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A. EXAMPLES OF THE BASIC CONCEPTS

Example A.1. The personalized trust model PeerTrust [Xiong and Liu 2004] can be
used to evaluate rating reliability via the following formalism.

— Pi = S(i) ∩ S( j). In other words, the set of relevant peers Pi includes those peers k
having provided services to both i, j.

— Vi = {r(x, k, tr) | x ∈ {i, j}, k ∈ Pi, tr ∈ �(i, k) ∪ �( j, k)}, that is, Vi consists of those
ratings by i and j on service behaviors of other peers k in the relevant set Pi.

— The relationship W among peers and the features of the target F j are not considered.

— Tij = 1−
√∑

k∈Pi

∑
tik∈�(i,k) r(i,k,tik)

‖�(i,k)‖ −
∑

t jk∈�( j,k) r( j,k,t jk)

‖�( j,k)‖
‖Pi‖ is a measure of similarity between the possi-

ble ratings r(i, k, tik) and r( j, k, tik) on those transactions tik ∈ �(i, k) and tjk ∈ �( j, k).
— A rating by j is considered as reliable if Tij > Tmin and as unreliable otherwise,

where Tmin is a possibly global system design threshold. Alternatively, we can nor-
malize Tij into [0, 1] and trust the rating with probability Tij. With probability 1−Tij,
the rating is distrusted (evaluated as unreliable).

Example A.2. Another approach to estimate a peer’s trustworthiness is to assume
that peers behave according to a probabilistic model. Similarity in rating on one target
leads to similarity in rating on another [Vu and Aberer 2007]. The peer i estimates
that the target peer j has a probability Tij of reporting truthfully what j observes. This
model is specified similar to Example A.1, except that Tij Di are defined differently.

Tij =

∑
k∈Pi,tik∈�(i,k),tjk∈�( j,k) I(r(i, k, tik) = r( j, k, tjk))

‖Pi‖∑
k∈Pi

‖�(i, k)‖∑
k∈Pi

‖�( j, k)‖ , (2)

where the indicator function I(c) evaluates to 1 if the Boolean condition c is true. Thus
Tij is defined by the fraction of ratings by j having the same values as ratings by i.
This Tij is an estimate of the probability of the peer j being honest when rating, and
such an estimate maximizes the likelihood of having the observation set Vi by the set
of relevant peers Pi. The decision rule Di is usually probabilistic, e.g., trust the rating
with probability Tij and distrust it with probability 1 − Tij.

Example A.3. It can be shown that the naive computational trust model N , which
trusts any rating and considers no rating as the presence of a positive one, has the
misclassification errors α = α0 = 1 and β = β0 = 0. In fact, let 0 ≤ h, l, i ≤ 1, where
h + l + i = 1 be respectively the probabilities that the rating peer provides a reliable
rating, an unreliable one, and no rating after a transaction with a specific provider.
Denote as est+ (resp. est−) the events that the most recent rating is evaluated by the
learning peer as reliable (resp. unreliable), and let real+ (resp. real−) be the events
that the rating is actually reliable (resp. unreliable). There are two possibilities.
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Fig. 11. The game between a learning peer (the row player) and the strategic rater (the column player).
The notation (x, y) means that the payoff of the learning peer is x and of the rater is y. Since the goal of a
rational rater is to maximize misclassification errors of the dishonesty detector, we give a rater a payoff 1 if
t �= t̂ and 0 if t = t̂. The payoff of a learning peer is the opposite.

— The provider did cooperate in the last transaction, thus the absence of a rating is
equivalent to the presence of a reliable positive rating. So α0 = Pr(est+,real−)

Pr(real−) = l/l = 1
and β0 = Pr(est−,real+)

Pr(real+) = 0/(h + i) = 0.
— The provider did not cooperate in the last transaction, thus the absence of a rating

implies the presence of an unreliable positive rating. Still, we have α0 = Pr(est+,real−)
Pr(real−) =

(l + i)/(l + i) = 1 and β0 = Pr(est−,real+)
Pr(real+) = 0/h = 0.

B. PROOF OF PROPOSITION 3.1

PROOF. Let t and t̂ be the binary reliability of a rating, as exhibited by the rater and
as estimated by the learning peer, respectively. Denote H = 〈Pi, W, Vi,F j〉 the input of
the algorithm A (c.f. Definition 2.1), we have:

α = Pr (̂t = 1 | t = 0,H) ∝ Pr (̂t = 1, t = 0 | H). (3)

If the model R is publicly known and the decision rules D are deterministic, a ratio-
nal rater knows exactly whether the rating is estimated as reliable given the history
H. Therefore, the rater can strategically provide rating with an opposite reliability
to maximize misclassification errors of the dishonesty detector. The game between a
learning peer and the rater is shown in Figure 11.

The arrows in Figure 11 denote the possible moves of each player to maximize its
payoff, showing that the game has no pure Nash equilibrium. The only mixed equilib-
rium of the game is: the rater exhibits a random rating strategy Pr(t = 1) = Pr(t = 0) =
0.5 and the learning peer estimates the rating reliability as Pr (̂t = 1) = Pr (̂t = 0) = 0.5,
so α = β = 0.5.

C. PROOF OF THEOREM 3.2

PROOF. We first prove (1). Rational providers apparently do not find incentives to
cooperate in the last transaction. Consider those rational providers staying in the
system for � > 1 more transactions after the current one.

Let 0 ≤ h, s, l, i ≤ 1 respectively, be the probabilities that the current client exhibits
following rating behaviors after the transaction: honest (provides reliable ratings),
advertising (posts positive ratings on the provider), badmouthing (rates the provider
negatively), and nonparticipating (does not leave any rating), where h + s + l + i = 1.
Note that possible strategic rating manipulations by any raters colluding with the
current provider are all considered by these probabilities. For example, consider the
case where the provider may use a fake identity to stuff a positive rating with a newer
timestamp to hide its cheating in a transaction. In this case, the provider still has
additional gain v in the transaction, and the dishonesty detection is applied on the
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fake rating whose rater is a client with completely advertising behavior, i.e., h = i = l =
0, s = 1.

The probabilities that an honest provider obtains a positive (resp. negative) rating
after a transaction are h+ = h + s + i = 1 − l (resp. 1 − h+). The honest provider is
blacklisted if either the true positive rating is not accepted by the computational trust
model as reliable (with probability β), or the wrong negative rating is accepted as
reliable (with probability α). Thus the probability that the provider will be blacklisted
by a forthcoming client is: xb = h+β + (1 − h+)α = (1 − l)β + lα ≤ ε, since 0 ≤ l ≤ 1 and
0 ≤ α ≤ ε, 0 ≤ β ≤ ε.

The probability that the provider is globally blacklisted after the current transac-
tion is then xk

b ≤ εk. This inequality holds even in the presence of malicious or strategic
manipulation of ratings by any raters with different h, l, s, i, provided that misclassifi-
cation errors α, β of R are less than ε.

Similarly, if the provider is cheating in this transaction, the probability that it ob-
tains a positive rating is l+ = s+ i = 1 − h− l. With probability 1 − l+ such a provider re-
ceives a negative rating. In this case, the provider will be blacklisted by a future client
with probability yb = l+(1 − α) + (1 − l+)(1 − β) = (1 − h− l)(1 − α) + (h+ l)(1 − β) ≥ 1 − ε.
Thus the probability that the provider is globally blacklisted is yk

b ≥ (1 − ε)k.
Let U be the current accumulative utilities of a rational provider and uh be its best

(maximized) expected utilities for the remaining time in the system if it is not globally
blacklisted after the current transaction. Denote Uhonest (and Ucheat) as the best (maxi-
mal) expected life-time utilities of the provider if it is honest (respectively cheating) in
the current transaction, it follows that:

Uhonest = U + u + uh(1 − xk
b )

Ucheat = U + (u + v) + uh(1 − yk
b )

δhc = Uhonest − Ucheat = −v + uh(yk
b − xk

b )

≥ −v + uh((1 − ε)k − εk).

One can verify that the preceding reasoning is applicable in the following two situa-
tions. First, identities are very difficult to obtain and thus the provider cannot rejoin
under a new identity. Second, the cost of obtaining a new identity outweighs the max-
imal temporary benefit gained by cheating in a transaction.

As an honest provider is still blacklisted with probability xk
b < εk, one can verify

that the fully cooperative strategy of a provider during � ≥ 1 transactions leads to a
total utility of at least 1−(1−xk

b )�

xk
b

u∗ ≥ 1−(1−εk )�
εk u∗ > 0. Note that for small xk

b , uh ≥ �u∗
approximately.

It follows that δhc ≥ 0 if � ≥ ln [1− vεk

u∗ ((1−ε)k−εk)
]

ln (1−εk ) = �v , where ε < εmax(k) = 1/(1 +
k
√

1 + v∗/u∗) < 0.5 so that the logarithm is always well-defined for any v ≤ v∗.
Therefore, in any transaction but its last �v ones, a rational provider considers

cooperation as its best response strategy. Thus (1) is proven. The proof of (2) is then
straightforward from the preceding analysis.

To prove (3), note that after each transaction, the probability that by accident, an
honest provider is globally blacklisted is xk

b ≤ εk. In the worst case ever, Nh is a
geometric random variable with probability εk, hence E[Nh] > 1/εk.

By similar reasoning, the probability a malicious provider is globally blacklisted is
yk

b ≥ (1 − ε)k, and thus E[Nc] < 1/(1 − ε)k
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D. PROOF OF COROLLARY 3.4

PROOF. The naive computational model N has misclassification errors α = 1 and
β = 0 (Example A.3). Proceeding as in the analysis of Theorem 3.2, we have δhc ≥ −v∗ +
uh(h−(1−h)) = −v∗+uh(2h−1) ≥ −v∗+(1−h�)(2h−1)/(1−h) (herein uh ≥ (1−h�)/(1−h)).

A rational provider would cooperate if δhc ≥ 0, or � ≥ ln [1−(1−h)/(2h−1)]
ln h . The condition

1 > h > hmin = (1 + v∗/u∗)/(1 + 2v∗/u∗) makes the logarithm well-defined.
Note that δhc ≥ −v∗ + (1 − h�)(2h− 1)/(1 − h), where the right-hand side is monoton-

ically increasing in h. This fact gives direct incentives for a long-staying client to leave
a correct rating after a transaction so as to increase the overall probability of reporting
truthfully h of any client as estimated by subsequent providers. This maximizes the
chance of this current client to have successful transactions in the future even with
other rational providers (for larger h, δhc gets larger and thus it is more favored for the
future provider to cooperate than to cheat).

E. PROOF OF THEOREM 4.1

PROOF. Let δ ≥ � be the number of remaining transactions of the provider at the
current step. Proceed as in Theorem 3.2 with k = 1, α′ = cα + (1 − c)α2 = 1 − c + cα, and
β ′ = cβ + (1 − c)β2 = cβ, we get δhc ≥ − v∗ + uh (h(1 − c) + c(1 − α − β − (β − α)h)).
Here, the probability that an honest provider is blacklisted is xb = (1 − l)β ′ + lα′ = c(1 −
l)β + l(1 − c + cα), where l is a small probability that someone badmouths the provider.
Thus we have xb = (1 − c)l + c[(1 − l)β + lα] ≤ max (l, ε), which is small. Therefore,
approximately, uh ≥ δu∗. As a result, δhc ≥ −v∗ + δu∗(h(1 − c) + c(1 − α − β − (β − α)h)).

Since 0 ≤ h ≤ 1, it follows that α + β + (β − α)h ≤ α + β + max {β − α, 0} ≤
2 max {β, α} ≤ 2ε. Thus, h(1 − c) + c(1 − α − β − (β − α)h) ≥ c(1 − 2ε) for c ∈ [0, 1].
This makes δhc ≥ −v∗ + δu∗c(1−2ε). Equivalently, δhc ≥ 0, or cooperation is a dominant
strategy for the provider if and only if c ≥ c∗ = v∗

δu∗(1−2ε) .
According to Theorem 3.2 (k=1) with small ε, using only algorithm R1 can ensure

cooperation of a rational provider in all transactions but its last � ones. That is δhc ≥
−v∗ + �u∗(1 − 2ε) ≥ 0, or equivalently � ≥ v∗

u∗(1−2ε) . Since δ ≥ �, one can verify that
c∗ ≤ 1 and thus c∗ is a valid probability.
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