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Abstract

We consider the problem of finding a suitable common low-dimensional subspace for accurately representing a
given set of covariance matrices. When the set contains only one covariance matrix, the subspace is given by Principal
Component Analysis (PCA). For multiple covariance matrices, we term the problem Common Component Analysis
(CCA). While CCA can be posed as a tensor decomposition problem, standard approaches to tensor decomposition
have two critical issues: (i) Tensor decomposition methods are iterative and rely on the initialization. A bad initial-
ization may lead to poor local optima; (ii) For a given level of approximation error, one does not know how to choose
a suitable low dimensionality. In this paper, we present a detailed analysis of CCA which yields an effective initial-
ization and iterative algorithms for the problem. The proposed methodology has provable approximation guarantees
w.r.t. the global optimum, and also allows one to choose the dimensionality for a given level of approximation error.
We also establish conditions under which the methodology will obtain the global optimum. We illustrate the effec-
tiveness of the proposed method through extensive experiments on synthetic data as well as two real stock market
datasets, where major financial events can be visualized in low dimensions.

1 Introduction

In recent years, simultaneous analysis of multiple high-dimensional covariance matrices is becoming increasingly
important in diverse application domains ranging from finance to climate and environmental sciences [30, 31, 32,
11, 34]. The traditional approach for finding accurate low dimensional approximation to high dimensional covariance
matrices is Principal Component Analysis (PCA) [14, 4]. In particular, PCA finds an orthogonal projection of a single
covariance matrix to a low-dimensional space while preserving as much of the “energy” or variance as possible. The
problem can be solved by an eigenvalue decomposition (EVD) of the single covariance matrix under consideration.

Given multiple covariance matrices, we consider the problem of finding a suitable common low-dimensional subspace
for accurately representing all the covariance matrices. We term the problem Common Component Analysis (CCA).
PCA is not suitable for finding such a subspace for multiple covariance matrices, particularly if the covariance ma-
trices span different subspaces. Examples include stock market data where financial shocks and volatility arise from
different sources, and yield stock return covariance matrices in different subspaces. The low-dimensional covariance
representation of the high-dimensional covariance matrices can take two possible forms: diagonal or full. Existing
models where diagonal low rank matrices are considered, such as PARAFAC/ CANDECOMP [16, 17, 24, 22] and
Common Principal Components (CPC)[13, 12], do not allow interactions among low-dimensional components, and
essentially assume that underlying factors are uncorrelated. Moreover, multiple matrices can be simultaneously diag-
onalized if and only if they commute [19], which need not be true in general. Consequently, in this paper, we consider
the case where the low dimensional covariance matrices could be full matrices. Such decompositions have been widely
studied under different names, such as Tucker2 models [35, 16, 24, 25, 22], Tensor PCA [6], 2DSVD [9], GLRAM
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[36], and in tensor decomposition [21, 22, 26, 33]. Variance-correlation [11] and Cholesky decomposition [3, 31] have
also been used to simultaneously model multiple covariance matrices in low dimensions.

While CCA can be posed as a tensor decomposition problem, unlike PCA, standard approaches to tensor decompo-
sition have two critical issues: (i) Tensor decomposition methods are iterative and rely on the initialization. A bad
initialization may lead to poor local optima; (ii) For a given level of approximation error, one does not know how to
choose a suitable low dimensionality. In this paper, we present a detailed analysis of CCA and present algorithms
which address these two issues. We start by showing that our problem is equivalent to maximizing (not minimizing)
a convex function over a compact but non-convex set. As a result, finding the global maximum in general is difficult.
With an analysis using a simpler variant of CCA, we derive lower and upper bounds for the CCA objective for any
orthonormal matrix. The bounds naturally lead to corresponding lower and upper bounds for the global maxima of
CCA. We also give sufficiency conditions under which global maxima will be achieved. In [9], similar bounds were
established for the local maxima of a related problem, but the closeness of the bounds w.r.t. the global maxima was
not explicitly investigated. Using our bounds, we propose an initialization for iterative update methods which have
a clear approximation guarantee w.r.t. the global maxima. Related favorable properties of suitable initialization has
been observed in [36, 9], particularly for rank-1 approximation [27, 20]. Our analysis shows that instead of starting
with a given low dimension, one can start with a approximation error bound, and choose a sufficient dimensionality
appropriately for CCA which satisfies the given error bound. Note that such dimensionality selection is not possible
for general tensor decomposition problems. We present two iterative update algorithms which start from the prescribed
initialization, and monotonically improve the objective function till convergence. One algorithm is based on a stan-
dard update used in the tensor decomposition literature [24, 25, 6, 9, 36]. We also propose a novel algorithm based
on an auxiliary function [28, 29]. The novel algorithm is substantially more efficient especially for low-dimensional
projections, since the update only requires preforming the SVD of a r × n matrix instead of the EVD of a n × n
matrix used in standard tensor decomposition methods, where n is the dimensionality of observed high-dimensional
covariance and r is the dimensionality of latent low-dimensional covariance.

The remainder of this paper is organized as follows. We formulate the Common Component Analysis (CCA) problem
in Section 2. In Section 3, we analyze the problem, establish lower and upper bounds for the global maxima, introduce
the initialization and its optimality properties, establish sufficient conditions under which global maximum will be
achieved, and also discuss the connections to related work. In Section 4, we present two algorithms for CCA given
a suitable initialization, which can work with a given dimensionality or given approximation error bound. We report
experimental results on synthetic data as well as two stock market datasets to illustrate the performance of the proposed
ideas in Section 5, and conclude in Section 6.

Notation: Matrices are denoted by uppercase bold letters (e.g.,X). Vectors are denoted by bold lowercase letters
(e.g.,x). The diagonal entries in a diagonal matrix are generally assumed to be in non-decreasing order. Ir, where r
is an integer, denotes an identity matrix of size r. If clear from context, r may be omitted (usually dimension n).

2 Problem Formulation

Assume a set of high dimensional covariance matrices Xt ∈ Rn×n, 1 ≤ t ≤ T . The key hypothesis driving our
analysis is that the high-dimensional covariance matrices are indeed a linearly transformed version of a set of low
dimensional covariance matrices Yt ∈ Rr×r, 1 ≤ t ≤ T . While the linear transformation U ∈ Rn×r as well as
the low dimensional covariance matrices Yt, 1 ≤ t ≤ T , are unknown, Xt is assumed to be well approximated by
UYtUT . In particular,

Xt = UYtUT + Et (1)

where Et is the residual matrix. Without loss of generality, U is assumed to be orthonormal, i.e., UT U = Ir. The goal
is to find U and Yt, 1 ≤ t ≤ T such that the sum of the Frobenius norms of all the residual matrices are minimized.
The problem can be formally stated as follows:

min
U,Yt

UT U=Ir

T∑
t=1

‖Xt −UYtUT ‖2F . (2)
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Since U determines a common subspace for all the covariance matrices, we call the above formulation Common
Component Analysis (CCA).

We make a few observations before continuing with our analysis. If there is only one covariance matrix X1 under
consideration, then the model reduces to standard PCA. For a given value of r, the objective ‖X1 − UY1UT ‖2 is
minimized when U consists of the r principal eigenvectors of X1 and Y1 is the diagonal matrix of the corresponding
eigenvalues. For more than one matrices, the existing literature on tensor decompositions is relevant [24, 26, 22,
21, 6, 9, 36, 16, 17, 35]. If Xt is not a covariance matrix, i.e., Xt ∈ Rm×n, it is modeled as Xt = UYtVT +
Et, where U ∈ Rm×r,Yt ∈ Rr×s,V ∈ Rs×n. Assuming r = s and restricting Yt be to be diagonal leads
to PARAFAC/CANDECOMP models [24, 22]. When such restrictions are not imposed, one gets Tucker2 models
[24, 22]. Iterative algorithms and data mining applications of such decompositions have been studied in the literature
[24, 22, 23, 9, 36]. Unlike most existing settings, in our model each Xt is a positive semi-definite matrix, and Yt is
also positive semi-definite. We discuss technical relationships of our analysis to existing models in Section 3.5.

We start the analysis with the following two results:

Lemma 1 The optimum Yt in (2) satisfies Yt = UT XtU. Further, the optimal U in (2) is the solution to the
following problem:

max
UT U=Ir

f(U) = max
UT U

Tr(UT M(U)U) , (3)

where

M(U) =
T∑

t=1

XtUUT Xt . (4)

Proof: Since UT U = Ir, taking the derivative of objective function in (2) with respect to Yt and setting it to zero,
we obtain

UT XtU−Yt = 0 ,

proving the first part of the result. Replacing this expression for Yt in (2), we obtain

min
UT U=Ir

T∑
t=1

‖Xt −UYtUT ‖2F

= min
UT U=Ir

T∑
t=1

Tr((Xt −UYtUT )T (Xt −UYtUT ))

= min
UT U=Ir

T∑
t=1

Tr(X2
t − 2XtUYtUT + UYtUT UYtUT )

(a)
= min

UT U=Ir

T∑
t=1

Tr(X2
t − 2XtUUT XtUUT + UUT XtUUT XtUUT )

(b)
= min

UT U=Ir

T∑
t=1

Tr(X2
t −UT XtUUT XtU)

= min
UT U=Ir

Tr

(
T∑

t=1

X2
t

)
− Tr

(
T∑

t=1

UT XtUUT XtU

)
,

where (a) holds because Yt = UT XtV, and (b) holds since Tr(AB) = Tr(BA) and UT U = Ir. Since Tr(
∑N

t X2
t )

is a constant, problem (2) is equivalent to the following maximization problem

max
UT U=Ir

Tr(UT M(U)U)

where

M(U) =
∑

t

XtUUT Xt .
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That completes the proof.

Next we show that f(U) in (3) is convex. For this we need a lemma

Lemma 2 0 ≤ Tr(A ·B) ≤ Tr(A) · Tr(B) for any two symmetric positive semi-definite matrices A,B,

Proof: Factor A = KKT , B = LLT . Then using the identity Tr(XY) = Tr(YX) for any X,Y:

Tr(A ·B) = Tr(KKT LLT ) = Tr(LT KKT L)
= ‖KT L‖2F .

Hence we have
0 ≤ ‖KT L‖2F ≤ ‖KT ‖2F · ‖L‖2F = Tr(A) · Tr(B).

Lemma 3 For U ∈ Rn×r (not necessarily orthonormal), f(U) is a convex function.

Proof: It suffices to show fX(U) = Tr[FX(U)] is a convex function of U for any single symmetric positive semidef-
inite matrix X, where FX(U) = UT XUUT XU.

We show convexity by showing that the second derivative in any particular direction is non-negative. Pick an arbitrary
direction V and compute

FX(U + sV) = FX(U) + sG + s2H + h.o.t., (5)

where h.o.t. denotes the high order terms, G,H are expressions in X,U,V to be computed. We want to show
Tr(H) ≥ 0. Expanding (5) yields the following expression for H:

H=VT XVUT XU + UT XUVT XV (a)
+ VT XUUT XV + UT XVVT XU (b)
+ VT XUVT XU + UT XVUT XV (c)

=VT XVUT XU + UT XUVT XV (a)
+ (VT XU + UT XV)2 (d)=(b)+(c)

The trace of (a) is non-negative from Lemma 2. The expression (d) is the square of a symmetric matrix, and hence its
trace is also non-negative.

Unfortunately, the fact that f(U) is convex does not help us in any way. Note that from (3), the problem is one of
maximizing f(U) instead of minimizing it. Further, the constraint set UT U = Ir is not convex. As a result the
problem in (3) is not convex. In fact, the problem is one of maximizing a convex function over a non-convex feasible
set. As a result, there may be several local maxima. In particular, a standard approach of starting from an initial
guess, as is commonly employed in alternating least squares, will likely get stuck in local minima. Furthermore, it
is difficult to characterize the proximity of such solutions in terms of the function value achieved with respect to the
global optimum. In the next two sections, we develop a novel way to initialize U along with algorithms for iterative
updates with guarantees relative to the global optimum.

3 Analysis of Common Component Analysis

In this section, we analyze CCA in terms of a simpler model we call Common Component Analysis 1 (CCA1). We
show that CCA1 is a PCA-style problem, and can be solved using eigen-value decomposition. More importantly, the
solution to CCA1 leads to lower and upper bounds on the global maximum of CCA, and suggests a good initialization
for any iterative algorithm for solving CCA. Instead of a given dimensionality, if one wants to solve CCA for a
given approximation error, our analysis shows how one can choose a suitable dimensionality sufficient to satisfy the
approximation error bound.
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3.1 A Simpler Model: CCA1

Instead of the original problem in (2), we consider a simpler decomposition given by

Xt = UYt + Et (6)

where U ∈ Rn×r and Yt ∈ Rr×n. Assuming the residual norms to be small, the problem of finding U, Yt can be
posed as follows:

min
U,Yt

UT U=Ir

T∑
t=1

‖Xt −UYt‖2F . (7)

We call the above problem CCA1 since it only considers one-sided projection compared to two-sided projections in
CCA. Similar to CCA, the simplified problem CCA1 allows an alternative characterization as follows:

Lemma 4 The optimal Yt in (7) satisfies Yt = UT Xt. Further, the optimal U in (6) is the solution to the following
problem:

max
UT U=Ir

f1(U) = max
UT U=Ir

Tr(UT M(In)U) , (8)

where

M(In) =
T∑

t=1

X2
t . (9)

Proof: Since UT U = Ir, taking derivative of (6) w.r.t. Yt and setting to zero yields UT Xt −Yt = 0, proving the
first part. Replacing this expression for Yt in (6), we obtain

min
UT U=Ir

T∑
t=1

‖Xt −UYt‖2F

= min
UT U=Ir

T∑
t=1

‖Xt −UUT Xt‖2F

= min
UT U=Ir

T∑
t=1

Tr((In −UUT )XtXt(In −UUT ))

= min
UT U=Ir

T∑
t=1

Tr(X2
t −UUT X2

t + UUT X2
tUUT )

(a)
= min

UT U=Ir

T∑
t

Tr(X2
t −UT X2

tU)

= min
UT U=Ir

Tr

(
T∑

t=1

X2
t

)
− Tr

(
T∑

t=1

UT X2
tU

)

where (a) holds since Tr(AB) = Tr(BA) and UT U = Ir. Since Tr(
∑T

t=1 X2
t ) is a constant, problem (6) is

equivalent to the following maximization problem

max
UT U=Ir

Tr(UT M(In)U)

where M(In) =
∑T

t=1 X2
t . That completes the proof.

First note that CCA1 as in (8) is a PCA problem on M(In), which can be solved using eigen-value decomposition.
Table 1 shows a relative comparison between CCA and CCA1.
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Table 1: CCA and CCA1
CCA CCA1

Xt = UYtU + Et Xt = UYt+Et

M(U) =
∑

t XtUUT Xt M(In) =
∑

t X
2
t

f(U) = Tr(UT M(U)U) f1(U) = Tr(UT M(In)U)

3.2 Lower and Upper Bounds

The solution of CCA1 helps significantly in characterizing the solution to CCA. We focus on developing lower and
upper bounds to optimum value of CCA based on the solution of CCA1. Since CCA1 is essentially the PCA problem
over M(In) =

∑
t X

2
t , if U0 denotes the top r eigenvectors of M(In) =

∑T
t=1 X2

t , then U0 is the solution to (8). Let
fmax
1 = f1(U0) be the maximum value of f1(U). Further, let MT = Tr(M(In)) = Tr

(∑
t X

2
t

)
. With this notation,

we have the following result:

Theorem 1 Let MT = Tr(
∑

t X
2
t ). Then, with f1(U) and f(U) denoting the objective functions for CCA1 and CCA

respectively as in (8) and (3), for any U with UT U = Ir, we have

f2
1 (U)
MT

≤ f(U) ≤ f1(U) . (10)

Proof: By definition,

f(U) = Tr(UT M(U)U) ≤ Tr(M(U))

=
T∑

t=1

Tr(XtUUT Xt) =
T∑

t=1

Tr(UT X2
tU) = f1(U) .

Now, we prove f(U) ≥ f2
1 (U)
MT

. Since Xt is symmetric positive semidefinite, it can be written as Xt = X
1
2
t X

1
2
t . We

define the following matrices:

A =
[
X

1
2
1 UUT X

1
2
1 , · · · ,X

1
2
T UUT X

1
2
T

]
B = [X1, · · · ,XT ] .

The trace of their product is given by

Tr(ABT ) =
T∑

t=1

Tr(X
1
2
t UUT X

1
2
t Xt) =

T∑
t=1

Tr(UT X2
tU) = f1(U) .

Now, f(U) is rewritten as

f(U) =
T∑

t=1

Tr(UT XtUUT XtU)

=
T∑

t=1

Tr(UT X
1
2
t X

1
2
t UUT X

1
2
t X

1
2
t U)

=
T∑

t=1

Tr(X
1
2
t UUT X

1
2
t X

1
2
t UUT X

1
2
t )

= Tr(AAT ) ,

and MT is

MT = Tr(
T∑

t=1

X2
t ) = Tr(BBT ) .
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From the Cauchy-Schwarz inequality, we have

f(U)MT = Tr(AAT )Tr(BBT ) ≥ [
Tr(ABT )

]2
= f2

1 (U) .

Dividing both sides by MT completes the proof.

Definition 1 Let p1 denote the fraction of ‘energy’ in
∑

t X
2
t captured by the rank-r PCA solution U0. In particular,

p1 =
f1

max

MT
=

Tr
(
UT

0

(∑
t X

2
t

)
U0

)

Tr (
∑

t X
2
t )

, (11)

so that 0 ≤ p1 ≤ 1.

Using this definition and Theorem 1, we have the following result which bounds the value of the global maximum of
CCA.

Corollary 1 Let f1
max and fmax be the global maximum of CCA1 and CCA respectively over UT U = Ir, and p1 is

as defined in Definition 1. Then, we have

p1f1
max ≤ fmax ≤ f1

max (12)

Proof: Let U0 be the solution of CCA1, so that f1
max = f1(U0) and p1 = f1

max/MT . According to Theorem 1,
we have

f(U0) ≥ f2
1 (U0)
MT

=
fmax
1

MT
fmax
1 = p1f1max .

Hence, for the global maximum of CCA, we have

fmax ≥ f(U0) ≥ p1f1max

Further, since f1(U) is an upper bound of f(U), we have fmax ≤ f1
max. That completes the proof.

Recall that the solution to CCA1 is U0, the top-r eigenvectors of
∑

t X
2
t . Thus, it is easy to compute fmax

1 = f1(U0)
and p1 = fmax

1 /MT . From Theorem 1, it follows that p1f
max
1 ≤ f(U0) ≤ fmax

1 . Now if we do iterative updates for
f(U) which start with initialization U0 and converges to U∗

0 (see Section 4), we have

p1f
max
1 ≤ f(U0) ≤ f(U∗

0) ≤ fmax ≤ fmax
1 . (13)

From (13), we note that if p1 is close to 1, then f(U∗
0) will be close to the global maximum fmax. The relative error

of f(U∗
0) w.r.t. the global maximum is

fmax − f(U∗
0)

fmax
≤ f1

max − f(U∗
0)

f1
max (14)

Even before f(U∗
0) is found, there still exists an upper bound formalized in the result below:

Corollary 2 Let U0 be the r principal eigenvectors of M(In) =
∑

t X
2
t , and f(U∗

0) be the solution to CCA with the
initialization U0. Then, the relative error of f(U∗

0) with respect to fmax satisfies

fmax − f(U∗
0)

fmax
≤ 1− p1 (15)

Proof: Consider the inequality f(U∗
0) ≥ p1f1max. Dividing both sides by fmax we get

f(U∗
0)

fmax
≥ p1

f1
max

fmax

(a)

≥ p1 ,
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where (a) follows since f1
max ≥ fmax. Consequently

∣∣∣∣
fmax − f(U∗

0)
fmax

∣∣∣∣ = 1− f(U∗
0)

fmax
≤ 1− p1 .

Note that initialization itself satisfies the above bound, so that f(U0) ≥ p1f
max. In other words, U0 forms a good

initialization assuming p1 is large. In particular, if p1 = 1, then U0 achieves the global maximum for f(U). Since
U0 gives a good initialization with guarantees, our algorithm will start with U0 and do iterative updates to hopefully
reach an even better solution. In particular, if p1 is large and U0 is in the basin of attraction of the global maxima, the
iterative updates will be able to reach the global maxima.

3.3 Approximate Relative Error and Rank

In certain applications, one may have to pick a suitable rank r to preserve certain fraction of the observed covariance
structure. The goal is to keep the rank r minimum while explaining a given fraction of the observed covariance, or,
equivalently, having the error in approximating the observed covariance go below a given threshold. In PCA, since
its solution based on EVD has a nested structure, there is a simple way to obtain a suitable rank r. In particular, one
can keep incrementally adding rank till the error goes below the desired threshold. The rank r solution includes the
rank (r − 1) solution and an additional dimension. Further, obtaining the best rank-r solution from the best rank-
(r − 1) solution is computationally simple. However, such nested approximation structure is not present in CCA and
more generally in case of tensor decompositions. Thus, the best rank (r − 1) solution to CCA does not provide any
help in computing the best rank r solution. Thus, if the rank (r − 1) solution does not satisfy a given threshold in
approximation error, the computation has to be entirely redone to check if the rank r solution is sufficient to meet
the given approximation error. In this section, we show that such elaborate calculations can be avoided by using the
bounds relative to the CCA1 problem.

We start with defining Approximate Relative Error (ARE) as a measure of how good the approximation obtained by
CCA is. For any U, we have

ARE(U) =
∑T

t=1 ‖Xt −UYtUT ‖2F∑T
t=1 ‖Xt‖2F

. (16)

We define the cumulative percentage of energy captured by the solution to CCA as follows:

Definition 2 Let MT = Tr(M(In)), and let f(U∗
0) be the maximum of CCA obtained by an iterative algorithm with

initialization U0 (see Section 4). The cumulative percent of energy p captured by U∗
0 is defined as

p =
f(U∗

0)
MT

, (17)

so that 0 ≤ p ≤ 1.

For our problem, p defines how much energy over all the covariances is preserved by their corresponding latent
covariances. Dividing by MT on both sides of inequality (13) and plugging in p1 = f1

max/MT , the lower and upper
bounds of p are

p2
1 ≤ p ≤ p1 (18)

Recall that p1 is defined in the PCA setting. In CCA1, given a p1, the corresponding rank r is easy to obtain. Using the
bounds for p, one can also develop a simple way of obtaining a suitable rank-r for CCA. To do this, we first establish
a relationship between p and approximate relative error ARE(U∗

0).

Proposition 1 Let U∗
0 be the solution of CCA. Then ARE(U∗

0) = 1− p.

8



Proof: From the proof of Lemma 1, we have

T∑
t=1

‖Xt −UYtUT ‖2F = Tr

(
T∑

t=1

X2
t

)
− Tr

(
T∑

t=1

UT XtUUT XtU

)

= MT − f(U) .

Let U∗
0 be the solution of CCA. Then

ARE(U∗
0) =

MT − f(U∗
0)

MT
= 1− p .

Plugging ARE(U∗
0) into inequality (18), it is easy to derive the following lower and upper bounds for ARE(U∗

0):

1− p1 ≤ ARE(U∗
0) ≤ 1− p2

1 . (19)

Given an upper bound δ for ARE(U∗
0), we now show how to obtain a suitable rank r for U∗

0 in CCA. Since
ARE(U∗

0) ≤ 1 − p2
1, it sufficient to ensure 1 − p2

1 ≤ δ ⇒ p1 ≥ √
1− δ. Since p1 corresponds to U0 in a

PCA setting, one can easily obtain a rank-r U0 such that p1 ≥
√

1− δ. Initializing the iterations for CCA with U0

will lead to U∗
0 which satisfies ARE(U∗

0) ≤ δ. Note that since the construction is based on a bound, there may be a
lower rank U∗

0 which satisfies the constraint.

3.4 Conditions for Global Maximum

We now analyze a condition under which a global maximum of CCA is achieved. The particular case under consider-
ation is when equality holds in (13), i.e., f(U∗

0) = fmax
1 , where U∗

0 is the maximum found in Algorithm 1, implying
f(U∗

0) = fmax.

We need the following result for the analysis.

Lemma 5 For any symmetric positive semi-definite matrices A, A1, A2, . . . and vector v,

(a) vT Av = 0 iff vT A2v = 0;
(b) vT (

∑
k Ak)v = 0 iff vT Akv = 0 for every k;

(c) colspan (
∑

k Ak) = colspan
(∑

k A2
k

)
(d) rank (

∑
k Ak) = rank

(∑
k A2

k

)

Proof: Let A = QDQT be the eigendecomposition of A, with D = diag(D1, 0), where D1 is a diagonal matrix
with strictly positive diagonal elements, and Q = [Q1,Q2] is partitioned conformally. Then A2 = QD2QT has the
same set of eigenvectors and same nullspace as A. Since A is positive semi-definite, vT Av = 0 iff v ⊥ Q1, and (a)
follows.

To prove (b), note that the term vT Akv is never negative, and the left hand side is just the sum of all these terms for all
k. A sum of non-negative numbers can be zero iff the numbers themselves are zero. This implies that (

∑
k Ak)v = 0

if and only if
(∑

k A2
k

)
v = 0 for any vector v, which in turn implies that the nullspace of the left hand side of (c)

must match the nullspace of the right hand side of (c), proving (c) and (d).

Using the above results, we now prove the following theorem.

Theorem 2 Let U be the r principal eigenvectors of M(In) associated with nonzero eigenvalues, then rank(M(U0)) ≥
r.
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Proof: Let s be the rank of M(In) so that s ≥ r. Then

s = rank

(∑
t

X2
t

)
= rank

(∑
t

Xt

)
.

For an arbitrary n× r matrix U with orthonormal columns,

p = rank
[
UT

(∑
t XtUUT Xt

)
U

]

= rank
[∑

t

(
UT XtU

)2
]

= rank
[∑

t

(
UT XtU

)]
= rank

[
UT

∑
t (Xt)U

]
≤ r,

with equality if and only if the column space of U is contained within the column space of (
∑

t Xt), the latter column
space having dimension s. Examples of such a U include the orthonormal matrix of the eigenvectors corresponding
to the leading r eigenvalues of (

∑
t Xt), or of

(∑
t X

2
t

)
.

Using the fact that rank(UT AU) ≤ rank(A), it follows that

rank(M(U)) ≥ rank

[
UT

(∑
t

XtUUT Xt

)
U

]
= p.

If U ∈ colsp(M(In)), then p = r and the result follows.

Let U0 be the initialization in Algorithm 1 consisting of the r principal eigenvectors of M(I), and let U∗
0 be the final

solution. Based on Theorem 2, we now show that rank(M(U0)) = r is the necessary and sufficient condition that
f(U∗

0) = fmax
1 , thereby implying that U∗

0 achieves the global optimum. Moreover, in this situation, the solution
achieving the global maximum is the initialization U0 itself.

Theorem 3 Let U0 be the solution to CCA1, i.e., the r principal eigenvectors of M(I), and let U∗
0 be the maximum

found in Algorithm 1 with initialization U0. Then, rank(M(U0)) = r is the necessary and sufficient condition that
f(U∗

0) = fmax
1 . Moreover, U0 is the solution achieving the global maximum for CCA.

Proof: Let U0 be the solution of CCA1, fmax
1 = f1(U0). Provided that rank(M(U0)) = r, the EVD of M(U0) is

given by
M(U0) = U1D1UT

1 ,

where U1 are the r principal eigenvectors of M(U0) associated with the nonzero eigenvalue matrix D1. According
to Theorem 4,

f(U1) ≥ Tr(UT
1 M(U0)U1) = Tr(M(U0)) = f1(U0) = fmax

1

On the other hand, we have
fmax
1 ≥ f1(U1) ≥ f(U1) = fmax

1

Therefore, f1(U1) = fmax
1 = f1(U0), i.e., U1 and U0 spans the same subspace. We can conclude that f(U0) =

f(U1) = fmax
1 . Since fmax ≤ fmax

1 , f(U0) = fmax
1 clearly implies f(U0) = f(U∗

0) = fmax. U0 is the solution
achieving the global maximum.

We now prove the converse, i.e., f(U∗
0) = fmax

1 ⇒ rank(M(U0)) = r. Since f(U∗
0) = fmax

1 holds, and since f1 is
the upper bound of f , we have

fmax
1 = f(U∗

0) ≤ f1(U∗
0) ≤ fmax

1 = f1(U0)

So f1(U∗
0) = f1(U0), implying U∗

0 and U0 spans the same subspace. Then

fmax ≥ f(U∗
0) = f(U0) = fmax

1 ≥ fmax ,

10



implying U0 achieves the global maximum of CCA.

Recall that U0 are the principal eigenvectors of M(U0) corresponding to nonzero eigenvalues, and rank(M(U0)) ≥ r
according to Theorem 2. If rank(M(U0)) > r, there are more than r nonzero eigenvalues. Let U1 be the r principal
eigenvectors of M(U0). Then

Tr(M(U0)) > Tr(UT
1 M(U0)U1) ≥ Tr(UT

0 M(U0)U0) = f(U0) ,

since U1 are the principal eigenvectors. However, fmax
1 = f1(U0) = Tr(M(U0)). Consequently, f(U0) < fmax

1 ,
which contradicts the fact that f(U0) = fmax

1 . Thus, rank(M(U0)) = r.

A special case of the result is when rank(M(I)) = r. When rank(M(I)) = r, rank(M(U0)) ≤ rank(M(I)) = r.
According to Theorem 2, rank(M(U0)) ≥ r, implying rank(M(U0)) = r. Thus U0 achieves the global maximum.
In this case, since all the eigenvectors are kept, the fraction of energy p1 = 1. The global optimality then follows
straightforwardly from the bounds discussed in Section 3.

3.5 Connections to Related Work

Given a set of rectangular matrices Xt ∈ Rm×n, 1 ≤ t ≤ T , the Tucker2 model [35, 16, 24, 22], 2DSVD [9],
GLRAM [36], etc., aim to find common components U ∈ Rm×r and V ∈ Rn×s such that

Xt = UYtVT + Et (20)

where Yt ∈r×s, U and V are orthonormal matrices, and Et the residual. U and V can be obtained by performing
EVD iteratively on matrices M1(V) =

∑
t XtVVT XT

t ∈ Rm×m and M2(U) =
∑

t X
T
t UUT Xt ∈ Rn×n respec-

tively. Such methods often use the same initialization as in CCA, since it has been observed empirically that such an
initialization usually leads to the good solutions [36, 9], particularly in the rank-1 approximation experiments [27, 20].
When a locally optimal solution is found, say (U∗,V∗), Ding et al. [9] established lower and upper bounds for the
local optimum based on the eigenvalues of M1(V∗) and M2(U∗). Since the global optimum is still unknown, their
bounds do not tell how close the local optimum is to the global optimum, and hence one does not get approximation
guarantees w.r.t. the global optima as we have for CCA.

In (20), if r = s and Yt is diagonal, it becomes the PARAFAC / CANDECOMP model with orthonormal con-
straints [16, 17, 24, 22], abbreviated as PARAFAC in the rest of this paper. Since the off-diagonal elements are zero
in Yt, the PARAFAC model does not allow interactions among components in U and V. If the PARAFAC model is
applied to the covariance matrices in our case, U and V are the same. Then the PARAFAC has the same formula as
the CCA except that Yt is a full matrix in the CCA but is a diagonal matrix in the PARAFAC. However, if covariance
matrices are simultaneously diagonalizable [19], i.e., Xt = UYtUT and Yt is diagonal, it turns out that Yt is the
low dimension covariance matrix in the CCA, as shown in Proposition 2.

Proposition 2 If covariance matrices are simultaneously diagonalizable, the low dimensional covariance matrix Yt

in the CCA is diagonal.

Proof: Suppose covariance matrices are simultaneously diagonalizable, Xt = UYtUT , where U is the leading r
eigenvectors corresponding to the non-zero eigenvalues which are the diagonal entries in Yt. M(I) =

∑
t X

2
t =∑

t UY2
t U

T , thus U is the solution of CCA1. Plugging U and Xt = UYtUT into M(U),

M(U) =
∑

t

UYtUT UUT UYtUT =
∑

t

UY2
t U

T

Since rank(M(U)) = r, U is the solution of the CCA, thus the diagonal matrix Yt is the lower dimension covariance
matrices in the CCA.
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4 Algorithm

In this section, we present algorithms for solving CCA for a given dimensionality or a given approximation error
bound. For a given dimensionality, we present two algorithms which iteratively improve a given initial solution. For a
given approximation error bound, we show how to determine a sufficient dimensionality, and subsequently use any of
the iterative algorithms for solving the problem.

4.1 CCA For A Given Dimensionality

Iterative EVD based CCA: For a given dimensionality, EVD can be used to solve for U in CCA1 as in (8). However,
CCA in (3) has four Us which cannot be found using the same approach, since it does not correspond to an EVD
problem. Instead, we perform EVD iteratively by fixing two of the inner U to the current iterate Uk, thereby reducing
the problem into an EVD problem. Recall that CCA involves maximizing f(U) = Tr(UT M(U)U) where M(U) =∑T

t=1 XtUUT Xt is of size n × n. If Uk is the current iterate, then we compute M(Uk) and solve the following
surrogate problem to obtain Uk+1:

max
UT U=Ir

Tr(UT M(Uk)U) . (21)

Clearly, Uk+1 can be obtained by applying rank-r EVD on M(Uk). The idea behind such an update has been explored
in the literature on tensor decomposition [24, 25, 9, 36]. As the following result shows, such as update will improve
the objective function, i.e., f(Uk+1) ≥ f(Uk).

Theorem 4 Let Uk+1 be the r principal eigenvectors of M(Uk), then f(Uk+1) ≥ Tr(UT
k+1M(Uk)Uk+1) ≥

f(Uk). The equality holds when Uk+1 and Uk spans the same subspace.

Proof: We define the matrix Ak = A(Uk) as follows

Ak =
[
X

1
2
1 UkUT

k X
1
2
1 , · · · ,X

1
2
T UkUT

k X
1
2
T

]

By definition, we have

Tr(AkAT
k ) = Tr

(
T∑

t=1

X
1
2
t UkUT

k X
1
2
t X

1
2
t UkUT

k X
1
2
t

)

= Tr

(
T∑

t=1

UT
k XtUkUT

k XtUk

)
= f(Uk)

Let Uk+1 be the r principal eigenvectors of M(Uk). By a similar analysis, f(Uk+1) = Tr(Ak+1AT
k+1). Now note

that

Tr(AkAT
k+1) = Tr

(∑
t

X
1
2
t UkUT

k X
1
2
t X

1
2
t Uk+1UT

k+1X
1
2
t

)

= Tr

(
UT

k+1

∑
t

XtUkUT
k XtUk+1

)

= Tr(UT
k+1M(Uk)Uk+1)

Given that Uk+1 is the r principal eigenvectors of M(Uk), then

Tr(UT
k+1M(Uk)Uk+1) ≥ Tr(UT

k M(Uk)Uk) = f(Uk) , (22)

where the equality holds iff Uk+1 and Uk span the same subspace.
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Algorithm 1 Iterative EVD (IEVD) Algorithm for CCA
1: Input: Xt, 1 ≤ t ≤ T , initialization U0 ∈ Rn×r

2: Output: U,Yt, 1 ≤ t ≤ T
3: repeat
4: Perform EVD on M(Uk) =

∑
t XtUkUT

k Xt

5: Choose the leading r eigenvectors Uk+1

6: Compute Yt = UT
k+1XtUk+1

7: until
∣∣∣ f(Uk+1)−f(Uk)

f(Uk)

∣∣∣ ≤ ε

Then, we have

f(Uk)f(Uk+1) = Tr(AkAT
k )Tr(Ak+1AT

k+1)
(a)

≥ [
Tr(AkAT

k+1)
]2

=
[
Tr(UT

k+1M(Uk)Uk+1)
]2

,

where (a) follows from Lemma 2, and the equality holds when Uk+1 and Uk span the same subspace. Consider (22),
and f(Uk), f(Uk+1) are nonnegative, there is

f(Uk+1) ≥ Tr(UT
k+1M(Uk)Uk+1) ≥ f(Uk) (23)

The equality holds when Uk and Uk+1 spans the same subspace.

Algorithm 1 presents the corresponding algorithm for a given dimensionality r as input. The objective function
increases every step until a certain stopping criterion is satisfied. If U∗

0 is the final solution, from the analysis of
Section 3, we know that f(U∗

0) ≥ p1f
max, and the approximate relative error satisfies 1− p1 ≤ ARE(U∗

0) ≤ 1− p2
1.

Auxiliary Function based CCA: In I-EVD, the update has to repeatedly calculate the EVD of a n× n matrix. If n is
large, the update becomes a bottleneck. In this section, we present an efficient update which only calculates the SVD
of a r × n matrix. To introduce the new update, we first define an auxiliary function g(U,V) as follows

g(U,V) = Tr

(
T∑
t

(UT XtU)(VT XtV)

)
. (24)

where UT U = Ir and VT V = Ir. Clearly, g(U,U) = f(U).

Given Uk, if we can find a Uk+1 satisfying g(Uk,Uk+1) ≥ g(Uk,Uk), the auxiliary function increases. Theorem 5
shows that Uk+1 can be obtained by performing the SVD on the r×n matrix

∑T
t Yk

t V
T Xt, where Yk

t = UT
k XtUk.

Such a Uk+1 increases f(U).

To prove that Theorem 5, we need the following results.

Lemma 6 Tr(ATB) = vec(A)T vec(B).

Proof: Let ai,bi be the columns of A,B respectively, then Tr(ATB) =
∑

i aibi = vec(A)T vec(B).

Lemma 7 (Wiki1) vec(AXB) = (BT ⊗A)vec(X).

Theorem 5 Let Uk+1 = QPT , where P and Q are the left and right r singular vectors of
∑T

t Yk
t U

T
k Xt, where

Yk
t = UT

k XtUk, then
f(Uk) ≤ g(Uk,Uk+1) ≤ f(Uk+1)

The equality holds when Uk and Uk+1 span the same subspace.
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Proof: Denote the SVD
∑T

t Yk
t U

T
k Xt = PDQT , then

g(Uk,Uk) = Tr(
∑

t

Yk
t U

T
k XtUk) = Tr(PDQT Uk)

(a)

≤ Tr(D)

(a) holds because P,Q and Uk are orthonormal matices, and the SVD attains the global maximum. The equality
holds when Uk spans the same subspace as QPT .

Let Uk+1 = QPT , there is

Tr(
∑

t

Yk
t U

T
k XtUk+1) = Tr(PDPT ) = Tr(D) ≥ g(Uk,Uk)

On the other hand, there is

Tr(
∑

t

Yk
t U

T
k XtUk)

(a)
= vec(

∑
t

XtUkYk
t )T vec(Uk)

(b)
= vec(Uk)T

(∑
t

Yk
t ⊗Xt

)
vec(Uk)

(a) follows from lemma 6 and (b) from lemma 7. Since Yk
t and Xt are positive semi-definite,

∑
t Y

k
t ⊗Xt is positive

semi-definite. According to the Cauchy-Schwarz inequality,

g(Uk,Uk)g(Uk,Uk+1) ≥
[
vec(Uk)T

∑
t

Yk
t ⊗Xtvec(Uk+1)

]2

=

[
Tr(

∑
t

Yk
t U

T
k XtUk+1)

]2

The equality holds when Uk and Uk+1 spans the same subspace. Thus

g(Uk,Uk+1) ≥ Tr(
∑

t

Yk
t U

T
k XtUk+1) ≥ g(Uk,Uk)

Now we prove the second inequality. Following the Cauchy-Schwarz inequality,

g(Uk,Uk)g(Uk+1,Uk+1)

= Tr(
∑

t

(UT
k XtUk)2)Tr(

∑
t

(UT
k+1XtUk+1)2)

(a)

≥
[
Tr

(∑
t

(UT
k XtUk)(UT

k+1XtUk+1)

)]2

= g2(Uk,Uk+1) ,

The equality holds in (a) when Uk and Uk+1 spans the same subspace.

Since g(Uk,Uk) ≤ g(Uk,Uk+1), then

g(Uk,Uk+1) ≤ g(Uk+1,Uk+1) = f(Uk+1)

With theorem 5, an algorithm based on the auxiliary function is proposed, which is presented in Algorithm 2. The
solution of Algorithm 2 satisfies the bounds established in Section 3.
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Algorithm 2 Auxiliary Function (AF) Algorithm for CCA
1: Input: Xt, 1 ≤ t ≤ T , initialization U0 ∈ Rn×r

2: Output: U,Yt, 1 ≤ t ≤ T
3: Compute Y0

t = UT
0 XtU0

4: repeat
5: Perform the SVD on matrix

∑
t Y

k
t U

T
k Xt = PDQT

6: Compute Uk+1 = QPT

7: Compute Yk+1
t = UT

k+1XtUk+1

8: until
∣∣∣ g(Uk+1,Uk+1)−g(Uk,Uk)

g(Uk,Uk)

∣∣∣ ≤ ε

4.2 CCA For A Given Approximation Error

We consider a setting where instead of the dimensionality r, an upper bound δ on the approximate relative error (ARE)
is given. In such a setting, one can choose a sufficient dimensionality r and a corresponding initialization U0 based
on our analysis in Section 3, and use any of the algorithms in Section 4.1 to obtain a U which guarantees the error
bound. In particular, it is sufficient to choose the dimensionality r of the initialization U0 such that the fraction of
energy captured in CCA1 given by p1 = Tr(UT

0 M(I)U0)
Tr(M(I)) satisfies p1 ≥

√
1− δ, as discussed in Section 3. Since M(I)

is fixed, and CCA1 is an EVD problem, choosing a suitable dimensionality r such that p1 ≥
√

1− δ is straightforward
since EVD has a nested structure. If such a U0 is used to initialize the algorithms in Section 4.1, the final solution U∗

0

will satisfy f(U∗
0) ≥

√
1− δfmax and ARE(U∗

0) ≤ δ, which is the prescribed bound on the approximation error.

5 Experimental Results

In this section, the performance of CCA is evaluated on both artificial datasets and two real-world stock market
datasets respectively spanning 21 years from 1990-2010, and 14 years from 1971-1984. Evaluation is done in terms of
the Approximate Relative Error (ARE) (16) for all datasets, and also the ability to track volatility in low-dimensions for
the stock market datasets. The performance of CCA is compared with PARAFAC with orthonormal constraints, PCA,
and Random Projection (RP) [8, 1]. While CCA and PARAFAC are computed on the entire set of covariance matrices,
PCA is computed based on the single aggregated covariance. For RP, U was generated as follows: (i) Each entry of U
is generated via an i.i.d. normal distribution; and (ii) U is normalized via Gram-Schmidt orthogonalization [15] and
normalization.

5.1 Artificial Data

Artificial data was generated following the model in (1). In particular, Yt and U were generated first, then Xt was
calculated by adding noise to UYtUT . Yt was generated as the covariance matrix of a set of randomly generated
samples. The samples were generated from the following four Gaussian distributions with mean

m1 = [0, 0],m2 = [5, 0],m3 = [0, 5],m4 = [5, 5]

and covariance
[Σ1|Σ2|Σ3|Σ4] =

[
4 0 4 0 0.01 0 1 0
0 1 0 0.01 0 2 0 2

]
,

Instead of using a fixed U, it was mildly perturbed as follows:

Ut+1 ← QR(Ut + γEt) (25)

where γ is a small constant, Et ∈ Rn×r where Eij ∼ N(0, 1), and Ut+1 is obtained from the QR factorization
of (Ut + γEt). In (25), U1 is randomly generated, r = 2, and we consider two values of the high-dimensionality
n = 5, 10. The experiment was repeated 50 times, and the final results reported are the average over the 50 runs.
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(a) n = 5
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(b) n = 10
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Figure 1: (a)-(b) Approximation Relative Error (ARE) on artificial data in different dimensions r and increasing noise
level γ. CCA outperforms PARAFAC, PCA and RP, especially with high noise levels. (c) 2D latent covariances. CCA
tracks the true covariance better than PCA.
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(a) S&P500
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(b) NYSE

Figure 2: Approximation Relative Error (ARE) on S&P 500 and NYSE in different dimensions r. CCA outperforms
PARAFAC, PCA and RP.

Results: Figure 1 (a)-(b) shows the comparative performance of CCA, PARAFAC, PCA, and RP in terms of ARE
(lower is better) across different noise levels γ for fixed low-dimensionality r = 2. As seen in the figure, CCA
outperforms PARAFAC and PCA, and significantly outperforms RP. The improvements of CCA over other methods
is more pronounced for high noise levels (high γ). For low noise levels, CCA and PARAFAC are competitive since all
the covariance matrices are nearly diagonal. Because of the structure of the covariance matrices, i.e., nearly diagonal
but different, PARAFAC outperforms PCA which maximizes the total covariance instead.

Figure 1(c) shows the shape of 2-dimensional covariances when n = 10, γ = 0.1. The ground truth are estimated
covariances from the samples plotted in black. The latent covariances for CCA and PCA shown respectively in
magenta and cyan, were calculated based on the leading 2 components. A visual comparison readily shows that CCA
is able to recover the ground truth, while PCA seems to find a subspace which maximize the total covariance but not
suitable for separate covariances. Figure 1 is a canonical example of a situation where CCA will always outperform
PCA.

5.2 Stocks Data

We considered two real world stock market datasets. The first dataset, S&P500, is based on daily closing prices of all
263 stocks in the current S&P500 index which has been in the S&P index from 1990 to 2010. The second dataset,
NYSE, is a widely used dataset of daily closing prices consisting of 36 stocks at daily resolution spanning from 1971
to 1984 [18, 2, 7].
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(a) S&P500
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(b) NYSE

Figure 3: The upper bound of the relative error of the CCA results w.r.t. the global maximum on S&P 500 and NYSE
in different dimension r. The upper bounds before and after the CCA runs are in blue and red respectively. The CCA
results are very close to the global maximum.

Methology: For the experiments, the covariance of the daily log-return was considered for both datasets, where returnt

= log xt

xt−1
× 100%, xt is the daily closing stock price. For each dataset, we construct the monthly average of the

daily covariances, and each average monthly covariance was considered as an observed covariance matrix Xt. For
S&P500, there are 21× 12 = 252 observed covariance matrices Xt ∈ R263×263. For NYSE, there are 14× 12 = 168
covariance matrices Xt ∈ R36×36.

ARE: The performance of the four methods evaluated in terms of ARE on S&P500 and NYSE are shown in Figure 2 .
On both datasets, CCA outperforms PARAFAC and PCA, and significantly outperforms RP. Interestingly, PARAFAC
does not improve with increasing r (dimensionality) possibly because the covariances cannot be simultaneously di-
agonalized. PCA performs much better than PARAFAC, which is in direct contrast with the observed results for the
artificial dataset. Note that CCA performs the best on both types of data, which illustrates the flexibility of the model.
PCA is competitive with CCA on NYSE, but worse on S&P500 except for high-dimensions when PCA tends to catch
up. There are two possible explanations: NYSE is a low-d dataset with with n = 36, whereas S&P500 is relatively
high-d with n = 263; and the stock market has been more volatile in the 1990-2010 range (S&P500) as compared to
the 1971-1984 range (NYSE). Figure 3 shows the upper bound of the relative error of CCA results w.r.t. the global
maximum. The upper bound 1− p1 in Corollary 2 is plotted in blue, and it is known before the CCA runs. When r is
small, the upcoming maximum is far from the global maximum, but it definitely approaches the global maximum as r

increases. After the local maximum f(U∗
0) is found, the upper bound fmax

1 −f(U∗0)
fmax
1

in (14) is plotted in red. It shows
that the upper bound has been greatly improved, and the local maximum actually is very close to the global maximum.

Volatility: In Figures 4 and 5 we plot the latent covariance matrices (level sets) obtained from CCA in dimensions
r = 1, 2, 3 for S&P500 and NYSE, and compare them to the volatilities [5, 11, 10] of their proxies. The proxy of S&P
500 dataset is the S&P500 index, while the proxy of NYSE is the average of 36 stocks. The reason we expect Yt to
track volatility well is as follows: For n stocks, the trace of the covariance Xt is equal to nσ2, where σ is the volatility
(standard deviation) of their proxies. If Yt approximates Xt well, the trace of

√
Yt/n should approximate σ. In both

datasets, for 1D,
√

Yt/n tracks the volatility almost exactly. For 2D,
√

Yt/n are ellipses which change shape/size
over time, and the volatility (black curve) is always on the circumference of the ellipses. It is interesting to note that
the latent covariances for S&P 500 (Figure 4 ) seem to capture the two major financial meltdowns, viz the dot-com
bubble around 2001 and the major financial crisis around 2008, even in such a low dimension. The crisis in 2008 looks
significantly worse, and the ellipses in the 2D plot have different shapes possibly indicating different market segments
being more adversely affected. Similarly, the latent covariances for NYSE (Figure 5 ) capture the stock market crash
around 1973-1974 resulting from the collapse of the Bretton Woods system along with the ‘Nixon Shock’ and the
devaluation of the US dollar. We also show the largest 10 3D latent covariances. As seen in Fig. 4(c), the largest 10
3D latent covariances of S&P 500 correspond to month 200109(911 terrorist attacks), 200207(stock market downturn)
and 8 months after the Lehman Brothers’ bankruptcy in September 2008. The largest 10 3D covariances of NYSE
basically correspond to the collapse of the Bretton Woods system, as plotted in Fig. 5(c). Such interpretable results
show the potential of CCA in high-dimensional real world problems.
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Figure 4: Latent Covariances over time for S&P500 from
1990 to 2010. The two financial meltdowns in 2001 and
2008 are prominently captured in the latent low dimen-
sional space. (Best viewed in color)
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Figure 5: Latent Covariances over time for NYSE from
1970 to 1984. The stock market crash of 1974 is captured
in the latent low dimensional space. (Be viewed in color)
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Choose r given ARE: We also evaluated the efficacy of choosing dimensionality r given an ARE upper bound. The
results on S&P 500 and NYSE dataset are shown in Table 2 and 3. The first row is the given ARE upper bound δ, the
second row shows the sufficient r computed as in Section 4.2 and the corresponding ARE, and the third row shows
the smallest r which would have satisfied the bound and the corresponding ARE. The chosen r satisfies the bound, but
can be conservative at times especially when ARE decreases rapidly with increasing r, as in the cases of σ = 20 and
10 on S&P 500.

δ(%) 30 20 10 5
Chosen r (ARE) 3(21.50) 10(14.18) 45(7.58) 97(4.20)
Smallest r (ARE) 2(24.67) 4(19.70) 26(9.88) 81(5.00)

Table 2: Choosing r given an ARE upper bound on S&P 500.

δ(%) 30 20 10 5
Chosen r (ARE) 6(22.06) 9(16.36) 18(7.94) 25(4.07)
Smallest r (ARE) 5(24.99) 7(19.71) 16(9.37) 24(4.54)

Table 3: Choosing r given an ARE upper bound on NYSE.

Running Time: Figure 6 compares the running times (in seconds) of Algorithm 1 and Algorithm 2 on the S&P 500
dataset. The experiments were run in Matlab 7.1 on an Intel P8600 2.4GHz PC with Windows Vista OS and 2G
memory. When r is small, i.e., low dimensional projections, Algorithm 2 is much faster than Algorithm 1. As r
increases, Algorithm 2 possibly spends more time on the SVD step, and probably require more steps to converge, so
its superiority in running time decreases.
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Figure 6: Running times of Algorithm 1 and Algorithm 2 on the S&P 500 dataset for different dimensionality. The
auxiliary function based method (Algorithm 2) is distinctly faster for low-d projections.

5.3 Additional Numerical Simulations

We study the CCA (Algorithm 1) on low dimensional problems to get additional insights into workings of the proposed
ideas, including cases where the approach can and cannot find the global maxima of f(U). It is important to recall
that while f(U) is a convex function for unconstrained U, the model requires maximizing f(U) on the domain of U
determined by UT U = Ir, and the problem may thus have multiple local maxima.

We illustrate different scenarios for using Algorithm 1 to solve CCA in Figure 7. In Figure 7(a), we consider 3 time
steps for a 2-dimensional covariance matrix, with

X = [X1|X2|X3] =
[

1 0 0 0 0.22 0.22
0 0.25 0 1 0.22 0.22

]
.

The vector u is parameterized as u = [sin(θ), cos(θ)], and the x-axis denotes θ. Note that f(u) is convex in u but
not that θ, which explains the nonconvex plot of the objective (in red). Further, the domain of θ in [−π, π], and the
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Figure 7: Optimizing f(U) in CCA based on CCA1 initialization and iterative updates. Objective f(U) for CCA is
shown in red; the lower and upper bounds based on f1(U) for CCA1 is shown in green and blue respectively. Three
scenarios: (a) Iterations converge to the global maxima, (b) Iterations converge to a local maxima, and (c) Initialization
is the global maxima.

function is periodic beyond that domain. Algorithm 1 is used to find the best rank-1 approximation u. In particular, the
initialization u0 is the optimal solution of f1(u), which is denoted by a small blue circle ◦. The searching trajectory
is denoted by magenta +, and the optimal solution of f(U) by a green ¤. The upper and lower bounds are plotted in
blue and green respectively. For this scenario, with the proposed initialization, the global maximum can be found, as
illustrated in Figure 7(a). However, the initialization does not always lead to the global maximum as shown in Figure
7(b). In Figure 7(b), we consider

X1 =




29.7995 2.5707 1.7377
2.5707 30.1445 −0.0292
1.7377 −0.0292 24.1799


 ,

X2 =




21.8515 −2.2068 2.0377
−2.2068 22.8371 0.0490
2.0377 0.0490 21.1336


 ,

X3 =




8.5273 −2.5322 1.1011
−2.5322 9.6724 −0.9796
1.1011 −0.9796 6.4754


 ,

and the vector u is parameterized as u = [sin(θ), cos(θ) sin(φ), cos(θ) cos(φ)]. In Figure 7(b), θ and φ are the x-axis
and y-axis respectively, and f(u) is shown in the z-axis. For this scenario, the final solution is a good local maxima but
is not the global maxima, which is also marked in the figure. Finally, Figure 7(c) shows a case where the initialization
itself achieves the global maximum of CCA. In Figure 7(c), we consider

X = [X1|X2] =
[

1 0 0 0
0 0 0 1

]
,

and u is parameterized as in Figure 7(a). For this scenario, if u0 denotes the initialization obtained from CCA1, we
see that fmax

1 = f1(u0) = f(u0), implying f(u0) = fmax.

6 Conclusions

In this paper, we have introduced a framework called CCA for simultaneously modeling multiple covariance matrices
in low dimensions. While the framework has similarities with existing approaches to tensor decomposition, we present
a novel and unique analysis of the CCA in terms of a more tractable PCA framework called CCA1, which provides
the lower and upper bounds for the global maximum for the CCA. The bounds also lead to an effective initialization
scheme so that the results of the CCA has clear approximation guarantees w.r.t. the global maximum. We also discuss
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non-trivial conditions under which a global maximum will be achieved. Two algorithms, a standard tensor decompo-
sition algorithm and an efficient auxiliary function based algorithm, are presented. They can work with either a fixed
dimensionality or a approximate relative error. We illustrate the effectiveness of the approach on synthetic data as well
as two real world stock market datasets.

While the CCA can be considered as a special case of classical tensor decomposition methods, the analysis presented
in the paper relates the two issues encountered in the general case. Such an analysis can potentially be extended to
more general settings considered in the tensor decomposition literature, and will be considered in the future work. In
the analysis, all covariance matrices were assumed to be available. In real life domains such as finance and climate
sciences, the observed covariance matrices become available over time. We plan to investigate extensions of the CCA
framework to the online setting where the observed matrices become available over time.
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