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ABSTRACT
Ranking is one of the key problems in information retrieval.
Recently, there has been significant interest in a class of
ranking algorithms based on the assumption that data is
sampled from a low dimensional manifold embedded in a
higher dimensional Euclidean space.

In this paper, we study a popular graph Laplacian based
ranking algorithm [23] using an analytical method, which
provides theoretical insights into the ranking algorithm go-
ing beyond the intuitive idea of “diffusion.” Our analysis
shows that the algorithm is sensitive to a commonly used
parameter due to the use of symmetric normalized graph
Laplacian. We also show that the ranking function may di-
verge to infinity at the query point in the limit of infinite
samples. To address these issues, we propose an improved
ranking algorithm on manifolds using Green’s function of
an iterated unnormalized graph Laplacian, which is more
robust and density adaptive, as well as pointwise continu-
ous in the limit of infinite samples.

We also for the first time in the ranking literature empiri-
cally explore two variants from a family of twice normalized
graph Laplacians. Experimental results on text and image
data support our analysis, which also suggest the potential
value of twice normalized graph Laplacians in practice.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEV]:
Information Search and Retrieval—Retrieval models

General Terms
Theory
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1. INTRODUCTION
Information retrieval is becoming progressively more im-

portant with the fast growing amounts of digital data, and
as Internet search engines become necessary tools for finding
useful information among huge amounts of data on the Web.
In retrieval, ranking is a key step to provide a “relevance”
score for the search results so that the most“relevant”results
are presented to users first.

In recent years, the graph Laplacian has become an impor-
tant object in manifold related machine learning and data
mining [5, 26, 1, 23]. The ranking on manifolds algorithm
in [23] estimates a real-valued function on the whole data
set by “diffusion” based on a graph Laplacian, which can be
used as a density adaptive ranking score for all data points.
One key advantage of this family of graph Laplacian based
ranking algorithms is that they are density adaptive, com-
bining local information encoded in the local neighborhood
graph and global information from the graph Laplacian into
a final ranking function.

Given the success of Laplacian based methods in machine
learning and data mining, there is still relatively little an-
alytical analysis of these algorithms. One example is [13],
which contains a surprising finding for a family of popular
graph Laplacian based semi-supervised learning methods. It
turns out that when labeled data is fixed and unlabeled data
increases, the estimator on unlabeled points degenerates to
a constant. The essential cause of this degenerate behavior
is that the solution space is too rich, which leads to overfit-
ting. See [24] for more discussions and a solution based on
iterated Laplacians.

The semi-supervised problem setting is related to the rank-
ing problem in [23], which motivates the analysis of these al-
gorithms from a functional analysis point of view to obtain
new theoretical insights going beyond the intuitive “diffu-
sion” analogy. For instance, we can ask the following ques-
tions about ranking: what is the ranking function space?
what are its properties? and, what should the ranking func-
tion be in the limit of infinite data? These questions are not
just basic theoretical foundations of ranking, but are also
crucial to the applications of ranking algorithms in practice.

In this paper, we try to answer these questions. Our con-
tributions are as follows: first, we study a graph Laplacian
based ranking on manifolds algorithm [23] from a functional
analysis point of view. We show that the algorithm is sen-
sitive to a commonly used parameter due to its use of the
symmetric normalized graph Laplacian. This is not the case



when the unnormalized graph Laplacian is used. This obser-
vation is different from the case of spectral clustering con-
sidered in [21], where the normalized graph Laplacian turns
out to have better theoretical properties.

We also show that the ranking function diverges to infinity
at the query point in the limit of infinite samples in higher
dimensions. A close relation between the Green’s function
and the reproducing kernel based on the graph Laplacians is
discussed, which connects the graph Laplacian based rank-
ing algorithms to kernel methods.

Second, we propose an approach based on the iterated
graph Laplacian, using unnormalized graph Laplacians. Com-
pared to the existing method [23], our method has several
preferable properties: it is more robust, more density adap-
tive, and behaves well as the amount of unlabeled data in-
creases.

Finally, we test two interesting variants from a family of
twice normalized graph Laplacians, which also give compet-
itive results on ranking and suggest their potential values in
practice. To the best of our knowledge, this is the first time
they are used in ranking.

We review the graph Laplacian in section (2), including
the finite sample case and their continuous limits. Then
in section (3), we study an existing graph Laplacian based
ranking on manifolds algorithm [23]. Based on the analysis,
we suggest using an iterated unnormalized graph Laplacian
for ranking in section (4). We provide experimental results
on text and image benchmarks.

1.1 Problem Setup
Given a random sample set X = {x1, x2, · · · , xn}, where

xi is a random vector, drawn i.i.d. from a fixed unknown
smooth probability distribution p(x) (0 < a 6 p(x) 6 b <
+∞). We assume the density is supported on Ω, which is ei-
ther a compact subset of Rd or a d-dimensional Riemannian
submanifold of RN . The problem of ranking considered in
this paper is to find a ranking score function f(x) : x 7→ R,
providing a “similarity” measure between the query point xi

and all other points xj ∈ X/{xi}, such that the smaller the
value |f(xi)− f(xj)| is, the more similar xi and xj are. Let
the initial query be x1, and the ranking function value at x1,
i.e., f(x1) be known, which is typically set as f(x1) = +1.
The analysis in this paper also applies to multiple query
points. By a convenient abuse of notation, f(x) means both
the continuous function value at x in the limit of infinite
points and the xth element of the column vector f such that
fx = f(x) in the case of finite X.

2. GRAPH LAPLACIAN
In this section, we review two graph Laplacians that will

be used later, including both their discrete forms and their
continuous limits.

2.1 Graph Laplacians
Given the sample set X, we can build an undirected weighted

graph G(V, E) such that xi is mapped to the vertex vi, and
the edge weight w(eij) = wij is a similarity measure be-
tween xi and xj . In this paper, we use a symmetric k nearest
neighbor (k-NN) graph [12] as G(V, E). A common weight
function is

wij = K

(‖xi − xj‖2
t

)
= e−

‖xi−xj‖2
t (1)

Denote the connection weight matrix on graph G as W , and
let D be a diagonal matrix with Dii = D(xi) =

∑
j wij .

There are several ways of defining a graph Laplacian [20].
We first introduce the unnormalized and symmetric normal-
ized graph Laplacians Lu and Ls, which are closed related
to the ranking algorithm we will study. Other interesting
graph Laplacians will be introduced later in section (4.2).

Lu = D −W

Ls = D−1/2LuD−1/2 = I −D−1/2WD−1/2 (2)

Both Lu and Ls are real symmetric and semi-definite matri-
ces. We order the eigenvalues of all graph Laplacians in this
paper in an increasing order λ1 6 λ2 6 · · · 6 λn. For Lu

and Ls, the smallest eigenvalues are both zero. This means
Lu and Ls are not full rank. From norm point of view, it
means fT Luf and fT Lsf are semi-norms with null spaces
spanned by their first eigenvectors. The first eigenvector of
Lu is constant,

v1 =

(
1√
n

,
1√
n

, · · · ,
1√
n

)T

(3)

while for Ls, a non-constant vector

v1 =
(√

D(x1),
√

D(x2), · · · ,
√

D(xn)
)T

(4)

where D(xi) is the degree for vertex xi in graph G.

2.2 Limits of Graph Laplacians
As we obtain more sample points, the parameter t needs

to be decreased in order to let the graph Laplacian to better
capture local information. Therefore, the limit analysis of
a graph Laplacian involves two limits, the number of data
points, n → ∞, and the kernel width, t → 0. See [3, 7, 11]
for more on limit analysis of graph Laplacians. On finite
sample set X,

1

n
Luf(xi) =

1

n

n∑
j=1

K

( ||xi − xj ||2
t

)
(f(xi)− f(xj)) (5)

where f(xi) is the ith element of vector f .
In the limit as n →∞ and t → 0 at a proper rate (see [3,

11]), for a smooth function f(x) ∈ C2, the limit of Luf(x)
is

1

ntd/2+1
Luf(x)

a.s.−→ −p(x)∆p2f(x) (6)

where ∆p2f(x) = 1
p2(x)

div[p2(x)gradf(x)] is called the weighted

Laplacian, see e.g., [9]. In the limit, the degree function D(x)
converges to the underlying density p(x) up to a constant
coefficient, see e.g., [10, Chapter 2].

However, the limit of Ls is not a weighted Laplacian of
f(x), as shown in [11]

1

td/2+1
Lsf(x)

a.s.−→ −
√

p(x)∆p2 [
f(x)√
p(x)

] (7)

where 1/n is canceled by the normalization. This means
if we use Ls as an empirical Laplacian in an algorithm,
it is not a strictly “diffusion” based algorithm. If we let
F (x) = f(x)/

√
D(x), then the limit is a weighted Laplacian

for function F (x), but not f(x). We will see later in section
(3.2), this delicate detail has a great influence on ranking.

From the finite sample and infinite limit analyses of the
graph Laplacians, it is easy to see that the null space of Lu is



spanned by a constant vector, and in the limit it is spanned
by a constant function. While for Ls, the difference is a
weight: the null space is spanned by vector

√
D(x) as in

equation (4) in discrete case, and by function
√

p(x) in the
continuous limit. See [2] for the convergence of graph Lapla-
cian eigenvectors to weighted Laplacian eigenfunctions.

3. ANALYSIS OF RANKING ON MANIFOLDS
In [23], the authors proposed a ranking function (column

vector) as

f = (I − αS)−1y (8)

where y is a column vector with the query element y1 set
as 1, and 0 on all other points, S = D−1/2WD−1/2, I is an
identity matrix, and α ∈ [0, 1) is a tuning parameter. This
algorithm is based on the intuition of“information diffusion.”
The idea is to propagate the query “information” along the
data manifold in a density adaptive way.

Next, we show that it can be rewritten using the symmet-
ric normalized graph Laplacian Ls. By splitting the identity
matrix into (1− α)I + αI, we can rewrite f as

f = α

[
(
1− α

α
)I + Ls

]−1

y = α(βI + Ls)
−1y (9)

where β = 1−α
α

> 0. In ranking, we can drop the global
constant α without changing the result. Then the ranking
function is equivalent to f = (βI + Ls)

−1y.
A closer look at this problem can reveal that it is also the

solution of two other equivalent problems (up to constant co-
efficients): a discrete Laplace equation and a discrete poten-
tial energy minimization problem. See [23] for more details,
and see [16] for more on boundary value problems. Next, we
further study the ranking function (βI + Ls)

−1y.

3.1 Green’s Function and Reproducing Ker-
nel in Ranking

Consider the ranking function (βI + Ls)
−1y. Since only

one element of y is nonzero, the ranking function f (column
vector) is, in fact, the first column of matrix (βI + Ls)

−1,
i.e., the column corresponding to the query point. Thus, this
inverse matrix is the key object for the ranking problem.

Reproducing Kernel of Reproducing Kernel Hilbert
Space: The function space equipped with a (semi-)norm of
the form fT Qf with a (semi-)definite matrix Q is a repro-
ducing kernel Hilbert space (RKHS)1, and its reproducing
kernel matrix is the pseudoinverse of Q, denoted as Q+, see
e.g., [4, Chapter 6] and [17]. Let Q = (βI + Ls), which is
positive definite since β > 0, and its inverse exists. Ranking
function f then is just a kernel function centered at query
point x1, i.e., f(x) = K(x1, x), where K = (βI + Ls)

−1 is
the reproducing kernel matrix. We denote K(x, y) as the
(x, y) element of the matrix K in discrete case.

The additional term βI is used to complete the semi-norm
fT Lsf to a norm, since Ls is not full rank. If we remove βI
(β = 0), and use the pseudoinverse of Ls, we can still obtain
a ranking function f as a kernel function, but it is in the
subspace that is orthogonal to the first eigenvector of Ls.

The Green’s Function: We know the Green’s function
of a Laplace operator can be seen as the inverse of a Lapla-
cian, which implies Gs = (βI + Ls)

−1. See [6] for more on

1When there exists a null space, we mean the subspace or-
thogonal to its null is an RKHS.

discrete Green’s function on graphs. By eigenvector expan-
sion we have

Gs(x, y) =

n∑

k=1

1

λk + β
vk(x)vk(y) = K(x, y) (10)

where λk is the kth eigenvalue of Ls and vk is the associ-
ated eigenvector. This is the same as kernel function K(x, y)
since K = (βI + Ls)

−1. Notice that if we restrict the graph
Laplacian to a subgraph, then it has full rank and is invert-
ible. We consider the Green’s function over the whole graph,
which is used in [23].

3.2 Null Space Effect
For the ranking function f = (βI + Ls)

−1y, parameter β
plays an important role in this problem. On one hand, from
a numerical computation point of view, βI makes Ls + βI
invertable since Ls is not full rank. On the other hand it
“kills” the null space of Ls, which is spanned by the first
eigenvector of Ls. The ranking function (the kernel/Green’s
function) can be written as follows since λ1 = 0.

Gs(x, y) =
1

β
v1(x)v1(y) +

n∑
i=2

1

λi + β
vi(x)vi(y) (11)

This means if β is too small such that 1
β

>> 1
λi+β

, the be-

havior of the ranking function might be determined by v1(x)
alone. In ranking, if v1(x) is a function that is unrelated to
the relevance ordering of samples, we will have an uninfor-
mative ranking function. This is the case for Ls when the
density p(x) is not uniform, since v1(x) is non-constant and
determined by the denisty. For query x1, by dropping a con-
stant coefficient v1(x1), the ranking function then becomes

f(x) = Gs(x1, x) ≈ v1(x)

β
(12)

This means the ranking function f = (βI + Ls)
−1y is very

sensitive to β. Recall that for Ls, we have v1(x) =
√

D(x),
where D(x) is the degree function for vertex x on the graph.
In this case,

f(x) ≈
√

D(x)

β
(13)

This also implies that, for small β, the ranking on graph G
is influenced by methods used to construct G. For instance,
parameter k in kNN graphs directly varies degree function
D(x). Likewise D(x) is affected by the decision to build
either a symmetric or asymmetric kNN graph. These are
important issues in practice. From the original “diffusion”
based iterative algorithm [23], it is difficult to discover these
issues.

When v1(x) is constant, which is the case for Lu, v1(x)/β
will not change the ranking since we only need an ordering.
In this case, we can safely drop the constant shift v1(x)/β,
then the second term in equation (11) determines the rank-
ing. This means Lu will be more robust than Ls in terms of
parameter β. This problem is less important in regression
since the task there is to estimate a real-valued function,
while in ranking, we ultimately need an ordering. Notice
that other than the null space effect, β also influences the
ranking in “spectra shift” 1/(λi + β).

One simple solution is to use Lu instead of Ls. Another
solution is to modify the ranking function when using Ls.



Since this problem is caused by the first eigenvector, associ-
ated with the zero eigenvalue, one straightforward solution
is to remove the first eigenvector. Then the ranking function
becomes

f(x) =

n∑
i=2

1

λi + β
vi(x1)vi(x) (14)

Function f(x) lives in the subspace that is orthogonal to the
first eigenvector, since all the eigenvectors of Ls are orthog-
onal. This can be implemented by computing the pseudoin-
verse of Ls, which removes the first eigenvector2. Notice
that even we remove v1, the ranking functions using Ls and
Lu are still different due to the differences between their
eigenvectors.

Therefore, β should not be set to any fixed value for dif-
ferent data sets in practice when using Ls. Instead, β should
be chosen by validation. When training data is not available
or not enough for validation, β should be set to zero and the
pseudoinverse should be used to compute the ranking func-
tion. We will test how parameter β changes the ranking
results in the experiments.

3.3 Diverging Ranking Function
Since the ranking function can be rewritten as a Green’s

function of a Laplacian, then it is possible that it is not
a pointwise well-defined continuous function in the limit of
infinite samples. Instead of an analysis involving general-
ized functions and Sobolev spaces, we use a simple example
to show how this Green’s function diverges to infinity at
the query point in spaces having dimensions greater than
one (d > 2).

Assume we remove the first eigenvector and ignore the
density, then the ranking function is the Green’s function
of a regular Laplacian ∆. In R3 or higher dimensions, the
Green’s function of a regular Laplacian is

G(x, y) =
1

‖x− y‖Rd

(15)

where |G(x, x)| = ∞. In our case, Gs(x, x) = K(x, x) =
∞ means if we enforce y1 = 1 = Gs(x1, x1), the diverging
Gs(x1, x1) will cause the ranking function to be 0 at all other
points by a normalization as the following.

f(x) =
Gs(x1, x)

Gs(x1, x1)
=

{
1, when x = x1

0, when x 6= x1

(16)

In R2, we also have |G(x, x)| = ∞, but the Green’s function
has a different form. Thus, this problem happens for graph
Laplacians in spaces having dimensions greater than one3.
More importantly, this problem happens to all versions of
graph Laplacians, including Lu, Ls and all the graph Lapla-
cians that will be introduced later. For Ls, the bounded
density weight will not change this fact.

One trivial solution to this problem is that there is no need
to maintain f(x1) = y1 = 1, since we only need an ordering,
instead of a real-valued function f(x) as in regression. In
the finite sample case, it is possible to obtain a real-valued
ranking function (vector) since Gs(x, x) will always be fi-
nite. However, due to the sharp increase of Gs(x, x) in high

2This can be implemented by pseudoinverse “pinv” of Ls in
Matlab by setting a small threshold for eigenvalue cutoff.
3Intrinsic dimension d > 2 on manifolds.

dimensions as we have more and more samples, the random
noise might easily damage the ranking.

In order to solve the diverging problem of the ranking
function in the limit of infinite samples, we need to find the
Green’s function of a “higher order” Laplacian, in a higher
order Sobolev space, see e.g., [19]. This idea can be imple-
mented by the Green’s function of an iterated graph Lapla-
cian defined as the following,

Lm
u =

n∑

k=1

λm
k vkvT

k

where λk and vk are the eigenpair of Lu and m > 0. Simi-
larly, we can also define the corresponding iterated graph
Laplacian for Ls and other version of graph Laplacians.
Since Lu is real and symmetric, for integer m, Lm

u is ex-
actly the power of matrix Lu.

4. RANKING BY GREEN’S FUNCTION
Based on previous analyses, the null space effect of Ls

suggests that we should use a graph Laplacian that has a
constant first eigenvector, or remove the first eigenvector of
Ls in the ranking function. The diverging ranking function
problem suggests to use the Green’s function of an iterated
graph Laplacian. In this section, we use Lu as an example
to show an improved solution, then discuss the improved
method on a Gaussian mixture, and at last we introduce
several other interesting graph Laplacians.

The Green’s function of the iterated Laplacian Lm
u , with

a possible additional term βI but allowing β = 0 (meaning
we remove the first eigenvector by pseudoinverse) is defined
as 4

Gm
u (x, y) =

n∑
i=1

(
1

λi + β

)m

vi(x)vi(y) (17)

When β = 0, the pseudoinverse should be used to remove
v1(x). It is easy to see that in matrix form Gm

u = [(βI +
Lu)−1]m. In the limit of infinite samples, as long as 2m > d,
f(x) = Gm

u (x1, x) is a continuous function by the Sobolev
embedding theory. See e.g. [19] for more on Laplacians and
Sobolev spaces. The ranking function then becomes the fol-
lowing.

f =
[
(βI + Lu)−1]m

y, β > 0. (18)

Besides β, the other important parameter is m, which
defines a spectra transform of the form g(λ) = λm on Lu.
For a weighted Laplacian, the smaller λi is the smoother
vi will be. This means the eigenvectors are in decreasing
smoothness order when we order λi in an increasing order.
For the Green’s function, eigenvalues are 1/λm

k when β = 0.
Then the power transform of the spectra acts as a low pass
filter, smoothing the Green’s function as m increases. This
idea can be quantitatively described by Sobolev norms, see
[19, Chapter 5].

Overall, the two parameters β > 0 and m > 0 act as a
spectra transform to the Green’s function, where m acts as
a scaling between different “frequency” levels, while β acts
as a shift along a fixed “frequency” level. This effect is simi-
lar to the Fourier analysis and multiple resolution analysis,
since the eigenvectors of a graph Laplacian not only form

4It is also possible to define Gm
u (x, y) =∑n

i=1 1/(λm
i + β)vi(x)vi(y).
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Figure 1: Low-pass filter effect: re-scaled top 10
eigenvalues (λ−m

i ) of Gm
u on a mixture of two Gaus-

sians in 2D (without λ1 = 0). Horizontal axis is
log10(i), vertical axis is λ−m

i , and β = 0.

an orthonormal basis, but also have an intrinsic smoothness
ordering. The Green’s function of an iterated graph Lapla-
cian also has a similar spectral density as the Matérn model
[18] in a Gaussian process.

4.1 Empirical Study on Gaussian Mixture
In order to have an intuitive understanding of the effect

of m and β, we generate an artificial data set and plot the
transformed spectra and ranking function in Figure (1), Fig-
ure (2) and Figure (3). The data set includes a mixture of
two Gaussians of unit variance on R2 centered at (±1.5, 0),
and an additional uniform over [−3, 3] × [−3, 3] to avoid
empty regions. The query point is at (−2,−1.8).

In Figure (1), we re-scale the eigenvalues of Gm
u to make

the spectra of different m values are comparable. As m
increases, we can see that the low frequency components
(eigenvectors with smaller indices) have larger and larger
weights in the final ranking function. This makes the rank-
ing function smoother and smoother, but still in a data
dependent way. This low-pass filter effect has a different
behavior from that in [7], where a Markov random walk ex-
planation applies. The eigenvalues here connect closely to
the Sobolev spaces [19] and decrease much faster.

For a good ranking function, the top of the ranking list
should be points that are, on one hand near the query point
in terms of the Euclidean distance in the chosen feature
space. On the other hand, points on the top of the list
should shift towards the nearby high density regions in or-
der to obtain more relevant results on average. In Figure (2),
the contour lines of the Green’s function using both Lu and
Ls and the top 100 ranked points are shown, where we can
see two distinct features.

First, the null space effect for Ls is clear. In the upper row
of Figure (2), different β values change the behavior of Ls-
based ranking function dramatically. When β = 10−4, the
Green’s function using Ls is almost the same as eigenvector
v1 of Ls, which is the square root of the density of a mixture
of two Gaussians. The top 100 ranked points are those on
the same contour lines, which is completely uninformative
for ranking. For “pinv” (β = 0), the pseudoinverse of Ls

does not include v1, so the Green’s function is density adap-
tive and the top 100 ranked points are reasonable neighbors

in R2. When β = 1, the Green’s function acts as a Gaussian
in R2, capturing no density information. When β = 0.01,
the results are reasonable and similar to “pinv” case. This
problem does not happen to Lu (lower row), since its first
eigenvector is constant. The results are much stable for dif-
ferent β values. In the contour plot for Lu when β = 10−4,
even the Green’s function is almost flat as a constant (indi-
cated by its contour line values), but a reasonable ordering
can still be recovered. Any constant shift will not change
the ordering, which is essential for ranking. Although Ls

can still be useful with a proper β value, in practice choos-
ing a sensitive parameter can be difficult.

Notice that the slight difference of the ranking functions
for different β using Lu is caused by the weight 1/(λi +
β). Overall, the effect of β is twofold: β not only plays an
important role in the first eigenvector as in 1/β, but also
changes other eigenvector components as in 1/(λi + β).

Second, as m increases, the top 100 ranked points are
shifted towards the nearby high density regions, as shown in
Figure (3). This will increase the relevant results on average
in practice. Results using Lu also have a similar behavior.

4.2 Different Graph Laplacians
In the experiments, we also tested several other interest-

ing versions of graph Laplacians, which are introduced here.
Given the weight matrix W constructed from the sample
set X, there are three empirical graph Laplacians associ-
ated with W : Lu, Ls, and Lr. We introduced Lu and Ls in
section (2), and Lr = D−1Lu = I−D−1W . It is easy to see
that Lr is a weighted version of Lu. Since Lr is not symmet-
ric, above analyses will not apply directly to Lr. Therefore,
we only test it empirically in the experiments.

There exists another way of defining graph Laplacians,
which involves a normalization of W using a parameter α ∈
R [7]. First, the weight matrix W is normalized to another
weight matrix

W̃α = D−αWD−α (19)

Then we can define the associated degree matrix D̃α for W̃α,
and define each graph Laplacian accordingly as before. For
each α, again there are three empirical graph Laplacian L̃α

u ,

L̃α
s and L̃α

r . When α = 1/2, denote L̃
1/2
u as Lp

5, and when

α = 1, denote L̃1
u as Lg. In the limit of infinite samples [10,

Corollary 2.40]

1

ntd/2+1
Lpf(x)

a.s.−→ − 1

p(x)
div[p(x)gradf(x)] (20)

In this case, the measure hidden inside of the weighted Lapla-
cian is p(x), instead of p2(x) as for Lu. This graph Laplacian
might be preferred in practice since the random samples are
drawn from p(x) instead of p2(x). For Lg, we have

1

ntd/2+1
Lgf(x)

a.s.−→ − 1

p(x)
∆f(x) (21)

In this case, the limit has no density drifting term, but with
a density outside of the Laplace operator. We will test the
empirical performances of these two graph Laplacians in the
experiments.

5Notice that fT Lpf is different from fT Lsf , since fT Lpf =
1
2

∑
i,j wij/

√
D(xi)D(xj)(f(xi) − f(xj))

2 and fT Lsf =
1
2

∑
i,j wij(f(xi)/

√
D(xi)− f(xj)/

√
D(xj))

2.
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Figure 2: Sensitivity of β on Ls(top row) and Lu(lower row): Green’s function at (−2,−1.8) over a mixture of
two Gaussians at (±1.5, 0) with m = 1. Left to right: β = 1, β = 10−2, β = 10−4, pinv (β = 0).
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Figure 3: Green’s function with different m values
using Ls.

5. EMPIRICAL STUDY
In this section, we test the ranking function based on the

iterated graph Laplacians on several text and image bench-
marks.

5.1 Experiment Setup
Data Sets: Benchmarks include COIL20 images6 [14],

MNIST image digits7, 20 Newsgroups text data8, and Scene
image data set used in [15].

The COIL20 data set contains 20 objects. The images
of each object were taken 5 degrees apart as the object is
rotated on a turntable and each object has 72 images. The
total number of the images in this data set is 1440, and the
size of each image used in this paper is 32× 32 pixels, with
256 grey levels per pixel. Thus, each image is represented
by a 1024-dimensional raw pixel vector. The MNIST digits
image data set consists of 10 handwritten digits, and each

6http://www.cs.columbia.edu/CAVE/software/softlib/coil-
20.php
7http://yann.lecun.com/exdb/mnist/
8http://www.zjucadcg.cn/dengcai/Data/TextData.html

image is represented by a 784-dimensional raw pixel vector.
In this paper, we use a subset of 2000 images of the original
data set, with 200 images for each digit. The 20 News-
groups data set includes documents of 20 different classes,
and each document is represented as a 61188-dimensional
TFIDF vector. A subset of 2000 documents is used, with
100 from each group. The Scene data set contains 8 out-
door scene categories. A subset of 2000 images is used, with
125 from each category. After computing the Gist descrip-
tor for each image using online code9 with 4 × 4 blocks,
each image is represented as a 512-dimensional vector. For
COIL20, MNIST, and Scene data sets, the Gaussian weight
is used to compute the weight on weighted graphs, while for
20 Newsgroups, the Cosine weight is used.

Evaluation Criteria: The main evaluation criteria in
this paper is mean average precision (mAP). The average
precision (AP) is the area below the recall-precision curves.
The AP is a number between 0 and 1 with 1 meaning the first
M returned points are all the relevant data in the whole data
set. The mean AP is the average of AP for a set of queries.
In this paper, we use each sample point of the data set as
a query, then take the average over all the AP scores. We
also use the precision-scope curves to show the performance
on the top of the ranked list on Scene data. Since in image
retrieval, results on the top of the returned list are much
more important than others to users.

5.2 Experimental Results
There are four parameters for ranking using the iterated

graph Laplacians: k and t for the graph construction, and
β and m for the ranking function. For graph Laplacian
based machine learning and data mining methods, graph
construction related parameter k in kNN graphs and t in
Gaussian weights have been studied both theoretically and
empirically, see e.g., [26] and the reference therein. In order
to capture the local information of the underlying manifold,
both k and t should work together to generate a good graph.
For example, a small k with a wide range of t, or a large k

9http://people.csail.mit.edu/torralba/code/spatialenvelope/



Table 1: mAP on different data sets, with different β values. “pinv” corresponds to results from ranking
functions with the first eigenvector removed, as in (14).

β 10−5 10−4 10−3 10−2 10−1 1 pinv 10−5 10−4 10−3 10−2 10−1 1 pinv

MNIST, k = 10, t = 106, m = 1 COIL20, k = 10, t = 10, m = 1

Lu 0.57 0.57 0.57 0.57 0.56 0.51 0.57 0.80 0.80 0.80 0.81 0.81 0.77 0.66
Ls 0.11 0.12 0.18 0.50 0.54 0.48 0.57 0.36 0.48 0.78 0.80 0.78 0.75 0.65

20News, k = 10, m = 1 Scene, k = 10, t = 0.10, m = 1

Lu 0.47 0.47 0.47 0.46 0.44 0.39 0.47 0.57 0.57 0.57 0.57 0.56 0.52 0.57
Ls 0.07 0.07 0.10 0.33 0.43 0.38 0.47 0.14 0.14 0.18 0.45 0.54 0.50 0.56

but with a relatively small t. In this paper, we focus on β
and m.

Parameter βββ: We first compare the original ranking al-
gorithm in [23] using Ls as in equation (18) with different
values of β and m = 1, to the algorithm using other graph
Laplacians. The mAP scores for Ls and Lu with different β
values are reported in Table (1). We can see that the ranking
algorithm using Ls is very sensitive to parameter β. This
confirms our null space effect analysis in section (3.2). The
commonly used value of β, which is approximately 0.01, is
far from being a good choice for Ls (except the special data
set COIL20). Contrary to Ls, ranking results using Lu are
much more stable on β.

One interesting observation is that, when we do not have
enough training data to choose β by validation, using the
pseudoinverse by setting β = 0 also gives competitive re-
sults. This is true for both Lu and Ls, as shown in “pinv”
column in Table (1).

We also tested Lr, Lp and Lg, the results of which are not
reported here due to the limited space. The performance of
Lr is even worse than Ls, which is potentially due to the
asymmetric normalization. The ranking performance of Lp

and Lg is comparable to that of Lu when other parameters
are chosen as in Table (1).

Parameter mmm: How parameter m changes the ranking
function depends on the underlying density as shown in Fig-
ure (2), and also depends on how we normalize the graph
Laplacian. In Table (2), mAP on different data sets with
different m values is reported, where 5-fold cross valida-
tion is used to choose parameter k, t, and β. We choose
k ∈ {5, 10, 50, 100, 500, 1000, |X|}, with |X| meaning com-
plete graphs, β ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 100, 101},
on MNIST t ∈ {100, 101, 102, 103, 104, 105} × 105, and on
Scene t ∈ {10−2, 10−1, 100, 101, 102, 103}.

We can see that results with m > 1 on the three data sets
can be better than ranking with m = 1, which is particularly
clear for Lu, and also generally true for Lp and Lg, except
Lp on MNIST. But most values of m > 1 are not helpful
for Ls and Lr. This is probably due to the fact that the
normalization step complicates the corresponding iterated
Laplacians, which is particularly true considering that the
limit of Ls is not a weighted Laplacian.

Notice that the results in Table (2) are obtained by choos-
ing the best parameters by validation, including β. This
means we already eliminated the null space effect in Ta-
ble (2). In large scale computing, validation might not be
available.

Different Graph Laplacians: Among different versions
of graph Laplacians, we find that the results of three “un-

Table 2: mAP on different data sets, with different
m values. Results in bold are the best for each graph
Laplacian, choosing the smallest m in case of a tie.

m 1 2 4 8 16 32

Lu 0.63 0.65 0.65 0.65 0.62 0.59
Ls 0.65 0.65 0.64 0.59 0.63 0.62

MNIST Lr 0.65 0.62 0.58 0.58 0.61 0.54
Lp 0.69 0.68 0.64 0.66 0.65 0.65
Lg 0.62 0.65 0.65 0.63 0.64 0.63

Lu 0.45 0.49 0.51 0.49 0.52 0.47
Ls 0.47 0.50 0.44 0.47 0.46 0.37

20News Lr 0.47 0.49 0.41 0.43 0.40 0.24
Lp 0.44 0.48 0.51 0.47 0.51 0.48
Lg 0.43 0.47 0.50 0.47 0.50 0.47

Lu 0.56 0.58 0.59 0.57 0.57 0.57
Ls 0.57 0.55 0.53 0.55 0.56 0.47

Scene Lr 0.55 0.51 0.52 0.52 0.47 0.45
Lp 0.56 0.58 0.59 0.56 0.59 0.59
Lg 0.56 0.57 0.59 0.57 0.59 0.58

normalized” graph Laplacians (Lu, Lp, and Lg) are roughly
comparable, as shown in Table (2). To the best of our knowl-
edge, this is the first time that Lp and Lg are tested in rank-
ing. One interesting result is that on MNIST, the ranking
using Lp with m = 1 is much better than all other graph
Laplacians. Based on Table (2), if we have to choose one
graph Laplacian to use, then Lp is the best choice. The over-
all performance of Lp suggests the potential value of Lp and
the family of twice normalized graph Laplacian L̃u

α. This is
interesting since among all the weighed graph Laplacians L̃u

α,
Lp is the only“natural”one (see e.g. [25]), whose weight cor-
responds to the probability density p(x), i.e.,

∫
Ω

p(x)dx = 1.

Notice that for Lu, the weight is p2(x) and
∫
Ω

p2(x)dx 6= 1
generally.

Content Based Image Retrieval: A natural applica-
tion of ranking is content based image retrieval. We test
different graph Laplacians on Scene image data set, and the
precision-scope curves for Lu, Ls and Lr are shown in Fig-
ure (4). Due to the limited space, we only report one typi-
cal result with a fixed parameter setting. However, results
of several different k and t combinations follow a similar
pattern: Lu is better than Ls, and Ls is better than Lr.

Study on COIL20: The construction of COIL20 can be
seen as an idealization of a real world scenario. Consider all
the images of the same object on the Internet, for instance
the Eiffel Tower. It is likely different visitors take the photo
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Figure 4: Typical precision-scope curves on Scene
images using different graph Laplacians (k = 10, β =
0.01, m = 1, and t = 0.1).

of the tower from different angles. Then this is a similar set-
ting as COIL20. Compared to the equal angle rotation and
fixed shooting radius in COIL20, the main differences are
random angle rotations and radiuses in real world. There-
fore, we report more detailed experiment results on COIL20.

When k = 1000, t = 1, β = 0.01, and m = 1, we can
obtain a perfect mAP on COIL20 data set, using either Ls

or Lu. This setting is a little different from what is usually
used in practice, i.e., k is small to capture the local manifold
structure. On one hand a large k and a small t still can
capture the local information, on the other hand, we believe
a large k is helpful to the numerical stability by capturing
global information in this case10.

The Green’s function with k = 1000, t = 1, m = 1 and
β = 0 for class Y = 1 is shown in Figure (5)11, where x axis
is the index of the first class in COIL20. If we see it as a peri-
odic function by connecting two ends of the interval (x axis),
the Green’s function or reproducing kernel function at index
5 is very similar to the reproducing kernel function over a
1D circle, e.g., [22, Chapter 2]. This empirically shows that
each class of COIL20 is likely distributed on an intrinsic 1D
circle. If we order the images according to this Green’s func-
tion, the original rotation order can be recovered correctly.
Notice that G(x1, x) on images of other classes are several
order smaller, so we omit that part of the ranking function
in the figure.

Numerical Issues: One key numerical issue in comput-
ing the Green’s function of an iterated graph Laplacian is
that we should compute the Green’s function matrix Gu of
Lu first, then raise the power of Gu to obtain Gm

u , instead of
computing the inverse of Lm

u directly. This is due to the fact
that the first several eigenvalues of Lu is very small, there-
fore, raising the power of Lu can easily make those eigenval-
ues much smaller, which increases the condition number of
Lm

u dramatically.
The most expensive step to compute the Green’s function

of a graph Laplacian is to invert a n × n matrix, which
costs O(n3). However, it is possible to take advantage of
the sparsity of the problem to obtain a lower cost. Consider
the ranking function of the form f = [(βI + Lu)−1]my. For
β > 0, since (βI + Lu) is sparse when m is small, solving

10Notice that on other data sets a smaller k is preferred.
11This is the first class of COIL20, the toy duck.
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Figure 5: Green’s function at i = 5 over the first
class of COIL20.

(βI + Lu)mf = y can cost as low as O(kn), where k is
the sparsity of the coefficient matrix. For β = 0, we need
to compute L−1

u (pseudoinverse), which can be rewritten as
[D(I − P )]−1 = (I − P )−1D−1, where P = D−1W , and
(I − P )−1 =

∑∞
i=1 P i can be potentially compressed and

computed efficiently, see e.g., [8, Section 6.2].

6. SUMMARY
In this paper, we analyzed a popular graph Laplacian

based ranking algorithm introduced in [23] from a functional
analysis point of view. From the theoretical analyses and ex-
perimental results, our findings for ranking on manifolds are
as follows:

1. The ranking algorithm based on Ls is sensitive to the
commonly used parameter β. However, this is not the
case for the unnormalized Laplacian Lu.

2. When choosing β by validation is not feasible, the
pseudoinverse of the graph Laplacian (β = 0) can also
give competitive results.

3. Using iterated graph Laplacian has a solid theoretical
foundation and can improve ranking results in prac-
tice.

4. Lp gives competitive results, which suggests the poten-
tial value of using the“unnormalized”twice normalized
graph Laplacian L̃α

u in practice.
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