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ABSTRACT

Our work presents the first practical example of an entirely
new class of network attacks — attacks that target the net-
work infrastructure. Modern routers use general purpose
programmable processors, and the software used for packet
processing on these systems is potentially vulnerable to re-
mote exploits. We describe a specific attack that can launch
a devastating denial-of-service attack by sending just a sin-
gle packet. We also show that there are effective defense
techniques, based on processor monitoring, that can help in
detecting and avoiding such attacks.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]|: Internet-

working—Routers; C.2.0 [Computer-Communication Net-

works|: General—Security and protection

General Terms

Design, Performance, Security

1. INTRODUCTION

Modern routers are becoming vulnerable to new attacks
because of the technology shift towards programmable in-
frastructure [3]. Most service provider core routers contain
programmable multi-core architectures, e.g. Cisco Carrier
Routing Systems (CRS-1, CRS-3) and Juniper’s T series.
These routers are equipped with functionality beyond sim-
ple packet forwarding, ranging from load balancing to appli-
cation security, access control, e.g. F5’s BIG-IP products,
where these services are available on a single device. While
a lot of attention has been given to end system security,
very little work has addressed security concerns in the net-
work infrastructure itself. In our work, we consider the data
plane of the network where modern routers are now exposed
to vulnerabilities like any other software-based system.

We have shown that a single cleverly crafted malicious
packet can change the protocol that runs on the processor
of the router, and launches a denial-of-service attack [2].
All bandwidth of the outgoing link on the router is ab-
sorbed, and the attack propagates to all vulnerable down-
stream routers. An overview of such an attack example is
illustrated in Figure 1. If we think of the impact of “clog-
ging” a series of core routers with “attack” packets causing
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Figure 1: Example of in-network attack.

denial of service, we realize the importance of protecting
them. One could think of tackling the problem using a virus
scanner or an intrusion prevention mechanism. However,
the multi-processor systems-on-chip that lie inside modern
routers have relatively small amount of available resources.
They cannot support an operating system and cannot afford
the computationally heavy security solutions that are tradi-
tionally used to protect end systems. More importantly, any
software based solution is not fast enough for our problem.
A single packet’s processing cycle lasts for only a few mi-
croseconds, which means that if the attack is launched by
only one packet, its effects will be visible instantaneously.
The whole system will “clog” before the intrusion detection
scheme is able to detect the attack.

Our router “roto-rooting” technique is a hardware based
solution adapted from embedded systems security literature.
It monitors the router’s processor in real time, and once
deviation from normal behavior is detected, the processor is
reset and the router is brought back to correct operation.
This happens within 6 instruction cycles (~100 ns), which
is a quick enough response to detect and recover from the
DosS attack. Our monitoring system is a light-weight method
that does not slow down the system and consumes a small
amount of resources.

2. ATTACK DEMONSTRATION

Routers perform a variety of protocol processing opera-
tions (IP forwarding, intrusion detection, tunneling etc.).
While we don’t have access to confidential network develop-
ment source code, we can safely assume that some protocol
operations will require adding a header to a packet. Thus,
the kind of attack we describe can be realized in any network
protocol that contains hidden vulnerabilities.
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Figure 2: Traffic Rates at Input Port and Output
Port of Vulnerable Router. Benign video traffic is
shown in green, attack traffic is shown in red.

Here, we demonstrate that vulnerabilities in software-based
routers are not only hypothetical, but can occur in common
protocol processing code. For the discussion of our attack,
we picked the congestion management (CM) protocol, which
uses a custom protocol header that is inserted between the
IP header and the UDP header. A security aware program-
mer would perform a check on the packet’s total size, before
shifting the UDP datagram and inserting the new header
into the original packet. Since the total length field of the
UDP header is a 16-bit field, the programmer could choose
to assign the packet length to a ‘unsigned short’ integer type,
so that the embedded processor’s limited resources are not
wasted. That is the part of the protocol that contains an
integer overflow vulnerability.

The vulnerability does not exhibit problematic behavior
for most “normal” packets that are short enough to accom-
modate the new CM header within the maximum IP packet
length. However, if an attacker sends a packet with mal-
formed UDP length field (e.g. 65532), the size check passes
even though it should not. The, a large number of bytes
is copied into the new packet buffer, which is designed to
hold data up to the maximum datagram size. This last step
has resulted in the notorious buffer overflow attack, which
will overwrite the processor’s stack, and finally overwrite
the return address of the program. Thereby, the attacker
can make the program jump to malicious code that is car-
ried inside the packet payload. In our attack, we insert a
few instructions of assembly code into the payload, which
repeatedly broadcast the same attack packet in an infinite
loop.

We have implemented our attack on the Click modular
router and on a custom packet processor [1] based on the
NetFPGA platform. We send video traffic into a router
that implements the CM header insertion routine, which
exhibits the integer overflow vulnerability. Figure 2 shows
our results. Benign traffic is sent and the router forwards it
as expected until a single attack packet is injected into the
incoming traffic. Since the attack packet triggers an infinite
loop of retransmitting itself, all output traffic consists of
attack traffic. Only one packet of this type has caused a
denial-of-service attack that jams the router’s outgoing link
at full data rate.
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3. DEFENSE MECHANISM

To defend against this type of attack on the packet pro-
cessing systems of routers, we proposed a secure packet pro-
cessor design [1]. We briefly describe the operation here
and demonstrate that it can defend against the attack we
describe.

It uses a fine-grained hardware monitor to track the in-
struction-level operations of the packet processor. These
operations are compared to a reference model of operation
that has been obtained through offline analysis of the pro-
cessor’s binary file. Under normal conditions, the operations
reported by the processor match the offline model. If an at-
tack occurs, the behavior of the processor changes in an
unexpected way (e.g., executes malicious code instead of ex-
ecuting the functions that it was programmed for) and the
executed operations no longer match the reference model.
The secure packet processor can detect this condition, drop
the offending packet, and initiate a recovery process that re-
sets the processor core and allows the normal operation to
resume.

We have implemented this type of monitor on the same
custom processor used for the experiments shown in Fig-
ure 2. The security monitor runs in parallel to the packet
processor, and is designed to use four pipeline stages. Thanks
to the tight hardware architecture, the prototype success-
fully detects the example attack, halts the processor, drops
the packet, and restores the system within 6 instruction cy-
cles. This small recovery time allows our router to operate
at full data rate even when under attack. The overhead for
adding a monitoring system to the packet processor is very
small (0.8% increase on slice LUTs and 5.6% on memory
elements).

Since the security monitoring performance results on a
single core processor are encouraging, we are planning to
extend this work to highly parallel routing systems. The
ultimate goal is to have a 16-core version of the secure packet
processor running on a development board, and evaluate its
throughput performance and scalability. The challenges of
a design where security monitors run in parallel to each core
are a) how to share programs between the cores, and b)
how to share the offline models of the programs between the
monitors.
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