A Study of Non-Boolean Constraints in Variability Models
of an Embedded Operating System

Leonardo Passos
University of Waterloo

Ipassos@gsd.uwaterloo.ca

Thorsten Berger
University of Leipzig
tb@informatik.uni-leipzig.de

ABSTRACT

Many variability modeling tasks can be supported by auto-
mated analyses of models. Unfortunately, most analyses for
Boolean variability models are NP-hard, while analyses for
non-Boolean models easily become undecidable. It is thus
crucial to exploit the properties of realistic models to con-
struct viable analysis algorithms. Unfortunately, little work
exists about non-Boolean models, and no benchmarks are
available for such.

We present the non-Boolean aspects of 116 variability
models available in the codebase of eCos—a real time em-
bedded operating system. We characterize the types of non-
Boolean features in the models, kinds and quantities of non-
Boolean constraints in use, and the impact of these char-
acteristics on the hardness of this model from analysis per-
spective. This way we provide researchers and practitioners
with a basis for discussion of relevance of non-Boolean mod-
els and their analyses, along with the first ever benchmark
for effectiveness of such analyses.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics

General Terms

Measurement

Keywords

Variability Modeling, Feature Models, Decision Models, Au-
tomated Model Analysis

1. INTRODUCTION

Variability modeling [10, 14] supports feature-oriented soft-
ware development (FOSD) by enabling (i) understanding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPLC’11, August 21 - August 26 2011, Munich, Germany

Copyright 2011 ACM 978-1-4503-0789-5/11/08 ...$10.00.

Marko Novakovic
University of Waterloo) .
mnovakov@gsd.uwaterloo.ca yingfei@gsd.uwaterloo.ca

Krzysztof Czarnecki
University of Waterloo
kczarnec@gsd.uwaterloo.ca

Yingfei Xiong
University of Waterloo

Andrzej Wasowski
IT University of Copenhagen
wasowski@itu.dk

and definition of commonalities and variabilities within a
product line and (ii) product derivation. Many tasks of
variability modeling and management are supported by au-
tomated analyses of variability models [2]—among others:
diagnosing errors and lesser deficiencies in models, provid-
ing metrics about models and their instances, or supporting
product derivation. Example analyses include consistency
checks, dead feature detection, counting products, interac-
tive guidance during configuration, or fixing models and con-
figurations.

Unfortunately, most analysis algorithms for variability
models are NP-hard. This intractability is linked to concise-
ness of the models, akin to conciseness of logical formulae.
For instance, Boolean variability models include Boolean
features, or decisions, and propositional Boolean logics con-
straints over features. A Boolean feature model with n fea-
tures has O(2") possible configurations.

Boolean models are intimately related to Boolean logics
[1], thus satisfiability (SAT) checkers are routinely employed
in their analyses [1, 6, 9]. Recent evidence [12] suggests that
SAT-based analysis of Boolean feature models is easy for
realistic models. This observation is in line with the long
established understanding in the SAT-community that suc-
cess relies on exploitation of properties of problem instances
that appear in practice [8].

Non-Boolean variability models contain constraints that
include—in addition to Boolean formulas and expressions
over finite domain variables—expressions over infinite do-
main variables (integer or float numbers, character strings)
together with arithmetic, relational, and string operators.
Satisfiability checking of such constraints is undecidable in
general. For example, many problems that include integers
and reals are undecidable [5]. Thus, for these models it
is even more important to exploit the properties of realistic
models to construct viable analysis methods. However, little
work exists about non-Boolean models, and no benchmarks
are available for such.

eCos, an open source real-time operating system for deeply
embedded applications [11], provides a set of real-world non-
Boolean variability models. The system has been developed
originally by Cygnus Solution and RedHat, but later trans-
ferred to independent developers who release it under the
copyright of the Free Software Foundation. The project
supports 14 architectures and 109 cpu types, but can also
run inside more than 50 controllers, including flash, Ether-

= [JKemel schedulers

Rl CE Multi-level queue scheduler

I§ Output timeslices when tracing
¢ Bitmap scheduler
[Scheduler header file <cyg/kemel/mlgueue. hxx=>
P [28) Number of priority levels 32

DefaultValue 1

Property Value

URL reffkemel-overview.html#KERNEL-OVERVIEW-
Macro CYGSEM_KERNEL SCHED MLQUEUE

Enabled True

File

Figure 1: ConfigTool: The eCos configurator

net, serial, USB and time-keeping devices. The codebase of
eCos contains 116 non-Boolean variability models. Its vari-
ability modeling language, The Component Definition Lan-
guage (CDL), and one of its models have been studied previ-
ously [4]. CDL is a textual language that shares many con-
cepts with feature modeling [10] and decision modeling [14].
CDL allows organizing configuration options hierarchically
and restricting their possible values and combinations by
constraints. Following the feature modeling terminology, we
refer to these options as features.

This work zooms into the non-Boolean aspects of the 116
CDL models in eCos, extending the prior work [4], by char-
acterizing the types of non-Boolean features available, kinds
and quantities of non-Boolean constraints in use, and the im-
pact of these characteristics on the hardness of this model
from analysis perspective.

We believe that this work provides researchers and prac-
titioners with the badly needed basis for discussion of rele-
vance of non-Boolean models and their analyses, along with
the first ever benchmark® for effectiveness of such analyses.

We proceed by presenting the CDL language briefly in
Sect. 2. The experimental part of the paper follows directly
after. Sect.3 outlines the method of the experiment (charac-
terization of non-Boolean features and constraints). Sect.4
summarizes the results. Sect. 5 discusses threats to validity.
We finish with a brief survey of related work (Sect. 6) and a
conclusion (Sect. 7).

2. OVERVIEW OF CDL

We now briefly summarize the main concepts of CDL,
their semantics, and available tool support.

2.1 Configuration and Tooling

CDL is a domain-specific language for modeling legal con-
figurations in a software project. It is accompanied by Config-
Tool—a GUI-based configurator that supports users in creat-
ing a legal configuration of a given model. The configurator
propagates user choices using a custom inference engine.

The main units of functionality are packages. They are
archives that bundle code and variability models. Packages
are either hardware-specific (part of hardware abstraction
layer for an architecture) or contain hardware-independent
application and system software. Figure 1 presents a screen-
shot of the ConfigTool in a state, when a user has enabled a
specific kernel scheduler within the Kernel schedulers pack-
age, and has set the number of priority levels to 32.

Given one of the 116 hardware architectures (called tar-
gets), and one of nine predefined collections (called template,
e.g. default, min, all) of hardware-independent packages, the
configurator loads a set of packages and aggregates all vari-
ability models into a single one. Additional packages with
application and system software can be loaded subsequently.

! Available at http://gsd.uwaterloo.ca/FOSD11

0N U AW N

11
12
13
14
15
16
17
18
19
20
21
22

24
25
26
27
28
29
30
31

The process of configuration adheres to the reconfigura-
tion paradigm: the user starts with a default configuration
and modifies it stepwise to reach a specific state. After each
step, the configurator checks constraints and reports poten-
tial conflicts. Finally, the configuration is used to derive
a customized instance of eCos—a library of the OS to be
linked with boot and application code. For this purpose,
the configurator generates C macros that control the condi-
tional compilation of C code.

Figure 3 shows a use of such macros in code. The names
of macros correspond to the choices of Fig.1. By default,
one preprocessor macro is created per feature. This can be
customized to create several, or no macro at all.

2.2 Feature Representation

CDL is a domain-specific language providing keywords for
various kinds of features: Packages, Components, Options, and In-
terfaces. We explain the key CDL concepts using the example
in Fig. 2, referring to it by line numbers. These kinds relate
largely to implementation artifacts in eCos.

In a CDL variability model, Packages are containers for fea-
tures (not shown in Fig.2); Components are nested features
grouping other features (1. 1); and Options are atomic configu-
ration options appearing as leaves (1. 8). The display property
(1.2) gives the string used by the configurator to show the fea-
ture (cf. Fig. 1). Interfaces are invisible in the configurator and
used to impose cardinality constraints on other features, for
example to realize feature groups (or, xor, mutex), known
from feature modeling (1.21). Features can declare—using
the implements property (1. 4)—to implement an interface. The
value of an interface is the number of features currently in the
configuration implementing it. The interface in 1. 21 requires

cdl_component CYGSEM_KERNEL_SCHED_MLQUEUE {
display "Multi —level queue scheduler”
default_value 1
implements KERNEL_SCHEDULER
description "The multi—level queue scheduler supports multiple priority
levels and multiple threads at each priority level..."

cdl_option TRACE_TIMESLICE {
display "Output timeslices when tracing”
active_if USE_TRACING
requires IDEBUG_TRACE_ASSERT_SIMPLE

}

}

cdl_option KERNEL_SCHED_BITMAP {
display "Bitmap scheduler”
implements KERNEL_SCHEDULER

}

cdl_interface KERNEL_.SCHEDULER {
display "Number of schedulers in this configuration”
requires 1 == KERNEL_SCHEDULER

cdl_option AT91_CLOCK_SPEED {
display "CPU clock speed”
calculated { AT91_CLOCK_OSC_MAIN % AT91_PLL_MULTIPLIER / AT91_PLL_DIVIDER / 2 }
legal_values { 0 to 220000000 }
flavor data

}

Figure 2: CDL excerpt from eCos variability model

http://gsd.uwaterloo.ca/FOSD11

the value to be 1, thus, implementing an xor-group.

Each feature has a flavor determining which value types it
admits. Flavor none means the feature is just a place holder.
Flavor bool means the feature can be selected or unselected
(also referred as enabled or disabled). An option has flavor bool
if not specified otherwise—see 1. 8 for an example. Flavor data
admits a data value: an integer number, a float, or a string
(1. 30). Flavor booldata combines bool with data: the feature can
be enabled or disabled and it admits a data value if enabled.
The flavor instructs the configurator to show a checkbox for
bool and a field for data and both for booldata. Radio buttons
replace checkboxes for features forming xor-groups, such as
two scheduler types in Fig. 1.

The data value is dynamically typed. In the eCos con-
figurator, if the user inputs a signed long literal written in
decimal, octal or hexadecimal, it is interpreted as an integer.
If the number contains a radix point, it is interpreted as a
float. Other input is considered as a string. Booleans are
denoted by integers: 0 means false and 1 means true. These
types are dynamically converted when needed. For example,
an addition of the empty string to the number 2 results in
2, because the empty string is implicitly converted into 0.

2.3 Feature constraints

CDL offers several mechanisms to introduce feature con-
straints, that is, constraints among features. These mecha-
nisms include feature properties, like active_if and default_value;
feature nesting (hierarchy); and interfaces. Following [4], we
classify them as (1) configuration constraints, which restrict
combinations and values of features; (2) visibility conditions,
which control visibility of features in the configurator; and
(3) defaults, providing default values for users.

We now briefly explain each of the mechanisms.

Active if represents both a visibility and configuration con-
straint. If unsatisfied, the feature and all its children are
immediately inactive (grayed-out and not changeable in the
configurator). For example, the option defined in 1. 8 (Fig. 2)
is inactive in Fig. 1 since USE_TRACING is disabled (not shown)
and, thus, active_if in 1. 10 is unsatisfied.

Requires represents a configuration constraint (1. 11). The re-
quires condition must hold if the feature is active and enabled.
In contrast to active if, the constraint can be temporarily vio-
lated in the configurator (though a conflict is reported) such
that the corresponding feature, its children, and dependent
features remain editable. The configurator’s inference en-
gine generates proposals to fix these violations.

Legal_values is a configuration constraint and restricts the
possible values of a feature. This property declares ranges
(1.29) or enumerations (explained later).

Calculated is a configuration constraint and restricts a fea-
ture’s value to an expression (1. 28), which is re-evaluated by
the configurator after each configuration step. Users cannot
edit calculated features in the configurator.

Default_values declare default values for the configurator (1. 3).

They can be overridden by the user at any time.

Interfaces impose configuration constraints, as described pre-
viously.

Feature hierarchy imposes visibility and configuration
constraints. When a parent feature is inactive, all its chil-
dren are inactive.

The first five mechanisms take expressions built from fea-
tures identifiers, literals, and the following operators and
built-in functions (we explain them in parentheses):

o UlA W

##ifndef CYGSEM_KERNEL_SCHED_MLQUEUE
Fterror POSIX pthreads need MLQ scheduler
#endif

// the HAL CDL and the HAL startup code.
fmen = AT91_CLOCK_SPEED = 1.5 / 1000000 + 0.999999; // We must round up!

Figure 3: C code excerpt using CDL options

Boolean: ! (not), && (and), || (or), implies;

Relational: == (=), 1= (#), <, <= (L), >, >= (>);
Arithmetic: +, -, *, / (division), % (modulo);
Bit-wise: << (left shift), >> (right shift), & (and), |
(or), ~ (xor);

String: . (concatenation), is substr (substring check);

e Conditional: a ? b : ¢;

e Built-in functions: bool (cast into boolean value); is_active
and is_enabled (check whether a feature is, respectively,
active or enabled), and some more, which do not occur
in any of the studied models.

2.4 Semantics

CDL has complex semantics; however, different analyses
rely on abstractions of the complete semantics. A commonly
considered abstraction is configuration semantics, which is
the set of legal configurations, each being an assignment of
values to features that satisfies the constraints of the vari-
ability model. In CDL, a configuration can be understood as
a function assigning each feature a so-called effective value.
This is the value that is passed to code, when the feature’s
macro is used (Fig. 3).

The configuration semantics is insufficient for analyses
supporting intelligent configuration. The reason is that the
CDL configurator shows whether a given feature is enabled
or disabled, active or inactive, and its data value. The two
states and the data value define the feature’s effective value.

Thus, we provide the configurator semantics for CDL,
which explicitly relates the user input variables, i.e., the en-
abled states and data values of features, and provides the
active state and effective values as derived ones. The seman-
tics is given as a translation from a CDL model to a set of
semantics constraints over the enabled state and data value
variables. For brevity, this section presents a simplified ver-
sion of the semantics; we refer to [16] for details.

2.4.1 Variables

The semantic constraints are defined over variables repre-
senting enabled states and data values of features. There can
be zero, one, or two of such variables per feature, depend-
ing on its flavor (see Table 1; “~” means no variable created).
Variable n_enable ranges over {0, 1} and n_data ranges over
integers, floats, and strings.

The semantics assumes that both the enabled state and
data value are available for each feature, regardless of its

Table 1: Variables created for feature n

Flavor Boolean value Data value
none - -

bool n_enabled -
booldata n_enabled n_data
data, — n_data

flavor. When there is no variable for a value, the value
is 1. We use the following notation to access the values:
p(n) returns the enabled state and 6(n) returns the data
value. When there is a variable created for a value, the alias
represents the variable; otherwise it represents the value 1.

For example, for the feature in 1.26 of Fig. 2, we create
one variable AT91_CLOCK_SPEED_data because its flavor is data;
then the enabled state and data value are defined as follows:

p(AT91_CLOCK_SPEED) = 1
0(AT91_CLOCK_SPEED) = AT91 CLOCK_SPEED _data

Every feature also has an associated variable n_active, stat-
ing the active state of the feature. When a feature n is active,
the value of n_active is 1, otherwise it is 0. The semantics de-
termines this value uniquely from the variables in Table 1;
thus, the active state variables are derived and not stored.

2.4.2 Semantic constraints

All feature constraints described in Sect. 2.3 except de-
fault_values are translated into semantic constraints. This sec-
tion lists and explains each semantic constraint produced.

The effective value of a feature is both exposed to C code
and used when a feature is referenced in feature constraints.
We define the effective value o(n) as follows.

o(n) = p(n) A nactive 7 8(n) : 0 (1)

A feature only returns a value o(n) # 0 if it is active and
has been enabled by the user.

A feature is active only when all its active_if constraints are
satisfied. Thus, we create the following constraint for each
feature n:

n_active — A replace(c) (2)
where replace replaces all features reference f in ¢ by o(f).

For example, the activeif in 1. 10 (Fig.2) gives rise to the
following constraint, where the reference to USE_TRACING is

replaced by its effective value:

ceactive_if(n)

TRACE_TIMESLICE active — 0 (USE_-TRACING) = 1

Second, when feature n is enabled and active, all its requires
constraints must be satisfied.

3)

Third, when a feature is calculated, its value is determined
by the expression computing it.

n_active A p(n) — A\ () replace(r)

rErequires|

n_active — o(n) = replace(calculated(n))

(4)

Fourth, when a parent is inactive or disabled, all its children
are inactive. Let feature p be the parent of feature n. We
have then the following constraint.

()

Also, the active state of a feature is completely determined
by its parent and its active_if constraints.

n_active — p_active A p(p)

n_active < p_active A p(p) A /\ceactive;if(n) replace(c)
(6)

Finally, legal_values and interfaces are special cases of the above
ones. Legal_values can be treated as a requires expression, which
constrains the feature value to a range. Interfaces can be
treated as calculated features. Their values are the num-
bers of active and enabled features implementing them.

©ONO U W

cdl_component LIBM_COMPATIBILITY {
legal_values {"POSIX" "IEEE" "XOPEN" "SVID"}

cdl_option LIBM_COMPAT_DEFAULT {
calculated {
(LIBM_COMPATIBILITY == "POSIX") ? "CYGNUM_LIBM_COMPAT_POSIX" :
(LIBM_COMPATIBILITY == "IEEE") ? "CYGNUM_LIBM_COMPAT_IEEE" :
(LIBM_COMPATIBILITY == "XOPEN") ? "CYGNUM_LIBM_COMPAT_XOPEN" :
(LIBM_COMPATIBILITY == "SVID") ? "CYGNUM_LIBM_COMPAT_SVID" :
"<undefined>" }
flavor data

}

cdl_option UITRON_ISR_ACTION_QUEUESIZE {
legal_values {4 8 16 32 64 128 256}

}

cdl_option CYGBLD_LINKER_SCRIPT {
calculated {"src/arm.Id"}
flavor data

Figure 4: Range definition using calculated and le-
gal values constructs.

As stated, active state and effective value can be derived
from the other variables. Further, the data value of a calcu-
lated feature is determined by the expression calculating it.
We exploit this observation, to inline the expressions defin-
ing the derived variables in semantic constraints, in order to
reduce the total number of variables (see [16] for details).

3. METHODOLOGY

Our goal is to characterize the non-Boolean part of con-
straints in all 116 eCos models, relative to their Boolean
content. We analyze both the feature constraints, as stated
in the CDL syntax (Sect. 2.3), and the semantics constraints,
as defined in Sect.2.4. We consider the feature constraints,
as they allow us to characterize concretely and objectively
the non-Boolean aspect that modelers see. We also consider
the semantic constraints, as we want to characterize what is
exposed to automated reasoners for analyses. Our scope is
analyses requiring configurator semantics (cf. Sect. 2), such
as those to support intelligent configuration.

Our approach is as follows. (1) At the syntactic level,
we first characterize the model sizes and the data types of
features. Since many non-Boolean features have restricted
value domains, we also analyze these restrictions. We further
classify feature constraints as purely Boolean, non-Boolean,
or mixed and give occurrence frequencies for non-Boolean
operators. We provide summary statistics for all 116 mod-
els, reporting minimal, maximal, and median values, and
qualitative data, such as sample constraints. (2) We provide
similar type of data for the semantic level. We present the
number of variables created, along with the characterization
of the non-Boolean content of the semantic constraints.

To gather the statistics, we created our own infrastructure
with custom tools for each part of the process (parsing the
models, semantic translation, and semantic and syntactic
level analyses). Since CDL is dynamically typed, we created
a heuristic-driven data type inference. To get the models in
a parser-friendly format, we reused an instrumented version
of the configurator (from [4]) that exports models for each
architecture using the all template.

4. RESULTS

The eCos models all have similar size, about one thousand
features each (cf. Table 2, first row). Coming from the same
software project, the models overlap significantly. The most

similar models in the set differ only by 2 features, while the
most distant pair in the set differs by 307 features. In aver-
age, models differ by 122 features, so about 90% of features
are shared by a typical pair.

4.1 Feature Data Types

Our first objective was to understand the distribution of
data types across the features. We distinguished Boolean
and non-Boolean features as follows: all features without
the data part, or with data part fixed to 1, are considered
Boolean; the remaining features of Data and BoolData flavors
are considered non-Boolean. We determined the types of
non-Boolean features using an automated procedure. First,
the procedure identified non-Boolean features that are con-
stants, enumerations, or ranges (as defined shortly) and it
also classified Packages and Interfaces, respectively, as strings
and numbers; this step determined the type of 55% of all
non-Boolean features with full certainty. Next, a type infer-
ence, deriving types from constraint expressions, assigned
types to 9% of all non-Boolean features, with an estimated
certainty of 90%. Inspecting feature names allowed assign-
ing types to 6% of the features, and the remaining features
(30%) were classified as strings—CDL’s most generic data
type. As can be seen in Table 2, there is roughly the same
amount of Boolean and non-Boolean features in a typical
eCos model. Furthermore, the non-Boolean features divide
almost evenly into character string and numeric features.

We further classify non-Boolean feature data types into
enumeration types, range types, and constants. In CDL,
there is no explicit construct for declaring such types, but
a similar effect is achieved by domain restrictions on data
values by means of legal values and calculated constraints. We
use the following heuristics to identify these types.

A feature is a constant if its calculated Or legal_values con-
straint only admits a single literal value (string or integer).
An example is given in Fig.4. The calculated constraint of
CYGBLD_LINKERSCRIPT (1.20) binds its value to “src¢/arm.ld”,
which cannot be changed during configuration.

If legal_values O calculated constraints define a finite set of (at
least two) literals, we classify the type as an enumeration.
In Fig. 4, the legal_values constraint of LIBM_COMPATIBILITY (1. 2)
restricts the domain to: "POSIX”, "IEEE”, "XOPEN” and
”"SVID”—and in L. 15 we see a restriction to an enumeration
of integers. Similarly, the LIBM_COMPAT_DEFAULT option has a
calculated expression (1. 5) guarded by four conditionals, each
resulting in a string literal. We have identified similar pat-
terns of calculated constraints to obtain a distribution of enu-
meration types across the models.

Ranges are easily identified by the range construct of the le-
gal_values constraint. See for instance feature AT91_CLOCK_SPEED
in Fig. 2, which admits values from 0 to 220 million (1.29).

Table 3 summarizes the distribution of these types across
non-Boolean features. The top three rows (the left column

Table 2: Number and types of features

Min Max Median
Model size (#features) 1159 1312 1230
Boolean (%) 44 47 46
Non-Boolean(%) 53 56 54
Number (integer or float)(%) 23 26 25

String(%) 28 32 29

BN e

cdl_option POWERPC_BOARD_SPEED {
default_value 33.330
flavor data

Figure 5: A feature with a float data type

compartment) show the number of features classified as con-
stants, enumerations and ranges as a percentage of all the
non-Boolean features. Constants and enumerations are fur-
ther categorized by the source of restriction (calculated or le-
galvalues constraints). The right compartment shows the size
of restricted domains—domains of constants are always sin-
gletons, and the size of an enumeration domain is the num-
ber of values it admits. The size of ranges is defined as the
difference between the upper and the lower bound. Its me-
dian value (65,535) indicates that ranges introduces short
integer types. They are also much more common than con-
stants and enumerations. This is interesting as ranges are
harder to handle for SAT and CSP solvers than enumera-
tions (given their relatively large domain sizes). The last
row in the table shows the percentage of non-Boolean fea-
tures with no explicit constraints restricting domains.

We are certain that 42% of the features reported as num-
bers are integers; the rest could be either integers or floats.
In general, feature values can be provided by the user in the
configurator or set in the model. Figure5 presents an exam-
ple of a float literal that is explicitly specified in the model.
Feature POWERPC_BOARD_SPEED (1. 1) specifies the clock speed
of the MPCsxx development board. This feature is likely a
floating point feature, since its default value is 33.330. Due to
dynamic typing of CDL expressions, inputting float literal
as feature’s value instantly promotes constraints involving
such a feature to floating point constraints. Thus, it is pos-
sible, but unlikely, that the models contain many floating
point valued features.

In general, the ability to identify types of data values
is a pre-requisite to almost any automatic analysis of non-
Boolean feature models. Thus, a side observation of the
experiment we did is that variability modeling should prefer-
ably be typed to not discourage tool support.

4.2 Feature Constraints

This section characterizes the feature constraints specified
using constraint properties active_if, requires, legal_values, and cal-
culated (Sect. 2.3). Table 4 groups these constraints into:

e purely Boolean, containing expressions with only Boolean

Table 3: Restrictions on non-Boolean types

% of Features Sizes
Min Max Med | Min Max Med
Constants 5 7 5 1 1 1
Legal values 0.1 0.5 0.2 1 1 1
Calculated 4 7 5 1 1 1
Enumerations 3 12 5 2 29 3
Legal values 2 10 3 2 29 3
Calculated 1 3 2 2 11 2
Ranges 14 19 15 | 2 9.2¢+18 65535
Unrestricted 69 76 75 | n/a n/a n/a

operators (!, &&, ||, implies), string or integer literals
(interpreted as Booleans), and Boolean feature identi-
fiers; operations ==, !=, and 7. are considered Boolean
if their operands are purely-Boolean expressions;

e purely non-Boolean, containing expressions with non-

Boolean operators (relational, arithmetic, bit-wise, string,

and conditional), string or integer literals, and non-
Boolean feature identifiers; and

e mized, containing both Boolean and non-Boolean op-
erators and operands.

Purely non-Boolean constraints are the most frequent and
control different aspects of the system, such as clock (1.26,
Fig.2) and board speed (1.1, Fig.5), sizes (queues, pools,
etc), port numbers and many others. Less frequent are
mixed and purely Boolean (Table4). As many as 83% of
the expressions are non-Boolean (either purely or mixed).

Table 9 summarizes occurrences of non-Boolean operators
in these five types of constraints (ignore the last column for
now). As previously, the counts for ==, |=, and 7. disre-
gard occurrences where these operators are used with only
purely-Boolean expressions as operands. Requires constraints
contained most of the occurrences of relational operators
and a few occurrences of arithmetic operators (+, *, %) and
substring tests. Active_ifs used relational operators only. Calcu-
lated had the most conditionals (7:), arithmetic operators (+,
-, *, /), and string concatenations. Legal values used a few sub-
tractions and conditionals. Overall, the expressions in the
four constraint properties used relatively few non-Boolean
operators; this suggests that many of these expressions are
non-Boolean feature identifiers and literals.

Purely non-Boolean constraints are almost five times more
often than purely Boolean constraints. In this sense, if one
were to use a SAT-based analysis, around 79% of the con-
straints would either be disconsidered or would require an
approximation mechanism such as the one described in [3].

4.3 Semantic Constraints

In Sect.2.4 we have outlined how semantic constraints
arise from syntax. Since semantic constraints are closer to
what automated reasoners expect as input, this characteriza-
tion gives a more precise view of the hardness of the models.
The semantic constraints are defined over enabled state and
data value variables. Table5 summarizes the numbers of
variables in the semantic constraints.

Table 6 classifies the kinds of semantic constraints (com-
pare with Table9). In contrast to feature constrains, the
majority of the semantic constraints are purely Boolean.
One explanation is that the semantics itself eliminates con-
straints that are not essential for configurator semantics (for
example by inlining calculated expressions).

The last column in Table 9 shows the occurrence numbers
of non-Boolean operators in semantic constraints. The most
frequently used are ==, <=, and ?.. String concatenations

Table 4: Feature constraints

Min Max Median
All 916 1269 1015
Purely Boolean 162 184 172

Purely non-Boolean 700 1029 792
Mixed 50 66 55

have a maximum occurrence of 1,536, but are only found
in a single model. A deeper examination showed that these
occurrences resulted from a single calculated expression with
six concatenations that semantics translation inlined into
256 other expressions.

In addition to counting the frequency of operators, we
manually extracted common structures (patterns) that ap-
pear as part of constraints.

Patterns involving equalities are rather simple (enumer-
ation variables compared to enumerands, variable compar-
isons, literals compared to variables, etc.) and do not in-
clude multiplications, nor divisions. Relational expressions
containing < were even less complex, since they only con-
tained at most one data variable at a time.

As for string operations, we found that is_substr calls always
test string inclusion of a string literal. Substring testing is
used as means to check set membership (whether a compi-
lation option is set, whether a library belongs to the set of
libraries for linkage, etc.). Concatenation, on the other hand,
was only applied to literals.

The most complex patterns found were inequalities de-
fined in terms of <= and >=. Such inequalities were the
only to contain multiplication and division. Due to their
large number (over 26,000 in total), we reduced our scope
to the ones with at least two data variables. From that, we
grouped then in two main types of patterns: (i) inequalities
with no Boolean terms; (ii) inequalities in which Boolean
terms appear as operands.

We identified four inequality patterns with no Boolean
terms, as shown in Table 7. In any pattern, [J denotes ei-
ther <= or >=, a,b,c are constants greater than or equal
to zero and p, q, x, y, z are variables. The first pattern is the
simplest and most frequent of all (including inequalities with
Boolean terms), occurring at least five times in each model.
The other patterns with no Boolean terms denote nonlinear
inequalities and were restricted to few models.

The patterns with Boolean terms have a complex struc-
ture. We identified seven such (Table8). In the table, 3
terms denote Boolean formulae with no data variable. We
obtained these patterns by transforming conditional expres-
sions into multiplications. Consider the example of a seman-
tic constraint in Fig.6. The conditional expression in 1.7 is
transformed as follows (3 = TIMER_TC_enabled):

£732:16 = 323-16(3—1) = 328-168+16 = 16(5+1)

By representing each unique identifier of the constraint as a
variable, one obtains (xyz)/abc(8 + 1)pg. Furthermore, the

Table 5: Variables in semantic constraints

Min Max Median
Enabled 498 559 521
Data 399 499 420

Total 897 1017 947

Table 6: Semantic constraints

Min Max Median
All 593 686 616
Purely Boolean 405 423 412
Purely non-Boolean 2 4 2
Mixed 184 275 202

=

COWENO U WN

(RTC_NUMERATOR data
(((OSC_MAIN_data % PLL_MULTIPLIER data) / PLL_DIVIDER data)/2)
)

/ (TIMER_TC_enabled ? 32 : 16)
)/RTC_DENOMINATOR data #\label{line:xyz—dabpq}#)/ 1000000000

Figure 6: Concrete semantic constraint

term abc is also a constant, so we simply represent it as a,
leading to (zyz)/a(B + 1)pg. In addition, since 1/a is itself
a constant, we reformat the pattern into its final version
b < a(zyz)/pq(B+ c) (the last pattern of the table). We did
the same transformations for obtaining the other patterns.
The conditionals for formulas in rows four and five were not
expanded to improve readability.

5. THREATS TO VALIDITY

External. eCos might not be representative of other sys-
tems using non-Boolean feature models; however, constraints
involving memory sizes, clock speeds, timeouts, etc., are
likely to appear in highly configurable embedded software.

Furthermore, we have limited the scope of this investiga-
tion to 116 models with the largest (all) template enabled
in our analysis. This selection of scope leaves out other
packages in the eCos ecosystem, for instance the commercial
packages. There are features that are not included in default
templates and we do not consider them. Expressions in those
features might contain operators and constructs that are not
covered by our results, and that might potentially influence
the reported characteristic.

Internal. There is always a threat that statistics we pre-
sented are not correct. To prevent this, we wrote extensive
unit tests to check the correctness of the parsing and seman-
tic translation, which is the basis for collecting statistics.
Statistics were gathered by either traversing the models (for
which we also wrote unit tests) and manual analysis. In the
latter case each author independently analyzed the results
to assure correctness.

A related threat is that our semantics of the CDL language
may be wrong, as the semantics was reverse-engineered from
the configurator. To reduce this threat, two of the authors
worked independently and produced two versions of seman-
tics 3, 16]. We checked the consistency of the two versions
and found that their essential contents converge, though
they use quite different styles of definitions.

Another threat to internal validity is the type inference
result in Table 2. Due to dynamic typing of CDL, assuming a
single type for a feature is impossible, since users can put any
value as a data value of a feature. We have approximated the
intended types using a custom static analysis of the models.
We considered feature names and descriptions, and the way

Table 7: Inequality patterns with non-Boolean terms

Pattern Min Max Median Total

linear rOy+ta 5 8 5 595
nonlinear azy ob 0 2 0 6
ary/z Ob 0 2 0 8
ary/pz <b 0 1 0 1

features are used in expressions. However, many features are
either not used, their name is not reliable, or their usage in
expressions is ambiguous. To be completely sure about the
feature types, we would need to conduct interviews with the
CDL users and to analyze real-world usage of those features.
This is a part of the future work.

6. RELATED WORK

Non-Boolean constraints have been used in feature model-
ing since the very inception. The FODA report [10] admits
non-Boolean variables as attributes of features, but no con-
crete constraint language is proposed for restricting values
of such. Non-Boolean decision variables have also commonly
been allowed in decision modeling [14].

Reports on practical use of feature models are rare in re-
search literature [7]. Mendonca [12] argues that considera-
tion of realistic models is crucial for obtaining efficient anal-
ysis algorithms for feature models, while Segura and Cortes
postulate creating a reference benchmark set [15] for analy-
sis tools. Among others, in [12] Mendonca surveys models
available in the literature to gather characteristics of such
realistic models. However his focus is solely on Boolean mod-
els and SAT-based analysis. A side effect of his work is the
creation of the SPLOT repository of models [13]. We ex-
pand on his work, by characterizing the very first realistic
non-Boolean benchmark.

Recently we have characterized large realistic variability
models in the OS domain [4], including the CDL model of
eCos. The analysis of the eCos model in [4] has side-stepped
the non-Boolean aspects, which we approach more closely
in the current work (at the same time expanding the anal-
ysis to all 116 models). So far eCos is the only publicly
available real-world system with a non-trivial non-Boolean
model known to us—it includes both string and numeric
constraints. The Linux kernel project also has a variability
model with non-Boolean (three valued) features, but these
can easily be encoded using pairs of Boolean variables [4].

7. CONCLUSION

We have analyzed a collection of over hundred large real-
istic variability models containing non-Boolean features and
constraints; all models originating in the eCos project. eCos
demonstrates that arithmetic and string constraints do ap-
pear in real-world variability models—even though there was
no strong evidence of such presence, yet. The names and de-
scriptions of the features indicate that similar parameters
and constraints are very likely to appear in other highly
configurable software systems in the embedded domain.

We have summarized the types of features, and syntactic
properties of feature constraints as directly specified by the

Table 8: Inequality patterns with Boolean terms

Pattern Min Max Median Total
Br<y—a 2 4 2 243
Bz O By 1 1 1 116
bz < Boy —a 0 2 0 2
prx < (B2%a:PBs)+y—b 0 2 0 2
x < BAbool(y)?Py : a 1 1 1 116
(BiA(a< Box))yOb 4 4 4 464
b O azxyz/(B + ¢)pq 0 2 0 6

| requires | active_if | calculated | legal_values | Semantic

| Min Max Med | Min Max Med | Min Max Med | Min Max Med | Min Max Med

== 71 88 74 3 8 4 6 51 11 0 2 0 106 423 166
1= 40 43 40 0 5 0 0 2 0 0 4 0 0 0 0
< 0 0 0 3 4 3 0 0 0 0 0 0 6 7 7
<= 4 7 4 0 0 0 0 1 0 0 0 0 208 282 220
> 3 3 3 7 7 7 0 1 0 0 0 0 0 0 0
>= 71 72 71 0 0 0 0 0 0 0 0 0 2 3 2
+ 1 2 1 0 0 0 0 5 0 0 0 0 3 51 5
- 0 0 0 0 0 0 0 1 0 1 4 3 1 4 3
0 1 0 0 0 0 0 6 0 0 0 0 0 8 0

/ 0 0 0 0 0 0 0 11 0 0 0 0 0 18 0
% 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
<< 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
>> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
& 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
\ 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
" 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
7 1 1 1 0 0 0 36 81 42 4 10 4 327 749 430
. (concatenate) 0 0 0 0 0 0 22 34 22 0 0 0 0 1536 0
is_substr 3 13 3 0 0 0 0 7 0 0 0 0 1 5 1
is_active 0 3 0 0 0 0 0 0 0 0 0 0 0 3 0
is_enabled 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Table 9: Non-Boolean operator occurrences in feature and semantic constraints

modelers. We observe that non-Boolean constraints tend to
be relatively simple, but a closer look reveals that they are
a significant challenge for analysis techniques.

We have analyzed a formal semantic of the models suitable
for the configurator tools. The semantic expansion contains
a number of nonlinear constraints involving multiplications
and division of non-Boolean feature values. Also most of the
linear constraints in the model are embedded into complex
combinatorial expressions, breaking linearity. Thus models
can’t be analyzed neither by reduction to constraint pro-
gramming nor by (integer) linear programming.

In the future we would like to investigate reasoning tech-
niques that address different kinds of constraints identified
in this study. In particular, we would like to map out the de-
pendencies between efficiency of the analyses, with various
degree of precision (i.e. taking various subsets of constraints
into account, depending on their richness).

Acknowledgments We thank Don Batory for encourag-
ing us to do this study and Klaus Schmid and the anonymous
reviewers for their comments.

8. REFERENCES

[1] D. S. Batory. Feature models, grammars, and
propositional formulas. In SPLC, 2005.

[2] D. Benavides, S. Segura, and A. Ruiz-Cortés.

Automated analysis of feature models 20 years later:

A literature review. Inf. Syst., 35, September 2010.

T. Berger and S. She. Formal semantics of the CDL

language. Technical Note. Available at

3]

http://informatik.uni-leipzig.de/~berger/cdl_semantics. pdf.

T. Berger, S. She, R. Lotufo, A. Wasowski, and

K. Czarnecki. Variability modeling in the real: a
perspective from the operating systems domain. ASE,
2010.

[5]
(6]

7]

8]

[9]

(10]

(15]

(16]

M. Bozga and R. losif. On decidability within the
arithmetic of addition and divisibility. 2005.

K. Czarnecki and A. Wasowski. Feature diagrams and
logics: There and back again. In SPLC, 2007.

A. Hubaux, A. Classen, M. Mendonga, and

P. Heymans. A preliminary review on the application
of feature diagrams in practice. In VaMoS, 2010.

B. A. Huberman and T. Hogg. Phase transitions in
artificial intelligence systems. Artif. Intell., 33(2),
1987.

M. Janota. Do SAT solvers make good configurators?
In SPLC (2), 2008.

K. Kang, S. Cohen, J. Hess, W. Nowak, and

S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical report, 1990.

A. Massa. Embedded Software Development with eCos.
New Riders, 2002.

M. Mendonca, A. Wasowski, and K. Czarnecki.
SAT-based analysis of feature models is easy. In SPLC,
2009.

M. Mendonca, M. Branco, and D. D. Cowan. S.p.l.o.t.:
software product lines online tools. In OOPSLA
Companion, 2009.

K. Schmid, R. Rabiser, and P. Griinbacher. A
comparison of decision modeling approaches in
product lines. In VaMoS, 2011.

S. Segura and A. R. Cortés. Benchmarking on the
automated analyses of feature models: A preliminary
roadmap. In VaMoS, 2009.

Y. Xiong. Configurator semantics of the cdl language.
Technical Report GSDLAB-TR 2011-06-05, GSD Lab,
University of Waterloo, 2011.
http://gsd.uwaterloo.ca/GSDLAB-TR2011-06-05.

http://informatik.uni-leipzig.de/~berger/cdl_semantics.pdf
http://gsd.uwaterloo.ca/GSDLAB-TR2011-06-05

