
Clustering with Relative Constraints

Eric Yi Liu
liuyi@cs.unc.edu

Zhaojun Zhang
zzj@cs.unc.edu

Wei Wang
weiwang@cs.unc.edu

Department of Computer Science
University of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175 USA

ABSTRACT
Recent studies [26, 22] have suggested using relative distance
comparisons as constraints to represent domain knowledge.
A natural extension to relative comparisons is the combi-
nation of two comparisons defined on the same set of three
instances. Constraints in this form, termed Relative Con-
straints, provide a unified knowledge representation for both
partitional and hierarchical clusterings. But many key prop-
erties of relative constraints remain unknown.

In this paper, we answer the following important questions
that enable the broader application of relative constraints in
general clustering problems:

• Feasibility: Does there exist a clustering that satis-
fies a given set of relative constraints? (consistency of
constraints)

• Completeness: Given a set of consistent relative con-
straints, how can one derive a complete clustering with-
out running into dead-ends?

• Informativeness: How can one extract the most in-
formative relative constraints from given knowledge
sources?

We show that any hierarchical domain knowledge can be eas-
ily represented by relative constraints. We further present
a hierarchical algorithm that finds a clustering satisfying all
given constraints in polynomial time. Experiments showed
that our algorithm achieves significantly higher accuracy
than the existing metric learning approach based on rela-
tive comparisons.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
—Data mining ; I.5.3 [Pattern Recognition]: Clustering—
Algorithms

General Terms
Algorithms,Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

Keywords
Relative constraints, constrained clustering, hierarchical clus-
tering

1. INTRODUCTION
Clustering is traditionally considered an unsupervised learn-

ing task, but side information is available in many applica-
tions which may provide extra guidance to the clustering
procedure. In recent years, many papers on semi-supervised
clustering or constrained clustering investigated the effect of
incorporating such domain knowledge into traditional unsu-
pervised clustering algorithms (see for survey, [8]). In these
studies, domain knowledge usually appears as constraints,
typically in the form of pairwise relations [30, 31]. The
must-link (ML) and cannot-link (CL) constraints indicate
that two data instances must or cannot belong to the same
cluster. Clustering with both types of pairwise constraints
has been proven to have an intractable feasibility problem:
determining the existence of any partition of data instances
into a given number of clusters that satisfies all the con-
straints is NP-complete [14]. Therefore, an efficient clus-
tering algorithm that satisfies all constraints for all datasets
does not exist unless P=NP [14].

Recent studies [26, 22] have suggested using relative dis-
tance comparisons to represent domain knowledge: a is closer
to b than to c, or equivalently d(a, b) < d(a, c) where d(...)
is the distance function. The rationale behind relative com-
parisons is as follows: a domain expert usually has some
general sense of closeness (similarity) among a subset of data
instances. Such knowledge of closeness may be vague and
only in a relative sense, that is, we can only determine, be-
tween two instances, which one is closer to a given third
instance, but we cannot determine an absolute closeness
measure. Several metric learning approaches [26, 22] were
developed to redefine the distance function based on input
relative comparisons.

A natural extension to relative comparisons is to consider,
among three data instances, which two form the closest pair.
Given three instances a, b, c, we use ab|c to denote that (a, b)
is the closest pair. This is equivalent to two relative compar-
isons defined on a, b, c: d(a, b) < d(a, c) and d(a, b) < d(b, c).
We use the term “relative constraint” to denote constraints
in this form. Relative constraint is a natural extension to
relative comparison and can often be used in applications of
relative comparisons. This is because, when a relative com-
parison is used, other comparisons regarding the same three
instances are often available (or attainable at low cost).

The advantage of relative constraints over existing con-
straint models is that it unifies instance-level constraints

947

with structure-level knowledge. Traditionally, instance-level
constraints fit well into partitional clustering schemes (such
as K-Means) while their use in hierarchical clustering is un-
intuitive1. Each relative constraint, as a natural extension
to instance-level relative comparisons, represents a local hi-
erarchy where the closest pair are merged before the more
distant instance being merged with either instance of the
pair (Fig.1(b)). This local hierarchical information can be
naturally exploited in a hierarchical setting. Thus, rela-
tive constraints provide a unified knowledge representation
for both partitional and hierarchical clustering frameworks.
The use of relative constraints also greatly expands the pos-
sible sources of domain knowledge: besides existing sources
for relative comparisons, relative constraints can be obtained
from structural knowledge such as ontology and taxonomy
databases.

In [5], the authors demonstrated the potential usefulness
of relative constraints in hierarchical text clustering (under
the term Must-Link-Before constraints). However, unlike
pairwise constraints, many important properties of relative
constraints remain unexplored and this hinders the appli-
cation of relative constraints. In this paper, we answer the
following important questions and thus facilitate the use of
relative constraints in general clustering problems:

• Feasibility: Does there exist a clustering hierarchy
(and partition) that satisfies a given set of relative con-
straints? (consistency of constraints) Unlike pairwise
constraints, we show that the feasibility problem of
relative constraints can be solved in polynomial time.
This implies the possibility of a polynomial-time clus-
tering algorithm that satisfies all given consistent rel-
ative constraints.

• Completeness: Given a set of consistent relative con-
straints, how can one derive a complete clustering hier-
archy (and partition) without running into dead-ends?
We found that, given a set of consistent constraints,
a naive hierarchical approach which does not violate
any constraint in any step can still run into dead-ends.
This is the scenario where the hierarchy is developed
incompletely because no pair of clusters could be fur-
ther merged, though other merging sequences may pro-
duce a much more complete hierarchy. This suggests
that the first algorithm (iHAC) presented in [5] does
not guarantee a complete hierarchy if all constraints
are enforced. A similar problem has been reported for
pairwise constraints [15].

• Informativeness: How can one extract the most in-
formative relative constraints from given knowledge
sources? We show that any domain knowledge in the
form of tree-like hierarchies can be conveniently de-
composed into relative constraints. When the degree of
any internal node is bounded by a constant, the O(n)
most informative constraints can be selected, which
represent the complete hierarchical knowledge of n in-
stances. This property is particularly useful in appli-
cations such as data analysis with constraints from on-
tology databases (Gene Ontology [2], DBLP [23], etc.).
Other examples include the topic class hierarchy in [5].

1In [15], the authors discussed the problems with pairwise
constrains in hierarchical clustering. For relative compar-
isons, existing work focuses on partitional clustering.

In this paper, we propose a hierarchical algorithm named
ReCon that finds a complete hierarchy or k-partition satisfy-
ing all given constraints whenever possible. We validated our
model and algorithm with real-world datasets. Experiments
with randomly generated constraints showed that our algo-
rithm significantly outperforms the existing metric learning
approach based on relative comparisons. With informative
constraints that are selected systematically from existing hi-
erarchical knowledge, the existing metric learning approach
does not achieve noticeable performance gains. Our algo-
rithm ReCon, on the contrary, exhibits substantial accuracy
improvements.

2. RELATED WORK

2.1 Pairwise Constraints
The pairwise must-link and cannot-link constraints were

first introduced in [30, 31]. Since then, many studies have
been done to exploit the pairwise constraints in clustering
problems. Existing methods generally fall into two cate-
gories: directly enforcing constraints in modified clustering
algorithms or learning a new metric from constraints. In
the first category, Wagstaff et al. proposed a variant of
the widely used K -Means algorithm that can enforce con-
straints in cluster assignments at each iteration [31]. In [6],
Basu et al. used constraints to initialize the K -Means algo-
rithm instead of random seeding. A density-based method
that incorporates pairwise constraints is given in [25]. Re-
cently, an agglomerative hierarchical approach is proposed
in [15] by Davidson and Ravi. In the second category, pair-
wise constraints are used in defining optimization criteria
for a desired metric. Klein et al. [21] used constraints to
adjust Euclidean distance by shortest-path algorithm. Xing
and collaborators [32] attempted to learn Mahalanobis dis-
tance using convex optimization. The HMRF-KMeans algo-
rithm proposed in [7] combines both constraint satisfaction
and metric learning into a single probabilistic framework.
MPCK-Means [9] learns an individual metric for each clus-
ter and allows violation of constraints by imposing penalties.

2.2 Relative Distance Comparisons and Rela-
tive Constraints

Existing studies on relative comparisons focus on metric
learning. In [26], an SVM-like approach is proposed to learn
a weighted distance function from relative comparisons. Ku-
mar et al. [22] proposed to learn an SVaD measure from
relative comparisons. Note that existing work on relative
comparisons can be used to solve clustering problems with
relative constraints (since each relative constraint is equiv-
alent to two relative comparisons). In [4, 5], Relative con-
straints have been investigated under the term Must-Link-
Before constraints with a focus on text clustering. Its im-
portant properties such as feasibility and informativeness
however remain largely unknown.

3. RELATIVE CONSTRAINTS

3.1 Definition of Relative Constraints
We consider, among three data instances, which two form

the closest pair. Given three data instances a, b, c, we write
ab|c if (a, b) is the closest pair. In other words, ab|c rep-
resents d(a, b) < d(a, c) and d(a, b) < d(b, c) where d(...) is
the distance function. Hence, each relative constraint equals

948

two relative comparisons defined on the same set of three in-
stances.

The relative constraints also unambiguously represent the
knowledge of conditional cluster assignments: given ab|c, if
a, c or b, c belong to the same cluster, then a, b, c must all
belong to the same cluster. Note that the three involved
instances can be arbitrarily chosen from the whole set of
data instances. A constraint in the conditional form does not
prevent three involved instances from being selected from
the same cluster or three different clusters. In addition, the
closest pair is unordered, i.e., ab|c equals ba|c.
3.2 Relative Constraints as Rooted Triplets

The relative closeness of data instances can be represented
by a rooted and unordered tree or hierarchy. In the hierar-
chy, each leaf represents a data instance and each internal
node represents a group of instances that are similar at cer-
tain level. Instances with higher similarity are grouped at
a lower level, before instances that are more distant merge
into bigger groups. In this paper, we use the terms “tree”
and “hierarchy” interchangeably to refer to such structure.

The local hierarchy of each relative constraint ab|c is a
rooted binary tree with three leaves as shown in Fig.1(b).
In this tree, the closest pair a, b are merged first before they
are merged with c. A rooted binary tree with three leaves is
called a rooted triplet. Rooted triplet is an important concept
first introduced in modeling phylogenies (which represent
evolutionary relatedness among organisms). Representing
relative constraints using rooted triplets enables us to lever-
age the theories and algorithms developed in phylogenetic
tree studies.

(a) (b)

(c)

Figure 1: (a) The hierarchical representation of non-
hierarchically labeled classes or partitional cluster-
ing (b) The rooted triplet representing the local hi-
erarchy of constraint ab|c (c) An exemplar hierarchy
of four data instances can be decomposed into a set
of rooted triplets

3.2.1 Inducing Rooted Triplets From Bigger Hierar-
chy

Here we introduce the“induce”operation for rooted triplets.
To induce a rooted triplet from a bigger hierarchy, we first
find the minimum subtree connecting the three involved in-
stances. Then we contract edges whose both end-nodes are
of degree two. Consider the example in Fig.1(c). We can
induce the following rooted triplets: ab|c, ab|d, cd|a, cd|b
from the given hierarchy. If the hierarchy is not binary, it

is possible to induce a subtree in which all three instances
are direct children of the root. In this case, we say the three
instances are unconstrained since their relative closeness is
unspecified.

4. INCORPORATING RELATIVE
CONSTRAINTS IN CLUSTERING

Most of existing clustering algorithms fall into two types:
partitional clustering generates a k -partition of data where
k is either given or automatically found; hierarchical algo-
rithms create a global hierarchy or dendrogram from which
a k -partition can be obtained. Recall that a relative con-
straint can be viewed as a conditional cluster assignment
or a rooted triplet. We now define the satisfaction of rela-
tive constraints for both hierarchy and k -partition of data
instances.

Definition 4.1 A hierarchy of data instances satisfies all
constraints if all the corresponding rooted triplets can be in-
duced from the hierarchy. If there exists at least one hierar-
chy that satisfies all constraints, we say that the constraints
are consistent.

Definition 4.2 A k -partition satisfies all constraints if all
the equivalent conditional cluster assignments are satisfied.
i.e., for each constraint in the form of ab|c, if a, c or b, c
belong to the same cluster, then a, b, c must all belong to
the same cluster.

In this section, we discuss how to incorporate relative con-
straints into a hierarchical clustering framework. Our algo-
rithm generates a hierarchy of data instances that satisfies
all constraints as long as the given constraints are consistent.
Given any k, a k -partition that satisfies all the constraints
can then be generated by cutting the resulting hierarchy at
the appropriate level.

4.1 Feasibility Under Relative Constraints
We first examine the feasibility problem for hierarchical

clustering under relative constraints. To be more specific,
given a set of data instances, does there exist a clustering
hierarchy of instances that satisfies all given relative con-
straints?

4.1.1 Existence of Hierarchy
Since relative constraints can be represented by rooted

triplets, the above problem is equivalent to the problem of
determining the existence of a supertree: given a set of rooted
triplets, is there a tree from which all rooted triplets can be
induced? We denote the set of data instances by D. The
set of constraints is denoted by C. The set of instances in-
volved in constraints is denoted by DC . Obviously, we only
need to determine whether there is a supertree T for DC

that satisfies all relative constraints in C. Data instances
not involved in any constraints can be arbitrarily added as
leaves in T without violating any constraints.

The existence problem of supertree can be solved by the
OneTree algorithm initially given in [1]. Several variants of
OneTree algorithm have been proposed [24, 10]. Below is
a simplified version of the OneTree algorithm presented in
[24]. The algorithm operates by transforming all constraints
into a graph representation: a vertex is created for each in-
stance; an edge connects two vertices a, b if there is any con-
straint of the form ab|∗. It then tests the connectivity of the

949

graph: if the graph is disconnected, then, for each connected
component, it finds the subset of instances in the component
and the subset of constraints defined only on these instances.
These subsets of instances and constraints are then tested by
a recursive call of the algorithm. This recursive procedure is
based on the property that a set of constraints is consistent
if and only if any sub-graph defined on more than two in-
stances is disconnected. The algorithm returns a hierarchy
that satisfies all constraints if any such hierarchy exists. The
complexity of the algorithm is O(|DC |×|C|). The algorithm
does not exhaust all possible hierarchies that satisfy C.

1. Function OneTree(C,D)

2. Input: set C = {r1, ..., rm} of relative constraints,
3. set D = {d1, ..., dn} of data instances

4. Output: a hierarchy T of D that satisfies C

5. If |D| = 1, return a single node labelled by d1
6. If |D| = 2, return a tree with two leaves d1 and d2
7. Create sets Di = {di}, i = 1..n

8. For each constraint (ab|c) ∈ C, merge the sets Di, Dj

containing a, b.

9. If there is only one set left, return fail

10. For each remaining set Di do

11. Let Ci be the set of constraints of which all three
instances are in Di

12. If OneTree(Ci,Di) returns a tree then call it Ti

else return fail

13. Construct a tree T by connecting the roots of all Ti to
a new root

14. Return T

4.1.2 k-partition by Cutting Hierarchy
Given any clustering hierarchy satisfying all constraints,

we can always cut the hierarchy to form a k -partition. The
cutting starts from the root level and goes down following
the recursion levels in OneTree algorithm. The resulting
k -partition always satisfies all constraints. Due to its sim-
plicity, we omit the proof here.

4.2 A Clustering Algorithm That Generates A
Complete Hierarchy

The above OneTree algorithm only ensures the satisfac-
tion of constraints. It does not consider instance attributes
or incorporate any metric function in generating hierarchy.
The hierarchy returned is determined only by the graph rep-
resentation of constraints. Hence, the OneTree algorithm
cannot be used as a hierarchical clustering algorithm.

We now present our modified hierarchical agglomerative
algorithm that incorporates relative constraints in the clus-
tering procedure. Given a set of n instances, the tradi-
tional agglomerative algorithm starts with n clusters where
each cluster contains only one instance. At each round, two
closest clusters are merged. The algorithm completes when
there is only one cluster left. Now with relative constraints
incorporated, we want to ensure that: (1) we do not violate
any constraint (2) we generate a complete hierarchy as long
as the constraints are consistent.

The first condition can be easily satisfied: at each round,
for any constraints in the form of ab|c, if a, b do not belong
to the same cluster, we do not merge the clusters contain-
ing b, c or a, c. The satisfaction of the second condition is
however obscure: if we do not violate any constraint in each
round, do we always get a complete hierarchy? The an-
swer is unfortunately no. It is possible that, though given

constraints are not violated at any previous round, the hi-
erarchical clustering algorithm runs into a dead-end where
any further merging violates some given constraint. A sim-
ple example consists of four data instances a, b, c, d and two
constraints ab|c, cd|a. There exists a complete hierarchy as
in Fig.1(c). If b, d are merged according to some metric in
the first round, there is no possible merging move in the
second round.

In the above example, the constraint ab|d can actually be
inferred from the two given constraints. With ab|d inferred,
merging b, d in the first round becomes an invalid choice.
One may think of pre-computing all inferable constraints to
determine the eligible merging choices at each round. The
set of all constraints that can be inferred is called the closure
of the given constraints. Unlike pairwise constraints, the
closure of relative constraints cannot be trivially computed.
To be more specific, we cannot repeatedly apply low-order
inference rules to derive the complete closure. This is due to
the existence of irreducible inference rules for rooted triplets
[10]: for any n > 3, there are inference rules of order n
that cannot be derived from rules involving fewer than n
rooted triplets. The property prevents us from quickly pre-
computing all eligible merging steps at each round.

To avoid running into dead-ends, we resort back to the
OneTree algorithm which tests the existence of any com-
plete hierarchy. At each round, before merging two clusters,
we test whether there still exists a solution if the two are
merged. A merging step is compatible with constraints only
if it does not change the existence of a complete solution.
Our complete algorithm ReCon is presented below.

1. Algorithm ReCon

2. Input: set C = {r1, ..., rm} of relative constraints,
3. set D = {d1, ..., dn} of data instances

4. If OneTree(C,DC) returns fail then return fail

5. Create clusters CLi = {di}, i = 1..n
6. While number of clusters > 1 do

7. Let S = {i : CLi remains}
8. Find the closest pair of clusters CLi, CLj s.t.

9. Neither (i ∗ |j) or (j ∗ |i) is in C
10. and

11. TestCompatibility(C,S, i, j) is true

12. Merge CLi, CLj into CLi

13. UpdateConstraints(i, j)

1. Function UpdateConstraints(i,j)
2. Input: i, j are the two clusters merged

3. For each constraint (ab|c) ∈ C do

4. If any of a, b, c is equal to j then update it to be i

5. If a = b then remove this constraint

1. Function TestCompatibility(C′,S,i,j)
2. Input: set C′ of relative constraints,

3. set S of cluster indices

4. i, j are the two clusters to merge
5. Output: true if merging i, j is compatible with C′

6. If |S| = 2, return true

7. Create sets Se = {e} for each e ∈ S

8. Merge Si and Sj

9. For each constraint (ab|c) ∈ C′ do
10. Merge the sets Se, Sf containing a, b.

11. If there is only one set left then return false

12. Let Se be the set containing i, j

950

13. Let Ce be the set of constraints of which all three in-
stances are in Se

14. Return TestCompatibility(Ce,Se,i,j)

The TestCompatibility function is modified from the One-
Tree algorithm to allow more efficient tests. Note that the
worst-case complexity of our TestCompatibility function is
the same as that of OneTree (O(|DC |× |C|)). But generally
TestCompatibility can finish much faster (at each level, it
only examines one connected component of the graph repre-
sentation of constraints). The actual complexity of our al-
gorithm depends on the specific choice of merging strategy
and other implementation choices. In this paper, we adopt
the centroid-based hierarchical clustering based on a priority
queue implementation. The overall worst-case complexity of
our algorithm is O(|D|2log|D|+ |D| × |DC |3 × |C|). This is
based on the extreme assumption that any pair of clusters
that are both involved in constraints always have shorter dis-
tance measures (than that of any other pairs). In real appli-
cations, this worst-case scenario is very unlikely to happen
and our algorithm can efficiently handle large datasets with
thousands of constraints(Sec.5.3). If more efficient compo-
nent tracking techniques are adopted [17, 18], the worst-
case complexities of TestCompatibility and the whole algo-
rithm can be further reduced to O(|DC |log2|C|) [19] and
O(|D|2log|D|+ |D| × |DC |3log2|C|), respectively.
4.2.1 Handling Outliers in Getting k-partitions
Although the resulting binary-hierarchy embeds all given

constraints, it does not guarantees a perfect k-cutting in
the presence of outliers. The outliers do not merge with
their expected clusters before real clusters get merged. This
can potentially be solved by using more appropriate metric
functions and placing constraints on the branch size. In this
work, we adopt a simple branch-size threshold in cutting the
hierarchy: branches with size smaller than a given threshold
are considered outliers and are first ignored in the k-cutting
process. After k clusters are obtained, outlier branchs are
merged with their nearest clusters.

4.3 Informative Constraints from Hierarchi-
cal Knowledge

As discussed in previous sections, the use of relative con-
straints greatly expands the possible sources of knowledge.
Besides existing instance-level sources for relative compar-
isons (such as manually labeled classes and relations), rel-
ative constraints as local hierarchies can be extracted from
structural knowledge. Examples of such structural knowl-
edge include ontology/taxonomy databases such as Gene
Ontology [2] and DBLP [23]. Other examples include the
topic class hierarchy in [5]. These knowledge resources are
often in the form of tree-like hierarchies defined on a par-
tially overlapping set of data instances. (Non-hierarchically
labeled classes can also be represented by a two-level hier-
archy by adding a dummy root (Fig.1(a)).) In this section,
we discuss how to extract the most informative constraints
from a given hierarchical knowledge.

Traditionally, constraints are generated at the instance
level. Given a hierarchy of instances or a set of labeled
instances, one can enumerate all possible triple-wise combi-
nations and induce the corresponding relative constraints.
This straightforward approach leads to an extraordinarily
large constraint space. If the given hierarchical knowledge
involves n data instances of interests, one would get O(n3)
constraints. A randomly sampled subset of constraints could

contain limited information due to redundancy in informa-
tion. In [5], the authors noted this problem and tried to
address this by first grouping similar instances before gener-
ating constraints. However, a significant amount of informa-
tion can be lost in this preprocessing step. Also, parameters
and metrics need to be defined for specific tasks.

Since each relative constraint can be represented by a
rooted triplet, we can leverage the existing theories and al-
gorithms in phylogenetic tree studies. It is possible to use
a much smaller set of informative constraints to represent
the whole set of constraints (equivalently, the whole set can
be inferred from the smaller subset). For binary hierarchies,
it can be shown that n − 2 constraints are enough to cap-
ture all information. A linear-time algorithm for finding the
minimum set of rooted triplets from a binary hierarchy is
given in [13]. The most informative relative constraints can
thus be generated accordingly. For general hierarchies, the
polynomial-time algorithm given in [24] can be easily modi-
fied to decompose a general hierarchy into O(n) constraints
if the degree of all internal nodes are bounded. Due to space
limitations, we omit the details of the decomposition algo-
rithm here.

5. EXPERIMENTS
In this section, we show the effect of our model and algo-

rithm on datasets of various sizes from the UCI repository
[3]. Note that our algorithm does not assume any specific
metric function or merging strategy. For the evaluations pre-
sented, we explored both Euclidean distance and a learned
metric based on [26]. In our implementation, we used the
centroid-based hierarchical clustering. Any other merging
strategies and distance measures can be incorporated as well
(e.g., the inverse of sample covariance when the data is as-
sumed to be Gaussian). The clustering accuracies in exper-
iments are reported in the pairwise F-measure:

Precision =
#PairsCorrectlyPredictedInSameCluster

#TotalPairsPredictedInSameCluster

Recall =
#PairsCorrectlyPredictedInSameCluster

#TotalPairsInSameCluster

F-Measure =
2× Precision×Recall

P recision+Recall

We give results for six real-world datasets from the UCI
repository [3]. Table 1 lists the number of instances, dimen-
sions and clusters of these datasets. The Digits-389 and
Letters-IJLT datasets are subsets from the original Digits
and Letters handwritten character recognition datasets. The
two subsets contain the character classes that are consid-
ered difficult to distinguish. We evaluated our algorithm
with both randomly selected constraints and informative
constraints derived from a knowledge hierarchy.

Dataset #instances #dimensions #clusters
Iris 150 4 3
Wine 178 13 3
Ionosphere 351 34 2
Transfusion 748 5 2
Digits-389 3165 16 3
Letters-IJLT 3059 16 4

Table 1: The datasets used in the experiments

951

We compared our method with an existing metric learning
method [26]2. Each relative constraint can be viewed as
two relative distance comparisons. A new metric function
was learned from these comparisons by optimizing an SVM-
like quadratic function. We set the regularization parameter
C to be 1 and A = I following the examples in [26]. We
then solved the optimization problem using SVM-light [20].
We refer to the learned metric as “SVM-Metric”. For each
dataset, we compared the following clustering schemes:

• ReCon + Euclidean Metric

• ReCon + SVM-Metric

• K-Means + SVM-Metric (use learned metric alone)

We also included two unsupervised clustering schemes as
baselines:

• Hierarchical + Euclidean Metric

• K-Means + Euclidean Metric

The first unsupervised approach serves as the baseline for
ReCon. The second provides baseline for K-Means + SVM-
Metric.

5.1 Randomly Sampled Constraints
In our experiments with randomly sampled constraints,

the number of constraints ranges from 0 to |D| where |D|
is the number of data instances. For these non-hierarchical
datasets with known cluster labels, we do not know the true
metric that separates the clusters (or if such metric exists).
Thus, we randomly sampled constraints in the form of ab|c
where a, b are from the same cluster and c is from a differ-
ent cluster. Our algorithm does not take this as must-link or
cannot-link information and only consider this as a, b being
closer than b, c and a, c. For each setting, we took the aver-
age of 50 runs of different random constraints. Fig.2 shows
the accuracies measured with the five clustering schemes.

In most experiments, incorporating SVM-Metric in K-
Means performed significantly better than its baseline (K-
Means + Euclidean Metric). This proves that the learned
SVM-Metric is very useful in representing domain knowl-
edge. We notice that the accuracy curves of K-Means +
SVM-Metric are relatively flat. This indicates that using
SVM-Metric alone can get “saturated” soon and the perfor-
mance does not improve with increasing numbers of con-
straints fed. We conjecture that this is due to its SVM-like
optimization: the few support vectors representing the met-
ric remained mostly unchanged unless there was a big change
in the distribution of training data.

Our algorithm ReCon, incorporating either of the metrics,
outperformed K-Means + SVM-Metric by large margins in
all but one experiments. The only exception is Iris. This is
probably because, being a relatively clean dataset, Iris can
be well described by a metric defined on few dimensions.
The advantage of our method on the remaining five datasets
was generally obvious with a small amount of constraints
regardless of the baseline accuracies (without constraints).
It is interesting that ReCon + Euclidean Metric generally
performed better than ReCon + SVM-Metric. We speculate
that this is because the learned SVM-metric was optimized
from a boundary supported by major data distribution but

2We did not include [5] in comparison due to its focus on
text clustering.

violating some of the constraints fed. Thus, when ReCon
tried to enforce all given constraints, it led to conflicts and
lowered the overall clustering performance.

We also notice that, despite the significant average im-
provement, the clustering quality in individual runs could
vary considerably when applying different sets of randomly
sampled relative constraints. An example is shown in Fig.3
where the min, max and average accuracies of ReCon + Eu-
clidean Metric on Digits-389 and Letters-IJLT are included.
Similar phenomena have been observed in applying pairwise
constraints using various existing approaches [16]. Note that
the variance of using SVM-Metric alone is lower due to its
“saturation”behavior. But this is at the cost of having much
lower overall accuracy.

In real-world problems, it is thus important to quantify
the potential benefit of given relative constraints. Davidson
et al. proposed two measures, informativeness and coher-
ence, to capture the potential benefit brought by pairwise
constraints to a given algorithm/metric [29]. The measures
are intuitive and easy to compute. But they are still insuffi-
cient in explaining the complicated behavior of constrained
clustering. For example, the information redundancy of dif-
ferent constraints is not modeled and the coherence model in
metric space is oversimplified. The situation gets more com-
plicated with relative constraints where triple-wise relations
are used. In the next section, we show that the benefit of
constraints can be maximized when informative constraints
are extracted from existing hierarchical knowledge.

5.2 Informative Constraints from a Given Hi-
erarchy

The above experiments are based on randomly generated
constraints of which the informativeness is difficult to quan-
tify. But, as discussed in Sec.4.3, existing domain knowledge
in the form of hierarchy can be effectively decomposed into
a small set of constraints. Thus, given a hierarchy involv-
ing n instances, we can always find the most informative
constraints that capture all topological information in the
hierarchy.

To demonstrate the effectiveness of this property, we con-
sider the two-level hierarchy formed using true cluster labels
(Fig.1(a)). We used a simple method to generate (k − 1) ×
|D| constraints that represents the two-level hierarchy. The
number of clusters, k, in our experiment is between 2 and 4.
Other general hierarchies can be decomposed based on the
method in [24] as discussed in Sec.4.3.

1. Function GenerateConstraints(C,D)

2. Input: a set of clusters CL1 ... CLk

3. each cluster CLi = {di1, ..., din} where dij is a
data instance in this cluster

4. Output: set C of relative constraints

5. For each cluster CLi

6. For each data instance dij in CLi

7. For each cluster CLl other than CLi

8. Add (di1d
i
j |dl1) into C

9. Return C

Fig.4 shows the results of applying these informative con-
straints. As in previous experiments, each accuracy curve is
an average of multiple runs. When applying random subsets
of the selected constraints, we observed stable and consis-
tent improvements with ReCon. Similar to our previous
experiments, ReCon showed significant improvements over

952

0 50 100 150
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Constraints

A
cc

ur
ac

y

Iris (|D|=150)

Hierarchical + Euclidean
K−Means + Euclidean
Recon + Euclidean
ReCon + SVM
K−Means + SVM

(a)

0 50 100 150 200

0.8

0.85

0.9

0.95

1

Number of Constraints

A
cc

ur
ac

y

Wine (|D|=178)

Hierarchical + Euclidean
K−Means + Euclidean
Recon + Euclidean
ReCon + SVM
K−Means + SVM

(b)

0 50 100 150 200 250 300 350

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Constraints

A
cc

ur
ac

y

Ionosphere (|D|=351)

Hierarchical + Euclidean
K−Means + Euclidean
Recon + Euclidean
ReCon + SVM
K−Means + SVM

(c)

0 200 400 600 800

0.5

0.6

0.7

0.8

0.9

1

Number of Constraints

A
cc

ur
ac

y

Transfusion (|D|=748)

Hierarchical + Euclidean
K−Means + Euclidean
Recon + Euclidean
ReCon + SVM
K−Means + SVM

(d)

0 500 1000 1500 2000 2500 3000 3500

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Constraints

A
cc

ur
ac

y

Digits−389 (|D|=3165)

Hierarchical + Euclidean
K−Means + Euclidean
Recon + Euclidean
ReCon + SVM
K−Means + SVM

(e)

0 500 1000 1500 2000 2500 3000 3500

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Constraints

A
cc

ur
ac

y

Letters−IJLT (|D|=3059)

Hierarchical + Euclidean
K−Means + Euclidean
Recon + Euclidean
ReCon + SVM
K−Means + SVM

(f)

Figure 2: The clustering accuracy for 6 UCI datasets with randomly generated relative constraints. For each
dataset, the number of constraints ranges from 0 to the number of instances in the dataset.

0 1000 2000 3000 4000
0.4

0.6

0.8

1

Number of Constraints

A
cc

u
ra

cy

Letters−IJLT (|D|=3059)

max
mean
min

(a)

0 1000 2000 3000 4000
0

0.05

0.1

0.15

0.2

Number of Constraints

S
ta

n
d

a
rd

 D
iv

ia
tio

n

Letters−IJLT (|D|=3059)

(b)

0 1000 2000 3000 4000

0.7

0.8

0.9

1

Number of Constraints

A
cc

u
ra

cy

Digits−389 (|D|=3165)

max
mean
min

(c)

0 1000 2000 3000 4000
0

0.02

0.04

0.06

0.08

0.1

Number of Constraints

S
ta

n
d

a
rd

 D
iv

ia
tio

n

Digits−389 (|D|=3165)

(d)

Figure 3: The variance of accuracy of 50 different runs of Letters-IJLT and Digits-389. Randomly generated
constraints are applied with ReCon + Euclidean Metric in each run: (a) Min, max and average accuracy of
Letters-IJLT (b) Standard deviation of Letters-IJLT (c) Min, max and average accuracy of Digits-389 (d)
Standard deviation of Digits-389

using SVM-Metric alone in all experiments (including Iris
this time). With all the constraints incorporated, ReCon
always created a binary-hierarchy that embeds the original
two-level hierarchy. In the resulting k-partition, we achieved
100% accuracy on all six datasets. In comparing with using
randomly generated constraints of the same amount, Re-
Con attained significantly higher accuracy with informative
constraints. The variance of the performance gain was also
much smaller which indicates the steady informativeness of
these constraints. The effect of informative constraints is
however uncertain with the metric learning approach: K-
Means + SVM-Metric tended to reach its “saturation” with
fewer constraints in Iris and Digits-389. It also achieved
higher accuracy in Transfusion. But the overall accuracy

gain in all experiments was very limited and the clustering
results became worse in Ionosphere.

In real-world problems, the true class labels or cluster
assignments are apparently unavailable. But, if there exists
reliable hierarchical knowledge of a subset of instances, we
demonstrate a promising way to select the most informative
relative constraints. Such informative set of constraints can
be fully utilized in our algorithm while the metric learning
approach does not benefit from this informativeness.

5.3 Running Time
Fig.5(a) and Fig.5(b) show the running time of ReCon

+ Euclidean Metric on Letters-IJLT and Digits-389. Both
datasets have more than 3,000 instances and the number

953

0 50 100 150 200 250 300
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Constraints

A
cc

ur
ac

y

Iris (|D|=150)

Hierarchical + Euclidean
K−Means + Euclidean
Recon + Euclidean
ReCon + SVM
K−Means + SVM

(a)

0 50 100 150 200 250 300 350

0.8

0.85

0.9

0.95

1

Number of Constraints

A
cc

ur
ac

y

Wine (|D|=178)

Hierarchical + Euclidean
K−Means + Euclidean
Recon + Euclidean
ReCon + SVM
K−Means + SVM

(b)

0 50 100 150 200 250 300 350

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Constraints

A
cc

ur
ac

y

Ionosphere (|D|=351)

Hierarchical + Euclidean
K−Means + Euclidean
Recon + Euclidean
ReCon + SVM
K−Means + SVM

(c)

0 200 400 600 800

0.5

0.6

0.7

0.8

0.9

1

Number of Constraints

A
cc

ur
ac

y

Transfusion (|D|=748)

Hierarchical + Euclidean
K−Means + Euclidean
Recon + Euclidean
ReCon + SVM
K−Means + SVM

(d)

0 1000 2000 3000 4000 5000 6000 7000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Constraints

A
cc

ur
ac

y

Digits−389 (|D|=3165)

Hierarchical + Euclidean
K−Means + Euclidean
Recon + Euclidean
ReCon + SVM
K−Means + SVM

(e)

0 2000 4000 6000 8000 10000

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Constraints

A
cc

ur
ac

y

Letters−IJLT (|D|=3059)

Hierarchical + Euclidean
K−Means + Euclidean
Recon + Euclidean
ReCon + SVM
K−Means + SVM

(f)

Figure 4: The clustering accuracy for 6 UCI datasets with informative constraints. For each dataset, (k−1)×|D|
constraints are selected where k is the number of clusters and |D| is the number of instances in the dataset.
We evaluate the clustering accuracy with random subsets and complete set of the selected constraints.

0 1000 2000 3000 4000
15

20

25

30

35

40
Letters−IJLT (|D|=3059, k=4)

Number of Constraints

T
im

e
 (

se
c)

(a)

0 1000 2000 3000 4000
18

19

20

21

22

23
Digits−389 (|D|=3165, k=3)

Number of Constraints

T
im

e
 (

se
c)

(b)

0 1000 2000 3000
0

100

200

300

400
Letters−3000 (|D|=3000, k=26)

Number of Constraints

T
im

e
 (

se
c)

(c)

0 1000 2000 3000
19

20

21

22

23

24
Digits−3000 (|D|=3000, k=10)

Number of Constraints

T
im

e
 (

se
c)

(d)

Figure 5: The running time of ReCon + Euclidean Metric on Letters-IJLT, Digits-389, Letters-3000 and
Digits-3000.

of constraints applied ranges from 0 to 3,000. Experiments
were conducted on a PC with 2.6GHz Intel CPU and 8G
RAM. The time plotted is the average of 50 runs of inde-
pendently sampled constraint sets. The running time largely
depends on the distribution of the data and the constraints
selected. For comparison, we include two plots of datasets
of large number of clusters (Fig.5(c) and 5(d)). Letters-3000
has 3,000 instances randomly sampled from all 26 classes in
the original Letters dataset. Digits-3000 is sampled from
all 10 classes in Digits dataset. In most experiments we
conducted with the UCI datasets, our algorithm completed
clustering within a few minutes.

6. CONCLUSIONS
In this paper, we investigated the important properties of

relative constraints, an extension to relative comparisons to
represent domain knowledge. Each relative constraint de-

scribes the local hierarchy of three instances. Besides exist-
ing instance-level knowledge sources, informative constraints
can be systematically obtained from hierarchical knowledge
resources such as Gene Ontology [2] and DBLP [23]. This
property is desirable in making constrained clustering prac-
tical. We also present an efficient hierarchical algorithm that
finds a complete hierarchy (and its corresponding partition)
satisfying all given relative constraints. Experiments on real-
world data showed promising results of applying relative con-
straints. Our algorithm significantly outperforms the metric
learning approach based on relative comparisons. In addi-
tion, our algorithm exhibits unique advantage in utilizing
informative constraints that are systematically extracted.

In the future work we plan to investigate how to integrate
relative constraints with other existing constraint models.
For example, pairwise constraints can be present together
with relative constraints in many problems.

954

Handling Noisy Constraints
In this paper, we assume a reliable source of consistent
constraints and focus on the hard-satisfaction of all given
constraints. In reality, domain knowledge may contain er-
rors and the obtained constraints can be noisy (or even be-
come inconsistent). Hence, handling noisy/inconsistent con-
straints is an important step in applying relative constraints.
If all constraints are of equal weight, one obvious approach to
address inconsistency is to derive a maximum subset of con-
sistent constraints from the given inconsistent constraints.
This reduces to the Maximum Triplet Consistency problem
[11] and its approximations [27, 28, 12]. Also, metric learn-
ing approaches can be used as a subroutine to filter noisy
constraints. We plan to explore a more effective way to com-
bine our framework with existing metric learning studies.

Acknowledgments
The authors would like to thank the reviewers for their valu-
able comments. This work was partially supported by NSF
grants IIS-0812464 and IIS-0448392.

7. REFERENCES
[1] A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D.

Ullman. Inferring a tree from lowest common
ancestors with an application to the optimization of
relational expressions. SIAM Journal on Computing,
10(3):405–421, 1981.

[2] M. Ashburner and et. al. Gene ontology: tool for the
unification of biology. the gene ontology consortium.
Nature genetics, 25(1):25–29, May 2000.

[3] A. Asuncion and D. Newman. UCI machine learning
repository, 2007.

[4] K. Bade and A. Nurnberger. Personalized hierarchical
clustering. In WI ’06, pages 181–187, 2006.

[5] K. Bade and A. Nurnberger. Creating a cluster
hierarchy under constraints of a partially known
hierarchy abstract. In SDM ’08, pages 13–24, 2008.

[6] S. Basu, A. Banerjee, and R. Mooney. Semi-supervised
clustering by seeding. In ICML ’02, pages 19–26, 2002.

[7] S. Basu, M. Bilenko, and R. J. Mooney. A
probabilistic framework for semi-supervised clustering.
In KDD ’04, pages 59–68, 2004.

[8] S. Basu, I. Davidson, and K. L. Wagstaff. Constrained
clustering: advances in algorithms, theory, and
applications. Chapman and Hall/CRC, 2008.

[9] M. Bilenko, S. Basu, and R. J. Mooney. Integrating
constraints and metric learning in semi-supervised
clustering. In ICML ’04, page 11, 2004.

[10] D. Bryant and M. Steel. Extension operations on sets
of leaf-labelled trees. Advances in Applied
Mathematics, 16(4):425–453, 1995.

[11] J. Byrka, S. Guillemot, and J. Jansson. New results on
optimizing rooted triplets consistency. In ISAAC ’08,
2008.

[12] D. Chen, O. Eulenstein, D. Fernandez-Baca, and
M. Sanderson. Minimum-flip supertrees: complexity
and algorithms. IEEE/ACM transactions on
computational biology and bioinformatics, 3(2):165–73,
2006.

[13] M. Constantinescu and D. Sankoff. An efficient
algorithm for supertrees. Journal of Classification,
12(1):101–112, 1995.

[14] I. Davidson and S. Ravi. Clustering with constraints:
Feasibility issues and the k-means algorithm. In SDM
’05, page 138, 2005.

[15] I. Davidson and S. Ravi. Using instance-level
constraints in agglomerative hierarchical clustering:
theoretical and empirical results. Data Mining and
Knowledge Discovery, 18(2):257–282, 2008.

[16] I. Davidson, K. Wagstaff, and S. Basu. Measuring
constraint-set utility for partitional clustering
algorithms. LNAI, 4213:115–126, 2006.

[17] M. R. Henzinger, V. King, and T. Warnow.
Constructing a tree from homeomorphic subtrees,
with applications to computational evolutionary
biology. Algorithmica, 24(1):1–13, 1999.

[18] J. Holm, K. de Lichtenberg, and M. Thorup.
Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree,
2-edge, and biconnectivity. Journal of the ACM,
48(4):723–760, 2001.

[19] J. Jansson, J. H. Ng, K. Sadakane, and W. K. Sung.
Rooted maximum agreement supertrees. Algorithmica,
43(4):293–307, 2005.

[20] T. Joachims. Making large-scale support vector
machine learning practical. Advances in kernel
methods: support vector learning, pages 169–184, 1999.

[21] D. Klein, S. Kamvar, and C. Manning. From
instance-level constraints to space-level constraints:
Making the most of prior knowledge in data
clustering. In ICML ’02, pages 307–314, 2002.

[22] N. Kumar and K. Kummamuru. Semisupervised
clustering with metric learning using relative
comparisons. IEEE Transactions on Knowledge and
Data Engineering, 20(4):496–503, 2008.

[23] M. Ley. The DBLP computer science bibliography:
Evolution, research issues, perspectives. In SPIRE ’02,
pages 1–10, 2002.

[24] P. Meei and N. Wormald. Reconstruction of rooted
trees from subtrees. Discrete Applied Mathematics,
69(1):19–31, 1996.

[25] C. Ruiz, M. Spiliopoulou, and E. Menasalvas.
C-dbscan: Density-based clustering with constraints.
In RSFDGrC ’07, pages 216–223, 2007.

[26] M. Schultz and T. Joachims. Learning a distance
metric from relative comparisons. In NIPS ’04, 2004.

[27] C. Semple and M. Steel. A supertree method for
rooted trees. Discrete Applied Mathematics,
105(1-31-3):147–158, 2000.

[28] S. Snir and S. Rao. Using max cut to enhance rooted
trees consistency. IEEE/ACM transactions on
computational biology and bioinformatics, 3(4):323–33,
2006.

[29] K. Wagstaff, S. Basu, and I. Davidson. When is
constrained clustering beneficial, and why? In AAAI
’06, pages 59–60, 2006.

[30] K. Wagstaff and C. Cardie. Clustering with
instance-level constraints. In ICML ’00, pages
1103–1110, 2000.

[31] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl.
Constrained k-means clustering with background
knowledge. In ICML ’01, pages 577–584, 2001.

[32] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance
metric learning with application to clustering with
side-information. In NIPS ’02, pages 505–512, 2002.

955

