
Citation:
Schreuders, ZC and McGill, T and Payne, C (2011) Empowering end users to confine their
own applications: The results of a usability study comparing SELinux, AppArmor, and FBAC-
LSM. ACM Transactions on Information and System Security, 14 (2). ISSN 1094-9224 DOI:
https://doi.org/10.1145/2019599.2019604

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/546/

Document Version:
Article (Published Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/546/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

MURDOCH RESEARCH REPOSITORY

http://researchrepository.murdoch.edu.au

This is the author's final version of the work, as accepted for publication following peer review but without the
publisher's layout or pagination.

Schreuders, Z.C. , McGill, T. and Payne, C. (2011) Empowering end users to confine their own
applications. ACM Transactions on Information and System Security, 14 (2). pp. 1-28.

http://researchrepository.murdoch.edu.au/6177

Copyright © 2011 ACM
It is posted here for your personal use. No further distribution is permitted.

http://tweaket.com/CPGenerator/?id=6177

1 of 1 12/12/2011 12:43 PM

Empowering End Users to Confine Their Own
Applications: The Results of a Usability Study
Comparing SELinux, AppArmor and FBAC-LSM

Z. CLIFFE SCHREUDERS, TANYA MCGILL,
and CHRISTIAN PAYNE
Murdoch University
__

Protecting end users from security threats is an extremely difficult, but increasingly critical, problem.
Traditional security models that focused on separating users from each other have proven ineffective
in an environment of widespread software vulnerabilities and rampant malware. However, alternative
approaches that provide more finely grained security generally require greater expertise than typical
end users can reasonably be expected to have, and consequently have had limited success.

The functionality-based application confinement (FBAC) model is designed to allow end users
with limited expertise to assign applications hierarchical and parameterised policy abstractions based
upon the functionalities each program is intended to perform. To validate the feasibility of this
approach and assess the usability of existing mechanisms, a usability study was conducted
comparing an implementation of the FBAC model with the widely used Linux-based SELinux and
AppArmor security schemes. The results showed that the functionality-based mechanism enabled
end users to effectively control the privileges of their applications with far greater success than widely
used alternatives. In particular, policies created using FBAC were more likely to be enforced and
exhibited significantly lower risk exposure, while not interfering with the ability of the application to
perform its intended task. In addition to the success of the functionality-based approach, the usability
study also highlighted a number of limitations and problems with existing mechanisms. These results
indicate that a functionality-based approach has significant potential in terms of enabling end users
with limited expertise to defend themselves against insecure and malicious software.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection – Access
Controls; K.6.5 [Management of Computing and Information Systems]: Security and Protection

General Terms: Security, Human Factors

Additional Key Words and Phrases: Application-oriented access controls, sandboxing, POLA,
usability, HCISec, SELinux, AppArmor, FBAC-LSM, functionality-based application confinement

Authors’ addresses: Z. Cliffe Schreuders, Tanya McGill, and Christian Payne, School of Information
Technology, Murdoch University, Murdoch 6150, Perth, Western Australia. E-mail: {c.schreuders,
t.mcgill, c.payne}@murdoch.edu.au
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Permission may be requested from the Publications Dept., ACM, Inc., 2 Penn Plaza,
New York, NY 11201-0701, USA, fax: +1 (212) 869-0481, permission@acm.org
© 2001 ACM 1530-0226/07/0900-ART9 $5.00 DOI 10.1145/1290002.1290003 http://dl.acm.org/citation.cfm?
id=2019604

mailto:permission@acm.org
http://dl.acm.org/citation.cfm?id=2019604
http://dl.acm.org/citation.cfm?id=2019604

0: 2 ● Z.C. Schreuders, T. McGill, and C. Payne

1 INTRODUCTION
Popular operating systems, such as Windows and Unix, employ security mechanisms that
control what each individual user may do. However, a process executed by a given user
typically inherits all of that user’s privileges. Such access control schemes do not protect
the user against attacks performed by the programs they run, thereby leaving users
exposed to widespread, contemporary threats such as security vulnerabilities in their
applications and malicious software.

Application-oriented access control schemes exist that restrict the actions of each
application. By specifying what each application is authorised to do, potential damage
from a misbehaving application is significantly limited. Examples of schemes that
provide application restrictions include: chroot, FreeBSD Jails [Kamp and Watson 2000],
Solaris Zones [Tucker and Comay 2004], domain and type enforcement (DTE) [Badger
et al. 1995], Role Compatibility (RC) [Ott 2002], Bitfrost [Krsti and Garfinkel 2007],
CapDesk [Miller et al. 2004], Polaris [Stiegler et al. 2006], TRON [Berman et al. 1995],
Virtual Machines (VMs) [Madnick and Donovan 1973], PeaPod [Potter et al. 2007],
Alcatraz [Liang et al. 2009], Janus [Wagner 1999], Systrace [Provos 2002], SELinux
[Vance and Salamon 2001], and AppArmor [Cowan et al. 2000]. These schemes can be
divided into broad categories such as isolation-based and rule-based restrictions.

Isolation-based application-oriented access controls simply confine the application to a
limited name-space and isolate it from the rest of the system. Although providing a
relatively straightforward mechanism, isolation does not suit typical user workflows
where multiple applications need to share and exchange data. It is also often impractical
to individually isolate all of a user’s applications as many of these schemes demand
significant redundancy in terms of resources.

Rule-based application-oriented access controls can enforce least privilege by
permitting programs to only access the specified resources they require to carry out their
legitimate functions. However, this finely grained level of control often leads to complex
policies as sophisticated applications typically require access to a myriad of resources.
Policies for these schemes also expose the complexity of the underlying platforms and
applications, and therefore can be very hard to create and manage without significant
levels of expertise on the part of the user.

Despite the fact that usability has long been acknowledged as an important aspect in
the design of security systems [Saltzer and Schroeder 1975], the topic received limited
attention in the literature until it was demonstrated that a poorly designed security user
interface results in degraded protection [Hitchings 1995; Zurko and Simon 1996].
Although awareness of the importance of usability in security design has improved
[Cranor and Garfinkel 2005], and the literature now contains many publications related to
computer security usability, very little research has investigated or addressed the usability
issues associated with application restrictions.

A study by DeWitt and Kuljis [2006] assessed the usability of the Polaris security
mechanism [Stiegler et al. 2006], an application-oriented access control system for
Windows designed with usability in mind. The Polaris study involved 10 participants
utilising that system to carry out a number of tasks. As with the usability study described
here, their success at the tasks was evaluated and perceived usability measured. After
using Polaris to attempt a number of tasks, participants on average rated the system 44.2
out of 100 using the System Usability Scale (SUS) [Brooke 1996]. Consequently, the

Empowering End Users to Confine Their Own Applications 0: ● 3

study concluded that further work was necessary to improve the usability of Polaris.
The study described here makes a significant contribution to the pool of research on

the usability issues associated with application restrictions. A comparative study was
conducted to evaluate the usability of a functionality-based approach to application
restriction, where applications are restricted based on the expected high-level behaviour
of the program. The usability study compared a Linux-based implementation, FBAC-
LSM, with the widely deployed SELinux and AppArmor mechanisms. To date, this is the
most comprehensive comparative usability study conducted on application confinement
systems.

SELinux was originally developed by the US National Security Agency, and provides
an implementation of mandatory controls for Linux. Access control decisions are made
based on the security context resources are labelled with, combining role-based access
control (RBAC), domain and type enforcement (DTE), and multilevel security (MLS).
DTE forms the basis of application restrictions; rules determine the domain a program is
associated with, and define how processes within particular domains may access
resources labelled with specific types. Typically separate domains are specified for each
program. A number of user-space tools to configure SELinux are available, and are
available on Linux distributions such as Fedora. Although some management tasks can
be achieved using GUI tools (such as the SELinux Policy Generator tool), most require
the use of command line tools. SELinux rules can be very complex and are defined in
terms of security contexts that are applied as labels on resources [Zanin and Mancini
2004]. The out-of-the-box configuration for SELinux typically aims to lock down
system-wide services and remain out of sight from end users; most of their processes run
unconfined. While primarily aimed at expert users and security administrators, SELinux
is the most widely deployed Linux-based security mechanism capable of application
confinement. For many Linux users it will be the only such scheme installed on their
system, and recent work has been aimed at improving the usability of SELinux [Athey et
al. 2007; Nakamura et al. 2009]. In any case, its maturity and wide deployment makes it
the archetypal Linux enhanced security mechanism and worthy of study.

AppArmor, previously known as SubDomain [Cowan et al. 2000], also implements
mandatory controls for Linux, although using a simpler model than SELinux. AppArmor
defines a list of resources based on resource names (such as file paths) for each restricted
program to specify what may be accessed. Simple abstractions such as dbus, kde, and
nameservice are used to group privileges related to particular low-level program
characteristics and can be used when constructing policies. User-space tools to configure
AppArmor are available, including graphical tools that are available on Linux
distributions such as openSUSE. These graphical tools can be used to create and manage
policy, including a ‘learning mode’ used to create application profiles based on the
actions a program attempted previously. AppArmor policies can be long and detailed,
reflecting the underlying complexity of the confined applications and the various
platform layers these depend on. At one stage an online repository was available for users
to share the application profiles they had created. AppArmor has been presented by
Novell as an easier to use alternative to SELinux, with a focus on providing mandatory
application-oriented controls [Novell n.d.].

FBAC-LSM takes a different approach: applications are confined based on the
functionalities they are expected to perform [Schreuders and Payne 2008a]. FBAC-LSM

0: 4 ● Z.C. Schreuders, T. McGill, and C. Payne

is an implementation of the functionality-based application confinement (FBAC) model1.
The FBAC model provides both mandatory and discretionary controls, allowing
administrators and end users to define policies that are simultaneously enforced. This
enables administrators and users to restrict applications in order to enforce their
respective security goals. Policy abstractions, known as functionalities, are used to
authorise programs to access resources. Functionalities model the privilege requirements
of high-level application features such as “Web Browser”, “Image Editor”, or “Game”
[Schreuders and Payne 2008b].

Functionalities are parameterised, which enables them to adapt to each program’s
specific needs. Application policies can specify arguments to the parameters of the
functionalities assigned. These arguments can be passed in a fashion similar to
subroutines in programming languages. Parameters can describe application-specific
details such as the location of files, directories, or network resources. For example,
parameters may specify where an application stores its configuration files, the location
the user intends to store files created using the application, or the hosts the application is
authorised to communicate with.

Functionalities are also hierarchical; that is, they can contain other functionalities.
Functionality hierarchies enable further policy modularity, and can provide layers of
abstraction and encapsulation. For example, the high-level “Web Browser” functionality
includes functionalities representing lower-level policy details, such as “HTTP client”.
As FBAC-LSM policies are defined in terms of hierarchical functionalities, low-level
details are abstracted, and an overview of the policy can be presented to the user in terms
of high-level security goals.

FBAC is designed to abstract policy details away from users and enable them to
specify what applications are authorised to do based on high-level and conceptually
simple goals. To restrict a program, functionalities that describe the behaviour expected
of the application are assigned and any parameters then specified.

The FBAC model can facilitate automation of certain stages of policy construction.
The implementation provides a graphical policy manager tool that steps users through the
process of defining application policies and performs automation where possible. The
policy manager can suggest functionalities and parameter arguments based on analysis of
the program and filesystem. Since manually specifying parameter argument values can
require knowledge of the applications being confined (such as where configuration files
are stored), this automation can further reduce the expertise required to manage the
security scheme. Unlike most other rule-based application-oriented access controls,
policies are created a priori: without needing applications to be first executed in order to
generate confinement policy. FBAC-LSM includes a learning mode for situations where
application policies do not provide all the privileges necessary.

Each of these three schemes allows users to restrict the actions of applications. The
Linux security module (LSM) framework, as currently implemented, only allows a single
security mechanism to be enabled at a time on a Linux system. Therefore users must
choose between these security systems if they wish to confine their applications with one
of these schemes.

1 FBAC-LSM is free open source software available at: http://schreuders.org/FBAC-LSM

http://www.schreuders.org/FBAC-LSM

Empowering End Users to Confine Their Own Applications 0: ● 5

2 EXPERIMENTAL OBJECTIVES
The usability study described here was designed to evaluate the usability of the FBAC
approach relative to the two most mature and widely deployed Linux enhanced security
modules, SELinux and AppArmor, and their configuration tools2. This was the first
formal comparative usability study to examine any of these systems. Where possible the
three systems were compared to each other, and the effects of the different approaches
taken by each were investigated.

Although application-oriented access controls can be shipped with predefined policies
specified by third parties that restrict specific known programs, this study focuses on the
ability to specify policies that allow users or administrators to protect themselves against
potentially unknown applications and enforce their own security goals.

In particular, the following aspects of usability and security were measured and
analysed:

1. User perceptions of the usability of the three confinement schemes;
2. User success at creating and applying confinement policies;
3. Ability of user-confined programs to continue to execute as expected;
4. Overall risk exposure after confinement;
5. Ability to successfully restrict well-behaved programs;
6. Ability to successfully restrict malicious programs;
7. Time-efficiency of the three confinement schemes.

3 METHOD
The usability study employed a within-subjects design. Participants used all three security
mechanisms to construct policies to confine two programs. Participants provided
feedback regarding security system usability and preference, and the security properties
of the resulting policies were analysed.

3.1 Participant Recruitment

Participants were primarily recruited from the information technology students at an
Australian university, members of a Linux user group and an information security
association. Participant recruitment targeted people who had previously used Linux
systems, although this was not a requirement for participation. Participants were recruited
using flyers on university notice boards, announcements in lectures and via email. A
prize of an 8GB iPod Nano was used to encourage participation, and was awarded to a
participant chosen at random.

A convenience sample of 46 people was used, made up of every potential participant
available during the study period. Seven of those people left before completing the
experiment and were excluded from analysis, leaving 39 participants considered during
analysis. The size of this sample compares favourably with that of the earlier Polaris
study [DeWitt and Kuljis 2006].

3.2 Environment and Logistics

The study was conducted over a number of sessions in a university computer laboratory,
with between one and 10 subjects participating at a time. In order to ensure consistent
dissemination of information, most information presented to participants was pre-
recorded and was presented via video files launched via batch scripts on the computer.

2 This study considers the usability of the schemes in terms of configuration which is done via
user-space tools.

0: 6 ● Z.C. Schreuders, T. McGill, and C. Payne

Participants were assigned individual copies of three Virtual Machines (VMs) setup for
use with the three security systems. Since no single distribution supported all the user-
space tools, the Linux distributions used for each of the systems were those with the most
complete support for the security systems studied: Fedora 11 for SELinux and openSUSE
11.1 for AppArmor. openSUSE 10.3 was used for FBAC-LSM, since that was its
development environment. Each of the environments were configured to look alike.
Access to the VMs was via batch scripts that used VMWare player to run the appropriate
VM, and logged the time VMs were started and when participants were finished. Each
participant’s VMs were then stored for later analysis.

3.3 Preparation

Participants were randomly assigned an order for using the three security systems to
remove any biasing due to learning effects [Greenwald 1976]. Participants were supplied
with headphones and the following hand outs:

• An ID and the order in which they were to use the three systems.
• Welcome page, system use, and task scenario information.
• A copy of the Filesystem Hierarchy Standard (FHS) reference. The complete

FHS v2.3 was available as a PDF file on the lab computers3.
• A Unix/Linux command reference4.

A short presentation explained the various handouts and how to access the videos and
VMs via the scripts. Participants were prompted to record their ID on the computers they
were using to facilitate the collection and collation of data. The time constraints were also
explained: participants were encouraged to spend a maximum of approximately one hour
on each system, with a total maximum experiment time, including feedback, of four
hours5. Participants were encouraged to ask for help if they were stuck on a task (as they
might do in a workplace environment). Participants were also asked to notify the
moderator if they encountered unrelated technical problems; for example, if a VM were
to crash. Participants were then prompted to watch the introductory video. This video
explained the goal of application confinement, and provided further details as to how the
experiment would be run. As was explained in the video, the sequence of the experiment
was as follows:

• Viewing of the introductory video
• Pre-experiment questionnaire
• Linux filesystem video
• For each security mechanism:

– Mechanism videos
– Confining the programs
– Post-task questionnaire

• Post-experiment questionnaire

3 Available from http://www.pathname.com/fhs/
4 Available from http://fosswire.com/-post/2007/8/unixlinux-command-
cheat-sheet/

5 This relatively generous maximum timeframe was intended as a rough guide for participants
based on the time taken during the pilot study, and was intended to avoid disadvantaging
SELinux, which during the pilot study took the longest to complete. Many participants finished
sooner than these guidelines. Participants were provided with refreshments and in general seemed
to remain receptive and responsive throughout.

Empowering End Users to Confine Their Own Applications 0: ● 7

• Debriefing

The pre-experiment questionnaire was used to identify demographic characteristics of
participants. Information collected included self-assessed expertise and experience. Each
of the participants rated their computer skill, knowledge of computer security, knowledge
of Linux, and knowledge of how files are organised on Linux on semantic differential
scales. The frequency with which they had used Linux was recorded using a multiple
choice question.

The filesystem video elaborated on the FHS reference handout, illustrating the
directory hierarchy on an example Linux system. This familiarised the participants with
the Linux directory structure. This knowledge would assist participants in utilising each
of the three mechanisms being compared, and ensured a minimal level of awareness
about the way files are organised on a Linux system.

Before participants used each system, they watched a video describing the way the
security system worked and a demonstration of configuring the system. Each explanation
video covered the same level of detail: describing policy components, how policy is
represented on disk, the states that policies for applications can be in (either enforced or
not), an overview of the steps involved in confining an application, and a list of helpful
commands. Another video for each system gave a demonstration of creating a policy to
confine the KWrite program as an example. When participants were ready to start
learning about each system, they were given a hardcopy of the demonstration script so
they could more quickly access the information without re-watching the video.

3.4 Tasks

Information about the programs to be confined was presented to the group on the task
scenario handouts (Appendix A) and during the initial talk. Using each of the
mechanisms in the random order allocated, participants consecutively created security
policies for these programs with the goal of restricting the ability of each program to act
maliciously, while allowing the programs to operate as described in the scenarios. At no
point were participants given any indication that FBAC-LSM had been created by one of
the authors.

The programs that the participants endeavoured to confine were the Opera web
browser and a simulation of a Trojan horse posing as a Tetris game, KSirtet, which was
downloaded from an unauthenticated website. Participants were informed they should
allow Opera to browse the web, chat using IRC, and download files, while KSirtet should
be permitted to operate as a game.

Both of these scenarios were designed to pose realistic risks and this was explained in
the information presented to participants during the introduction video and on the
scenario sheet. As web browsers interact with external untrusted hosts, software
vulnerabilities could lead to an attacker taking control of the program. A game
originating from an unauthenticated source could be malicious code posing as a
legitimate program. The section below describes how each of the security systems can be
configured by end users.

3.4.1 Steps Involved

Using the tools typically available on an SELinux-enabled system (where possible using
graphical tools), specifying a new application policy module usually involves using the

0: 8 ● Z.C. Schreuders, T. McGill, and C. Payne

Policy Generator GUI tool to create a barebones skeleton policy. Using this tool involves
specifying the executable path, selecting ports and low-level application traits (as
illustrated in Fig. 1), and manually specifying any directories or files the application
manages.

Fig. 1: SELinux Policy Generator specifying low level application traits

This process generates a policy module that is by default permissive (not enforced) and
incomplete. Next, a number of command line tools need to be used, and the program
being confined needs to be run, to generate the detailed rules that authorise the program
to access the resources it requires to run. Fig. 2 illustrates using command line tools to
generate additional rules based on previous program activity. Subsequently, the .te file
needs to be manually edited to put the domain into an enforced mode and the policy
needs to be compiled and loaded into effect. Command line tools can be re-run to add any
further rules.

Fig. 2: SELinux command line configuration

Using the YAST AppArmor Add Profile Wizard GUI tool involves the following
steps. First, the user specifies the name of the application to be confined. Next, the user is
prompted to run the program. After the user has used the program, they are asked to
review and vet (either allowing or denying) each of the low-level rules that would allow
the program to behave the same way in the future. Fig. 3 illustrates the process of vetting
the previous actions of an application using the Add Profile Wizard. The user is then
presented with a text file view of the policy they have created. Depending on the way the
tool is used the profile may be placed in effect, or remain in an unenforced state, in which
case the user can use the AppArmor Control Panel GUI to put the profile into an enforced
mode. The Update Profile Wizard can be used to add further rules.

Empowering End Users to Confine Their Own Applications 0: ● 9

Fig. 3: AppArmor Add Profile Wizard vetting previous program activity

Using the FBAC-LSM Policy Manager GUI tool to specify application policies
involves the following steps. First, the user starts the Add Application Wizard, and
specifies the name of the application being confined. Next, the executable paths are
specified, which the wizard attempts to automatically detect. The type of program
(technically the base-level functionally for the program), either command line or
graphical is specified, this is typically suggested automatically and accurately. As
illustrated in Fig. 4, the tool then performs some analysis and suggests likely high-level
functionalities that describe the features the application performs. The user selects which
functionalities apply, taking the suggestions into consideration.

0: 10 ● Z.C. Schreuders, T. McGill, and C. Payne

Fig. 4: FBAC-LSM Policy Manager functionality suggestions

Then, for each of the functionalities, the argument values are specified for parameters.
These specify all the application-specific information that allows the functionalities to
adapt to the needs of the programs being confined. Depending on the purpose of each
parameter, they can take the form of files, directories, ports, or IP addresses. In most
user-independent cases (such as identifying the locations of application-specific
configuration files), after some analysis the wizard can automatically suggest values,
which the user can edit or accept. User-dependent cases (such as where the user chooses
to store their own files) are specified manually by the user. Fig. 5 illustrates the interface
for specifying parameter arguments. After specifying values for all the parameters, the
user chooses the name for the policy file in which the policy is stored. The user can then
review the application policy that they have created in a number of ways. The user then
saves the policy and loads it into effect using the Policy Manager main dialog. The
learning mode can be used to add further privileges to the application profile.

Empowering End Users to Confine Their Own Applications 0:●
11

Fig. 5: FBAC-LSM Policy Manager parameter argument specification

The tasks in the usability study were intentionally challenging for FBAC-LSM and, as
mentioned, they posed realistic situations and threats. As with the majority of
applications that have been studied, the automation provided by the FBAC-LSM policy
manager assisted the user [Schreuders et al. 2011]. However, in order to meet all the
requirements in the task scenario, the user had to deviate from the suggestions and also
manually provide some details. For Opera, the FBAC-LSM policy manager suggested the
functionality “Web Brower”, and the user should have also specified “IRC Client”. For
KSirtet, the policy manager suggested both “Game” and “Network Game”
functionalities, although KSirtet only required the “Game” functionality to function
legitimately, since multiplayer features were provided locally with players sharing the
keyboard. Details such as the location for authorised Opera file downloads were specified
by the user.

3.5 Trojan Horse Simulation

For the purposes of the experiment, the KSirtet Tetris game was modified to simulate a
Trojan horse. The modified program attempts to access many resources that a game
should not need to and, as a malicious program, would represent a serious security
problem. Such a program should require very limited privileges to run. However, without
the use of an application confinement security mechanism such as those studied, such a
program would possess all of a user’s privileges. In addition to attacks that could be
performed on a correctly configured Linux system, the Trojan horse simulation also
attempts to access resources normally protected by discretionary access controls (DAC).
For the purposes of the experiment, the VMs were deliberately misconfigured to allow
this access. This type of configuration could be caused by user error, malicious actions
from other programs, or be standard on single user Linux systems such as embedded
devices. This aspect of the experimental design was intended to illustrate the potential for
application-oriented access controls to provide defence-in-depth as additional layers of
security.

0: 12 ● Z.C. Schreuders, T. McGill, and C. Payne

The list of malicious activity attempted by the Trojan simulation was developed to
reflect a range of risks and malicious behaviour that could compromise a Linux system.
These risks include privacy risks and system-wide or user-level compromise. Appendices
B and C describe the activities the Trojan simulation attempted.

3.6 Measuring Perceived Usability

Perceived system usability was measured using Brooke’s [1996] System Usability Scale
(SUS), which is a widely employed and extensively verified tool [Bangor et al. 2008;
Lewis and Sauro 2009]. The SUS is a 10 item Likert scale, with even-numbered items
worded negatively and odd-numbered items worded positively. The scale yields a single
score ranging from 0 to 100, representing an assessment of the system’s usability. After
using each security system, participants completed the SUS questionnaire.

After they had used all three systems, participants completed a final questionnaire
ranking the three systems in terms of how easy they were to use, how easy they were to
understand and how likely they would be to use them again. Once participants had
completed the exercises and questionnaires, they were taken into a separate room and the
security systems were discussed in a debriefing session where additional opinions were
collected.

3.7 Measuring Policy Quality and Task Success

The VMs from each participant were stored for subsequent data collection. Data
collection involved testing the ability of the confined programs to run and the ability of
the programs to access the security sensitive resources the Trojan horse attempted to use.
Each program was tested manually to assess whether it could run and that all required
features operated correctly. Whether or not policies were successfully created was also
assessed manually. To determine the threats the programs still posed, the Opera and
KSirtet executables on each VM were replaced with an assessment program that
attempted to access the same resources as the Trojan simulation. While retaining the
policies created by participants, the replacement scoring program output the result of
each access attempt. These results showed whether the confined program was able to
potentially act maliciously. Additionally, time-on-task was recorded. All data was stored
in a database for statistical analysis.

3.8 Pilot Study

The study was carefully designed to eliminate potential biasing factors. For example, the
order in which participants used the systems was randomised, the names of the systems
studied were not advertised during participant recruitment, and participants were not
allowed to search the Internet for information about the systems during the study. FBAC-
LSM had not been released prior to conducting the experiment, and those already aware
of it did not participate.

A pilot study was conducted with four participants, who had a range of expertise
levels. The primary concern of the pilot study was to detect the potential for participant
bias. The pilot group completed an additional pilot questionnaire regarding whether they
noticed anything potentially biasing in the videos, presentations, and handouts supplied
during the experiment. They were also interviewed during the debriefing. The pilot group
reported no biasing factors. The pilot study did raise awareness of a number of technical
problems, such as networking problems, missing codecs for video playback, and missing
sound in one of the videos. All these issues were resolved prior to conducting the main

Empowering End Users to Confine Their Own Applications 0:●
13

study.

4 RESULTS
One way repeated measures analysis of variance (ANOVA), the non-parametric
Friedman test, repeated measures logistic regression, and descriptive statistics were
utilised to compare the within-subjects effects of the three security systems, SELinux,
AppArmor, and FBAC-LSM.

4.1 Participant Demographics

Participants’ ages ranged from 18 to 67 (mean: 31.1 std. deviation: 13.0). Five
participants were female. Table I summarises the self-reported expertise of the
participants, collected using the pre-experiment questionnaire. In each case responses
could range from one to seven, with higher values representing higher levels of
experience or expertise. As shown in the table, the majority of participants evaluated
themselves as possessing above average computer skill, with a relatively wide range of
responses for the computer security and Linux questions. As recommended for usability
studies, the experiment included some least competent users (LCU); that is, users
representing the minimum level of expertise that would be expected to utilise the systems
[Rubin and Chisnell 2004]. The study also included some Linux and computer security
experts, who work within industry managing Linux systems and providing IT security
services.

Table I: Participant self assessment

Expertise Mean Std dev Min Max

Skill with computers 5.82 0.90 3 7

Knowledge of computer security 4.47 1.20 2 7

Frequency of Linux use 4.24 2.32 1 7

Knowledge of Linux 3.53 1.89 1 7

Knowledge of FHS 3.61 1.97 1 7

4.2 Preference Evaluation – System Usability Scale

A one-way within subjects ANOVA was conducted to compare the effect of security
system on SUS. The assumptions of the test were met. There was a significant effect of
security system, Wilks’ Lambda = 0.38, F (2,35) = 28.99, p < .001, n=37. The effect size
was .624. Post hoc analysis using the Tukey LSD test showed significant contrasts
between each pairwise comparison. That is, all three systems were significantly different
from each other in terms of perceived usability.

As illustrated in Fig. 6, on average FBAC-LSM received the highest SUS scores
(M=70.21, SD=18.34), followed by AppArmor (M=54.93, SD=24.18), and SELinux with
the lowest scores (M=34.58, SD=18.04).

0: 14 ● Z.C. Schreuders, T. McGill, and C. Payne

Fig. 6: Box plot comparing SELinux, AppArmor and FBAC-LSM System Usability
Scale scores

4.3 Preference Evaluation – Ranking

Table II shows the mean rank (one, first, to three, last) for each system in terms of: how
easy they were to use, how easy they were to understand, and how likely participants
would be to use them again. In each case, FBAC-LSM was, on average, ranked highest,
followed by AppArmor, then SELinux. FBAC-LSM was also ranked first most
frequently, and SELinux was ranked last most frequently. A post hoc analysis confirmed
that the order in which the systems were used did not influence these rankings.

Table II: Mean ranks
Security
system

Mean rank
for ease of

use

Mean rank for
ease of

understanding

Mean rank
for likeliness

of reuse

SELinux 2.67 2.64 2.58

AppArmor 1.85 1.90 1.92

FBAC-LSM 1.49 1.46 1.45

The results of the SUS score differences and ranks showed that FBAC-LSM exhibited
higher perceived usability than AppArmor and SELinux.

4.4 Performance Evaluation – Creation of Policies

In this section the extent to which participants were able to create policies to confine the
programs is reported. The quality of the policies created is described in subsequent
sections. The following results (including percentages) do not include participant records
with “missing values” due to:

• Seven SELinux virtual machines that froze at start-up with a SELinux AVC
message. This problem appeared to be the result of SELinux rules, created by
participants, that inadvertently no longer allowed the VMs to start.

• Two VMs (one SELinux, one AppArmor) that did not start due to kernel panics.
The exact cause of this was not clear.

Empowering End Users to Confine Their Own Applications 0:●
15

• Existing SELinux rules for KSirtet which conflicted with the creation of a new
policy to confine KSirtet. Due to the abstruseness of the command-line output
that reports this conflict, the problem was not detected during initial
environment setup, the pilot study, or by the majority of participants. After the
problem was detected, it was remedied for the subsequent participants.
Therefore 22 participants could not create a policy to confine KSirtet due to this
conflict. Ironically, the default policy did not provide any protection against the
threats tested during the study.

As policies were either successfully created or not, repeated measures logistic
regression was conducted to compare the effect of security system on the creation of
enforced policies for Opera. There was a significant effect of security system, Wald Chi-
Square (2, N=105) = 31.30, p < .001. All three systems were significantly different from
each other in terms of how many policies for Opera were successfully created and
enforced. As shown in the Enforced Policy column of Table III, 90% of participants
created enforced policies for Opera using FBAC-LSM, 66% using AppArmor, and only
23% using SELinux.

Table III: Policy creation rates for Opera and KSirtet using SELinux, AppArmor, and
FBAC-LSM

Security
System

Application No Policy
(unconfined)

Unenforced
Policy

(unconfined)

Enforced
Policy

SELinux Opera
(n=31)

21 (68%) 3 (10%) 7 (23%)

KSirtet
(n=9)

6 (67%) 1 (11%) 2 (22%)

AppArmor Opera
(n=38)

3 (8%) 10 (26%) 25 (66%)

KSirtet
(n=38)

7 (18%) 4 (11%) 27 (71%)

FBAC-
LSM

Opera
(n=39)

4 (10%) 0 (0%) 35 (90%)

KSirtet
(n=39)

7 (18%) 0 (0%) 32 (82%)

Repeated measures logistic regression was also conducted to compare the effect of the
security system on the creation of enforced policies for KSirtet using each of the security
systems. Again, there was a significant effect of security system, Wald Chi-Square (2,
N=86) = 10.03, p = .007. As with Opera policies, all three systems were significantly
different from each other: 82% of participants created enforced policies for KSirtet using
FBAC-LSM, 71% using AppArmor, and only 22% using SELinux.

In both tasks it was notable that participants were most likely to successfully create
policies to confine applications using FBAC-LSM. In addition to participants who were
not successful at creating a policy at all (refer to the No Policy column in Table III),
SELinux and AppArmor resulted in a number of policies that were left in an unenforced
state. The terminology for an unenforced policy differs for each system – SELinux:
permissive domain, AppArmor: complaining mode, FBAC-LSM: complaining or
disabled modes. The result of an unenforced policy is that the application is not confined,

0: 16 ● Z.C. Schreuders, T. McGill, and C. Payne

despite the fact that a policy exists. Although participants had seen videos describing the
way policy enforcement works for each system, it is possible that many participants were
unaware these policies were in an unenforced state. As illustrated in the Unenforced
Policy column, a number of SELinux and AppArmor policies for both Opera and KSirtet
were not in an enforced state. In contrast, 100% of the policies created using FBAC-LSM
were in an enforced state.

4.5 Performance Evaluation – Confined Applications Can Run

As shown in Table IV and Table V, the extent to which the confined programs can
actually operate is affected by the security system. Using FBAC-LSM 97% of the
policies created for Opera allowed the program to run, compared to 56% and 43% for
AppArmor and SELinux respectively. These results demonstrate that, compared to
AppArmor and SELinux, FBAC-LSM is more successful at not interfering with programs
performing their legitimate functions. This is an important practical measure of
application confinement success, as a security mechanism or policy that disrupts the
operation of a program is likely to be promptly disabled.

Table V shows that 100% of FBAC-LSM policies for KSirtet allowed the program to run,
as opposed to 70% of AppArmor policies. However, only 31% of FBAC-LSM policies
allowed the program to record high scores in the user’s home directory. This did not
affect game-play and was due to the fact that the score file did not necessarily exist when
the policy was created. Of the nine participants not affected by the policy conflict
described in Section 4.4, only two participants created policies for KSirtet using
SELinux, both of which allowed the game to run.

Table IV: Extent to which Opera can function while confined by SELinux, AppArmor,
and FBAC-LSM

Access to feature
(Opera)

SELinux
(n=7)

AppArmor
(n=25)

FBAC-LSM
(n=35)

Program runs 3 (43%) 14 (56%) 34 (97%)

Can access web pages
via HTTP

3 (43%) 14 (56%) 34 (97%)

Can access web pages
via HTTPS

3 (43%) 13 (52%) 34 (97%)

Can access IRC 1 (14%) 8 (32%) 19 (54%)

Table V: Extent to which KSirtet can function while confined by SELinux, AppArmor,
and FBAC-LSM

Access to feature
(KSirtet)

SELinux
(n=2)

AppArmor
(n=27)

FBAC-LSM
(n=32)

Program runs 2 (100%) 19 (70%) 32 (100%)

Can play game 2 (100%) 19 (70%) 32 (100%)

Can store high scores 2 (100%) 19 (70%) 10 (31%)

Empowering End Users to Confine Their Own Applications 0:●
17

4.6 Performance Evaluation – Risk Exposure

4.6.1 Overall Risk Exposure

Risk exposure was measured using a simple score, one demerit point for each security
sensitive resource that was accessible for each of the two programs. This measure was
designed to give a clear indication of the effect of the security system on the exposure to
threats by simply recording the number of realistic threats the systems remained exposed
to, rather than attempting to subjectively weight each threat. The nonparametric Friedman
test was conducted to compare the effect of security system on the overall risk exposure.
This test was used as an alternative to one-way within subjects ANOVA to ensure that
violations of the assumptions of ANOVA did not impact on the interpretation of the
results. Analysis included the data from participants who participated after the SELinux
KSirtet default policy conflict was detected and resolved. There was a significant effect
of security system, χ2(2) = 36.32, p < 0.001. Post hoc analysis was conducted using the
Wilcoxon Signed Ranks test with a Bonferroni correction applied. This showed that
FBAC-LSM (M=14.3, SD=9.7) had a significantly lower risk exposure than both
AppArmor (M=30.3, SD=17.0) and SELinux (M=43.0, SD=12.0). AppArmor was also
found to have a significantly lower risk exposure than SELinux. A post hoc analysis
confirmed that the order in which the systems were used did not influence risk exposure.
Appendix B gives further detail regarding the types of access permitted by each security
system.

These results allow comparison between the level of protection each system provided
in terms of user success at creating and enforcing correctly configured policies using each
of the systems. As illustrated in Fig. 7, SELinux was the least successful at reducing risk
exposure. AppArmor had the highest degree of variation, resulting in a broad range of
risk exposure values, from policies that did not allow anything to policies that gave
unrestricted access. Overall AppArmor averaged second most successful at reducing risk
exposure. AppArmor’s average score still indicates its policies exposed the user to high
degrees of risk by allowing the programs undue access to resources. FBAC-LSM was
both the most consistent, and provided the greatest protection. These results demonstrated
that, compared to the other systems, FBAC-LSM resulted in the lowest overall risk
exposure.

0: 18 ● Z.C. Schreuders, T. McGill, and C. Payne

Fig. 7: Box plot comparing SELinux, AppArmor and FBAC-LSM overall risk exposure

4.6.2 Opera Risk Exposure When Policies Exist

The nonparametric Friedman test was also used to compare the effect of security system
on the Opera risk exposure. Risk exposure was measured using a simple score, one
demerit point for each security sensitive resource that was accessible to Opera. Analysing
the data from participants who created an enforced policy for Opera using all three
systems (n=5) showed no significant effect of security system , χ2(2) = 5.06, p = 0.080.
This was repeated analysing the participants who created an enforced policy for Opera
using AppArmor and FBAC-LSM (n=23) to compare the effect of security system on the
Opera risk exposure using these two systems. An effect was detected, χ2(1) = 7, p =
0.008. This result indicates that, when policies for Opera were successfully created and
enforced AppArmor policies were slightly more restrictive (M=4.65, SD=3.19) than
those created using FBAC-LSM (M=7.83, SD=1.72). Both of these scores represent a
significant reduction in exposure to risk, although FBAC-LSM authorised additional
network access. However, only 57% of those AppArmor profiles actually allowed Opera
to function, compared to 96% of the FBAC-LSM policies, which allowed Opera to run
while reducing exposure to risks. Also, in practice there would be a difference in risk
exposure between the three mechanisms due to FBAC-LSM’s greater success at creating
and enforcing policies. All three systems when successfully deployed to confine a non-
malicious application reduced the exposure to risk.

4.6.3 Trojan Horse Risk Exposure When Policies Exist

Due to the low number of participants who created an enforced policy for KSirtet using
SELinux (n=2), there was insufficient residual degrees of freedom to compare the effect
of security system on the KSirtet risk exposure using all three systems. Instead, a
Friedman test was conducted to compare the effect of security system on the KSirtet risk
exposure using only AppArmor and FBAC-LSM. Risk exposure was measured in the
same way as previously, one demerit point for each accessible security sensitive resource.
Security system was found to have a significant effect, χ2(1) = 5.26, p = 0.022. Therefore
in the case of malicious programs, the results showed that FBAC-LSM (M=6.04,
SD=4.96) is likely to be superior in producing more secure confinement policies than
AppArmor (M=14.54, SD=9.85).

Empowering End Users to Confine Their Own Applications 0:●
19

Unlike in the case of Opera, the Trojan program KSirtet was attempting to behave
maliciously. AppArmor policies are often built by the mechanism of observing program
behaviour and having users review the rules generated from this. Therefore, successful
confinement relies on the user’s ability to vet the actions of potentially misbehaving
programs. FBAC-LSM on the other hand constructs policy based on the features the user
wants the program to perform, and on the location of various application specific
resources. These results indicate that users typically do not have the expertise necessary
to vet the actions of programs as required by AppArmor. In contrast, the FBAC approach
was found to be far more accessible by users, and thereby achieved greater levels of
protection.

It is expected that, had more participants successfully created policies for KSirtet using
SELinux, SELinux would have rated even worse than AppArmor. The user-space tools
for SELinux automatically enumerate all the learned rules, and there is no GUI tool that
assists users with the vetting process.

4.7 Performance Evaluation – Efficiency

To compare the effect of security system on the overall time-on-task, a Friedman test was
conducted. Time-on-task was defined as the time spent using each security system, and
was measured in minutes based on the start and end times as recorded by the batch
scripts. There was a statistically significant effect of security system, χ2(2) = 14.45, p =
0.001. Post hoc analysis was conducted using the Wilcoxon Signed Ranks test with a
Bonferroni correction applied. This showed there was a significant difference in the time-
on-task for AppArmor (M=29.3, SD=14.3), which was significantly less than SELinux
(M=45.18, SD=19.0), and also significantly less than FBAC-LSM (M=40.1, SD=15.8).
No significant difference in time-on-task was found between SELinux and FBAC-LSM.
This indicates that participants completed the tasks faster using AppArmor than the other
two systems. During the study it was observed that, when faced with repetitive
AppArmor dialogs with rules to vet, some participants simply clicked “Allow” as fast as
possible for each rule, and this appears to explain the shorter completion time using
AppArmor.

Two scales for each system were used to gauge the perceived time efficiency of the
three systems. These results are in contrast to the actual time-on-tasks. On average
participants rated FBAC-LSM as the most time efficient. The majority of participants
indicated that they felt they had enough time to use AppArmor and FBAC-LSM.
Participants indicated a more varied response (SD=2.22) regarding whether they had
enough time to use SELinux; on average response was relatively neutral (M=3.90). Study
participants occasionally encountered reliability issues with the new FBAC-LSM
implementation. The moderator stated that any crashes were not the participant’s fault,
and asked them to restart the VM. Any saved policies were not lost. These problems did
not appear to have a notable impact on user perception of the system.

5 DISCUSSION
The results of the usability study showed that, compared to AppArmor and SELinux,
FBAC-LSM was rated and ranked as easiest to use, had significantly higher rates of
policy creation and enforcement, had more policies that allowed the programs being
confined to run and function correctly, and most reduced the risk to the user. While
FBAC-LSM policies were no more protective than the other two mechanisms when

0: 20 ● Z.C. Schreuders, T. McGill, and C. Payne

confining the Opera web browser to protect against vulnerabilities, the study
demonstrated that users were more likely to successfully construct and enforce these
policies, reducing the risk overall. Furthermore, FBAC-LSM policies provided far more
protection against potential malware then either of the other two mechanisms. Users
reported preferring FBAC-LSM from a time efficiency point of view. However,
AppArmor confinement procedures were sometimes recorded as taking less time,
apparently due to users rapidly clicking through dialogues without necessarily
considering the message that was presented to them. These results will now be discussed
in detail.

5.1 Perceived Usability

Based on their research, Bangor et al. have published advice for interpreting SUS results
[2008], that suggests that “products with scores less than 50 should be cause for
significant concern and are judged to be unacceptable”. SELinux scored 34.58, which
suggests that SELinux suffers from major usability deficiencies and is in need of
significant usability improvements. Based on observations made during the experiment,
the primary factors limiting SELinux usability seem to be due to the complexity of the
model used and the lack of an intuitive graphical interface for much of the task of policy
specification. While SELinux is arguably intended to be configured by those with
significant expertise, its widespread deployment on Linux systems, including personal
workstations, means these usability results cannot be ignored. If the scheme itself is
deemed to be fundamentally unsuited to being managed by end users, an alternative,
user-friendly approach may be better suited.

AppArmor scored 54.93. According to Bangor et al., “products with scores less than
70 should be considered candidates for increased scrutiny and continued improvement
and should be judged to be marginal at best”. This suggests that, while AppArmor is
significantly preferred over SELinux in terms of usability, improvements are required in
order for it to be considered ‘acceptable’. Based on observations during the study, the
primary factor limiting AppArmor usability seems to be due to the inability of typical
users to make informed decisions about the files to which applications require access.
This result supports the notion that end users cannot be expected to have the expertise to
make low-level decisions about what access privileges their programs require.

Bangor et al. suggest that “products which are at least passable have scores above 70”.
Based on these interpretation guidelines, FBAC-LSM, with a score of 70.21, is the only
system studied which can be classified as ‘acceptable’. While FBAC-LSM was
significantly preferred over AppArmor and SELinux, there is clearly still room for
improvement. FBAC-LSM is a much newer, less mature implementation than the other
two systems studied. Continuing development on FBAC-LSM will incorporate feedback
from the experiment to further improve its usability. Nonetheless, these results indicate
that the FBAC model in general is well suited to providing application-oriented controls
capable of being managed by non-expert users.

5.2 Rate of Policy Enforcement

As described in Section 4.4, FBAC-LSM had the highest success rate in creating
enforced policies, followed by AppArmor and then SELinux. The variety in rate of policy
enforcement can be attributed to a number of factors. The successful creation of a policy
is likely to be affected by the difficulty of using the system and the difficulty of

Empowering End Users to Confine Their Own Applications 0:●
21

understanding how to create policies. FBAC-LSM again ranked highest in both respects,
followed by AppArmor and then SELinux.

One factor that affects policy enforcement is the behaviour of the policy tools for each
of the systems and the state in which they leave newly created policies. The SELinux
Policy Generator tool left newly created skeleton policies in permissive mode so that
users could further develop these policies before manually editing the appropriate file to
set the domain to be enforced, and then run a shell script to recompile and load the
policy. Some participants forgot to manually set the policy to be enforced, meaning that
these policies were not enforced. Several participants reported that they were not
comfortable with the requirement to run console commands and simply completed what
they could using the graphical tools available. The result was that the policies were not
created and assigned to the executables. A more complete graphical tool that steps users
through the whole process would have improved success using SELinux.

AppArmor’s policy tools left policies either enforced or in complaining mode (which
is not enforced) depending on user choices. For example, exiting from the Add Profile
Wizard resulted in the policy left in complaining mode. This resulted in some policies
being left unenforced, most likely unbeknownst to the user. Making this behaviour more
obvious to users may have helped decrease the number of programs left unconfined.

FBAC-LSM created policies that were enforced by default unless the user specifically
toggled the policy activation. This, combined with the wizard for creating policies that
steps users through the process and the fact that the main window includes information
about policy enforcement, appear to be factors contributing to the high success rate in
creating enforced policies.

5.3 Continued Program Operation

Of the cases where policies were in effect, FBAC-LSM allowed the highest percentage of
programs to continue to run and function. SELinux often did not log all of the access
attempts required to create a policy that allowed Opera to start. As described on the
SELinux handout provided to participants, the solution was to set SELinux to log all
events, which led to the display of a large number of unrelated messages which SELinux
is normally configured to ignore. While using AppArmor, a number of participants
created policies that denied access to resources that were required in order for the
programs to continue to function correctly. This again demonstrates that users frequently
do not have the expertise required to vet the actions of programs. Because FBAC-LSM
builds policy using reusable, easily understandable policy abstractions, the required
access rules were assigned when building the application policies. The study showed that
this approach clearly led to higher program-feature-access success rates compared with
requiring users to vet the actions of programs.

As noted in Section 4.5 some FBAC-LSM policies were missing rules for a file that
did not exist when policy was created. To clarify, this does not imply that all files the
application will require access to need to pre-exist, just that the parameter automation in
this case failed to predict the existence of the configuration file. The planned addition of
a notification feature to FBAC-LSM would address this issue, since this filename can
already be identified as belonging to the application and a simple interactive prompt
could add to the a priori policy.

0: 22 ● Z.C. Schreuders, T. McGill, and C. Payne

5.4 Confinement of Trustworthy Programs

Considering policies that were successfully created and enforced, all three systems
performed similarly where the program being confined was acting benevolently during
policy construction. This result reflects the fact that, when the program is behaving non-
maliciously, adequate protection will be obtained by simply allowing all the rules
suggested by the learning tools. In this scenario if, at a later point in time, the program is
compromised or replaced by a malicious version, the user will be protected.

While in this scenario, where enforced policies had been created, FBAC-LSM was
found to have no significant restriction advantages compared to AppArmor and SELinux,
further research is required. SELinux makes decisions based on types assigned to files,
which in the case of the user’s home directory are typically very coarsely grained. It is
therefore anticipated that, in most cases, user applications will be granted access to
excessive rights; that is, access to almost anything in the user’s home directory. This
could be improved by creating more finely-grained SELinux types. Therefore a typical
SELinux installation is perhaps better suited to improving system-wide user-oriented
access controls than to application-oriented access controls for programs run by users.

The AppArmor policies created provided slightly tighter controls than those created
using FBAC-LSM. FBAC-LSM was more permissive due to the high level of network
access the “Web Browser” functionality authorised in order to allow Active FTP, and a
policy mistake that granted access to Firefox’s configuration files. The access that was
granted is illustrated in Appendix B. However, this FBAC-LSM policy abstraction could
be improved (in one central location) to provide tighter controls for all the policies that
were created using it. As noted in Section 4.6.2, a large number of those AppArmor
profiles stopped Opera from running at all, which significantly reduces their usefulness;
if the security mechanism stops a user’s applications from working, they more likely to
simply disable the mechanism, and therefore the actual protection provided in practice
may be lower. Also, this analysis only considered policies that were successfully created
and enforced, and FBAC-LSM had the highest rate of enforced policies.

Finally, it is important to note that these results are only applicable where the user can
be completely certain that an application can be trusted at the point of policy
construction. In practice this cannot be safely assumed in many cases, for example when
downloading software. Therefore the ability of users to successfully confine potentially
malicious programs is arguably more important.

5.5 Confinement of Potentially Malicious Programs

As established in Section 4.6.3, FBAC-LSM was significantly more successful at
protecting resources from the Trojan horse simulation than AppArmor. Not enough
participants successfully created policies using SELinux to confine KSirtet to make
reliable comparisons between all three systems.

As described in Section 3.4.1, when using AppArmor a user will typically run the
program to be confined, and is then stepped through the process of vetting the learnt rules
to allow the program to perform the same actions in the future. Using this approach,
protection from malicious programs is dependent upon users successfully vetting these
rules. The results of the study demonstrated that typical users, and even security
professionals and Linux system administrators, generally do not necessarily have the
required expertise to successfully vet these actions.

Empowering End Users to Confine Their Own Applications 0:●
23

A number of noteworthy examples of the tendency of users to allow malicious activity
using AppArmor illustrate the extent of this problem:

• 74% of participants who managed to create an enforced policy using AppArmor
allowed KSirtet to access the shadow file6. The shadow file is a very high profile
target that contains the hashed user passwords for the system. With this file a
malicious program could, for example, attempt dictionary attacks on passwords.

• 71% granted write access to the hosts file, which could allow the program to
discretely redirect network traffic and perform man-in-the-middle attacks.

• 68% granted write access to the exports file used to configure network
shares. This could be used to covertly share the contents of files to remote hosts.

• 58% granted access to private information in the users Firefox directory,
potentially including saved web passwords such as those for Internet banking.

• 68% granted unrestricted network access, allowing the Trojan unlimited scope
for sending information to, or receiving commands from, the network.

• 47% allowed the program to insert itself into KDE startup, which allows a
malicious program to gain a persistent presence on the system.

Any single one of these potential breaches could have very serious security
consequences. Several participants reported relying heavily on the severity level
suggestions provided by AppArmor, as they did not have the expertise to vet rules based
on resource names and access types alone. However, many participants reported that the
severity level metric was ambiguous and often absent. Others seemed to not pay any
attention to the specifics of the rules at all, simply clicking “Allow” to almost every rule.
Participants who incorrectly did not notice any suspicious behaviour included ICT PhD
candidates, security professionals and Linux system administrators. If experienced users
of this calibre cannot use AppArmor to successfully confine a malicious program, it is
highly unlikely that typical end users could. Therefore, the results of this study strongly
indicate that ordinary users cannot reliably employ learning mode application-oriented
access controls that rely on users vetting generated rules. This result can be generalised to
other systems such as Systrace, which in addition requires knowledge of system calls (a
complex interface considered not suited to security mediation [Garfinkel 2003]) in order
to vet the rules.

Rules for SELinux modules are typically generated in a similar fashion based on
program behaviour. Rules are described in terms of access to types rather than specific
files. SELinux does not currently have a graphical tool to step users through the vetting
process, which means that vetting is a manual process of editing complex rules that were
generally not considered easy to understand by participants. As previously mentioned,
some participants were uncomfortable with the command-line based nature of the
SELinux tools used to create policy. It is believed that most participants did not edit or
remove any lines of the rules generated by audit2allow, which created rules based on
the previous actions of the program. Since this method of generating policy is also based
on a learning mode and the rules are not easily vetted by users, it is likely that policies
created by typical users using SELinux would also provide less protection than FBAC-
LSM. Also, as demonstrated by the policy conflict encountered during this study, the
ineffective default configuration of SELinux can inhibit users from specifying policies to

6 As previously discussed in Section 3.5, user-oriented access controls were configured to allow
this access in order to assess the protection provided by the application-oriented controls studied.

0: 24 ● Z.C. Schreuders, T. McGill, and C. Payne

enforce their own security goals.
Alternative tool sets exist for managing SELinux policy. However, the tools used were

the ones that are standard with Fedora (the Linux distribution with the most complete
SELinux support) and, unlike many SELinux tools, these provided graphical tools to step
users through some of the process. It is believed that further development could yield
more usable tools. However, due to the complex nature of the way rules are modelled,
and the need for vetting the output of learning tools used to create rules for SELinux, it is
believed that SELinux faces serious obstacles to improving usability. The results of this
study support the argument that SELinux and its current set of configuration tools is not
suited to end user configuration to protect themselves against misbehaving software.

FBAC-LSM substantially lowered the risk exposure compared to AppArmor. In each
case, as previously described, FBAC-LSM lowers the risk. For example, 6% of
participants granted access to the shadow, hosts, exports, and private user files
(compared to 74%, 71%, 68%, and 58% respectively). Furthermore, only 50% allowed
outgoing network connections, 12% incoming connections (compared to 68% full
network access with AppArmor), and 19% allowed insertion into KDE startup (compared
to 47%). Therefore, FBAC-LSM clearly provided the best protection of the systems
studied. These results are attributable to the design of the FBAC model, which abstracts
away the low-level privileges that are required in order for applications to provide
various features. The techniques for automating the discovery of parameter arguments
also helped the security decisions made by users, allowing them to focus on higher level
(functionality-based) security goals.

FBAC-LSM was also able to step participants through the process of creating policies
without requiring users to execute the program being confined. AppArmor and SELinux
both generally rely on the execution of programs in order to generate rules. It is possible
to add new rules while enforcing the policy being developed. However, using SELinux or
AppArmor this can take an extremely large number of iterations to create a working
policy, as incomplete policies will often cause the program to terminate. Therefore the
method demonstrated in the preparation videos was to generate the rules while the policy
was not enforced. This is the approach that is typically used; however, it leaves the
program unconfined while rules are generated. Therefore, if the program is malicious, it
could compromise the system while a policy is being developed. The risk of using this
approach was stressed, and participants were encouraged to take the more restrictive
approach, although few did. Furthermore, the few more experienced users who were
observed attempting to take the safer approach were still ultimately unsuccessful at
creating policies which restricted malicious activity. As discussed in the introduction,
there are many reasons not to trust software and therefore it is recommended to avoid
these learning modes. FBAC-LSM provides an alternative approach to policy creation
that avoids these risks, since policies are specified without executing the programs being
confined. Note that the potential risk exposure during learning was not considered when
assessing risk levels of the policies created during the study.

5.6 Overall Protection

Factors contributing to the overall risk exposure score include the success rate of creating
policies and ensuring policies are enforced (as discussed in Section 4.4), the extent to
which the legitimately behaving program (Opera) was restricted, and the extent to which

Empowering End Users to Confine Their Own Applications 0:●
25

the malicious program (the KSirtet Trojan) was restricted. The overall risk exposure
score reflects the practical security-benefit of each system by measuring the extent that
users are protected from misbehaving programs accessing sensitive resources.

As described in Section 4.6.1, FBAC-LSM had significantly lower overall risk
exposures. This result can be attributed to the fact that the highest number of users were
successful in creating policies, ensuring policies were enforced, and confining the Trojan
simulation using FBAC-LSM.

5.7 Limitations of the Study

The primary limitation of this study was the SELinux KSirtet policy conflict, which
excluded some results from a large number of participants from analysis. As discussed
previously, existing SELinux rules for KSirtet prevented new rules from being enforced.
Due to the abstruseness of the output from the SELinux command-line tools, participants
were unaware that their new policies were not in effect. When this was detected, the
VMWare image was modified to remove this conflict for the nine subsequent
participants. Data from the previous participants regarding KSirtet was not included in
analysis. As noted previously, the conflicting SELinux policy (included in the games
policy module) did not provide any protection against the malicious activities attempted
by the Trojan horse simulation.

The FBAC-LSM implementation is relatively new compared with the other two
schemes and occasionally caused crashes, requiring the VM to be restarted. While no
policies that had been created were lost, this bug may have impacted the time-on-task
measurement, and also potentially negatively affected participants’ perceptions of the
system. However, the results suggest that any such effect was not a significant one.

5.8 Conclusions

Developing usable security software has long been acknowledged as a challenge that has
not been given sufficient attention [Zurko and Simon 1996]. Application-oriented
controls have the potential to improve security but pose new usability problems that, until
recently, had not been considered [DeWitt and Kuljis 2006]. In particular, achieving
sufficiently finely grained protection without exposing end users to complex low-level
details of the application's operation has remained problematic.

This paper presents the results of a study into the usability and security outcomes of
three different approaches to application confinement. SELinux provides a mature and
technically robust framework. However, due to its complex model and poor usability of
its existing tools, the study showed it to have a low success rate. SELinux tools need
significant work in order to be usable by end users. In the mean time SELinux seems to
be better suited to enforcing system-wide policies constructed and managed by experts.

In contrast, AppArmor is relatively easy to learn. However, the security decisions
made during policy construction still require expertise beyond that of most users. In
particular, policies generated using the system's learning mode cannot be relied upon
unless the user manually verifies these are correct. Not only is this process time-
consuming, it often requires expertise that end users are unlikely to have. This was
clearly shown in the study by the relatively low success of AppArmor in confining the
KSirtet Trojan. This study therefore demonstrates that policy generating learning modes
are not a viable method for end users to successfully confine their applications.

However, the results showed end user construction and management of protective

0: 26 ● Z.C. Schreuders, T. McGill, and C. Payne

application confinement policies was indeed feasible. The study demonstrated that the
FBAC model can be effectively employed by end users with limited technical expertise
to protect themselves against both vulnerabilities in otherwise trustworthy software and
potentially malicious programs. These results also clearly indicated the large practical
impact usability has on security. The hierarchical nature of the policy abstractions used
by FBAC avoids the need for end users to deal with low-level platform complexities,
while still achieving a very high level of confinement. In comparative terms, FBAC-LSM
was markedly superior to both AppArmor and SELinux in creating policies, ensuring
policies were enforced, allowing programs to function correctly while confined and the
protection achieved from malicious code. The FBAC LSM implementation was also
preferred by study participants for usability and time efficiency.

Therefore, although the FBAC model is a relatively new approach to application-
oriented access control, the results of this study are highly encouraging in pointing the
way forward to the use of functionality-based schemes that empower non-expert end
users to confine their applications and protect themselves from a variety of prevalent
security threats.

REFERENCES

ATHEY, J., ASHWORTH, C., MAYER, F. AND MINER, D. 2007. Towards
Intuitive Tools for Managing SELinux: Hiding the Details but
Retaining the Power. In Proceedings of the 2007 Security Enhanced
Linux Symposium, Baltimore, MD, USA.
BADGER, L., STERNE, D.F., SHERMAN, D.L., WALKER, K.M. AND HAGHIGHAT, S.A. 1995.
Practical Domain and Type Enforcement for UNIX. In Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, CA, USA, IEEE Computer Society.
BANGOR, A., KORTUM, P.T. AND MILLER, J.T. 2008. An Empirical Evaluation of the
System Usability Scale. In International Journal of Human-Computer Interaction 24, 6,
574-594.
BERMAN, A., BOURASSA, V. AND SELBERG, E. 1995. TRON: Process-Specific File
Protection for the UNIX Operating System. In Proceedings of the 1995 Winter USENIX
Conference, New Orleans, LA, USA, USENIX Association.
BROOKE, J. 1996. SUS: A Quick and Dirty Usability Scale. In Usability Evaluation in
Industry, P.W. JORDAN, B. THOMAS, B.A. WEERDMEESTER AND I.L.
MCCLELLAND Eds. Taylor & Francis, London, 189-194.
COWAN, C., BEATTIE, S., KROAH-HARTMAN, G., PU, C., WAGLE, P. AND GLIGOR, V. 2000.
SubDomain: Parsimonious Server Security. In Proceedings of the USENIX 14th Systems
Administration Conference (LISA), New Orleans, LA, USA, USENIX Association.
CRANOR, L. AND GARFINKEL, S. 2005. Security and Usability: Designing Secure Systems
that People Can Use. O'Reilly Media, Inc.
DEWITT, A.J. AND KULJIS, J. 2006. Aligning Usability and Security: A Usability Study of
Polaris. In Proceedings of the Symposium on Usable Privacy and Security (SOUPS),
Pittsburgh, PA, USA, ACM Press.
GARFINKEL, T. 2003. Traps and Pitfalls: Practical Problems in System Call Interposition
Based Security Tools. In Proceedings of the 10th Network and Distributed System
Security Symposium, San Diego, CA, USA, Stanford University.
GREENWALD, A.G. 1976. Within-subjects Designs: To Use or Not to Use. In Psychological
Bulletin 83, 2, 314-320.

Empowering End Users to Confine Their Own Applications 0:●
27

HITCHINGS, J. 1995. Deficiencies of the Traditional Approach to Information Security and
the Requirements for a New Methodology. In Computers & Security 14, 5, 377-383.
KAMP, P.-H. AND WATSON, R. 2000. Jails: Confining the Omnipotent Root. In
Proceedings of the 2nd International System Administration and Networking Conference
(SANE 2000), Maastricht, The Netherlands.
KRSTI, I. AND GARFINKEL, S.L. 2007. Bitfrost: The One Laptop Per Child Security Model.
In Proceedings of the Symposium on Usable Privacy and Security (SOUPS), Pittsburgh,
PA, USA, ACM Press.
LEWIS, J.R. AND SAURO, J. 2009. The Factor Structure of the System Usability Scale. In
Proceedings of the International Conference on Human Centered Design, San Diego,
CA, Springer-Verlag.
LIANG, Z., SUN, W., VENKATAKRISHNAN, V.N. AND SEKAR, R. 2009. Alcatraz: An Isolated
Environment for Experimenting with Untrusted Software. In ACM Transactions on
Information and System Security (TISSEC) 12, 3, 1-37.
MADNICK, S.E. AND DONOVAN, J.J. 1973. Application and Analysis of the Virtual Machine
Approach to Information Security. In Proceedings of the ACM Workshop on Virtual
Computer Systems, Cambridge, MA, USA, Harvard University.
MILLER, M.S., TULLOH, B. AND SHAPIRO, J.S. 2004. The Structure of Authority: Why
Security Is Not a Separable Concern. In Proceedings of the Multiparadigm Programming
in Mozart/Oz (MOZ), Springer-Verlag.
NAKAMURA, Y., SAMESHIMA, Y. AND TABATA, T. 2009. SEEdit: SELinux Security Policy
Configuration System with Higher Level Language. In Proceedings of the 23rd Large
Installation System Administration Conference (LISA), Baltimore, MD, USA, USENIX
Association.
NOVELL AppArmor and SELinux Comparison. Accessed 2010,
http://www.novell.com/linux/security/apparmor/selinux_comparison.html.
OTT, A. 2002. The Role Compatibility Security Model.
POTTER, S., NIEH, J. AND SELSKY, M. 2007. Secure Isolation of Untrusted Legacy
Applications. In Proceedings of the Proceedings of the 21st Large Installation System
Administration Conference (LISA '07), Dallas, TX, USA, USENIX Association.
PROVOS, N. 2002. Improving Host Security with System Call Policies. In Proceedings of
the 12th USENIX Security Symposium, Washington, DC, USA, USENIX Association.
RUBIN, J. AND CHISNELL, D. 2004. How to Plan, Design and Conduct Effective Tests. In
Handbook of Usability Testing Wiley India Pvt. Ltd., 129.
SALTZER, J.H. AND SCHROEDER, M.D. 1975. The Protection of Information in Computer
Systems. In Proceedings of the IEEE 63, 9, 1278-1308.
SCHREUDERS, Z.C. AND PAYNE, C. 2008a. Functionality-Based Application Confinement:
Parameterised Hierarchical Application Restrictions. In Proceedings of the International
Conference on Security and Cryptography (SECRYPT 2008), Porto, Portugal, INSTICC
Press.
SCHREUDERS, Z.C. AND PAYNE, C. 2008b. Reusability of Functionality-Based Application
Confinement Policy Abstractions. In Proceedings of the 10th International Conference
on Information and Communications Security (ICICS 2008), Birmingham, UK, Springer.
SCHREUDERS, Z.C., PAYNE, C. AND MCGILL, T. 2011. Techniques for Automating Policy
Specification for Application-oriented Access Controls. In Proceedings of the 6th
International Conference on Availability, Reliability and Security (ARES 2011) Vienna,
Austria, IEEE Computer Society.
STIEGLER, M., KARP, A.H., YEE, K.P., CLOSE, T. AND MILLER, M.S. 2006. Polaris: Virus-
safe Computing for Windows XP. In Communications of the ACM 49, 9, 83-88.

http://www.novell.com/linux/security/apparmor/selinux_comparison.html

0: 28 ● Z.C. Schreuders, T. McGill, and C. Payne

TUCKER, A. AND COMAY, D. 2004. Solaris Zones: Operating System Support for Server
Consolidation. In Proceedings of the 3rd Virtual Machine Research and Technology
Symposium Works-in-Progress, San Jose, CA, USA.
VANCE, C. AND SALAMON, W. 2001. Implementing SELinux as a Linux Security Module.
NAI Labs Report #01-043, NSA.
WAGNER, D.A. 1999. Janus: An Approach for Confinement of Untrusted Applications.
Technical Report: CSD-99-1056, University of California, Berkeley, USA.
ZANIN, G. AND MANCINI, L.V. 2004. Towards a Formal Model for Security Policies
Specification and Validation in the SELinux System. In Proceedings of the Ninth ACM
Symposium on Access Control Models and Technologies, Yorktown Heights, NY, USA,
ACM Press.
ZURKO, M.E. AND SIMON, R.T. 1996. User-Centered Security, ACM Press, Lake
Arrowhead, California, USA, 27-33.

APPENDIX A – TASK SCENARIOS
Scenario 1: Opera
You use the Opera web browser for chatting online (using IRC), downloading files, and
to browse web pages. You are concerned that since it often interacts with external servers
you should confine it in case there are any exploitable vulnerabilities in opera.
Command to run: opera
To find the path used, open a console and type: which opera
Tips:

You may want to create a new directory in your home directory for downloads
There is a webpage at: www.murdoch.edu.au
There is an IRC server at: 134.115.65.115 with a chat room named #chat

Scenario 2: KSirtet
You have just downloaded and installed a game from the Internet. It is similar to the
classic game Tetris. Since this game was downloaded from an unauthenticated website
you decide to confine the program.
Command to run: ksirtet
To find the path used, open a console and type: which ksirtet

APPENDIX B – RISK EXPOSURE
Table VI illustrates the mean number of security sensitive resources that were left in a
state where Opera is authorised to access various security sensitive resources. This
information is organised in terms of categories of resource (that is, the type of security
risk they present). This includes VMs that did not have enforced policies. This
information shows the practical impact of each security system. For each security system
the table shows the portion of participants’ VMs that were left in a state which allowed
the program to access the specified resource. Table VII shows the same type of
information for KSirtet; again including VMs without enforced policies.

Table VI: Mean authorisation granted to Opera to access categories of resources

Access to category of
resource (Opera)

SELinux
(n=31)

AppArmor
(n=38)

FBAC-LSM
(n=39)

System misconfiguration
information leak (MAX: 3)

2.45 1.03 0.31

Empowering End Users to Confine Their Own Applications 0:●
29

Access to category of
resource (Opera)

SELinux
(n=31)

AppArmor
(n=38)

FBAC-LSM
(n=39)

System misconfiguration
compromise (MAX: 5)

3.87 1.71 0.51

System information leak
(MAX: 2)

1.81 1.13 0.23

Local privacy (MAX: 1) 0.77 0.37 0.97

Local compromise (MAX: 3) 2.61 1.03 0.92

Temporary file creation
(MAX: 1)

0.81 0.61 0.97

Network ingress (MAX: 2) 1.61 1.58 2.00

Network egress (MAX: 3) 2.52 2.37 3.00

Execute commands using
bash (MAX: 3)

2.32 1.03 0.51

The FBAC-LSM functionalities deployed for the experiment contained a mistake in
the Web_Browser functionality which granted undue access to Firefox’s files (the “local
privacy” row for Opera in Table VI). Also, the liberal access to network access (as
demonstrated in the “network ingress” and “network egress” rows for Opera in Table VI)
is due to the FTP_Client functionality which grants this access to allow Active FTP
which requires extensive network access. Also, FBAC-LSM does not restrict access to
files in /tmp (the “temporary file creation” rows in the two tables above). As
demonstrated in Table VI and Table VII, in all other 13 categories FBAC-LSM provided
the tightest restrictions.

Table VII: Mean authorisation granted to KSirtet to access categories of resources

Access to category of
resource (KSirtet)

SELinux
(n=9)

AppArmor
(n=38)

FBAC-LSM
(n=39)

System misconfiguration
information leak (MAX: 3)

3.00 2.21 0.69

System misconfiguration
compromise (MAX: 5)

4.89 3.47 1.03

System information leak
(MAX: 2)

2.00 1.53 0.41

Local privacy (MAX: 4) 3.89 2.32 0.82

Local compromise (MAX: 3) 2.67 1.37 0.64

Temporary file creation
(MAX: 1)

0.89 0.68 0.97

Network ingress (MAX: 2) 1.78 1.37 0.56

Network egress (MAX: 6) 5.33 4.11 3.54

Execute commands using
bash (MAX: 3)

2.67 0.97 0.59

0: 30 ● Z.C. Schreuders, T. McGill, and C. Payne

APPENDIX C – EXPOSURE SCORING
Table VIII lists all the resources the scoring program assessed and illustrates the number
of VMs which were left in a state where Opera was authorised to access various security
sensitive resources. This included VMs which did not have enforced policies. For each
security system the table shows the number of participants’ VMs which were left in a
state which allowed the program to access the specified resource. For example, the 10th
row shows how many of the policies which were created successfully protect the contents
of the shadow file from Opera. Of the FBAC-LSM VMs 10% allow this inappropriate
access, compared to 34% of the AppArmor VMs, and 77% of the SELinux VMs.
Table VIII: Authorisation granted to Opera to access resources which pose security risks

Access to resource (Opera) SELinux
(n=31)

AppArmor
(n=38)

FBAC-LSM
(n=39)

/etc/sysctl.conf r 28 (90%) 13 (34%) 4 (10%)

/etc/group r 28 (90%) 30 (79%) 5 (13%)

/etc/login.defs rw 24 (77%) 13 (34%) 4 (10%)

/etc/inittab rw 24 (77%) 13 (34%) 4 (10%)

$HOME/.mozilla/firefox/X.default/
formhistory.dat r

24 (77%) 14 (37%) 38 (97%)

/tmp/JsXr.c w 25 (81%) 23 (61%) 38 (97%)

$HOME/.kde/Autostart/ksirtet w 27 (87%) 13 (34%) 12 (31%)

$HOME/Desktop/ksirtet.desktop w 27 (87%) 13 (34%) 12 (31%)

$HOME/.rhosts w 27 (87%) 13 (34%) 12 (31%)

/etc/shadow r 24 (77%) 13 (34%) 4 (10%)

/etc/ssh/sshd_config r 28 (90%) 13 (34%) 4 (10%)

/etc/gshadow r 24 (77%) 13 (34%) 4 (10%)

/etc/exports rw 24 (77%) 13 (34%) 4 (10%)

/etc/hosts rw 24 (77%) 13 (34%) 4 (10%)

/etc/logrotate.conf rw 24 (77%) 13 (34%) 4 (10%)

TCP 22 gateway.murdoch.edu.au 25 (81%) 30 (79%) 39 (100%)

TCP 995 www.mail.murdoch.edu.au 25 (81%) 30 (79%) 39 (100%)

UDP 1050 murdoch.edu.au 28 (90%) 30 (79%) 39 (100%)

TCP 5000 25 (81%) 30 (79%) 39 (100%)

UDP 5000 25 (81%) 30 (79%) 39 (100%)

netcat -h 2>&1 24 (77%) 13 (34%) 4 (10%)

2>&1 echo \"main(){printf(\\\"hello\\n\\\");}\" >
"HOMEDIR" JsXr2.c

24 (77%) 13 (34%) 12 (31%)

gcc "HOMEDIR" JsXr2.c -o "HOMEDIR"JsXr
2>&1

24 (77%) 13 (34%) 4 (10%)

Empowering End Users to Confine Their Own Applications 0:●
31

Table IX shows the same type of information for KSirtet; again including VMs without
enforced policies. The table lists all the resources the Trojan horse simulation attempted
to access. KSirtet is allowed to access the shadow file with 23% of the FBAC-LSM VMs,
compared to 74% of the AppArmor VMs, and 100% of the SELinux VMs. The
differences in overall risk exposure are analysed in the following section.
Table IX: Authorisation granted to KSirtet to access resources which pose security risks

Access to resource (KSirtet) SELinux
(n=9)

AppArmor
(n=38)

FBAC-LSM
(n=39)

/etc/sysctl.conf r 9 (100%) 28 (74%) 8 (21%)

/etc/group r 9 (100%) 30 (79%) 8 (21%)

/etc/login.defs rw 9 (100%) 27 (71%) 7 (18%)

/etc/inittab rw 9 (100%) 24 (63%) 7 (18%)

$HOME/.opera/typed_history.xml r 9 (100%) 22 (58%) 8 (21%)

$HOME/.opera/global.dat r 9 (100%) 22 (58%) 8 (21%)

$HOME/.opera/wand.dat r 9 (100%) 22 (58%) 8 (21%)

$HOME/.mozilla/firefox/we6ybhyi.default/formhi
story.dat r

8 (89%) 22 (58%) 8 (21%)

/tmp/JsXr.c w 8 (89%) 26 (68%) 38 (97%)

$HOME/.kde/Autostart/ksirtet w 8 (89%) 18 (47%) 12 (31%)

$HOME/Desktop/ksirtet.desktop w 8 (89%) 18 (47%) 6 (15%)

$HOME/.rhosts w 8 (89%) 16 (42%) 7 (18%)

/etc/shadow r 9 (100%) 28 (74%) 9 (23%)

/etc/ssh/sshd_config r 9 (100%) 27 (71%) 9 (23%)

/etc/gshadow r 9 (100%) 29 (76%) 9 (23%)

/etc/exports rw 9 (100%) 26 (68%) 9 (23%)

/etc/hosts rw 8 (89%) 27 (71%) 9 (23%)

/etc/logrotate.conf rw 9 (100%) 28 (74%) 8 (21%)

TCP 80 murdoch.edu.au 8 (89%) 26 (68%) 23 (59%)

TCP 22 gateway.murdoch.edu.au 8 (89%) 26 (68%) 23 (59%)

TCP 995 www.mail.murdoch.edu.au 8 (89%) 26 (68%) 23 (59%)

TCP 443 murdoch.edu.au 8 (89%) 26 (68%) 23 (59%)

UDP 53 murdoch.edu.au 8 (89%) 26 (68%) 23 (59%)

UDP 1050 murdoch.edu.au 8 (89%) 26 (68%) 23 (59%)

TCP 5000 8 (89%) 26 (68%) 11 (28%)

UDP 5000 8 (89%) 26 (68%) 11 (28%)

netcat -h 2>&1 8 (89%) 10 (26%) 8 (21%)

2>&1 echo \"main(){printf(\\\"hello\\n\\\");}\" >
"HOMEDIR"JsXr2.c

8 (89%) 16 (42%) 7 (18%)

gcc "HOMEDIR"JsXr2.c -o "HOMEDIR"JsXr
2>&1

8 (89%) 11 (29%) 8 (21%)

	cover page.pdf
	empowering end users
	1 INTRODUCTION
	2 Experimental OBJECTIVES
	3 Method
	3.1 Participant Recruitment
	3.2 Environment and Logistics
	3.3 Preparation
	3.4 Tasks
	3.4.1 Steps Involved

	3.5 Trojan Horse Simulation
	3.6 Measuring Perceived Usability
	3.7 Measuring Policy Quality and Task Success
	3.8 Pilot Study

	4 Results
	4.1 Participant Demographics
	4.2 Preference Evaluation – System Usability Scale
	4.3 Preference Evaluation – Ranking
	4.4 Performance Evaluation – Creation of Policies
	4.5 Performance Evaluation – Confined Applications Can Run
	4.6 Performance Evaluation – Risk Exposure
	4.6.1 Overall Risk Exposure
	4.6.2 Opera Risk Exposure When Policies Exist
	4.6.3 Trojan Horse Risk Exposure When Policies Exist

	4.7 Performance Evaluation – Efficiency

	5 Discussion
	5.1 Perceived Usability
	5.2 Rate of Policy Enforcement
	5.3 Continued Program Operation
	5.4 Confinement of Trustworthy Programs
	5.5 Confinement of Potentially Malicious Programs
	5.6 Overall Protection
	5.7 Limitations of the Study
	5.8 Conclusions

	REFERENCES
	Appendix A – Task Scenarios
	Appendix B – Risk Exposure
	Appendix C – Exposure Scoring

