N

N
N

HAL

open science

Predicting and Tracking Internet Path Changes
Italo Cunha, Renata Teixeira, Darryl Veitch, Christophe Diot

» To cite this version:

Italo Cunha, Renata Teixeira, Darryl Veitch, Christophe Diot. Predicting and Tracking Internet Path
Changes. ACM SIGCOMM, Aug 2011, Toronto, Canada. pp.122-133, 10.1145/2018436.2018451 .

hal-00835405

HAL Id: hal-00835405
https://hal.sorbonne-universite.fr /hal-00835405

Submitted on 18 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.sorbonne-universite.fr/hal-00835405
https://hal.archives-ouvertes.fr

Predicting and Tracking Internet Path Changes

italo Cunhati Renata Teixeira*!

fTechnicolor

fUPMC Sorbonne Universités

Darryl Veitchs Christophe Diot!

*CNRS

“Dept. of Electrical and Electronic Eng., University of Melbourne

{italo.cunha, christophe.diot} @technicolor.com

ABSTRACT

This paper investigates to what extent it is possible to use trace-
route-style probing for accurately tracking Internet path changes.
When the number of paths is large, the usual traceroute based
approach misses many path changes because it probes all paths
equally. Based on empirical observations, we argue that monitors
can optimize probing according to the likelihood of path changes.
We design a simple predictor of path changes using a nearest-
neighbor model. Although predicting path changes is not very ac-
curate, we show that it can be used to improve probe targeting. Our
path tracking method, called DTRACK, detects up to two times more
path changes than traditional probing, with lower detection delay,
as well as providing complete load-balancer information.

Categories and Subject Descriptors

C.2.3 [Computer Systems Organization]: Computer Communi-
cation Networks—~Network Operations—Network Monitoring;
C.4 [Computer Systems Organization]: Performance of Sys-
tems—~Measurement Techniques

General Terms
Design, Experimentation, Measurement

Keywords
Topology Mapping, Tracking, Prediction, Path Changes

1. INTRODUCTION

Systems that detect Internet faults [9, 15] or prefix hijacks [34]
require frequent measurements of Internet paths, often taken with
traceroute. Topology mapping techniques periodically issue trace-
routes and then combine observed links into a topology [14,17,25].
Content distribution networks continuously monitor paths and their
properties to select the “best” content server for user requests [10].
Similarly, overlay networks monitor IP paths to select the best over-
lay routing [1]. In all these examples, a source host issues trace-
routes to a large number of destinations with the hope of tracking
paths as they change.

5The work was done while Darryl Veitch was visiting Technicolor.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM’11, August 15-19, 2011, Toronto, Ontario, Canada.

Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...$10.00.

renata.teixeira@lip6.fr dveitch@unimelb.edu.au

The classical approach of probing all paths equally, however,
has practical limits. First, sources have a limited probing capacity
(constrained by source link capacity and CPU utilization), which
prevents them from issuing traceroutes frequently enough to ob-
serve changes on all paths. Second, Internet paths are often sta-
ble [8, 12, 24], so probing all paths at the same frequency wastes
probes on paths that are not changing while missing changes in
other paths. Finally, many paths today traverse routers that perform
load balancing [2]. Load balancing creates multiple simultaneous
paths from a source to a given destination. Ignoring load balancing
leads to traceroute errors and misinterpretation of path changes [8].
Accurately discovering all paths under load balancing, however, re-
quires even more probes [31].

This paper shows that a monitor can optimize probing to track
path changes more efficiently than classical probing given the same
probing capacity. We develop DTRACK, a system that separates the
tracking of path changes into two tasks: path change detection and
path remapping. DTRACK only remaps (measures again the hops
of) a path once a change is detected. Path remapping uses Paris
traceroute’s multipath detection algorithm (MDA) [31], because it
accurately discovers all paths under load balancing. The key nov-
elty of this paper is to design a probing strategy that predicts the
paths that are more likely to change and adapts the probing fre-
quency accordingly. We make two main contributions:

Investigate the predictability of path changes. We use trace-
route measurements from 70 PlanetLab nodes to train models of
path changes. We use RuleFit [13], a supervised machine learning
technique, to identify the features that help predict path changes
and to act as a benchmark (Sec. 3). RuleFit is too complex to be
used online. Hence, we develop a model to predict path changes,
called NN4, based on the K nearest-neighbor scheme, which can
be implemented efficiently and is as accurate as RuleFit (Sec. 4).
We find that prediction is difficult. Even though NN4 is not highly
accurate, it is effective for tracking path changes, as it can predict
paths that are more likely to change in the short term.

A probing strategy to track path changes. (Sec. 5) DTRACK
adapts path sampling rates to minimize the number of missed
changes based on NN4’s predictions. For each path, it sends a sin-
gle probe per sample in a temporally striped form of traceroute.
‘We evaluate DTRACK with trace-driven simulations and show that,
for the probing budget used by DIMES [25], DTRACK misses 73%
fewer path changes than the state-of-the-art approach and detects
93% of the path changes in the traces.

DTRACK tracks path changes more accurately than previous
techniques. A closer look at path changes should enable research
on the fine-grained dynamics of Internet topology as well as ensure
that failure detection systems, content distribution, and overlay net-
works have up-to-date information on network paths.

2. DEFINITIONS, DATA, AND METRICS

In this section we define key underlying concepts and present
the dataset we use. We establish the low-level path prediction goals
which underlie our approach to path tracking, and then present a
spectrum of candidate path features to be exploited to that end.

2.1 Virtual paths and routes

Following Paxson [24], we use virtual path to refer to the con-
nectivity between a fixed source (here a monitor) and a destination
d. At any given time, a virtual path is realized by a route which we
call the current route. Since routing changes occur, a virtual path
can be thought of as a continuous time process P(¢) which jumps
between different routes over time.

A route can be simple, consisting of a sequence of IP interfaces
from the monitor toward d, or branched, when one or more load
balancing routers are present, giving rise to multiple overlapping
sequences (branched routes are called “multi-paths” in [31]). A
route can be a sequence that terminates before reaching d. This
can occur due to routing changes (e.g., transient loops), or the ab-
sence of a complete route to the destination. By route length we
mean the length of its longest sequence, and we define the edit
distance between two routes as the minimum number of interface
insertions, deletions, and substitutions needed to make the IP in-
terface sequences of each route identical. In the same way we can
define AS length and AS edit distance for a general route.

Let a virtual path P be realized by route r at time ¢, i.e., P(t) =
r. Suppose that the path will next jump to a new route at time ¢4,
and last jumped to the current route r at time ¢;. Then the age of
this instance of route 7 is A(r) = t — ty, its residual life is L(r) =
tqa—t, and its duration is D(r) = A(r)+L(r) = tq—tp. Typically,
as we have just done, we will write A(r) instead of A(P(t)), and
so on, when the context makes the virtual path, time instant, and
hence route instance, clear.

In practice we measure virtual paths only at discrete times, re-
sulting effectively in a sampling of the process P(¢). A change can
be detected whenever two consecutive path measurements differ,
however the full details of the evolution of the virtual path between
these samples is unknown, and many changes may be missed. Un-
less stated otherwise, by (virtual) path change we mean a change
observed in this way. The change is deemed to have occurred at
the time of the second measurement. Hence, the measured age of
a route instance is always zero when it is first observed. This con-
servative approach underestimates route age with an error smaller
than the inter-measurement period.

2.2 Dataset

For our purposes, an ideal dataset would be a complete record
of the evolution of virtual paths, together with all sequences of IP
interfaces for each constituent route. Real world traces are limited
both in the frequency at which each virtual path can be sampled,
and the accuracy and completeness of the routing information ob-
tained at each sample. In particular, the identification of the mul-
tiple IP interface sequences for branched routes requires a lot of
probes [31] and takes time, reducing the frequency at which we can
measure virtual paths. For this identification we use Paris trace-
route’s Multipath Detection Algorithm (MDA) [31]. MDA pro-
vides strong statistical guarantees for complete route discovery in
the presence of an unknown number of load balancers. It is there-
fore ideal for reliable change detection, but is conservative and can
be expensive in probe use (see Sec. 5.4).

We address the above limitations by using traces collected with
FastMapping [8]. FastMapping measures virtual paths with a
modified version of Paris traceroute [2] that sends a single probe

per hop. Whenever a new IP interface is seen, FastMapping re-
measures the route using MDA. In this way, the frequency at which
it searches for path changes is high, but when a change is detected,
the new route is mapped out thoroughly.

We use a publicly-available dataset collected from 70 PlanetLab
hosts during 5 weeks starting September 1st, 2010 [8]. Each mon-
itor selects 1,000 destinations at random from a list of 34,820 ran-
domly chosen reachable destinations. Each virtual path is measured
every 4.4 minutes on average. We complement the dataset with IP-
to-AS maps built from Team Cymru' and UCLA’s IRL [23]. Al-
though almost all monitors are connected to academic networks,
the destinations are not. As such, this dataset traverses 7,842 ASes
and covers 97% of large ASes [23].

We lack ground truth about path changes and the FastMapping
dataset may miss changes; however, all changes the dataset cap-
tures are real. Fig. 1 shows the distribution of all route durations in
the dataset. It is similar to Paxson’s findings that most routes are
short-lived: 60% of routes have durations under one hour.

2.3 Prediction goals and error metrics

We study three kinds of prediction: (i) prediction];(r) of the
residual lifetime L(r) of a route r = P(t) of some path observed
at time ¢, (ii) prediction Njs(P) of the number of changes in the
path occurring in the time interval [¢, ¢ + 4], and (iii) prediction,
via an indicator function fg(r), of whether the current route will
change in the interval [¢, ¢ 4 0] (Is(r) = 1), or not (I5(r) = 0).

In the case of residual lifetime, we measure the relative pre-
diction error Er(r) = (L(r) — L(r))/L(r). This takes val-
ues in [—1,00), with Er(r) = 0 corresponding to a perfect
prediction. For Ns, we measure the absolute error Ens(P) =
N5 (P) — Ns(P) because the relative prediction error is undefined
whenever N5(P) = 0. For I5, we measure the error Er,, the
fraction of time I5(r) # I5(r). This takes values in [0, 1], with
Er; = 0.5 corresponding to a random predictor.

2.4 Virtual path features

A virtual path predictor needs to determine and exploit those fea-
tures of the path and its history that carry the most information
about change patterns.

Paxson characterized virtual path stability using the notions of
route persistence, which is essentially route duration D(r), and
route prevalence [24], the proportion of time a given route is ac-
tive. In the context of prediction, where only metrics derivable
from past data are available, these two measures translate to the
following two features of the route r which is current at time ¢: (i)
the route age A(r), and (ii) the (past) prevalence, the fraction of
time r was active over the window [t — 7, t]. We set the timescale
T to 7 = oo to indicate a window starting at the beginning of the
dataset.

Route age and prevalence are important prediction features. A
first idea of their utility is given in Figs. 2(a) and 2(b) respectively,
where the median, 25th, and 75th percentiles of route residual life-
times are given as a function of the respective features (these were
computed based on periodic sampling of all virtual paths in the
dataset with period five minutes). In Fig. 2(a) for example we ob-
serve that younger routes have shorter residual lifetimes than older
routes, a possible basis for prediction. Similarly, Fig. 2(b) shows
that when prevalence is measured over a timescale of 7 = 1 day,
routes with lower prevalence are more likely to die young.

Although route age and prevalence are each useful for predic-
tion, they are not sufficient, as shown by the high variability in the

"http://www.team-cymru.org/Services/ip-to-asn.html

@ €120 @ €120)
= o a) IS]
2 < 100 PO Sito0p
5 £ €
s 3 % 75th percentile -4 | 3 T
b = 60 Median —&— |) 75th percentile & -
E g 25th percentile v s} Median —o—
o S 40 ° 40 25th percentile v
g € g ¢
& T 20 T 20 I/
E El v El
3 2 o M 3 oy
0.1 1 10 100 0 10 15 20 0 0.2 0.4 0.6 0.8 1

Route Duration (hours)

Figure 1: Distribution of all route durations
in the dataset.

data (wide spread of the percentiles in Figs. 2(a) and 2(b)). To do
better, additional features are needed. Our aim here is to define
a spectrum of features broad enough to capture essentially all in-
formation computable from the dataset which may have predictive
value. We do not know at this point which features are the impor-
tant ones, nor how to combine them to make accurate predictions.
This is a task we address in Sec. 3.

We do not attempt to exploit spatial dependencies in this paper
for prediction, although they clearly exist. For example, changes
in routing tables impact multiple paths at roughly the same time.
The reason is that including spatial network information in Rule-
Fit requires one predictive feature per link in the network, which is
computationally prohibitive. However, we can exploit spatial de-
pendencies to improve path tracking efficiency through the probing
scheme, as we detail in Sec. 5.3.

Table 1 partitions all possible features into four categories:
(i) Current route — characterize the current route and its state;
(i) Last change — capture any nearest neighbor interactions;
(iii) Timescale-based — metrics measured over a given timescale;
(iv) Event-based — metrics defined in ‘event-time’. We use this
scheme only as a framework to guide the selection of individ-
ual features. We aim to capture inherently different kinds of in-
formation and measures both of average behavior and variability.
Only features that are computable based on the information in the
dataset, together with available side-information (we use IP-to-AS
maps), are allowed.

The last four features in the Timescale-based category allow us
to identify virtual paths that are highly unstable and change repeat-
edly, as observed by previous work [22,24,30]. The features in the
Event-based category may involve time but are not defined based
on a preselected timescale. Instead, they try to capture patterns of
changes in the past, like oscillation between two routes. For com-
putational reasons we limit ourselves to looking up to the 5 most
recent virtual path changes. In most of the cases this is already
sufficient to reach the beginning of the dataset.

Feature properties. Paths in the FastMapping dataset are sta-
ble 96% of the time, but experience short-lived instability periods.
Similar to Zhang et al. [32], we find that path changes are local
and usually close to destinations: 86% of changes are inside an AS
and 31% of path changes impact the destination’s AS. We also find
that 38% of path changes impact the path length, and 14% change
the AS-level path. Our previous work [8] presents a more detailed
characterization of path changes.

Tab. 1 shows the correlation between path features and residual
lifetime, computed by sampling the dataset with a Poisson process
with an average sampling period of 4 hours. For timescale-based

Route Age (hours)

Route Prevalence (t = 1 day)

Figure 2: Relationship between virtual path features and residual lifetime:
residual lifetime as a function of (a) route age and (b) route prevalence.

CORRELATION
CURRENT ROUTE WITH L(7)
Route Age 0.17
Length -0.10
AS length -0.10
Number of load balancers (i.e., hops with multiple next-hops) -0.04
Indicator of whether the route reaches the destination -0.03
LAST CHANGE
Duration of the previous route 0.03
Length difference -0.07
AS length difference -0.02
Edit distance 0.05
AS edit distance 0.07
TIMESCALE-BASED (COMPUTED OVER [t — T, t])
Prevalence of the current route 0.20
Average route duration -0.11
Standard deviation of route durations -0.13
Number of previous occurrences of the current route -0.11
Number of virtual path changes -0.14
EVENT-BASED
Times since the most recent occurrences of the current route -0.08

Number of changes since the most recent occ. of the cur. route -0.09

Table 1: Set of candidate features underlying prediction.

features we show correlation values for 7 = 1 day, and for event-
based features we show the highest correlation. These low corre-
lation values indicate that no single feature can predict changes; in
the next section we study how to combine features for prediction.

3. PREDICTION FOUNDATIONS

Our path tracking approach is built on the ability to predict (al-
beit imperfectly) virtual path changes. We seek a predictor based
on an intuitive and parsimonious model rather than a black box.
However, virtual path changes are characterized by extreme vari-
ability and are influenced by many different factors, making model
building, and even feature selection, problematic. We employ Rule-
Fit [13], a state-of-the-art supervised machine learning technique,
to bootstrap our modeling efforts. We use RuleFit for two main
purposes. First, to comprehensively examine the spectrum of fea-
tures of Tab. 1 to determine the most predictive. Second, to act as a
benchmark representing in an approximate sense the best possible
prediction when large (off-line) resources are available for training.

3.1 RuleFit Overview

RuleFit [13] trains predictors based on rule ensembles. We
choose it over other alternatives (against which it compares favor-
ably) for two reasons: (i) it ranks features by their importance for

prediction, (ii) it outputs easy-to-interpret rules that allow an under-
standing of how features are combined. We give a brief overview
of RuleFit, referring the reader to the original paper for details [13].

Rules combine one or more features into simple ‘and’ tests. Let
x be the feature vector in Tab. 1 and sy a specified subset of the
possible values of feature f. Then, a rule takes the form

r(@) = [[I(zr € 5p), (1)
f

where I(-) is an indicator function. Rules take value one when all
features have values inside their corresponding ranges, else zero.

RuleFit first generates a large number of rules using decision
trees. It then trains a predictor of the form

d(@) = a0+ axri(x), 2)
k

where the vector a is computed by solving an optimization prob-
lem that minimizes the Huber loss (a modified squared prediction
error robust to outliers) with an L1 penalty term. RuleFit also em-
ploys other robustness mechanisms, for example it trains and tests
on subsets of the training data internally to avoid overfitting.

Rule ensembles can exploit feature interdependence and capture
complex relationships between features and prediction goals. Cru-
cially, RuleFit allows rules and features to be ordered by their im-
portance. Rule importance is the product of the rule’s coefficient
and a measure of how well it splits the training set:

]k = |ak|\/ Sk(l — Sk),

where sy, is the fraction of points in the training set where r(x) =
1. Feature importance is computed as the sum of the normalized
importance of the rules where the feature appears:

I = Z I, /mu, 3

k:fery

where m;. is the number of active features in rg.

3.2 RuleFit training sets

RuleFit, like any supervised learning algorithm, requires a train-
ing set consisting of training points that associate features with the
true values of metrics to be predicted. In our case, a training point,
say for residual lifetime, associates a virtual path at some time ¢,
represented by the features in Tab. 1, with the true residual lifetime
L(r) of the current route 7 = P(t). Separate but similar training is
performed for Ns(P) and Is(r).

To limit the computational load of training, which is high for
RuleFit, we control the total number of training points. For training
point selection, first note that a given virtual path has a change his-
tory that is crucial to capture for good prediction of its future. We
therefore build the required number of training points by extracting
rich path change information from a subset of paths, rather than ex-
tracting (potentially very) partial information from each path. We
retain path diversity through random path selection, and the use of
multiple training sets (at least five for each parameter configuration
we evaluate), obtained through using different random seeds.

For a given virtual path, we first include all explicit path change
information by creating a training point for each entry in the dataset
where a change was detected. However, such points all have (mea-
sured) current route age equal to zero (Sec. 2.1), whereas when
running live predictions in general are needed at any arbitrary time
point, with arbitrary route age. To capture the interdependence of
features and prediction targets on route age we include additional
synthetic points which do not appear in the dataset but which are
functions of it. To achieve this we discretize route age into bins

and create a training point whenever the age of a route reaches a
bin boundary. We choose bin boundaries as equally-spaced per-
centiles of the distribution of route durations in the training set, as
this adapts naturally to distribution shape. Using five bins as ex-
ample, we create training points whenever a route’s age reaches
zero seconds, 3.5 min., 12 min., 48 min., and 4 hours.

3.3 Test sets

Like training sets, test sets consist of test points which associate
virtual path features with correct predictions. Unlike training sets,
where the primary goal is to collect information important for pre-
diction and where details may depend on the method to be trained,
for test sets the imperative is to emulate the information available
in the operational environment so that the predictor can be fairly
tested, and should be independent of the prediction method.

The raw dataset has too many points for use as a test set. To
reduce computational complexity, we build test sets by sampling
each virtual path at time points chosen according to a Poisson pro-
cess, using the same sampling rate for each path. This corresponds
to examining the set of paths in a neutral way over time, which will
naturally include a diversity of behavior. For example, our test sets
include samples inside bursts of path changes, many samples from
a very long-lived route, and rare events such as of an old route just
before it changes.

We use an average per-path sampling period of four hours, result-
ing in at least two orders of magnitude more test points than training
points. We test each predictor against eight test sets (from different
seeds), for a total of 40 different training—test set combinations.

We ignore routes active at the beginning or the end of the dataset
when creating training and test sets, as their duration, age, and
residual lifetime are unknown. Similarly, we ignore all virtual path
changes in the first 7 hours of the dataset (if 7 # o0) to avoid
biasing timescale-dependent features.

3.4 RuleFit configuration

In this section we study the impact of key parameters on predic-
tion accuracy, pick practical default values, and justify our use of
RuleFit as a benchmark for predicting virtual path changes.

We study the impact of four parameters on prediction error:
the number of rules generated during training, the number of age
thresholds, the timescale 7, and the training set size. Each plot in
Fig. 3.1 varies the value of one parameter while keeping the others
fixed. We show results for Er; with 6 = 4 hours because this is
the prediction goal where the studied parameters have the greatest
impact. Results for other values and other prediction goals are qual-
itatively similar. We compute the prediction error rate only for test
points with route age less than 12 hours to focus on the differences
between configurations. As we discuss later, prediction accuracy is
identical for routes older than 12 hours regardless of configuration.
We plot the minimum, median, and maximum error rate over 40
combinations of training and test sets for each configuration.

Fig. 3.1(a) shows that the benefit of increasing the number of
generated rules is marginal beyond 200 for this data. Our interpre-
tation is that at 200 or so rules, RuleFit has already been able to
exploit all information relevant for prediction. Therefore, we train
predictors with 200 rules unless stated otherwise.

Fig. 3.1(b) shows that prediction error decreases when we add
additional points with age diversity into training sets as described
in Sec. 3.2. However, as few as three age bins are enough to achieve
accurate predictions, and improvement after six is minimal. There-
fore, we train predictors with six age bins unless stated otherwise.

Fig. 3.1(c) shows that the timescale 7 used to compute timescale-
dependent features has little impact on prediction accuracy. A pos-

0.5 0.5

0.5 0.5

:5} 0.45 Min, Median, Max —— Min, Median, Max —— Min, Median, Max —— Min, Median, Max ——

P (a) 1 045 (b) | 045 (c)q{ o045 (d)

8 o4 04 04 { 04 % i]

8 035 0.35 0.35 { 035

Lg 0.3 0.3 0.3 1 03

5 025 1 025 1 ; 0.25 1 025 | 1

£ o2 oy o g 0.2 Flis 1] oo2f ¢ i i b 14 o2 IEERERE
50 100 200 300 400 500 123456 8 12 4h 12h 1d 2d 7d = 100 1K 5K 25K 200K

Number of Rules Number of Age Bins

Timescale t Number of Path Changes

Figure 3: Impact of the (a) number of rules, (b) number of age bins, (c) timescale 7, and (d) training set size on RuleFit accuracy

(test points with route age less than 12 hours).

PATH FEATURE IMPORTANCE
Prevalence of the current route (7 = 1 day) 1.0
Num. of virtual path changes (7 = 1 day) .624
Num. of previous occ. of the current route (7 = 1 day) .216
Route age .116

Times since most recent occs. of the current route < .072
Edit distance (last change) .015
Duration of the previous route .014
Standard deviation of route durations (7 = 1 day) .014
Length difference (last change) .012

All other features < .010

Table 2: Feature importance according to RuleFit.

sible explanation is that only the long term mean value of timescale-
dependent features is predictive, and that RuleFit discovers this and
only builds the means of these features into the predictor (or ignores
them). Therefore, we train predictors with timescale-dependent
features computed with 7 = 1 day.

Finally, Fig. 3.1(d) shows the impact of the number of virtual
path changes in a training set. Training sets with too few changes
fail to capture the virtual path change diversity present in test sets,
resulting in predictors that do not generalize. Prediction accuracy
increases quickly with training set size before flattening out. We
use training sets with 200,000 virtual path changes (around 2.4%
of those in the dataset) unless stated otherwise.

We justify our use of RuleFit as a benchmark for predicting
changes, based on a given (incomplete) dataset, on: (i) we pro-
vide RuleFit with a rich feature set, (ii) RuleFit performs an ex-
tensive search of feature combinations to predict residual lifetimes,
and (iii) our evaluation shows that changing RuleFit’s parameters
is unlikely to improve prediction accuracy significantly. This is an
empirical approach to approximately measure the limits to predic-
tion using a given dataset. Determining actual limits would only be
possible given information-theoretic or statistical assumptions on
the data, which is beyond the scope of this paper.

3.5 Feature selection

We compute feature importance with Eq. (3) and normalize us-
ing the most important feature. Tab. 2 shows the resulting ordered
features, with normalized importance averaged over 50 predictors
for each of residual lifetime, number of changes, and I5.

Route prevalence is the most important feature, helped by its
correlation with route age. It is clear why route prevalence alone is
insufficient. It cannot differentiate a young current route that also
occurred repeatedly in the time window of width 7, from a middle-
aged current route, as both have intermediate prevalence values.

The second, third, and fourth most important features are the
number of virtual path changes, the number of occurrences of the
current route, and route age. Predicted residual lifetimes increase
as route age and prevalence increase, but decrease as the number of

0.5 ‘ Min, Median, Max —e—
0.45 ¢ 1

04 |]
0.35 |]

0.25 % 1
T T N

1 2 3 4 5 Al
Number of Features

Prediction Error Rate (I,

Figure 4: £, for predictors trained with the most important
features (test points with route age < 12 hours).

virtual path changes and occurrences of the current route increase.
Results for the number of changes and /s are similar.

The fifth most important feature is the times (1st up to 5th) of the
most recent occurrences of the current route. The low importance
of this and the other event-based feature suggests that, contrary to
our initial hopes, patterns of changes are too variable, or too rare,
to be useful for prediction.

To evaluate more objectively the utility of RuleFit’s feature im-
portance measure, Fig. 4 shows Ey;_, for predictors trained with
training sets containing only the top p features, for p = 1 to 5.
The improvements in performance with the addition of each new
feature are consistent with the importance rankings from Tab. 2.
Importantly, we see that the top four features generate predictors
which are almost as accurate as those trained on all features.

4. NEAREST-NEIGHBOR PREDICTOR

We design and evaluate a simple predictor which is almost as
accurate as RuleFit while overcoming its slow and computationally
expensive training, its difficult integration into other systems, and
the lack of insight and control arising from its black box nature.

4.1 NN4: Definition

We start from the observation that the top four features from
Tab. 2 carry almost all of the usable information. Since virtual paths
are so variable and the RuleFit models we obtained are so complex,
simple analytic models are not serious candidates as a basis for pre-
diction. We select a nearest-neighbor approach as it captures empir-
ical dependences effectively and flexibly. Using only four features
avoids the dimensionality problems inherent to such predictors [5]
and allows for a very simple method, which we name NN4.

4.1.1 Method overview

Like all nearest-neighbor predictors, we compute predictions for
a virtual path with feature vector & based on training points with

feature vectors that are ‘close’ to . The first challenge is to define
a meaningful distance metric. This is difficult as feature domains
differ (prevalence is a fraction, the number of changes and previous
occurrences are integers, and route age is a real), have different
semantics, and impact virtual path changes differently.

To avoid the pitfalls of some more or less arbitrary choice of
distance metric, we instead partition the feature space into 4 di-
mensional ‘cubes’, or partitions, based on discretising each feature.
Discretisation creates artifacts related to bin boundaries and resolu-
tion loss; however, the advantages are simplicity and the retention
of a meaningful notion of distance for each feature individually. To
avoid rigid fixed bin boundaries, for each feature we choose them
as equally-spaced percentiles of their corresponding distribution,
computed over all virtual path changes in the training set (as we
did for route age in Sec. 3.2).

We denote the partition containing the feature vector of path P at
time ¢ as P (P, t) or simply P(P). We predict the residual lifetime
of r = P(t) and the number of changes in the next ¢ interval as
the averages of the true values of these quantities over all training
points in the partition P(P):

L(r) = E{L(P:(t:)) | s € P(P)}],
Ns(P) = E[{Ns(P:) | s € P(P)}],

where training point s corresponds to the path Ps at time ¢,. Simi-
larly, we predict I5(r) = 1 if more than half the training points in
P(P) change within a time interval J:

Is(r) = |E[{Is(Ps(ts)) | s € P(P)}] +0.5].

The cost of a prediction in NN4 is O(1), while in RuleFit it is
O(r), where r is the number of rules in the model. NN4 can be
easily implemented, while RuleFit is available as a binary module
that cannot be accessed directly and requires external libraries.

4.1.2 Training

To allow a meaningful comparison in our evaluation, each train-
ing for NN4 reuses the virtual paths of some RuleFit training set.

Consider a virtual path P(ts) chosen for training. As ts pro-
gresses, the associated feature vector &(t,) moves between the dif-
ferent partitions. For example, for long-lived routes, @(¢s) evolves
toward the partition with 100% prevalence, zero changes, no previ-
ous occurrences, and the oldest age bin (before resetting to zero age
etc. when/if the path changes). We need to sample this trajectory
in a way that preserves all important information about the changes
in the three prediction goals (L, Ns, Is). Just as in RuleFit, we
need to supplement the changes that occur explicitly in the dataset
with additional training points occurring inbetween change points.
Here we need to add additional samples to capture the diversity not
only of age, but also the other three dimensions. In fact we can
do much better than a discrete sampling leading to a set of train-
ing time points. From the dataset we can actually calculate when
the path enters and exits the partitions it visits, its sojourn time in
each, and the proportions of the sojourn time when a prediction
goal takes a given value. For each partition (and prediction goal)
we are then able to calculate the exact time-weighted average of the
value over the partition. The result is a precomputed prediction for
each partition traversed by the path that emulates a continuous-time
sampling. Final per-partition predictions are formed by averaging
over all paths traversing a partition.

4.1.3 Configuration

Apart from 6, the only parameter of our predictor is the num-
ber of bins b we use to partition each feature. We choose a shared

0.3 7

Min, Median, Max -
0.28 |

0.26
0.24
0.22 %

oz iyt 4+ +

0.18 & : : : : :
2 20 40 60 80 100
Number of Feature Bins

Prediction Error Rate (I4,)

Figure 5: Impact of the number of feature bins on prediction
accuracy (test points with age < 12 hours).

number of bins for parsimony, since when studying each feature
separately (not shown) the optimal point was similar for each. The
tradeoff here is clear. Too few bins and distinct change behaviors
important for prediction are averaged away. Too many bins and
partitions contain insufficient training information resulting in er-
ratic predictions. We found in Sec. 3.4 that six bins were sufficient
for route age. We now examine the three remaining features.

Fig. 5 shows Er, with § = 4 hours as a function of b, restricting
to test points with route age below 12 hours where the b depen-
dence is strongest. We see that values in [6, 20] achieve a good
compromise. We use b = 10 in what follows.

4.2 NN4: Evaluation

We evaluate the prediction accuracy of NN4 and compare it to
our operational benchmark, RuleFit, discovering in the process the
limitations of this kind of prediction in general. We will find that
only very rough prediction is feasible, but in the next section we
show that it is nonetheless of great benefit to path tracking. For
each method we generate new training and test sets in order to test
the robustness of the configuration settings determined above.

4.2.1 Predicting residual lifetime

Fig. 6(Top) shows the distribution of Er(r), the relative error of
];(r) An accurate predictor would have a sharp increase close to
FEr, = 0 (dotted line), but this is not what we see. Specifically, only
33.5% of the RuleFit and 31.1% of the nearest-neighbor predictions
have —0.5 < Er, < 1 (see symbols on the curves). Predictions
miss the true residual lifetimes by a significant amount around 70%
of the time. As this is true not only of NN4 but also for RuleFit,
we conjecture that accurate prediction of route residual lifetimes
is too precise an objective with traceroute-based datasets. It does
not follow, however, that ﬁ(r) is not a useful quantity to estimate.
We can still estimate its order of magnitude well in most cases, and
this is enough to bring important benefits to path tracking, as we
show later. The error of NN4 is considerable larger than that of the
benchmark but it is of the same order of magnitude.

4.2.2 Predicting number of changes

Fig. 6(Bottom) shows the distribution of K, the error of N,
for NN4 for all test points with route age less than 12 hours.
The errors for RuleFit are similar. Errors for test points in routes
older than 12 hours are significantly smaller (not shown) because
a predictor can perform well simply by outputting “no change”
(Ns = 0). We focus here on the difficult case of A < 12h.

Unlike residual lifetimes, the sharp increase near zero means
most predictions are accurate. For example, 90.2% of test points
have —2 < FEn, < 2, and accuracy increases for smaller val-

0.8 1
0.6 1
0.4 ¢

02/

Cum. Fraction of Test Points

-1 0 1 2 3 4 5
Residual Lifetime Relative Prediction Error (E;)

1

NN4

08+ 8=24h —o—
4h —8—
0.6 | 1h v

0.4 r

02t -

Cum. Fraction of Test Points

0

-4 -2 0 2 4
Number of Changes Prediction Error (Ey)

Figure 6: Distribution of prediction error. Top: L; Bottom: N;
based on NN4 (for age < 12h).

ues of §. However, predicting the number of changes over long
intervals such as 24 hours cannot be done accurately. Note that
simply guessing that N5 = 0 also works well for very small §. Al-
though N is a less ambitious target than L, it remains difficult to
estimate from traceroute-type data. Again, however, prediction is
sufficiently good to bring important tracking benefits.

4.2.3 Predicting a change in next § interval

We now study whether the current route of a given path will
change within the next time interval of width §. We expect I5 to be
easier to predict than L or Nj.

Fig. 7(Top) shows NN4’s prediction error as a function of route
prevalence for § between 1 hour and 1 day (results for RuleFit are
very similar and are omitted for clarity). We group route prevalence
into fixed-width bins and compute the error from all test points
falling within each bin (these bins are distinct from the constant-
probability bins underlying NN4’s partitions). For each bin, we
show the minimum, median, and maximum error among the 40
training and test set combinations. Such a breakdown is very use-
ful as it allows us to resolve where prediction is more successful, or
more challenging. For example, since routes with prevalence 1 are
very common, a simple global average over all prevalence values
would drown out the results from routes with prevalence below 1.

First consider the results for 6 = 1h and 4h. The main obser-
vation is that error drops as prevalence increases. This is because
routes with high prevalence are unlikely to change, and a prediction
of “no change” d s(r) = 0), which the predictors output increas-
ingly often, becomes increasingly valid as prevalence increases.
We also see that, for all prevalence values, error is lower for smaller
0. This makes intuitive sense since prediction further into the future
is in general more difficult. More precisely, the probability that a
route will change in a time interval § decreases as d decreases, and
predictors exploit this by predicting “no change” more often.

05

E 04 |]

[0 L 2T

& j4 1t NN4

5§ 03[t ¢, 5=24h —— ¥

& ‘ 4h oo

c 02 %% Bl th o]

BT TR A T

B 04| %MM%M

o @@ﬂ)%@@
O ®

0 0.2 0.4 0.6 0.8 1
Route Prevalence (t = 1 day)

0.5 0=4h ——
3= 1h e
0.4 1 RuleFit o
NN4 x
0.3 No Change

0.2t o A

0.1+

Prediction Error Rate (I5)

0 0.2 0.4 0.6 0.8 1
Route Prevalence (t = 1 day)

Figure 7: E;; as a function of route prevalence for various val-
ues of 5. Top: NN4; Bottom: RuleFit comparison.

The situation is more complex when 6 = 24h, with errors be-
ginning low and increasing substantially before finally peaking and
then decreasing at very high prevalence. This happens because for
larger values of J, routes with low prevalence have a high probabil-
ity of changing. Predictors exploit this and output I () =1 more
often (in fact more than 80% of the time for paths with prevalence
under 0.2). Prediction error is highest at intermediate prevalence
values, as these routes have a probability close to 50% of changing
in the next 24 hours. Finally, prediction error decreases for routes
with high prevalence: as routes become stable the same mechanism
noted above for smaller § kicks in.

We now provide a comparison against RuleFit, focusing on small
to medium 4. Fig. 7(Bottom) shows that NN4 and RuleFit have
equivalent prediction accuracy across all values of prevalence. In
fact NN4 is marginally (up to 2%) better here, where we used
the default RuleFit configuration. Their performance is close to
identical when using the more generous RuleFit configuration (see
Sec. 3) with 500 rules and 12 age bins.

The plot also shows results for a simple baseline predictor that
always predicts fa(r) = 0 (no change). Our predictor is better
for routes with prevalence smaller than 0.7 which are more likely
to change than not, but for high-prevalence routes all predictors
predict “no change” and are equivalent. For routes with prevalence
below 0.7, NN4 reduces the baseline predictor’s £z, from 0.296
t0 0.231 (22%), and Ey,, from 0.163 to 0.131 (20%).

Summary. Prediction is easiest when ¢ is small and prevalence is
high. This is a promising result as most Internet routes are long-
lived and have high prevalence; moreover, applications like topol-
ogy mapping need to predict changes within short time intervals.
NN4 predicts Is reasonably well, and errors ultimately fall to just
a few percent as route prevalence increases and as ¢ decreases. We
have tested the sensitivity to training and test sets, monitor choice,
and overall probing rate, and found it to be very low.

S. TRACKING VIRTUAL PATH CHANGES

We now apply our findings to the problem of the efficient and
accurate tracking of a set of virtual paths over time. We describe
and evaluate our tracking technique, DTRACK.

5.1 DTRACK overview

Path tracking faces two core tasks: path change detection (how
best to schedule probes to hunt for changes), and path remapping
(what to do when they are found). For the latter, inspired by Fast-
Mapping [8], DTRACK uses Paris traceroute’s MDA to accurately
measure the current route of monitored paths both at start up and
after any detection of change. This is vital, since confusing path
changes with load balancing effects makes ‘tracking’ meaningless.

For change detection, DTRACK is novel at two levels.

Across paths: paths are given dedicated sampling rates guided by
NN4 to focus effort where changes are more likely to occur. With-
out this, probes are wasted on paths where nothing is happening.
Within paths: a path ‘sample’ is a single probe rather than a full
traceroute, whose target interface is carefully chosen to combine
the benefits of Paris Traceroute over time with efficiencies arising
from exploiting links shared between paths. This allows changes to
be spotted more quickly.

DTRACK monitors operate independently and use only locally
available information. Each monitor takes three inputs: a predictor
of virtual path changes, a set D of virtual paths to monitor, and a
probing budget; and consists of three main routines: sampling rate
allocation, change tracking, and change remapping. When a change
is detected in a path through sampling, that path is remapped, and
sampling rates for all paths are recomputed. A probing budget is
commonly used to control the average resource use [14,25].

5.2 Path sampling rate allocation

For each path p in D, DTRACK uses NN4 to determine the rate A,
at which to sample it. Sampling rates are updated whenever there is
a change in the predictions, i.e., whenever any virtual path’s feature
vector changes its NN4 partition. This can happen as a result of a
change detection or simply route aging.

We constrain sampling rates to the range Amin < A\p < Amax-
Setting Amin > 0 guarantees that all paths are sampled regularly,
which safeguards against poor predictions on very long lived paths.
An upper rate limit is needed to avoid probes appearing as an attack
(Amax implements the “politeness” of the tracking method [18]).

Based on the monitor’s probe budget of B probes per second,
a sampling budget of B, samples per second for change detection
alone can be derived (Sec. 5.4). To be feasible, the rate limits must
obey Amin < Bs/|D| < Amax, Where |D| is the number of paths.

We now describe three allocation methods for the sampling rates
Ap. The first two are based on residual life and the third minimizes
the number of missed changes.

Residual lifetime allocation. Since 1/L is precisely the rate that
would place a sample right at the next change, allocating sampling
rates proportional to 1/L is a natural choice. We will see that de-
spite the poor accuracy of L found before, this is far better than the
traditional uniform allocation. To approximate this we define rates
to take values in

)\p S {AmaX, a/i(p)a Amin} (4)

and require that A\, > Ag if L(p) < L(g) and Amin < Ap <
Amax for all p, where a is a renormalisation constant which respects
>-,Ap = Bs while minimizing the number of paths with rates
clipped at Amin OF Amax-

We define two variants depending on the definition of ﬁ(p):
RL: L(p) is estimated by NN4,
RL-AGE: ﬁ(p) is predicted as the average residual lifetime of all
route instances in the dataset with duration larger than A(r), i.e.,

f/(r) =E[{D(s) | s € Rand D(s) > A(r)}] — A(r),

where R is the set of all route instances in the dataset.

Finally, for comparison we add an oracular method which knows
the true L(p) and is not subject to rate limits:

RL-ORACLE: \, = a'/L(p) where o’ = Bs >~ 1/L(q).
Minimizing missed changes (MINMISS, used in DTRACK). We
use a Poisson process as a simple model for when changes occur.
With this assumption we are able to select rates that minimize the
expected number of missed changes over the prediction horizon ¢.
This combines prediction of N5 with a notion of sampling more
where the pay off is higher. The rate . (p) of the Poisson change
process is estimated as 1i.(p) = Ns(p)/é.

We idealize samples as occurring periodically with separation
1/Ap. By the properties of a Poisson process, the changes falling
within successive gaps between samples are i.i.d. Poisson random
variables with parameter 1 = pc(p)/N\p = N5/(0)p). Let C
be the number of changes in a gap and M the number of these
missed by the sample at the gap’s end. It is easy to see that M =
max(0, C'—1), since a sample can see at most one change (here we
assume that there is at most one instance of any route in the gap).
The expected number of missed changes in a gap is then

E[M(un)] = Z mPr(M=m) = Z mPr(C =m+1)
m=0 m=1
0 m+1
, m ,
P iy R

Summing over the §)\, gaps, we compute the sampling rates as the
solution of the following optimization problem:

min: Y p(p—1+e¥) = ZN‘S + JAp(e_N“/(é’\p) -1)
{Ap} P »

such that Z Ap = Bs;, Amin < Ap < Anmax, Vp.

p

We also evaluated s as the basis of rate allocation, but as it is
inferior to MINMISS, we omit it for space reasons.

Implementation. Path sampling in DTRACK is controlled to be
‘noisily periodic’. As pointed out in [4], strictly periodic sampling
carries the danger of phase locking with periodic network events.
Aided by the natural randomness of round-trip-times, our im-
plementation ensures that sampling has the noise in inter-sample
times recommended to avoid such problems [3].

DTRACK maintains a FIFO event queue which emits a sam-
ple every 1/B, seconds on average. Path p maintains a timer
T(p). When T'(p) = 0 the next sample request is appended
to the queue and the timer reset to T'(p) = 1/\,. When-
ever DTRACK updates sampling rates, the timers are rescaled as
Thew(P) = Toa(p) Nold,p/Anew,p. Path timers are staggered at ini-
tialization by setting T'(p;) = i/ Bs, where 7 indexes virtual paths.

5.3 In-path sampling strategies

By a sample of a path we mean a measurement, using one or
more probes, of its current route. At one extreme a sample could
correspond to a detailed route mapping using MDA ; however, when
checking for route changes rather than mapping from scratch, this
is too expensive. We now investigate a number of alternatives that

are less rigorous (a change may be missed) but cheaper, for exam-
ple sending just a single probe. In each case however the sample is
load-balancing aware, that is we make use of the flow-id to inter-
face mapping, established by the last full MDA, to target interfaces
to test in an informed and strategic way. Thus, although a single
sample takes only a partial look at a path and may miss a change,
it will not flag a change where none exists, and can still cover the
entire route through multiple samples over time.

In what follows we describe a single sample of each technique
applied to a single path.

Per-sequence A single interface sequence from the route is se-
lected, and its interfaces are probed in order from the monitor to the
destination using a single probe each. Subsequent samples select
other sequences in some order until all are sampled and the route is
covered, before repeating. This strategy gives detailed information
but uses many probes in a short space of time. FastMapping has a
similar strategy only it probes a single sequence repeatedly rather
than looping over all sequences.

Per-probe The interface testing schedule is exactly as for per-
sequence, however only a single probe is sent, so the probing of
each sequence (and ultimately each interface in the route) is spread
out over multiple samples.

The above methods treat each path in isolation, but paths origi-
nated at a single monitor often have shared links. Doubletree [11]
and Tracetree [17] assume that the topology from a monitor to a set
of destinations is a tree. They reduce redundant probes close to the
monitor by doing backwards probing (from the destinations back
to the monitor). Inspired by this approach, we describe methods
that exploit spatial information, namely knowledge of shared links,
to reduce wasteful probing while remaining load-balancing-aware.
We define a link as a pair of consecutive interfaces found on some
path, which can be thought of as a set of links. Many paths may
share a given link.

Per-link A single probe is sent, targeting the far interface of the
least recently sampled link. The per-link sample sharing scheme
means that the timestamp recording the last sampling of a given
link is updated by any path that contains it. The result is that a
given path does not have to sample shared links as often, instead fo-
cussing more on links near the destination. Globally over all links,
the allocation of probes to links becomes closer to uniform.

Per-safelink As for per-link, except that a shared link only triggers
sample sharing when in addition an entire subsequence, from the
monitor down to the interface just past the link, is shared.

Any method that tries to increase probe efficiency through
knowledge of how paths share interfaces can fail. This happens
when a change occurs at a link (say ¢) in some path p, but the mon-
itor probes £ using a path other than p, for which ¢ has not changed.
To help reduce the frequency of such events, per-link strengthens
the definition of sharing from an interface to a link, and per-safelink
expands it further to a subsequence.

Finally, for comparison we add an oracular method:

Per-oracle A single probe is sent, whose perfect interface targeting
will always find a change if one exists.

5.4 Evaluation methodology
We describe how we evaluate DTRACK and compare it to other
tracking techniques.

Trace-driven simulation. We build a simulator that takes a dataset
with raw traceroutes as input, and for each change in each path
extracts a timestamp and the associated route description. It then
simulates how each change tracking technique would probe these

paths, complete with their missed changes and estimated (hence
inaccurate) feature vectors.

We use the traces described in Sec. 2.2 as input for our evalua-
tion. Different monitors in this dataset probe paths at different fre-
quencies. Let rmin be the minimum interval between two consecu-
tive path measurements from a monitor. We set Amax = 1/7min per-
sequence samples per second (the average value over all monitors is
1/190), and this is scaled appropriately for other sampling strate-
gies. This setting is natural in our trace-driven approach: prob-
ing faster than 1/rmi, is meaningless because the dataset contains
no path data more frequent than every 7min, and lower Amax would
guarantee that some changes would be missed. We set Amin = 0 for
all monitors.

Setting probe budgets. The total probe budget B is the sum
of a detection budget B, used in sampling for change detection,
and a remapping budget or cost B, for route remapping. Let
the number of probes per sample be denoted by n(sam), where
sam € {s,p,l, sl,o} is one of sampling methods above. The total
budget (in probes per second) can be written as

B = By + B, = n(sam)Bs + N, - MDA, (©6)

where MDA is the average number of probes in a remapping, and
N, is the average number of remappings per second.

When running live in an operational environment, typical es-
timates of N, and MDA can be used to determine B based on
the monitor parameter B. Our needs here are quite different. For
the purposes of a fair comparison we control By to be the same
for all methods, so that the sampling rates will be determined by
Bs; = Bg/n(sam) where sam is the sampling method in use. This
makes it much easier to give each method the same resources, since
we cannot predict how many changes different methods may find.
More importantly, it does not make sense in this context to give
each method the same total budget B, since the principal mea-
sure of success is the detection of as many changes as possible.
More detections inevitably means increased remapping cost, but it
would be contradictory to focus on B, and to view this as a failing.
The remapping cost is essentially just proportional to the number
of changes found and, although important for the end system, is not
of central interest for assessing detection performance. We provide
some system examples below based on equal B.

The default MDA parameters are very conservative, leading to
high probe use. However, it is stated [31] that much less conserva-
tive parameters can be used with little ill effect. In this paper we
use default parameters for simplicity, since the change detection
performance is our main focus.

Performance metrics. We evaluate two performance metrics for
tracking techniques: the fraction of missed virtual path changes,
and the change detection delay.

A change can be missed through a sample failing to detect a
change, or because of undersampling. We give two examples of
the latter. If a path changes from r; to ro and back to r, before
a sample, then the tracking technique will miss two changes and
think that the path is stable between the two probes. If instead the
path changes from r; to r2 to 73, then tracking will detect a change
from 71 to 3. For each detected change (and only for detected
changes), we compute the detection delay as the time of the detec-
tion minus the time of the last true change.

Alternative tracking techniques. We compare DTRACK against
two other techniques: FastMapping [8] (Sec. 2.2) and Trace-
tree [17] (Sec. 5.3).

Comparing Tracetree against FastMapping and DTRACK is diffi-
cult because Tracetree assumes a tree topology, and is also obliv-

Detection Budget (probes/sec/path x10’3)

Detection Budget (probes/sec/path x10’3)

¥ 03 ‘ ‘ ‘ ‘ ¥ o3 ‘ ‘ ‘ ‘ 3 1¢ ; ; ‘

3 A RL-age —&- 3 ! per-sequence v 3 - FastMapping =

S 025 | t?\ Residual lifetime —e— | S 025 per-probe —e— | s “a_ Assisted Tracetree ---x--

> Y Min. misses -+ > per-link > p N DTrack (per—probe) —e—

g 024 4 RL-oracle ¢ g 02 per-safelink & 1 g “_ DTrack (perssafelink) —&

c R c ; per—oracle -~ c e (C)

2 o5 g\ (b) | g o1 AN

5 04 5 01 s T

c i c | e

k] K] 2

% 0.05 % 0.05 Z B

Y Y 5 O

i 0 I 0 = L 0.01 - : : - :
0 0 10 30 40 50 60 0O 10 20 30 40 50 60

Detection Budget (probes/sec/path x10’3)

Figure 8: Fraction of missed changes versus detection budget per path (B,/|D|): (a) comparing path sampling rate allocation (using
per-sequence) (b) comparing sampling methods (using MINMISS), (¢) comparing DTRACK to alternatives.

ious to load balancing. As such, Tracetree detects many changes
that do not correspond to any real change in any path. To help
quantify these false positives and to make comparison more mean-
ingful, in addition to the total number of Tracetree ‘changes’ de-
tected we compute a cleaned version by assisting Tracetree in three
ways. We filter out all changes induced by load balancing; ignore
all changes due to violation of the tree hypothesis; and whenever
a probe detects a change, we consider that it detects changes in all
virtual paths that traverse the changed link (even though they were
not directly probed). The result is “Assisted Tracetree”.

5.5 Evaluation of path rate allocation

This section evaluates RL, RL-AGE, and MINMISS, using per-
sequence, the simplest sampling scheme. Fig. 8(a) shows the frac-
tion of changes missed as a function of By/|D|, the detection bud-
get per path. Normalizing per-path facilitates comparison for other
datasets. For example, CAIDA’s Ark project [14] and DIMES [25]
use approximately 0.17 x 10™3 and 8.88 x 103 probes per second
per virtual path, respectively.

When the budget is too small, not even the oracle can track all
changes; whereas in the high budget limit all techniques converge
to zero misses. We see that Ark’s probing budget is the range where
even the oracle misses 72% of changes. To track changes more
efficiently Ark would need more monitors, each tracking a smaller
number of paths.

Comparing RL-AGE and RL shows that NN4 reduces the num-
ber of missed changes over the simple age-based predictor by up
to 47% when the sampling budget is small. For sampling bud-
gets higher than 30 x 10~ both RL-AGE and RL perform simi-
larly as most missed changes happen in old, high-prevalence paths
where predictors behave similarly. MINMISS reduces the number
of missed changes by less than 11% compared to RL. We adopt
MINMISS in DTRACK. It is unlikely that we can improve its per-
formance, even if we could it would require a significantly more
complex model.

5.6 Evaluation of in-path sampling

We now use MINMISS as the path rate allocation method, and
compare the performance of the in-path sampling strategies us-
ing Fig. 8(b) (“minimize misses” in Fig. 8(a) and “per-sequence”
in Fig. 8(b) are the same).

The per-probe strategy improves on per-sequence by up to
54%. Per-sequence sampling often wastes probes as once a single
changed interface is detected, there is no need to sample the rest
of the sequence or route, the route can be remapped immediately,
and so the search for the next change begins earlier. Per-probe also
has a large advantage in spotting short-lived routes, as its sampling

rate is n(s) times higher (around 16 times in our data) than per-
sequence, greatly decreasing the risk of skipping over them.

Each of per-link and per-probe use a single probe per sample,
but from Fig. 8(b) the latter is clearly superior. This is because
the efficiency gains of the sample-sharing strategy of per-link are
outweighed by the inherent risks of missed changes (as explained
at the end of Sec. 5.3). This tradeoff becomes steadily worse as
probing budget increases, in fact for this strategy the error saturates
rather than tending to zero in the limit.

Per-safelink sampling addresses the worst risks of per-link, and
over low detection budgets is the best strategy, with up to 28%
fewer misses than per-probe. However, at high sampling rates a
milder form of the issue affecting per-link still arises, and again
the error saturates rather than tending to zero. These results show
that exploiting spatial information (like shared links) must be done
with great care in the context of tracking, as the very assumptions
one is relying on for efficiencies are, by definition, changing (see
Tracetree results below).

By default we use per-safelink sampling in DTRACK, as we ex-
pect most deployments to operate at low sampling budgets (e.g.,
DIMES and CAIDA’s Ark). At very high sampling budgets we
recommend per-probe sampling.

5.7 Comparing prrack to alternatives

Fig. 8(c) replots the per-probe and per-safelink curves from
Fig. 8(b) on a logarithmic scale, and compares against FastMapping
and the assisted form of Tracetree. Each variant of DTRACK outper-
forms FastMapping by a large margin, up to 89% at intermediate
detection budgets. DTRACK also outperforms Assisted Tracetree
for all detection budgets, despite the significant degree of assistance
provided. We attribute this mainly to the failure of the underlying
tree assumption because of load balancing, traffic engineering, and
typical AS peering practices. Real (unassisted) Tracetree also suf-
fers from false positives, which in fact grow linearly in probing
budget. Already for a detection budget of 8 x 10™* probes per
second per path, Tracetree infers 17 times more false positives than
there are real changes in the dataset!

As an example of the benefits that DTRACK can bring, DIMES,
which uses B4/|D| = 8.88 x 102 probes per second per path,
would miss 86% fewer changes (detect 220% more) by using
DTRACK instead of periodic traceroutes.

Fig. 9 shows the average remapping cost as a function of sam-
pling budget for DTRACK and FastMapping. Real deployments can
reduce remapping costs compared to the results we show by con-
figuring MDA to use less probes [31]. We omit Tracetree as it does
not perform remapping.

‘6
€ 06 : : : : :
a i DTrack (per—safelink) —@
oL 05 | DTrack (per—probe) —e— |
£8 ‘; FastMapping -
3 ‘
S& 04
& £
[0 :
=T 0.3
P2 02}
_53 0.1 r
©
I
L

o n n n n n n
0 10 20 30 40 50 60
Detection Budget (probes/sec/path x10_3)

Figure 9: Remapping cost for a given detection budget.

Fig. 9 gives B,/B = (B — Bgq)/B, the fraction of the probing
budget that is used for remapping. At low detection budgets, sam-
pling frequency is lower and each sample has a higher probability
to detect a change (as well as to miss others). In such scenarios the
remapping cost is comparable to the total budget. As the sampling
budget increases, the number of changes detected stabilizes and the
remapping cost becomes less significant relative to the total.

Taking again the example of DIMES, even including DTRACK’s
remapping cost, DIMES would miss 73% less (or detect twice
as many) changes using DTRACK instead of periodic traceroutes,
while providing complete load balancing information.

Fig. 9 allows an operator to compute an initial sampling budget
so that DTRACK respects a desired total probing budget B in a real
deployment. After DTRACK is running, the operator can readjust
the sampling budget as a function of the actual remapping cost.

Fig. 10 shows the distribution of the detection delay of detected
changes for the different tracking techniques, given a detection bud-
get of B4/|D| = 16 x 102 probes per second per path. Results
for other detection budgets are qualitatively similar. We normalize
the detection delay by FastMapping’s virtual path sampling period
(which is common to all paths).

We see that FastMapping detection delay is in a sense the worst
possible, being almost uniform over the path sampling period.
Tracetree samples paths more frequently and achieves lower detec-
tion delay. However, both FastMapping and Tracetree are limited
by sampling all paths at the same rate. DTRACK (per-safelink) re-
duces average detection delay by 57% over FastMapping and has
lower delay 99.8% of the time, the exceptions being, not surpris-
ingly, on paths with low sampling budgets.

Low detection delay is important to increase the fidelity of fault
detection and tomographic techniques. To see the benefits, say that
a monitor uses a total budget B of 64 kbits/sec to track 8,000 paths.
It would detect 52% more changes by replacing periodic trace-
routes with DTRACK (using safelink) and it would detect 90% of
path changes with a delay below 125 seconds. Replacing classic
traceroute by MDA also has the benefit of getting complete and
accurate routes.

Summary. Our results indicate that DTRACK not only detects more
changes, but also has lower detection delay, which should directly
benefit applications that need up-to-date information on path sta-
bility and network topology.

6. RELATED WORK

Forwarding vs. routing dynamics. Internet path dynamics and
routing behavior have captured the interest of the research com-
munity since the mid-90s with Paxson’s study of end-to-end rout-

0.8 1

0.6 1

04 1/ -
" .7 DTrack (per-safelink) —o
02 DTrack (per—probe) —e— |
Assisted Tracetree -----
_ FastMapping =

0
0 02 04 06 08 1 12 14 16
Normalized Detection Delay

Cum. Fraction of Detected Changes

Figure 10: Distribution of detection delay normalized by Fast-
Mapping’s virtual path sampling period.

ing behavior [24] and Labovitz et al.’s findings on BGP instabil-
ities [16]. In this paper, we follow Paxson’s approach of using
traceroute-style probing to infer end-to-end routes and track virtual
path changes. Traceroute is appealing for tracking virtual paths
from monitors located at the edge of the Internet for two main
reasons. First, traceroute directly measures the forwarding path,
whereas AS paths inferred from BGP messages may not match the
AS-level forwarding path [21]. Second, traceroute runs from any
host connected to the Internet with no privileged access to routers,
whereas the collection of BGP messages requires direct access to
routers. Although RouteViews and RIPE collect BGP data from
some routers for the community, public BGP data lacks visibility
to track all path changes from a given vantage point [7,29]. When
BGP messages from a router close to the traceroute monitor are
available, they could help tracking virtual path changes. For in-
stance, Feamster et al. [12] showed that BGP messages could be
used to predict about 20% of the path failures in their study. We
will study how to incorporate BGP messages in our prediction and
tracking methods in future work.

Characterization and prediction of path behavior. Some of the
virtual path features that we study are inspired by previous char-
acterizations of Internet paths [2, 12,24] as discussed in Sec. 2.4.
None of these characterization studies, however, use these features
to predict future path changes. Although to our knowledge there is
no prior work on predicting path changes, Zhang et al. [33] studied
the degree of constancy of path performance properties (loss, de-
lay, and throughput); constancy is closely related to predictability.
Later studies have used past path performance (for instance, end-
to-end losses [28] or round-trip delays [6]) to predict future per-
formance. iNano [20] also “predicts” a number of path properties
including PoP-level routes, but their meaning for route prediction
is different than ours. Their goal is to predict the PoP-level route of
an arbitrary end-to-end path, even though the system only directly
measures the route of a small sub-set of paths. iNano only refreshes
measurements once per day and as such cannot track path changes.

Topology mapping techniques. Topology mapping systems [14,
17, 19, 25] often track routes to a large number of destinations.
Many of the topology discovery techniques focus on getting more
complete or accurate topology maps by resolving different inter-
faces to a single router [26, 27], selecting traceroute’s sources and
destinations to better cover the topology [27], or using the record-
route IP option to complement traceroutes [26]. DTRACK is a good
complement to all these techniques. We argue that to get more ac-
curate maps, we should focus the probing capacity on the paths that
are changing, and also explore spatio-temporal alternatives to sim-
ple traditional traceroute sampling. One approach to tracking the

evolution of IP topologies is to exploit knowledge of shared links
to reduce probing overhead and consequently probe the topology
faster as Tracetree [17] and Doubletree [11] do. As we show in
Sec. 5, Tracetree leads to a very large number of false detections.
Thus, we choose to guarantee the accuracy and completeness of
measured routes by using Paris traceroute’s MDA [31]. Most com-
parable to DTRACK is FastMapping [8]. Sec. 5 shows that DTRACK,
because of its adaptive probing allocation (instead of a constant
rate for all paths) and single-probe sampling strategy (compared to
an entire branch of the route at a time), misses up to 89% fewer
changes than FastMapping.

7. CONCLUSION

This paper presented DTRACK, a path tracking strategy that pro-
ceeds in two steps: path change detection and path remapping. We
designed NN4, a simple predictor of path changes that uses as in-
put: route prevalence, route age, number of past route changes, and
number of times a route appeared in the past. Although we found
that the limits to prediction in general are strong and in particu-
lar that NN4 is not highly accurate, it is still useful for allocating
probes to paths. DTRACK optimizes path sampling rates based on
NN4 predictions. Within each path, DTRACK employs a kind of
temporal striping of Paris traceroute. When a change is detected,
path remapping uses Paris traceroute’s MDA to ensure complete
and accurate route measurements. DTRACK detects up to two times
more path changes when compared to the state-of-the-art tracking
technique, with lower detection delays, and whilst providing com-
plete load balancer information. DTRACK finds considerably more
true changes than Tracetree, and none of the very large number of
false positives. More generally, we point out that any approach that
exploits shared links runs the risk of errors being greatly magnified
in the tracking application, and should be used with great care.

To accelerate the adoption of DTRACK, our immediate next step
is to implement DTRACK into an easy-to-use system and deploy
it on PlanetLab as a path tracking service. For future work, we
will investigate the benefits of incorporating additional informa-
tion, such as BGP messages, to increase prediction accuracy, as
well as the benefits of coordinating the probing effort across moni-
tors to further optimize probing.

Acknowledgements. We thank Ethan Katz-Bassett, Fabian
Schneider, and our shepherd Sharon Goldberg for their helpful
comments. This work was supported by the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) no.
223850 (Nano Data Centers) and the ANR project C’MON.

8. REFERENCES
[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient
Overlay Networks. SIGOPS Oper. Syst. Rev., 35(5):131-145, 2001.
[2] B. Augustin, T. Friedman, and R. Teixeira. Measuring Load-balanced

Paths in the Internet. In Proc. IMC, 2007.

F. Baccelli, S. Machiraju, D. Veitch, and J. Bolot. On Optimal

Probing for Delay and Loss Measurement. In Proc. IMC, 2007.

F. Baccelli, S. Machiraju, D. Veitch, and J. Bolot. The Role of

PASTA in Network Measurement. IEEE/ACM Trans. Netw.,

17(4):1340-1353, 2009.

[5] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When Is
“Nearest Neighbor” Meaningful? In Proc. Intl. Conf. on Database
Theory, 1999.

[6] A.Bremler-Barr, E. Cohen, H. Kaplan, and Y. Mansour. Predicting

and Bypassing End-to-end Internet Service Degradations. /EEE J.

Selected Areas in Communications, 21(6):961-978, 2003.

R. Bush, O. Maennel, M. Roughan, and S. Uhlig. Internet

Optometry: Assessing the Broken Glasses in Internet Reachability.

In Proc. IMC, 2009.

[3

—_

[4

=

[7

—

[8

[t

[9

—

[10]

(1]

[12]

[13]
[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

(31]

(32]

(33]

[34]

I. Cunha, R. Teixeira, and C. Diot. Measuring and Characterizing
End-to-End Route Dynamics in the Presence of Load Balancing. In
Proc. PAM, 2011.

I. Cunha, R. Teixeira, N. Feamster, and C. Diot. Measurement
Methods for Fast and Accurate Blackhole Identification with Binary
Tomography. In Proc. IMC, 2009.

J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and

B. Weihl. Globally Distributed Content Delivery. IEEE Internet
Computing, 6(5):50-58, 2002.

B. Donnet, P. Raoult, T. Friedman, and M. Crovella. Efficient
Algorithms for Large-scale Topology Discovery. In Proc. ACM
SIGMETRICS, 2005.

N. Feamster, D. Andersen, H. Balakrishnan, and F. Kaashoek.
Measuring the Effects of Internet Path Faults on Reactive Routing. In
Proc. ACM SIGMETRICS, 2003.

J. Friedman and B. Popescu. Predictive Learning via Rule
Ensembles. Annals of Applied Statistics, 2(3):916-954, 2008.

k. claffy, Y. Hyun, K. Keys, M. Fomenkov, and D. Krioukov. Internet
Mapping: from Art to Science. In Proc. IEEE CATCH, 2009.

E. Katz-Bassett, H. Madhyastha, J. P. John, A. Krishnamurthy,

D. Wetherall, and T. Anderson. Studying Black Holes in the Internet
with Hubble. In Proc. USENIX NSDI, 2008.

C. Labovitz, R. Malan, and F. Jahanian. Internet Routing Instability.
In Proc. ACM SIGCOMM, 1997.

M. Latapy, C. Magnien, and F. Ouédraogo. A Radar for the Internet.
In Proc. Intl. Workshop on Analysis of Dynamic Networks, 2008.

D. Leonard and D. Loguinov. Demystifying Service Discovery:
Implementing an Internet-Wode Scanner. In Proc. IMC, 2010.

H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson,

A. Krishnamurthy, and A. Venkataramani. iPlane: an Information
Plane for Distributed Services. In Proc. USENIX OSDI, 2006.

H. Madhyastha, E. Katz-Bassett, T. Anderson, A. Krishnamurthy,
and A. Venkataramani. iPlane Nano: Path Prediction for Peer-to-peer
Applications. In Proc. USENIX NSDI, 2009.

Z. M. Mao, J. Rexford, J. Wang, and R. H. Katz. Towards an
Accurate AS-level Traceroute Tool. In Proc. ACM SIGCOMM, 2003.
A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. N. Chuah,

Y. Ganjali, and C. Diot. Characterization of Failures in an
Operational IP Backbone Network. IEEE/ACM Trans. Netw.,
16(4):749-762, 2008.

R. Oliveira, D. Pei, W. Willinger, B. Zhang, and L. Zhang.
Quantifying the Completeness of the Observed Internet AS-level
Structure. [EEE/ACM Trans. Netw., 18(1):109-122, 2010.

V. Paxson. End-to-end Routing Behavior in the Internet. IEEE/ACM
Trans. Netw., 5(5):601-615, 1997.

Y. Shavitt and U. Weinsberg. Quantifying the Importance of Vantage
Points Distribution in Internet Topology Measurements. In Proc.
IEEE INFOCOM, 2009.

R. Sherwood, A. Bender, and N. Spring. DisCarte: a Disjunctive
Internet Cartographer. In Proc. ACM SIGCOMM, 2008.

N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies
with Rocketfuel. In Proc. ACM SIGCOMM, 2002.

S. Tao, K. Xu, Y. Xu, T. Fei, L. Gao, R. Guerin, J. Kurose,

D. Towsley, and Z.-L. Zhang. Exploring the Performance Benefits of
End-to-End Path Switching. In Proc. ICNP, 2004.

R. Teixeira and J. Rexford. A Measurement Framework for
Pin-pointing Routing Changes. In Proc. SIGCOMM Workshop on
Network Troubleshooting, 2004.

D. Turner, K. Levchenko, A. Snoeren, and S. Savage. California
Fault Lines: Understanding the Causes and Impact of Network
Failures. In Proc. ACM SIGCOMM, 2010.

D. Veitch, B. Augustin, T. Friedman, and R. Teixeira. Failure Control
in Multipath Route Tracing. In Proc. IEEE INFOCOM, 2009.

M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang. PlanetSeer:
Internet Path Failure Monitoring and Characterization in Wide-area
Services. In Proc. USENIX OSDI, San Francisco, CA, 2004.

Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the Constancy
of Internet Path Properties. In Proc. IMW, 2001.

Z.Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and R. Bush. iSPY:
Detecting IP Prefix Hijacking on My Own. In Proc. ACM
SIGCOMM, 2008.

