
Analyzing IPTV Set-Top Box Crashes

Han Hee Song§, Zihui Ge‡, Ajay Mahimkar‡, Jia Wang‡, Jennifer Yates‡, Yin Zhang§

The University of Texas at Austin, § AT&T Labs – Research,‡
Austin, TX, USA Florham Park, NJ, USA

{hhsong,yzhang}@cs.utexas.edu {gezihui,mahimkar,jiawang,jyates}@research.att.com

ABSTRACT
Recent advances in residential broadband access technologies have
led to a wave of commercial IPTV deployments. As IPTV services
are rolled out at scale, it is essential for IPTV systems to maintain
ultra-high reliability and performance. A major issue that disrupts
IPTV service is the crash of the set-top box (STB) software. The
STB directly resides inside the consumer’s home network and pro-
vides the essential interface to both the user and the network to
deliver rich content that goes well beyond traditional TV. To un-
derstand the potential causes of STB crashes, we perform an in-
depth statistical analysis focused on the relationships between STB
crashes, video stream content, and user activities. Our initial results
suggest that (i) impaired video streams may cause STB crashes, and
(ii) continuous STB usage may gradually degrade the STB health
over time.

Categories and Subject Descriptors
C.4 [Computer-Performance of Systems]: Measurement tech-
niques

General Terms
Measurement, Reliability

Keywords
Analysis, IPTV, Set-Top Box, Crash, Video, Home Networks

1. INTRODUCTION
Background and motivations. Although a relatively new tech-
nology, Internet Protocol Television (IPTV) has been successfully
rolled out within numerous large-scale commercial deployments
across the globe [16]. IPTV service providers are constantly striv-
ing for service improvements in the deployed IPTV systems be-
cause high service quality and strong customer satisfaction are key
to commercial success.

An important component of the IPTV system is the IPTV Set-
Top Box (STB), which resides directly inside the consumer’s home

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HomeNets’11, August 15, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0798-7/11/08 ...$10.00.

network. The STB provides the essential interface to both the user
and the network to enable the delivery of rich content that goes
well beyond traditional TV [3]. One of the top issues that IPTV
service providers are concerned with is STB software crashes. A
STB software crash can seriously impact the consumer’s TV view-
ing experience as it causes noticeable service disruptions (perhaps
repeatedly) for minutes. Although individual STBs rarely crash,
the aggregate number of crashes across entire service areas could
be non-negligible. We are therefore interested in understanding the
potential causes of STB software crashes, with the goal that these
crashes will be driven out of the deployed IPTV system perma-
nently.

Given that an IPTV STB is in essence a computer interacting
with IPTV servers, the IPTV network, and users, analyzing STB
crash is far from a simple task. Functioning as the only end-user
device in the entire IPTV system, the STB boasts capabilities to run
every application that the IPTV service provides including live TV,
Video on Demand (VoD), choice program, and even online games.
Supporting such diverse capabilities, the software and hardware ar-
chitecture of an STB is highly intricate by nature [2, 14]. In ad-
dition, since an STB is interconnected with interwoven servers and
network systems on one side while providing interactive services to
subscribers on the other side, the root cause of a given STB crash
can lie anywhere within the systems that the STB interfaces with.
Analysis of STB crashes thus requires investigation of diverse as-
pects of the IPTV system: from network components transporting
control and data packets, to video stream content fed into the STB,
through to users’ actions. For diagnosing IPTV service perfor-
mance degradations, Giza [11] examined the possible correlation
between IPTV network events and STB crashes and found no sig-
nificant relationships. Given that network issues are apparently not
the major cause of STB crashes, we focus on the other two aspects
of IPTV system in this paper.
Approach and contributions. We take a perspective from the
home network and analyze how STB software crashes are related
to (i) video stream content inputted and processed by the STBs and
(ii) users’ interaction with the STBs. We collect a vast set of di-
verse measurements associated with the IPTV deployment, includ-
ing logs collected from over four million STBs from across the
United States, anonymized usage information from over two mil-
lion subscribers, and video stream content information fed into the
entire set of STBs. We commence by thoroughly characterizing
the temporal and spatial properties of STB crashes (Section 3). We
then execute an in-depth analysis of STB crashes by applying var-
ious statistical techniques for isolating oddities in the correlations
and revealing the potential causes of STB crashes.

1. STB crashes and video stream content (Section 4). To as-
sess the potential for video stream impairments (e.g., data

31

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2018567.2018575&domain=pdf&date_stamp=2011-08-15

corruption, mal-formed codec, noisy signal, etc) to cause
STB crashes, we evaluate the STBs that crashed while watch-
ing each live TV channel. Using statistical methods find-
ing the mutual dependency between STB crashes and TV
channels, we identify crash-prone channels (i.e., the video
streams with impairment), suggesting a strong possibility of
impaired video streams causing STB crashes.

2. STB crashes and user activity (Section 5). To analyze the
possibility of user activities triggering STB crashes, we eval-
uate the effects of user inputs on future crash events as well as
the effects of prolonged STB usage on crash events. We find
that while accumulation of user input to STB is not closely
related to STB crashes, there is evidence that extensive usage
over a long period of time can negatively impact the health
of STBs.

2. BACKGROUND
In this section, we first present an overview of the IPTV service

architecture and the Set-Top-Box (STB) inside the home. We then
describe the data set used to analyze STB software crashes.

2.1 Overview of IPTV and Set-Top-Box
An IPTV network typically utilizes a hierarchical structure (sim-

ilar to the one described in [11]): video programs encoded and
packetized at Super Hub Office (SHO) are distributed to Video
Hub Offices (VHO) governing each metropolitan areas in the na-
tion. An IP multicast protocol then delivers the video towards mil-
lions of home networks. A Set-Top-Box (STB) in an IPTV sys-
tem works as the user-side end device that receives the packetized
video streams, decodes them and sends them to a TV for display.
In addition to supporting both standard and high definition live TV
channels, STBs also support advanced features such as DVR, VoD,
picture-in-picture, online gaming, and chatting. STBs can thus be
considered as sophisticated computer devices (equipped with spe-
cialized operating systems) [2, 14].

As with other types of computer systems, a STB can crash. Such
crashes may involve recovery times of several minutes (similar to
rebooting a PC) - disrupting a user’s TV viewing and consequently
negatively impacting the user’s TV experience. Although software
crashes are relatively rare events for individual STBs, aggregating
across all STBs in a given service area does result in non-negligible
numbers of crashes, and thus provide an opportunity for service
improvement. In order to ensure a good quality of service, it is
thus important to detect, diagnose and mitigate STB crashes in a
timely fashion. STB crashes are considered to be one of the key
performance related issues faced by IPTV service providers.

In this study, we focus on STB software crashes as opposed to
hardware crashes as the former can be diagnosable by inspecting
its relation with its inputs while the latter can happen from other
causes such as module or device failures which are less likely to be
captured by the input logs. As STBs are interfacing with both the
IPTV distribution network and the users, we consider the inputs
from both sides in determining the cause of STB crashes: video
stream content received from the IPTV network, and user activities.

2.2 Dataset Description
We collected data from a large commercial IPTV service provider,

with logs collected from over two million home networks with over
four million STBs. In addition to the STB crash event logs, we ob-
tained video stream information and user activity logs. To protect
privacy, all the logs we consider are anonymized.

STB Crash Logs. We obtained crash event logs from each STB
served by this IPTV service provider. In the STB software crash
event logs, each message contain the timestamp and one of four
crash error codes: managed crash, native crash, watch dog reboot,
and out of memory error. A managed crash occurs when code ex-
ecuted inside a protected environment fails. A native crash occurs
when a fatality occurs in code executed outside the protected en-
vironment (e.g., a device driver or kernel). A watch dog reboot
occurs when an STB hangs and the watch dog timer thus expires.
And finally - as the name suggests - an “out of memory” error oc-
curs when the STB software runs out of memory. All of our analy-
ses of STB crashes were executed separately for the four different
types of crashes. However, our general finding is that the managed
and native crashes dominate software crash events and exhibit sim-
ilar characteristics, while the rarity of watch dog reboot and out of
memory error makes them statistically insignificant. Thus, in the
interest of brevity, we combine all four crash types in the results
presented in this paper.

Video Streaming Information. Software can be vulnerable to er-
rors in its input. Therefore, it is theoretically possible that certain
video stream impairments can cause STBs to crash. To investigate
possible linkages between crashes and impaired video streams, we
collect channel tuning logs from each STB. These tuning logs de-
note TV viewing sessions that last longer than 20 seconds (i.e., all
the channel zapping actions that stay less than 20 seconds on a
channel are discarded from the logs).

User Activity Data. As a highly user interactive system, certain
user activity patterns or habits can increase the chance of the soft-
ware malfunctioning and causing the STB to crash. We collect the
following five types of user activities from all STBs: Power on/off,
channel switch, video stream control (e.g., playback, fast forward,
rewind, etc), on-screen menu invocation, and application initiation.

3. SPATIO-TEMPORAL ANALYSIS OF STB
CRASH

In this section, we present the temporal and spatial analysis of
Set-Top-Box (STB) software crashes using data collected over a
one month period 1. We observe diurnal and weekly patterns in the
rate of STB crashes as well as correlated crashes across multiple
STBs and different VHOs.

Temporal Pattern of STB Crash. Fig. 1 shows the diurnal and
weekly pattern of the software crashes aggregated across all of the
STBs. The timestamps across the four time-zones are converted
to GMT. Fig. 1(a) shows the trends over five consecutive days; the
solid curve corresponding to the y axis on the left hand side depicts
the hourly STB crash count normalized by the peak hourly STB
crash count. As the universe set, we only consider active STBs that
are turned on at the time of analysis (as opposed to inactive, turned
off STBs). The dashed curve corresponding to the y axis on the
right side depicts the normalized hourly active STB counts. From
the figures, we observe both periodic behaviors as well as spikes
in the STB crashes. The STB crash count is high during evening
prime time TV viewing and low during early morning hours. The
diurnal pattern of the STB crash counts aligns well with that of
the active STB counts, which suggests that the STB crash counts
are roughly proportional to the number of active STB . This in-
dicates that the STBs are more likely to crash during their active
periods. Further, these crashes could be caused by the user activ-

1To protect proprietary information, we normalize some informa-
tion in the results to the extent that the normalization does not ob-
struct interpretation of results

32

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

N
or

m
al

iz
ed

 N
um

be
r

of
 C

ra
sh

ed
 S

T
B

N
or

m
al

iz
ed

 N
um

be
r

of
 A

ct
iv

e
S

T
B

Time (in hours)

Crashed STBs
Active STBs

(a) 5 days

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30
 0.5

 0.6

 0.7

 0.8

 0.9

 1

N
or

m
al

iz
ed

 N
um

be
r

of
 C

ra
sh

ed
 S

T
B

N
or

m
al

iz
ed

 N
um

be
r

of
 A

ct
iv

e
S

T
B

Time (in days)

Crashed STBs
Active STBs

(b) 1 month

Figure 1: Temporal and diurnal patterns of STB crash

ities. The spikes in STB crash counts, on the other hand, have a
strong coocurrence that are more likely caused by a common factor
(e.g., service outage in an area or corrupted video stream received
from external sources). Thus, the diverse temporal patterns (spiky
and periodic) motivated us to explore potential root causes of STB
crashes from both video source information that is common across
some STBs at a given time snapshot as well as user activities that
are less concurrent but diurnal.
Spatial Pattern of STB Crash. Fig. 2 shows the STB crash ra-
tio aggregated over 15 minutes time bin for two different VHOs
within a single day. To compare two subfigures under the same
scale factor, the plots are normalized by the peak crash rate value
appearing in Fig. 2 (b). First, we observe similar diurnal patterns
across VHOs, with generally high crash rate around 1AM GMT
corresponding to prime time in the U.S. (7 PM Central Time) and
low crash rates around 9AM in GMT corresponding to early morn-
ing local time (3 AM CST). We also observe sporadic spikes in
STB crash ratios for some VHOs as shown in Fig. 2. Moreover,
some of these spikes co-occur across multiple VHOs. Figs. 2 (a)
and (b) show one such example – spikes occurred between 10 and
11 GMT in VHOs a and b indicating that a significant number of
STBs from both VHOs came to crash during the same time inter-
val. This observation suggests that a common root cause is likely
to contribute to the spikes in the STB crash ratio across multiple
VHOs.

4. DOES VIDEO CONTENT MATTER?
In this section, we focus on identifying the relationship between

STB software crashes and the video stream that the IPTV users are
watching. It sounds far fetched yet still conceivable that a poorly
formatted or impaired video stream may crash the video decoder
and even the operating system that the decoder is hosted in. The
IPTV provider performs rigorous testing for any newly incorpo-
rated content source (e.g., national or regional media company) to
ensure the quality of their video stream. However, given the com-
plexity of the encoding and the variety of video data, even trusted
sources cannot be prevented from having glitches.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

N
or

m
al

iz
ed

 C
ra

sh
 R

at
e

Time (in GMT hours)

(a) VHO a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

N
or

m
al

iz
ed

 C
ra

sh
 R

at
e

Time (in GMT hours)

(b) VHO b

Figure 2: STB crash rate of different VHOs for one day.
4.1 Methodology

Our approach is operational data-driven, using statistical mining
to either accept or reject the hypothesis that some video streams
tend to crash STBs at a frequency higher than explainable by sim-
ple coincidence. In order to do so, we focus on live TV streams.
This is because a live TV channel (that is multicast from the video
source) is time synchronized across different STBs within a VHO
or a region. There are other types of video streams that are indepen-
dently fed to each STB (e.g., VoD and DVR). However, we do not
have enough information from the logs to determine the exact VoD
program being displayed at any given time. Therefore, we only
consider STBs that are active (as opposed to in an offline mode)
and the ones that are tuned in to receive live TV (as opposed to
VoD or DVR) in our analysis.

In order to keep up with the sheer volume of channel tuning
events, we first use a simplification process by discretizing time
into fixed-length bins. We define a channel-tune-in predicate Tc(s, t)
for each channel c such that

Tc(s, t) = 1 iff STB s was on channel c during time bin t,

and a crash predicate C(s, t) such that

C(s, t) = 1 iff STB s crashed in time bin t.

Since we need to exclude the STBs that are offline or in VoD or
DVR mode, we define the sample universe as

U = {(s, t)|
X

c∈ Live Channels
Tc(s, t) > 0}.

We should note that, the independence of users choice of TV
viewing requires us to add several parameters in the sample uni-
verse of STB; because home network devices are not in an always-
on mode, we consider the intermittency of live TV viewing. Also
because users choose from different video contents, we further cat-
egorize the sample universe by program channels.

To investigate whether there is any live TV channel that is more
prone to STB crashes, we apply a well known statistic, mutual in-
formation [6], on {Tc} and {C}. Mutual information measures the
information that two variables share: it measures how much know-
ing one variable reduces the uncertainty about the other. When two

33

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.0001 0.001 0.01 0.1

C
D

F

Mutual Info Values

Figure 3: Cumulative distribution of mutual information val-
ues of < channel, V HO > pairs

variables always match (or always opposite to each other), their
mutual information is high; at the other extreme, if two variables
are completely independent, their mutual information is zero.

In our context, we define the joint probability distribution:

p(Tc = i, C = j) =
|{(s, t)|Tc(s, t) = i and C(s, t) = j}|

|U |
for i = 0, 1 and j = 0, 1, and the marginal probability distribu-
tions:

pTc(Tc = i) =
|{(s, t)|Tc(s, t) = i}|

|U | for i = 0, 1

pC(C = i) =
|{(s, t)|C(s, t) = i}|

|U | for i = 0, 1

We can now compute the mutual information of Tc and C, I(Tc; C),
as follows:

X
i=0,1

X
j=0,1

p(Tc = i, C = j) log

„
p(Tc = i, C = j)

pTc(Tc = i)pC(C = j)

«

A high value of the mutual information can be an indication of
either the channel being crash-prone or crash-averse. Since we are
particularly interested in isolating the crash-prone channels, we ap-
ply a threshold to eliminate the cases with low total crash count
(|{(s, t)|Tc(s, t) = 1 and C(s, t) = 1}|). This analysis helps us
to quickly focus on a few of the video sources and their VHO pres-
ence among an overwhelming number of channels and regions un-
der exploration. We next “zoom in” to these cases and conduct a
more fine-grained analysis for them.

4.2 Results
We analyze STB channel tuning logs and crash logs for all four

million STBs over a one month period. We first correlate the STB
channel tuning events with the STB crash events and identify all the
viewing sessions that experience a STB crash. We then compute
mutual information between the channel-tune-in and STB crashes
for all possible pairs of channels and VHOs to identify possible
crash-prone channels and their VHOs. Fig. 3 illustrates the cu-
mulative distribution of the mutual information for hundreds of
channels in tens of VHOs for one day. Among all the pairs of
< channel, V HO >, there are a small number of pairs that have
high mutual information values. Using mutual information as a
guide to pick out the channels of interest, we rank the pairs by mag-
nitude of mutual information and focus on the top few percentages
of them. In our case, we take the top 2% of the pairs, correspond-
ing to those that have mutual information values higher than 0.001
(the average is 0.0001).

Fig. 4 shows one such example with mutual information value
of 0.0221. Fig. 4 (a) compares the STB crash ratio (aggregated
over 15 minute time bin) of a popular national channel (denoted as

channel x) versus that of all other channels in a VHO (denoted as
VHO a) during one day period. The y axis is normalized by the
peak crash ratios for STBs tuned to channel x and that for STBs
tuned to other channels, respectively. We observe a huge spike at
2:00AM in the crash ratio for STBs that are tuned to channel x,
while the crash ratio of STBs that are tuned to other channels in
the same VHO has a slight increase. This spike indicates that there
are a large number of simultaneous STB crashes for STBs tuned to
channel x at 2:00AM.

Fig. 4 (b) depicts the normalized counts of crashed STBs (solid
curve with left y axis) and uncrashed STBs (dotted curve with right
y axis) for all STBs that are tuned to channel x. Figure 4 (c)
depicts the normalized count of crashed and uncrashed STBs tuned
to other channels. The distribution of STB crash counts for STBs
tuned to channel x is clearly very different from that for STBs tuned
to other channels. In addition, the close alignment between spikes
in crash count and peaks in uncrashed counts suggests that higher
STB crash counts are likely to occur during peak watching hours.
This observation holds for both STBs tuned to channel x and those
tuned to other channels. It is also important to note that the absolute
number of uncrashed STBs is orders of magnitude larger than that
of crashed STB.

There are several observations suggesting that there is a good
chance that the high crash ratio at 2:00AM is caused by a prob-
lem at the video stream source. First, we observe from Fig. 4 (a)
that there is a small spike at 2:00 AM (i.e., the same time we ob-
serve the spike in the crash ratio of STBs tuned to channel x) in
the crash ratio of STBs tuned to channels other than channel x.
Further analysis reveals that there are several channels with the
same source of video content experiencing similar spikes in their
STB crash ratios at 2:00AM. For example, Figure 5 (a) shows the
crash ratio of STBs tuned to the high definition (HD) version of
channel x. In addition to having the HD version, the same content
is broadcasted to other metropolitan areas as they are on a nation
wide channel. Figure 5 (b) shows the STB crash ratio for channel
x at a different VHO (denoted as VHO b). Here, we observe the
same spike in the STB crash ratio at 2:00AM. This further suggests
that the correlated high STB crash ratio at 2:00AM is highly likely
to be caused by video stream issues. Lastly, we add that the fre-
quency of a large number of simultaneous STB crashes (i.e., spikes
in STB crash ratio) is small. However, it is not negligible due to
their broad impact on user experience of multiple channels across
multiple VHOs. Figure 5 (c) shows a separate incidence for chan-
nel y and in VHO c, in which y is a local TV channel that is specific
to VHO c. Again, we observe synchronized STB crashes that are
localized to channel y.

A limitation of our analysis is that at the time of this study, we
did not have an extensive archive of video streams in all VHOs.
Hence, we could not easily replay the video stream correspond-
ing to the simultaneous STB crashes to reproduce such behaviors.
However, in an independent study in a controlled testbed environ-
ment, it has been reported that by manipulating the video content
stream feeding to the STB (through corrupting the bit-stream in a
particular fashion), one can induce a STB crash deterministically.
By confirming that this type of video corruption is also taking place
in the operational IPTV network, we believe that video stream im-
pairment is likely a contributing factor to STB crashes that users
experience in the service.

5. DOES USER ACTIVITY MATTER?
Having established substantial evidence indicating an associa-

tion between video content and STB crashes, we now turn to in-
vestigating the impact of user activities on STB crashes. By user

34

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

N
or

m
al

iz
ed

 C
ra

sh
 R

at
e

Time (in UTC hours)

Channel x
All other channels

(a) STB crash rate of channel x and other channels

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20
 0

 0.2

 0.4

 0.6

 0.8

 1

N
or

m
al

iz
ed

 C
ou

nt
 o

f C
ra

sh
ed

 S
T

B

N
or

m
al

iz
ed

 C
ou

nt
 o

f U
nc

ra
sh

ed
 S

T
B

Time (in UTC hours)

Crashed STBs
Uncrashed STBs

(b) Crash count of STB in channel x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20
 0

 0.2

 0.4

 0.6

 0.8

 1

N
or

m
al

iz
ed

 C
ou

nt
 o

f c
ra

sh
ed

 S
T

B

N
or

m
al

iz
ed

 C
ou

nt
 o

f u
nc

ra
sh

ed
 S

T
B

Time (in UTC hours)

Crashed STBs
Uncrashed STBs

(c) Crash count of STB in other channels than x

Figure 4: Crash rate comparison between channel x and all other channels in VHO a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

N
or

m
al

iz
ed

 C
ra

sh
 R

at
e

Time (in UTC hours)

Channel x
All other channels

(a) Crash rate of HD channel x and others, VHO a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

N
or

m
al

iz
ed

 C
ra

sh
 R

at
e

Time (in UTC hours)

Channel x
All other channels

(b) Crash rate of channel x and others in VHO b

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

N
or

m
al

iz
ed

 C
ra

sh
 R

at
e

Time (in UTC hours)

Channel y
All other channels

(c) Crash rate of channel y and others in VHO c

Figure 5: Additional study on per-channel crash rate in different setups

activity, we are referring to the control actions that a user inputs by
operating either the remote control or the STB directly as discussed
in Section 2.2.

5.1 Methodology
This analysis is motivated by the type of performance deterio-

ration problems frequently observed in various software systems,
such as memory leaks. The intuition is that system resources can
be depleted or system state can be corrupted over the accumulation
of user activities, or simply over time. We study the relationship
between STB crashes with the time duration and the total number
control activities since the last reboot or turn on.

In contrast to the analysis in Section 4 in which time correlated
STB crashes rates are examined, user activity within different STBs
are expected to demonstrate less strict correlation across time, if
such correlation exists at all. It is thus assumed to be sufficient to
conduct our analysis on an each individual STB basis. Absolute
timing across STBs becomes an irrelevant factor, and hence it is
sensible to aggregate across STBs by ”time shifting” such that the
alignment of the crash events boost hidden signals while suppress-
ing unwanted noise.

We proceed by examining the STB crash rate as a function of (1)
the accumulation of user control activities since the last reboot; and
(2) the power cycle duration since the last STB reboot. We expect
the STB crash rate to be invariant when it is independent of either
of the factors.

We begin by defining a power cycle session for STBs. Once a
STB is turned on (or recovers from a crash), the “power cycle” ses-
sion can be terminated by two conditions – turning off the STB or
a STB crash. We particularly name the last unintentionally termi-
nated sessions as crashed sessions.

The STB crash rate can then be defined as the number of crashed
sessions over the total number of sessions. For the metric (1), the
STB crash rate after experiencing n user control actions is defined

as
|{crashed session having control actions = n}|

|{sessions with control actions ≥ n}| (1)

and for (2), power cycle metric, the STB crash rate at time t is

|{crashed session with length = t seconds}|
|{sessions with length ≥ t seconds}| (2)

We further smooth the functions by applying a bin size of d ac-
tions or d seconds to the independent variables.

5.2 Results
We first present the results of correlating the accumulation of

user control actions with STB crashes over a one month time inter-
val. Figure 6 (a) illustrates the normalized rate of STB crashes as a
function of user actions binned in intervals of 10 actions (d = 10).
For the user action count ranging from 0 to 500 per power-cycle
session, we depict the normalized STB crash rate (note that the
normalized crash rate of 1 means that the crash rate is the high-
est among the observations, NOT that STBs always crash). From
the trend of the plot, we observe that the STB crash rate does not
show a consistent pattern as more user activity is accumulated. In
a follow-up analysis where we tested the relationship between the
frequency of user actions and the STB crashes, we again confirmed
that increased user activities do not lead to higher rates of STB
crashes.

Figure 6 (b) shows the trend in STB crash rates over the power
cycle duration of STBs binned by every 10 minutes (d = 10). Al-
though we use one month’s worth of data, we only plot up to 7
days of time because STB power cycle durations longer than 160
hours do not produce sufficient numbers of STB crashes to con-
duct a meaningful analysis. From the trend of the plot, we ob-
serve that the STBs with prolonged power cycle duration exhibit
increased crash rates until the first 24 hours. For the power cycle
durations exceeding 24 hours, the crash rate oscillates between two
values following the diurnal pattern of the STB crashes. Overall,
the trends imply that the crash rate for longer-lived STB “on” ses-

35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

N
or

m
al

iz
ed

 S
T

B
 C

ra
sh

 R
at

e

User Action Count

(a) User action count versus STB crash rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 S
T

B
 C

ra
sh

 R
at

e

Power Cycle Duration (in hours)

(b) Power cycle duration versus STB crash rate

Figure 6: Comparison of user activity and STB Crash

sions is higher than that of short-lived STB “on” sessions. And the
increase in crash rate over the longevity of STB “on” sessions im-
plies that factors (e.g., CPU heat up, non user-level software bug)
exist that accumulate and crash the STBs when they are used for
extended periods of time.

6. RELATED WORK
There has been an increasing interest in network troubleshooting

using statistical analysis [1, 4, 5, 7–13, 17–20]. The goal is to iden-
tify the set of root-causes that can best explain a given symptom
or set of symptoms. Commercial tools such as HP Openview [15],
IBM Tivoli [21] focus on analyzing individual large events. Sher-
lock [1] uses conditional probabilities and a multi-level approach
to look across multiple symptoms of a common type in the infer-
ence of dependencies. NICE [13] and Giza [11] focus on detecting
and troubleshooting undesirable chronic network conditions using
statistical correlations. Mercury [12] uses statistical change detec-
tion and correlation to identify the performance impact of network
upgrades. URCA [17] uses unsupervised techniques to identify
anomalous traffic flows and their root-causes. It uses feedback from
the anomaly detector to eliminate flows that exhibit normal behav-
ior. ASTUTE [18] is a recent network traffic anomaly detector
that uses the equilibrium property and correlation across anoma-
lous flows to discover a new class of anomalies.

Giza [11] is specific to IPTV, leveraging the hierarchical struc-
ture of IPTV networks to localize significant problems. In contrast,
this current paper focuses on analyzing software crashes on Set-
Top-Boxes using video content and user activities. This is some-
thing not explored by previous papers. Our schemes are suitable for
handling diversity of video sources and analyzing temporal patterns
of user activities identifying causal relationships to STB software
crashes.

7. ON-GOING AND FUTURE WORK
In this paper, we run several analyses on STB crashes inside

home networks. We start by characterizing the spatial and temporal
properties of STB crashes. We then perform an in-depth analysis

on the inputs to STBs: video streams and user inputs. For this,
we employ various statistical methods most suited for isolating the
oddities in the correlations and uncovering the potential causes of
STB crashes. Our key findings include: (i) the correlation between
STB crashes and video stream content suggests a strong possibil-
ity that impaired video streams may cause STB crashes; and (ii)
athe ccumulation of frequent user actions does not appear to corre-
late with increased STB crash rates, whereas extensive usage over a
long period of time seems to negatively impact the health of STBs.

One focus of our on-going work is to further analyze the cause
of STB crashes, building on our current results. In cooperation
with video experts, we are aiming to reveal the types of video im-
pairments that may induce crashes, as well as reveal the reason(s)
that prolonged usage may cause STBs to crash. Another aspect of
our on-going work is to extend our analysis to other, more sophis-
ticated measures of QoS and user experience beyond simple STB
crashes. In an effort to capture subtleties in the users’ perception
of video quality, we are working on employing user complaint logs
filed with customer care centers as a measure of trouble, and are
correlating these with network events.

8. REFERENCES
[1] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and M. Zhang.

Towards highly reliable enterprise network services via inference of multi-level
dependencies. In Sigcomm, 2007.

[2] Broadcom Set-top box solutions. http://www.broadcom.com/press/
release.php?id=s407352&industry_id=4/.

[3] Consumer electronic show - next big thing supersession, 2010.
http://ces.cnet.com/next-big-thing/.

[4] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons. Correlating
instrumentation data to system states: A building block for automated diagnosis
and control. In OSDI, 2004.

[5] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot. Netdiagnoser:
troubleshooting network unreachabilities using end-to-end probes and routing
data. In CoNEXT, 2007.

[6] S. Guiasu. Information Theory with Applications. McGraw-Hill, 1977.
[7] S. Kandula, R. Chandra, and D. Katabi. What’s going on? learning

communication rules in edge networks. In Sigcomm, 2008.
[8] S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: A tool for failure diagnosis in

IP networks. In MineNet, 2005.
[9] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. IP fault localization

via risk modeling. In NSDI, 2005.
[10] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. Detection and

localization of network blackholes. In Infocom, 2007.
[11] A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, and Q. Zhao.

Towards automated performance diagnosis in a large IPTV network. In ACM
SIGCOMM, 2009.

[12] A. Mahimkar, H. H. Song, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, and
J. Emmons. Detecting the performance impact of upgrades in large operational
networks. In ACM SIGCOMM, 2010.

[13] A. Mahimkar, J. Yates, Y. Zhang, A. Shaikh, J. Wang, Z. Ge, and C. T. Ee.
Troubleshooting chronic conditions in large IP networks. In ACM CoNEXT,
2008.

[14] Microsoft Media room. http://www.microsoft.com/media/en/us/
media-entertainment-solutions/inte%
rnet-protocol-tv-iptv.aspx.

[15] HP Openview. http://www.openview.hp.com.
[16] I. Research. Global market analysis, 2008.

http://www.imsresearch.com.
[17] F. Silveira and C. Diot. URCA: Pulling out anomalies by their root causes. In

IEEE INFOCOM, 2010.
[18] F. Silveira, C. Diot, N. Taft, and R. Govindan. ASTUTE: Detecting a different

class of traffic anomalies. In ACM SIGCOMM, 2010.
[19] M. Steinder and A. S. Sethi. A survey of fault localization techniques in

computer networks. Science of Computer Programming, 2004.
[20] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar. Answering

what-if deployment and configuration questions with WISE. In SIGCOMM,
2008.

[21] IBM Tivoli. http://www-306.ibm.com/software/tivoli.

36

