheduled across space
and long periods of time into the future, over multiple paths
and multiple hops within a path. Scheduling is driven by
predictions on the availability of leftover bandwidth at ac-
cess and backbone links as well as storage constraints at
storage relay nodes. With this information, the system
maximizes the utilization of leftover resources by deriving
an optimal store-and-forward schedule. It uses novel graph
time expansions techniques in which some links represent
bandwidth (carrying data across space), while others repre-
sent storage (carrying data across time). The system is also
equipped with mechanisms for inferring the available future
bandwidth and adapts to estimation errors and failures.

By performing intelligent store-and-forward, we circum-
vent the problems that plague other approaches, such as
direct end-to-end (E2E) transfers or multipath overlay rout-
ing. Both of these approaches have no means to bridge
the timing gap between non overlapping windows of leftover
bandwidth at different sites. Its advanced scheduling, also
gives NetStitcher an edge over simpler store-and-forward al-
gorithms that do not schedule or use information regarding
future availability of leftover resources. For instance, sim-
pler random or greedy store-and-forward algorithms, such
as BitTorrent’s [18], have a partial view on the availability
of leftover resources. Consequently, they may forward data
towards nodes that are able to receive data very fast but are
unable to relay them in fast paths towards the receiver.

1.3 NetStitcher applications

We now briefly discuss two applications that exchange
inter-datacenter non-interactive bulk traffic and can there-
fore benefit from NetStitcher.

Fault tolerance. Improving the fault tolerance of data-
centers by increasing the redundancy and security within
a single site is too expensive. Quoting the VP of Amazon
Web services, “With incredible redundancy, comes incredible
cost ... The only cost effective solution is to run redundantly
across multiple data centers.” [5]. Instead of fortifying a sin-
gle facility, a simpler solution is to periodically backup all
the data to a remote location. The key challenge becomes
the efficient use of WAN transit bandwidth. Hamilton points
out that “Bandwidth availability and costs is the prime rea-
son why most customers don’t run geo-diverse” [5].

Customer experience. Since network latency impacts
directly the usability and the revenues of a web site [26],
firms with a global footprint replicate their information as-
sets (such as collections of images and videos) at multiple
locations around the world. For example, Facebook runs at
least 3 datacenters [4] and holds more than 6 billion pho-
tographs [14]. To maintain a high quality customer expe-
rience, a new collection needs to be quickly replicated at
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Figure 2: Timing diagram for backing up a data-
center in New York to another one in Palo Alto.
The width of a rectangle indicates the window dur-
ing which a datacenter can perform backups. The
diagram shows the operation of a Store and Forward
solution. To maximize the amount of data that can
be moved between New York and Palo Alto, we need
to introduce intermediate storage nodes across three
time zones (Eastern, Central, Pacific): in Boston,
Chicago, Phoenix, Denver and Seattle.

sites closer to the users. However, due to its “long-tail” pro-
file, such user-generated content challenges traditional pull-
based caching approaches: individual objects are accessed by
a very small number of users [12]. This means that a large
number (or all) of those objects needs to be proactively but
cost-effectively replicated.

1.4 Our contributions and results

Our work makes the following contributions:

e The design and implementation of the first system that
uses information about future bandwidth availability to pro-
vide optimally efficient bulk data transfers.

e The evaluation of NetStitcher on an emulation testbed
showing that: a) for a large set of datacenter sender-receiver
pairs in North America, NetStitcher doubles the median
transferred volume over 24 hours. Especially when the sender
is in the east and the receiver in the West Coast, NetStitcher
can carry up five times more data than the second best
policy; b) NetStitcher delivers tera-byte sized files in a few
hours, whereas competing policies might take days; c¢) Net-
Stitcher performs well even in international transfers in view
of additional backbone network constraints.

e Our live deployment of NetStitcher on Telefonica’s global
CDN. The Points of Presence (PoP) of large CDNs are small
datacenters that exchange large volumes of pushed or pulled
content. We show that by using leftover CDN bandwidth
when the video traffic subsides, our solution can perform
bulk transfers at a very low cost per GB. Drawing from
these results, NetStitcher is planned to augment our CDN
service portfolio by allowing content owners to cheaply per-
form point-to-point high volume transfers. CDN services
are more attractive “when viewed as as broader portfolio of
services for content owners and providers” [11].

2. MOTIVATING EXAMPLE

We present a simple example to motivate the need for
multipath and multi-hop store-and-forward (SnF) schedul-
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ing, and to highlight the limitations of existing techniques.
The example is based on the real topology of Equinix [3], a
company offering hosting services over its global network of
datacenter, which includes 22 locations in North America.

Specifically, we want to maximize the volume of data that
a datacenter in New York can backup to another one in
Palo Alto within 24 hours, assuming that datacenters have
a 3 hour time window early in the morning (e.g., 3-6am) for
performing such backups. Windows are depicted as rectan-
gles in Fig. 2. Two sites can exchange data directly only
if their respective rectangles overlap in time. All sites are
assumed to have the same bandwidth capacity.
End-to-end: The simplest mechanism to backup data across
the two locations is to use a direct End-to-End transfer. As
can be seen in Fig. 2, no data can be backed up using direct
E2E transfers since the windows of New York and Palo Alto
do not overlap in time. This is a consequence of the window
width that we assume, and the 3 hour difference between
Eastern and Pacific time. However, even with a wider win-
dow — assuming that the windows begin at the same local
time — the two sites would be wasting at least 3 hours of
valuable bandwidth due to their time difference.
Multipath overlay routing: Overlay routing [13] is used
to bypass problematic links, or even entire network seg-
ments. In our case, however, the problem is caused by the
first and the last hop of the transfer. Thus, overlay redi-
rection does not help because it still requires New York and
Palo Alto to have free bandwidth at the same time. In fact,
no overlay spatial redirection suffices to address the mis-
alignment of windows. We need a combination of spatial
and temporal redirection through the use of storage nodes.

Figure 2 depicts how a scheduled SnF solution can use the
bandwidth and storage of 5 intermediate sites to maximize
the amount of data that can be transferred between two end
points. During the first hour of its window, from 3am to 4am
Eastern, New York transfers data to a site in Boston (arrow
(1)), where it remains stored for up to 2 hours. Between 4am
and bam, New York uploads to Chicago (2), and between
S5am and 6am to Denver (3).

If the above data can be delivered to their final destina-
tion before the closing of its window, then New York will
have utilized optimally its bandwidth. Indeed this can be
achieved as follows. Boston relays its data to Phoenix (4)
where they remain for 2 hours. Subsequently Phoenix relays
the data to Seattle (7), which finally delivers them to Palo
Alto one hour later (8), utilizing the last hour of Palo Alto’s
window. Chicago delivers its data directly to Palo Alto (5)
and so does Denver one hour later (6), thus filling up the
first 2 hours of Palo Alto’s window.

This simple example shows that multipath and multi-hop
SnF succeeds where E2E and Overlay fail. However, real
SnF scheduling is substantially more involved due to the ex-
istence of varying windows and capacities, as well as addi-
tional network and storage bottlenecks. NetStitcher copes
with this complexity and hides it from the applications.
Before discussing the details of its design we will consider
whether simpler SnF solutions, such as BitTorrent suffice.
Simple store-and-forward: In a nutshell, simple greedy
or random SnF algorithms fail as they do not have complete
information on the duration, time and location of windows.
This results in data being pushed to sites that cannot deliver
it forward to the destination or any other intermediate relay
node (or if they do, they do it in an inefficient manner).



For example a node in New York may start greedily feeding
a faster node in London, but London’s window may close
before it can push the data towards any useful direction. All
the capacity of New York, which is committed to feeding the
London site, is wasted. This is only a motivating example.
More intricate inefficiencies occur in complex networks due
to the myopic view of simple SnF algorithms.

3. SYSTEM OVERVIEW

NetStitcher is an overlay system comprising of a sender,
intermediate storage nodes, and a receiver node. Its goal is
to minimize the transfer time of a given volume given the
predicted availability of leftover bandwidth resources at the
access links and the backbone.

It comprises the following modules: a) overlay manage-
ment, which is responsible for maintaining the connectivity
of the overlay; b) volume prediction, which is responsible for
measuring and predicting the available network resources; c)
scheduling, which computes the transfer schedule that min-
imizes the transfer time of the given volume; and d) trans-
mission management, which executes the transfer schedule
specified by the scheduling module.

The scheduling module is the core of our system and we
describe it in detail in Sect. 4. It schedules data transfers
across multiple hops and multiple paths over the overlay.
The scheduling module only specifies the rate at which each
node forwards data to the other nodes. The volume to be
transferred is divided in pieces and nodes follow primarily
a simple piece forwarding rule: a node can forward each
piece only once and to a node that has not received it. (We
violate this rule in exceptional cases as discussed in Sect. 4.4
and Sect. 4.4 of [29].) By decoupling the scheduling and
forwarding we simplify the design.

3.1 Design Goals

We now discuss the goals of our design and summarize
how we achieve them:
Use leftover bandwidth effectively: NetStitcher’s multi-
hop and multipath transfer scheduler uses unutilized band-
width resources whenever and wherever they become avail-
able. Multipath data transfers enable NetStitcher to deal
with resource constraints at the intermediate storage nodes.
Multi-hop data transfers allow NetStitcher to use leftover
bandwidth even when the window of the intermediate stor-
age nodes in a single intermediate time zone does not overlap
with the window of the sender or the receiver.
Accommodate common pricing schemes: NetStitcher
leverages unutilized but already paid-for bandwidth, irre-
spective of the pricing scheme details. Such bandwidth can
be manifested in two ways: a) a backbone provider has
unutilized transit bandwidth during off-peak hours, which he
can offer for cheap to its customers; b) a customer may not
be utilizing the capacity he has reserved on a dedicated line.
Also, if the customer is billed under the 95th-percentile rule,
NetStitcher can use the difference between the 95-percentile
and the customer’s actual utilization.
Easily deployable: NetStitcher works at the application
layer of low or high-end servers and does not require modi-
fications on network devices.
Adapt to churn and failures: Our design periodically
revises the transfer schedule taking into consideration fail-
ures, resource prediction errors, and how much data have
already been transferred to the intermediate storage nodes
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and the receiver. By using optimal flow algorithms and re-
solving extreme estimation error through an end-game-mode
(Sect. 4.4), we obviate the need for inefficient redundancy
through re-transmissions or forward error correction codes.
Due to prediction errors and unexpected events, the initially
computed transfer schedule may be erroneous. Its revision
may yield a longer transfer time than initially scheduled.
Therefore, at the start of a transfer, NetStitcher can guar-
antee meeting a set deadline only in the absence of critical
failures and unpredictable resource availability changes.

4. SCHEDULING

We now provide a detailed description of the schedul-
ing component in three stages: a) perfect knowledge under
network bottlenecks (backbone constraints) only; b) perfect
knowledge under both network and edge bottlenecks; and c)
imperfect knowledge under network and edge bottlenecks.

4.1 Scheduling problem statement

First, we formulate the problem that scheduling addresses.
Consider a sender node v that wants to send a large file of
size F' to a receiver node u. The sender can utilize any
leftover uplink bandwidth that cannot be saturated by its
direct connection to the receiver to forward additional pieces
of the file to storage nodes in the set W. Nodes in W can
in turn store the pieces until they can forward them to the
receiver or another storage node. We define the Minimum
Transfer Time (MTT) problem as follows:

DEFINITION 1. Let MTT(F,v,u, W) denote the minimum
transfer time to send a file of size F' from v to u with the help
of nodes w € W under given uplink, downlink, storage, and
backbone network constraints (bottleneck) at all the nodes.
The Minimum Transfer Time problem amounts to identi-
fying a transmission schedule between nodes that yields the
minimum transfer time MTT(F,v,u, W).

The task of NetStitcher is to achieve MTT(F,v,u, W) in
controlled environments where the available bandwidth is
known a priori, or approximate it given some error in band-
width prediction and occasional node churn. We also note
that it is straightforward to adapt the algorithm that solves
the MTT (Sect. 4.2.1) so that it maximizes the volume trans-
ferred in a given time period.

Figure 3 depicts a group of NetStitcher nodes and sum-
marizes the notation for the rest of the section. U, (t) and
D, (t) denote the volume of data from file F' that can be
sent on the physical uplink and downlink of node w during
time slot ¢, which we refer to as edge bottlenecks. In the
simplest case, edge bottlenecks are given by the nominal ca-
pacity of the access links and thus are independent of time.
They become time dependent if a site’s operator allocates
bandwidth to the system only during specific time-of-day
windows. N, (t) denotes the volume of data that can be
sent on the overlay link from w to w’ due to network bot-
tlenecks (backbone constraints). Such bottlenecks capture
the bandwidth allocation policies of backbone operators that
might, for example, prohibit bulk transfers over links that
are approaching their peak utilization. NetStitcher can use
such information to derive backbone operator-friendly bulk
transfer schedules (more in Sect. 7.3). Sw(t) denotes the
maximum volume of data from file F' that can be stored at
w during time slot ¢t. It is dependent on the node’s storage
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Figure 3: Model and definitions. Uy(t), Dw(t): up-
link and downlink edge bottlenecks of w at time t.
Ny (t): network bottleneck of overlay connection
w — w’ at time slot t. S, (t): storage capacity of w at
time slot ¢.
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Figure 4: Reduction of the MTT problem to a vari-
ant of the maximum flow problem using time expan-
sion. The upper portion of the figure shows the re-
duction when we consider only network bottlenecks.
The bottom (zoomed-in) portion of the figure shows
the reduction when we consider edge bottlenecks.

capacity and on the amount of storage required by other
applications or NetStitcher sessions.

4.2 Perfect knowledge

Our approach is to reduce the MTT problem to the max-
flow problem. We express the edge and network bottlenecks
and the storage limits as the capacities of edges in a max-flow
graph. We model the time dimension of the MTT problem
through time expansion as we shortly describe.

First, we consider the case in which the bandwidth and
storage resources, Uw(t), Dw(t), Nyw (t) and Sw(t), are
known a priori for all w € W and all time slots ¢ that make
up an entire day.

4.2.1 Network bottlenecks only

We initially consider the case when there are no edge bot-
tlenecks. We reduce the MTT problem of minimizing the
delivery time of volume F' using nodes with time-varying
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storage and bandwidth to a maximum flow problem with
constant edge capacity. The reduction is performed through
the time-expansion shown in Fig. 4. Let Tinez be an up-
per bound on the minimum transfer time. We construct a
max-flow problem over a flow network G(V, E) as follows:
e Node set V': For each storage node w € W (Sect. 4.1), and
for 1 <t < Trmaw, we add Tmaee virtual nodes w(t). Similarly
for the sender v and the receiver u.

e Fdge set E: To model storage constraints, for 1 < t <
Trmae — 1, we connect w(t) with w(¢t + 1) with a directed
edge of capacity S (t). We repeat the same for the sender
v and the receiver u. To model network constraints, for
1 <t < Trmawz, we connect w(t) with w'(t), w,w’ € W with
a directed edge of capacity Ny, (t) and similarly for the
sender and the receiver.

e Single source and sink: The source is the sender virtual
node v(1). The sink is the receiver virtual node u(Tmaz).

The maximum flow from v(1) to u(Tma=) equals the maxi-
mum volume that NetStitcher can send over Th,q. time slots.
We obtain an optimal transmission schedule for the volume
F by performing a binary search to find the minimum Tz
for which the maximum flow from v(1) to u(Tmaee) equals
the volume F. We can now map the max-flow solution to
a transmission schedule as follows: if the max-flow solution
involves flow f crossing the edge (w(t),w’(t)), an optimal
schedule should transmit a volume of size f from w to w’
during slot .

In most cases, the network bottlenecks observed by Net-
Stitcher flows are due to backbone operator rate-limiting
policies with respect to bulk flows; namely whether they ad-
mit additional bulk traffic on a link during a certain time
window. Although the rate-limiting policy may depend on
bandwidth availability of the physical link, we assume that
in most cases the NetStitcher flows comprise a small portion
of the link’s utilization and do not compete for capacity.
Therefore, we model every link that connects two nodes as
a distinct edge in E. In the rare cases of multiple NetStitcher
flows competing on a link, one can detect the shared bottle-
neck [25] and model it as an additional edge.

4.2.2 Edge and network bottlenecks

We now incorporate the edge node uplink and downlink
bottlenecks in the MTT problem. We split each virtual node
w(t) in three parts, as shown in the bottom of Fig. 4: the
front part w(¢)— is used for modeling the downlink bottle-
neck D, (t), the middle part w(¢)x models the storage capac-
ity Sw(t), whereas the back part w(t)+ models the uplink
bottleneck Uy (t). The sender node has only a “+” part and
the receiver has only a “~” part. The complete reduction is:
e Node set V': For each storage node w € W (Sect. 4.1) and
for 1 <t < Trmasz we add virtual nodes w(t)—, w(t)x, w(t)+.
Similarly for the sender v and the receiver u.

e Fdge set E: For 1 < t < Tpae — 1, we connect w(t)x
with w(t + 1)* with a directed edge of capacity S (t). We
repeat the same for the sender v and the receiver u. For
1 <t < Thnaz, we connect w(t)— with w(t)x and w(t)x with
w(t)+ with a directed edge of capacity D.,(t) and U (¢),
respectively. Also, we connect v(t)*x with v(t)+ and u(t)—
with u(t)* with a directed edge of capacity U, (t) and Dy (t),
respectively. In addition, for 1 < t < Tyae, We connect
w(t)+ with w'(t)—, w,w’ € W with a directed edge of ca-
pacity Ny, (t) and similarly for the sender and the receiver.



e Single source and sink: The source is the sender virtual
node v(1)x. The sink is the receiver virtual node u(Tmaz )*-

As before, we obtain the optimal MTT transmission sched-
ule by finding the max-flow for the smallest 7’42 that equals
the volume to be transferred F.

4.3 Imperfect knowledge

We have so far assumed perfect prior knowledge of band-
width bottlenecks which is exactly the case when the data-
center operator regulates explicitly the amount of bandwidth
given to the system. The system is also capable of operat-
ing in environments with imperfect yet predictable periodic
patterns and adapt gracefully to estimation error end node
failure. We describe how next.

‘We periodically recompute the transmission schedule based

on revised bottleneck predictions provided by the predic-
tion module (Sect. 5). We also recompute the transmission
schedule when we detect an unexpected component failure.
The first computation of the transmission schedule is as de-
scribed above. However, for the subsequent computations,
apart from the updated bottlenecks, we need to take into
account that the sender may have already delivered some
part of the file to intermediate storage nodes and the final
receiver. We capture this by augmenting our basic time-
expansion: we assign a new demand at the source F, < F
and assign a new demand F,, at each intermediate storage
node w € W. F,, is equal to the volume of file data w cur-
rently stores. This casts the MTT problem into a multiple
source maximum flow problem. The details are as follows:
e Node and Edge sets: The node and edge sets between the
sender, the receiver and the intermediate storage nodes are
obtained as described in Sect. 4.2.2.
o Multiple sources and single sink: We represent the volume
that has yet to be transferred to the receiver as a flow from
multiple sources to the sink node u(Tmaz)*. We then cast
the multiple source max-flow problem to a single source max-
flow as follows [19]. We create a virtual super-source node S.
We connect S to the sender virtual node v(1) with a directed
edge of capacity equal to the demand F),, which is equal to
the volume of the file the sender has not yet transmitted to
any storage node or the receiver. We also connect S to each
storage virtual node w(1) with a directed edge of capacity
F.», equal to the volume of file data it currently stores.

An optimal transmission schedule is obtained by finding
the minimum 7,4, for which the total flow from the super-
source S t0 u(Tmaz)* equals the remaining undelivered vol-
ume: Fy+ 3 -y Fuw. The mapping from the resulting flow
into a transmission schedule is as before.

We observe the following about our choice to address im-
perfect prediction with periodic recomputation:

Stateless. Each successive recomputation depends only im-
plicitly on previous ones through the amount of data that
has already been delivered to the storage nodes and the re-
ceiver. We do not need to consider past schedules.

Simplifies the admission of multiple jobs. The abil-
ity to revise the schedule of yet undelivered parts of a job
can be used to handle multiple sender-receiver pairs. For
example, a new job can run with the storage and bandwidth
resources that are available given the already accepted jobs,
or it can be allowed to “steal” resources from them. In that
case, already accepted jobs will perceive this as estimation
error and adjust. If the workload is known a priori, one can
perform a joint optimization of all jobs in parallel instead of
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the simpler online approach mentioned above by reducing it
to a maximum concurrent flow problem [35].

Gracefully falls back to multipath overlay routing.
Although it is not our intended deployment scenario, Net-
Stitcher can be used for settings in which only short term
predictions are available. In this case, we make the re-
optimization intervals short. As a result, NetStitcher be-
haves similar to overlay routing — only the schedule for the
first few time slots which is based on the available informa-
tion executes. The schedule for later slots for which reliable
information is not available will not execute, as it will be
preceded by a re-optimization.

4.4 End-game mode

The above algorithm adapts to prediction errors by pe-
riodically revising the transmission schedule. In extreme
situations however, even periodic revision does not suffice.
For example, a node can go off-line, or its uplink can be
substantially reduced, unexpectedly holding back the entire
transfer due to pieces that get stuck at the node. Since we
consider this to be an extreme case rather than the norm,
we address it through a simple end-game-mode (EGM) [18]
approach as follows. Due to the low cost of storage, we can
keep at some storage nodes “inactive” replicas of already for-
warded pieces. If the piece is deemed delayed by the time
that the EGM kicks in, a replica can switch to “active” and
be pulled directly by the receiver. Similar to BitTorrent, we
further subdivide a piece in subpieces. The EGM starts after
a large portion (e.g., 95%) of the file has been delivered, and
it pulls subpieces of the delayed piece simultaneously from
the source and the storage nodes that store active replicas.

4.5 Computational cost

In both the perfect and imperfect knowledge case, if the
demands and capacities are encoded as integer values, we
can solve the MTT in O(F|I/V|2Tmaz log(Tmaz)) using the
Ford-Fulkerson (FF) algorithm. A typical scenario in our
experiments (Sect. 8.1) involves |W|=14 intermediate stor-
age nodes, Traee = 100 and F = 100000. Our Python FF
implementation can solve this instance in less than 25 sec-
onds on an Intel Duo 2.40GHz, 3MB CPU, with 4GB RAM.
For further speedup we can use one of the many heuristic or
approximation algorithms for max flow problems [31].

S. IMPLEMENTATION

NetStitcher is implemented as a library that exposes a
simple API with the following calls: join(v), leave(v), and
send(v,u,F). The first two are for joining and leaving the
NetStitcher overlay and the third for initiating the transfer of
a file ' from v to u. It is implemented in Python and C++
and is approximately 10K lines. The system comprises of
the following modules:

Overlay management: This module runs at the broker
process and is responsible for adding a new node to the over-
lay and removing it.

Volume prediction: It runs at the broker process and
the peer processes and its task is to maintain a time series
with the maximum volume of data that can be forwarded
to each neighbor during the slots that constitute an entire
day. As it is usually the case, we assume that the band-
width resources exhibit periodic behavior. Thus, the module
uses the history of the time series to predict the future vol-
umes. It obtains this history using the bandwidth monitor-



ing tools of our backbone provider, Telefonica International
WholeSale Services (TIWS). It uses the Sparse Periodic
Auto-Regression (SPAR) estimator [16] to derive a predic-
tion for the next 24 hours. It assumes a period of resource
availability T, = 24 hours, and divides time in 1-hour-long
time slots t. SPAR performs short-term forecasting of the
volume at time ¢ by considering the observed volumes at
t — kT, and the differences between the volumes at ¢t — j
and t — j — kT, where t,5,k € N. We derive a long-term
forecasting by deriving a prediction for ¢t + 1 considering the
prediction for ¢, and continuing recursively until we predict
the volume for ¢ + 24.

Scheduling: This module is invoked at the scheduler pro-
cess by peer v when it wishes to send a file to another re-
ceiver peer u. It is responsible for scheduling all data trans-
fers between the sender v, the storage nodes W and the
receiver node u. It uses volume predictions to calculate an
initial transfer schedule and keeps updating it periodically
as it receives updated predictions from the nodes (details
in Sect. 4). The transfer schedules are computed by solv-
ing a maximum flow optimization problem using the GLPK
simplex-based solver of the PuLP Python package [32].
Transmission management: This module runs at the
peer processes, getting scheduling commands from the sched-
uler process. For each scheduling slot, the peers translate the
scheduled amount volume to a set of pieces that are trans-
ferred during the slot. To avoid creating unnecessary spikes,
transfers occur using CBR over the duration of the slot.

6. NORTH AMERICAN TRANSFERS

Since most datacenters are located in North America we
begin our evaluation from there. In a subsequent section
we look at international transfers. We build our case study
around Equinix [3] which operates 62 datacenters in 22 loca-
tions across the four time zones that cover North America.
The exact breakdown of locations and datacenters to time
zones is: a) 16 datacenters in 3 locations in Pacific; b) 2
datacenters in 2 locations in Mountain; ¢) 12 datacenters in
4 locations in Central; and d) 32 datacenters in 13 locations
in Eastern (see [3] for the exact list of locations).

6.1 Experimental setting

Sender-receiver pairs: We assume that only one data-
center in each location participates in the NetStitcher net-
work. We consider all sender-receiver pairs of such data-
centers that are located in different time zones.

Datacenter characteristics: We assume that each site
has 1Gbps uplink and downlink transit bandwidth that is
made available for inter-datacenter bulk transfer during early
morning hours: 3am to 6am. This access link configuration
is chosen based on [10] which reports that most firms had
between 1 and 10 Gbps of transit bandwidth in each data-
center where they have a point of presence. The duration
of the window was based on discussions with datacenter op-
erators [6]. We vary it in Sect. 6.4 to show its effect. In this
first set of results we do not consider backbone constraints.

Transfer policies: We consider the following policies: End-
to-End (E2E), Overlay, Random store-and-forward, BitTor-
rent (BT), and NetStitcher. Since in this setting there are
no bottlenecks in the backbone and the senders have the
same capacity as the receivers, E2E and Overlay perform
equally. Consequently, we refer to them as E2E/Overlay.
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Overlay, Random SnF, BitTorrent, and NetStitcher are al-
lowed to use any intermediate Equinix datacenter other than
the sender and the receiver. Random SnF is the simplest
store-and-forward policy in which the file is cut in pieces
and forwarding decisions are completely random. It intro-
duces no redundancy by relaying a single copy of each file
part. An alternative approach is to use multiple copies of file
parts to deal with the lack of informed scheduling. A simple
way to do this with an existing technology is to set up a BT
swarm with the initial seeder as the sender, a receiver, and
a number of intermediate BT clients acting as relays.
Methodology: We run all the above policies on a dedicated
server cluster using our NetStitcher implementation and the
pTorrent client. Overlay is obtained from NetStitcher by
setting the available storage of intermediate nodes to a very
low value. Random SnF is obtained from NetStitcher by not
imposing any rate limits specified by the scheduler. E2E is
obtained from NetStitcher by removing intermediate storage
nodes. We repeat each experiment 5 times and we report
means and confidence intervals. In all experiments we at-
tempt to sent a 1223GB file. 1223GB is actually the max-
imum that can be transferred due to access link capacities,
independently of timing issues (1Gbps X 3 hours considering
header overheads and TCP inefficiencies).

Metrics: For each pair of datacenters we attempt to send
the above mentioned file and report the transferred volume
to the receiver within 24 hours starting at the beginning
of the window of the sender. We also look at the transfer
completion time for a given file size.

6.2 Transferred volume

Figure 5(a) depicts the complimentary cumulative distri-
bution function (CCDF) of transferred volume over 24 hours
between all 286 pairs of locations in which Equinix operates
at least one datacenter. We make the following observations:
e NetStitcher is always better than all other competing poli-
cies. E2E/Overlay is better than BT and Random SnF in
most pairs. And BT is generally better than Random SnF.
e NetStitcher transfers up to 1223GB in one day whereas
E2E/Overlay goes up to 833GB, BT up to 573GB and Ran-
dom SnF up to 448GB.

e The median volume NetStitcher transfers (783GB) is al-
most double or more than that of all other policies .

To interpret the above results we start with the factor that
has the most profound effect on performance — the amount of
misalignment between windows of leftover bandwidth at the
sender and the receiver. In this particular example, the mis-
alignment is directly related to the local time. In Fig. 5(b)
we plot the transferred volume of different policies against
the time zone difference between the sender and the receiver,
which ranges from -3 hours, in the direction from Eastern
to Pacific time, and up to to +3 hours, in the opposite di-
rection. To explain better the situation we also include the
performance when both ends are on the same time zone (not
included in the previous figure). We conclude:

e When there is no time difference, E2E/Overlay

matches the optimal performance of NetStitcher which de-
pends only on the capacity of the two end points. Random
SnF suffers by permitting file parts to do random walks over
intermediate datacenters. In some cases, they will be de-
livered through longer suboptimal paths, whereas in other
cases they will get stuck in intermediate nodes and never be
delivered. By creating multiple copies of the same file part
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Figure 5: (a) CCDF of the volumes transferred
between a NetStitcher sender and receiver among
all possible sender/destination pairs in the North
American Equinix topology. The y axis indicates the
number of pairs that have transfered more than the
specified volume during the first 24h of the trans-
fer; (b) Mean volumes transferred in 24h and 95%
confidence intervals. The x axis indicates the time
difference between the receiver and the sender, e.g.,
-3 means that the receiver is 3h behind the sender.

and relaying them through all intermediate nodes BT pays
a penalty in cases when Random SnF succeeds in deliver-
ing a file part to the final receiver without using redundant
copies. When however Random SnF gets stuck, BT has a
better chance to deliver due to the multiple copies it relays.
The poor performance of the two extreme cases of simple
store-and-forward, full (BT) and no (Random SnF) redun-
dancy, highlights the value of NetStitcher scheduling.

e When the time difference is negative, i.e., when
transferring from east to west, NetStitcher remains optimal
in terms of absolute transfer volume . In the same direc-
tion, E2E/Overlay, BT, and Random SnF decline progres-
sively, suffering by the increasing misalignment of windows.
E2E/Overlay however, is more severely penalized due to its
lack of store-and-forward capabilities and eventually ends up
carrying no data. BT is consistently better than Random
SnF but is always at least 50% worse than NetStitcher.

e With positive time difference, even NetStitcher cannot
avoid losing capacity. This is because when the window of a
sender opens at 3am local time, the window of the receiver
at a +1h time zone has already been open for one hour and
has been effectively lost. The same applies to E2E/Overlay.
With a +2h time zone difference between sender and re-
ceiver, E2E/Overlay loses two hours of available bandwidth
but NetStitcher loses only one. This might seem odd but
it is in fact expected. A +42h receiver will be opening its
window for the second time 22 hours after the opening of
the window of the sender. This hour can be used, not by
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Figure 6: (a) Mean transfer times for 1150GB vol-
ume and 95% confidence intervals. The x axis indi-
cates the time difference between the receiver and
the sender. For -3h and +3h, difference overlay has
infinite transfer time and is not depicted. (b) Nor-
malized transfered volume gains of NetStitcher over
another policy as a function of the available window.

the sender, but by a +1h intermediate storage node that
received the data at a prior time and stored them until that
point. This explains why the performance of NetStitcher de-
teriorates slower than E2E/Overlay when going from west
to east.

6.3 Transfer time

Another way to observe the performance benefits of Net-
Stitcher is to look at the transfer completion time of fixed
size files. For this purpose, we set the volume equal to
1150GB, which is close to the maximum that can be shipped
by NetStitcher in the 3 hours that the window of the sender
opens. We measure the transfer time for all policies. The
results are depicted in Fig. 6(a):

e For the -3h pairs (Eastern and Pacific), we see that Net-
Stitcher delivers the volume on average in 5 hours 45 minutes
whereas E2E/Overlay can never deliver it (infinite time), BT
needs around 5 days, and Random SnF around 7 days.

e In the absence of time zone difference, NetStitcher and
E2E/Overlay achieve the absolute minimum of 3 hours, as
derived by the access link capacities.

e In the opposite direction, for the 4+3h pairs (Pacific, East-
ern), we see that NetStitcher incurs its highest delay of ap-
proximately 1 day plus 21 hours approximately. This is ap-
proximately 7.5 times smaller than the second best BT.

6.4 Effect of the window

Next we look at the effect of variable available window
on the volume transferred over 24. Specifically, we compute
the normalized gain of NetStitcher against any of the com-
peting policies (i.e., (volume-of-NetStitcher — volume-of-



policy) /volume-of-policy), for all sender and receiver pairs.
As can be seen in Fig. 6(b), even with a 12 hour window,
the gain of NetStitcher over E2E/Overlay is approximately
25%. BT and Random SnF are always substantially worse.
We have experimented with several other parameters of the
system such as the access bandwidth capacities, amount of
storage, number of relay nodes, and the results are consis-
tent and supportive of our above main observations.

6.5 North American transfers conclusions

The important lessons from our evaluation are:
e NetStitcher always outperforms store and forward policies
that do not consider future resource availability, and instead
redundantly and/or randomly forward data.
e The benefits of NetStitcher over end-to-end or multipath
overlay policies, which do not utilize storage, increase with
the decrease of the duration of the window and the increase
of the time difference between the sender and the receiver.
e Store and forward policies are more effective when the time
difference between the receiver and the sender is positive,
i.e., the receiver resides west of the sender.

7. INTERNATIONAL TRANSFERS

In this section we turn our attention to international trans-
fers between continents. We use this setting to study two
issues: a) the effect of a larger time zone difference be-
tween the sender and receiver; and b) the effect of additional
constraints appearing in the backbone network. Long haul
links (e.g., transatlantic) have more intricate peak and val-
ley behavior than access links since they carry traffic from
multiple time zones. Thus they can create additional con-
straints, e.g., by peaking at hours that do not coincide with
the peak hours of their end points. NetStitcher can circum-
vent around such combined constraints due to its advanced
network and edge constraint scheduling.

7.1 Experimental setting

Topology: We now present a case study in which Equinix
uses the international backbone of TIWS to perform bulk
transfers between its sites. TIWS is a transit provider [9]
with PoPs in more than 30 countries and peering points
with more than 200 other large networks. WS peers with
Equinix datacenters in 7 locations in Europe, 1 in Asia, and
4 in US. We emulate a scenario in which NetStitcher nodes
with 1Gbps uplink/downlink are collocated with Equinix
datacenters in Frankfurt, Dusseldorf, Zurich, New York and
Palo Alto as shown in Fig. 7. The figure shows the actual
WS backbone links that connect the above cities Next to
the name of each city we state the real number of Equinix
datacenters in that city. For each setting we repeat the ex-
periment 5 times and report mean values in Table 1.

Backbone constraints: We assume that the backbone op-
erator permits bulk traffic to cross only links that are on a
valley, i.e., are close to their minimum utilization. Back-
bone operators naturally prefer to carry delay tolerant traf-
fic during the off peak hours of their links thus improving
their overall utilization. This can benefit both backbone op-
erators who can postpone costly upgrades and datacenter
operators who can be offered better pricing schemes/QoS if
they stir their bulk traffic in an a backbone-friendly man-
ner. NetStitcher achieves this objective through its ability
to schedule around combined edge and network bottlenecks
(described in Sect. 4.2.2). To showcase the above, we used
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Figure 7: The joint Equinix/TIWS topology used in
our transfer from Frankfurt to Palo Alto. In paren-
thesis we list the number of datacenters operated by
Equinix in each city.

real 5-minute aggregate utilization data from TIWS and in-
tegrated these constraints to our emulation environment.

7.2 Crossing the Atlantic

We now zoom on the details of a transatlantic transfer
between an Equinix datacenter in Frankfurt and one in Palo
Alto. This example highlights the additional measures that
need to be taken in terms of scheduling and provisioning
of storage nodes when transfers are subjected to combined
backbone and access link bottlenecks. The Atlantic presents
one of the toughest barriers for inter datacenter bulk trans-
fers since there are no major relay nodes in between to assist
in the transfer. Therefore we study it to determine what can
be achieved in this difficult but important case.

Starting with the sending and receiving windows of the
datacenters we notice that these need to be at least 7 hours
long. This is because the windows need to bridge the 6
hour gap between central Europe (GMT+1) and the East
Coast of the US (GMT-5), and leave at least one hour of
overlap for performing the transfer. We assume that the
available window starts at 00:00 am local time and ends at
7:00 am local time at each datacenter. Assuming that there
are no backbone constraints, the Frankfurt datacenter can
upload for 2 hours to 2 datacenters in Amsterdam, another
2 hours to 2 datacenters in Dusseldorf, and another 2 hours
to 2 datacenters in Zurich. Then during the last hour of
its window (5am-6am GMT), which overlaps with the first
hour of the window of New York, Frankfurt, and the other
6 datacenters in Amsterdam, Dusseldorf, and Zurich can
push in parallel all their data to 7 datacenters in New York.
The New York datacenters can eventually deliver them to
Palo Alto, 16 hours after Frankfurt initiated the transfer.
Effectively, Frankfurt can deliver to Palo Alto as much data
as its window permits within a day (first row of Table 1).

7.3 Putting the backbone in the picture

The previous example shows that large enough windows at
the end-points combined with sufficient intermediate storage
nodes can bypass the Atlantic barrier. In reality, however,
all the European datacenters of Equinix have to cross the
Atlantic using one of TIWS’s transatlantic links. In partic-
ular, due to the topology and routing of TIWS, Frankfurt,
Amsterdam, and Dusseldorf cross the Atlantic through the
London-New York link, whereas Zurich crosses through the
Madrid-Miami link (Fig. 7). However, these links become
available for bulk transfers at different times of the day and
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Figure 8: Diurnal utilizations of the London-New
York (LON-NY) and Madrid-Miami (MIA-MAD)
transatlantic TIWS backbone links. We also depict
the cutoff threshold (0.5) and the available windows
of the New York (GMT-5) and Central Europe, e.g.,
FRA, datacenters (GMT+1). Due to confidentiality
reasons we report the utilization over peak utiliza-
tion ratio, instead of the actual utilization.

for different durations. We assume that bulk traffic is al-
lowed only as long as it does not exceed the cutoff thresh-
old, which we set equal to 50% of the peak actual link uti-
lization. Consequently based on our utilization traces, the
London-New York link becomes available from 7am GMT to
2pm GMT, whereas the Madrid-Miami link becomes avail-
able from 3am GMT to 1lpm GMT (see Fig. 8). Thus, the
Madrid-Miami link is available for bulk transfers during a
bigger part of the day than the London-New York link.
Backbone-constraint-unaware scheduler: A scheduler
that is unaware of backbone constraints, such as the above,
can push data to datacenters whose exit link over the At-
lantic is unavailable when their available windows overlap
with the available windows of their intended receiver data-
centers in the East Coast. In particular, because of the un-
availability of the London-New York link at 5am GMT, all
the data at Frankfurt, Amsterdam, and Dusseldorf cannot
cross the Atlantic. At the same time, however, the Madrid-
Miami link is available, thus the 2 Zurich datacenters can
push their data to New York. This way however, only 2
hours worth of data using Frankfurt’s uplink capacity can
be delivered to Palo Alto during a day.
Backbone-constraint-aware scheduler: The scheduler
that is aware of both edge and backbone constraints
(Sect. 4.2.2), can deliver up to 4 hours worth of data. This
is done by sending 4 hours instead of 2 hours worth of data
to Zurich, and having the 4 datacenters in Zurich forward
their data to New York through the Madrid-Miami link.
Note that the Madrid-Miami link is available between 5am
and 6am GMT when the available window of the Central
Europe datacenters overlaps with the window of New York.
Approximately 4 hours worth of data is the best attain-
able performance given the number and locations of Equinix
datacenters, and the topology and routing rules of TIWS.
To increase the performance to the maximum 7 hours
worth of data, Zurich needs to have 7 datacenters. Alterna-
tively, TIWS can install a dedicated NetStitcher node in its
PoP in Madrid (last row of Table 1).

7.4 International transfers conclusions

The conclusions from this evaluation are:
e Backbone bottlenecks may appear on transatlantic links.
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Conditions Volume Transfer
Transfered Time

No backbone constraints 2720GB 16h

Backbone constraints and

constraint-aware scheduler 1553GB 36.4h

Backbone constraints and

constraint-unaware scheduler 799GB 00

Backbone constraints,

constraint-aware scheduler

and NetStitcher node in Madrid 2720GB 16h

Table 1: Volumes transferred during 24h and the
total time it takes to transfer 2720GB between the
Frankfurt and Palo Alto Equinix datacenters. We
repeat the experiment 5 times and report mean val-
ues. We consider as the start time of a transfer the
moment the window of Frankfurt becomes available.

These bottlenecks render transfer schedules that do not con-
sider them ineffective, and raise the need for a backbone-
constraint-aware transfer scheduler.

e The introduction of NetStitcher storage nodes in strategi-
cally selected locations is needed to bypass network bottle-
necks and maximize efficiency.

8. LIVE CDN DEPLOYMENT

In this section we present a real deployment of NetStitcher
aiming to: a) assess the forecasting accuracy of the SPAR-
based predictor; and b) quantify cost savings based on a
simple, but realistic pricing scheme.

The system has been installed on a subset of nodes oper-
ated by a global CDN platform. The CDN serves video and
other content and is deployed in 19 Points of Presence (PoP)
in Europe, North and South America. For our experiments
we had access to 49 CDN servers, each with direct Gbps
access to the backbone and abundant storage. NetStitcher
is planned to run on top of this infrastructure and take ad-
vantage of its resources when the critical operational traffic
(video or file-sharing) to local customers subsides.

8.1 Experimental setting

We evaluate NetStitcher in the presence of emulated CDN
operational traffic. Our purpose is to show that our schedul-
ing algorithm can substantially reduce costs, even when the
nodes have irregular but mostly predictable capacity.
Hardware and software: Each CDN server has a quad
Intel Xeon 2GHz/4MB CPU, 4GB RAM, 2TB storage, and
runs Red Hat 4.1.2-46 with a 2.6.18-164.el5 kernel. Each
server has 1Gbps uplink/downlink capacity.
Sender-receiver pairs: We use 3 CDN servers in Spain
(Madrid and Barcelona; GMT+1), 2 servers in the UK (Lon-
don; GMTH0), 3 servers in Argentina (Buenos Aires; GMT-
3), 3 servers in Chile (Valparaiso; GMT-4), 3 servers in the
East Coast (Miami and New York; GMT-5), 1 server in the
central US (Dallas; GMT-6), and 1 server in the West Coast
(Palo Alto; GMT-8). We consider all the sender-receiver
pairs between servers residing in distinct timezones.
Methodology: We use a 4-day trace of the CDN opera-
tional load of the node in Madrid. Unlike other nodes used
in our experiment, Madrid’s is currently part of our com-
mercial deployment with a load largely induced by a TV
broadcaster. Thus, as expected it exhibits a periodic diurnal
behavior, allowing us to use it for a more faithful evaluation.



We depict the last 2 days of the trace in Fig. 9(a). For
confidentiality reasons we report the ratio of the utilization
over the 95th-percentile utilization. We normalize this ratio
to correspond to the utilization of the server’s 1Gbps capac-
ity. We assign this diurnal load to all CDN servers for the
time zone they reside in. We assign the remaining capacity
as available resources for NetStitcher, E2E/Overlay and BT.

The transfers start on the 4th day of Madrid CDN trace
at Oam GMT+1. NetStitcher knows the operational traffic
load of the first 3 days. It uses it to predict the bandwidth
availability during the 4th day with the autoregressive vol-
ume predictor. The predictor revises the prediction as de-
scribed in Sect. 5. Considering the revisions, we recompute
the transfer schedule (Sect. 4.3) every 1 hour.

According to this time series, the uplink capacity of the

CDN servers suffices to upload at most 4260GB over a day.
We therefore arrange for NetStitcher and BT to transfer a
volume of this size. For each sender-receiver pair we repeat
the experiment 5 times and we compute the cost savings of
using NetStitcher, E2E/Overlay and BT.
Pricing scheme: The cost of leftover bandwidth used by
NetStitcher and the other policies is zero. The transit band-
width for our CDN costs $7/Mbps/month. In this deploy-
ment, the customer wants to transfer a 4260GB file in 24
hours. If the policy is unable to deliver all the file, the cus-
tomer sends the remainder using a CBR end-to-end transfer
over 24 hours, and pays for the excess transit bandwidth.
This excess bandwidth is paid at both the sender and the re-
ceiver under the 95th-percentile billing scheme. NetStitcher
and BT incur the additional cost of intermediate node stor-
age. To compute this cost we consider the storage occupied
on an hourly basis. We approximate the storage cost at the
intermediate nodes by considering the per-hour normalized
cost of Amazon S3 [1]: $0.000076 per GB per hour.

8.2 Live deployment results and conclusions

Performance of the autoregressive predictor: In

Fig. 9(a) we depict the forecast of the autoregressive predic-
tor as derived at the end of the 3rd day. As can be seen,
the predictor approximates satisfactorily the actual CDN
utilization, with a 0.18 maximum error.

Cost savings: Figure 9(b) shows the monthly cost for
transferring 4260GB every day with NetStitcher, E2E/Over-
lay and BT against the time zone difference between the
sender and the receiver. We observe that:

e NetStitcher yields up to 86% less cost compared to the
E2E/Overlay when the sender is in GMT+1 and the receiver
in GMT-6. It yields up to 90% less cost compared to BT
when the sender is in GMT+0 and the receiver in GMT+3.
e NetStitcher yields the greatest cost savings when the time
difference is negative, i.e., when going from east to west. As
the time difference between sender and receiver increases,
the costs for all policies increase. BT however is more severely
penalized due to its excessive replication, which forces the
customer to send up to ~85% of its data using additional
transit bandwidth, when the time difference is +9h. For
+9h time difference, E2E/Overlay costs almost as much
as NetStitcher. In this case, the extra paid bandwidth for
NetStitcher is slightly lower than E2E/Overlay and do not
compensate for NetStitcher’s storage requirements. We note
that the reported monetary values would be proportionally
higher if the deployment involved a larger file, and thereby
more servers and more transit bandwidth.
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Figure 9: (a) Diurnal operational traffic bandwidth
utilization of the Madrid CDN node; (b) Percentile
plot of USD monthly cost for transferring 4260GB
every day. The x axis indicates the time difference
between the receiver and the sender. For each time
difference, the boxes are shown in the horizontal or-
der NetStitcher, BT and Overlay.

e The maximum storage required by NetStitcher is 619GB
per 24 hours, when the sender resides in GMT-8 and the
receiver in GMT+1. This entails a monthly cost of ~$33,
which is substantially lower than the median bandwidth cost
for this case: $438. On average, storage costs are only 14%
of the total cost. This is because an intermediate storage
node can delete a piece after forwarding it. On the other
hand BT, which maintains copies of forwarded data, needs
a maximum storage of 1872GB per 24 hours, yielding a $101
monthly cost.

9. RELATED WORK

Differentiated traffic classes: There have been proposals
for bulk transfers at different layers of the protocol stack via
differentiated treatment of traffic classes. For instance, the
Scavenger service of Qbone [36] tags delay tolerant bulk traf-
fic so that routers can service it with lower priority. However,
such approaches use end-to-end flows, and thus suffer from
the shortcomings of the E2E policy discussed before. That
is, they allow a single bottleneck to block the utilization of
bandwidth that gets freed up elsewhere in the path.

Delay tolerant networks: Store-and-forward has been
used in proposals for wireless intermittently connected Delay
Tolerant Networks (DTN) [24]. Mobile devices forward and
store messages with the aim of eventually delivering them
to the intended final recipient whose location is unknown
and changing. Such systems have to operate in highly un-
predictable environments and suffer from disconnections at
both the control (routing) and the data plane (transmis-
sion). NetStitcher is designed to tap on periodic phenomena
appearing in wireline networks while having at its disposal



an always connected control plane that allows it to sched-
ule and route efficiently. On a tangential but still related
area, [23] shows that mobility combined with storage in-
creases the capacity of wireless DTNs. NetStitcher does the
same by using storage to stitch together leftover capacity
that would otherwise be wasted due to time misalignments.

Breitgand et al. [15] used store and forward to deliver indi-
vidual low priority messages of a network monitoring system
over a single path. They proposed an online algorithm to
deal with unpredictable changes in resource availability. We
target multipath bulk transfers in mostly predictable envi-
ronments, which dictates the reduction of our problem to
an efficiently computable maximum flow formulation. We
address unpredictability by recomputing the schedule suffi-
ciently often and when component failure is detected.
Point-to-point multipath bulk transfers: Pucha et al.’s
dsync [34] is a file transfer system that adapts to network
conditions by determining which of its available resources
(e.g. network, disk, network peers) is the best to use at any
given time and by exploiting file similarity [33]. NetStitcher
does not rely on network peers that store content of interest
in advance, and it has different design goals. Signiant [§]
and Riverbed [7] offer point-to-point intra-business content
transfer and application acceleration platforms, which uti-
lize WAN optimization technologies. One could view Net-
Stitcher as an additional WAN optimization technology. To
the best of our knowledge, Signiant and RiverBed do not
employ store and forward techniques.

Kokku et al. [27] focus on the TCP implications of mul-
tipath background transfers. They do not consider store
and forward, but instead aim at making bulk background
transfers more TCP-friendly, while maintaining efficiency.
Single-hop and single-path SnF bulk transfers: The
closest work to NetStitcher is [30, 28], which developed ana-
lytical models for transferring bulk data through single-hop
and single-path transfers while minimizing 95th-percentile
transit costs for Telcos. It quantified the cost for transfer-
ring bulk scientific data across time zones and compared
it to the use of postal service. That work did not address
design and implementation issues, whereas NetStitcher is a
system deployed in a production setting for SnF bulk trans-
fers. In this work, we extend SnF scheduling beyond the
simple case of single-path and single-hop over a single un-
constrained storage node presented in [30].

10. CONCLUSIONS AND FUTURE WORK

We have presented the design, implementation, and vali-
dation of NetStitcher. It is a system for stitching together
unutilized bandwidth across different datacenters, and using
it to carry inter-datacenter bulk traffic for backup, replica-
tion, or data migration applications. NetStitcher bypasses
the problem of misaligned leftover bandwidth by using sched-
uled multipath and multi-hop store-and-forward through in-
termediate storage nodes. As future work, we consider re-
sults on bootstrapping deployments and on security. An
additional interesting topic is to adapt our system for oper-
ations in a P2P setting (higher churn, free-riding, etc).
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