
ar
X

iv
:1

90
4.

08
74

1v
1

 [
cs

.D
B

]
 1

6
A

pr
 2

01
9

Mining Closed Episodes with Simultaneous Events

Nikolaj Tatti, Boris Cule
ADReM, University of Antwerp, Antwerpen, Belgium

firstname.lastname@ua.ac.be

ABSTRACT

Sequential pattern discovery is a well-studied field in data
mining. Episodes are sequential patterns describing events
that often occur in the vicinity of each other. Episodes can
impose restrictions to the order of the events, which makes
them a versatile technique for describing complex patterns
in the sequence. Most of the research on episodes deals with
special cases such as serial, parallel, and injective episodes,
while discovering general episodes is understudied.

In this paper we extend the definition of an episode in
order to be able to represent cases where events often oc-
cur simultaneously. We present an efficient and novel miner
for discovering frequent and closed general episodes. Such
a task presents unique challenges. Firstly, we cannot define
closure based on frequency. We solve this by computing a
more conservative closure that we use to reduce the search
space and discover the closed episodes as a postprocessing
step. Secondly, episodes are traditionally presented as di-
rected acyclic graphs. We argue that this representation has
drawbacks leading to redundancy in the output. We solve
these drawbacks by defining a subset relationship in such a
way that allows us to remove the redundant episodes. We
demonstrate the efficiency of our algorithm and the need for
using closed episodes empirically on synthetic and real-world
datasets.

Categories and Subject Descriptors

H.2.8 [Database management]: Database applications—
Data mining; G.2.2 [Discrete mathematics]: Graph the-
ory

General Terms

Algorithms, Theory

Keywords

Frequent episodes, Closed episodes, Depth-first search

1. INTRODUCTION
Discovering interesting patterns in data sequences is a

popular aspect of data mining. An episode is a sequen-
tial pattern representing a set of events that reoccur in a
sequence [14]. In its most general form, an episode also im-
poses a partial order on the events. This allows great flexi-
bility in describing complex interactions between the events
in the sequence.

Existing research in episode mining is dominated by two
special cases: parallel episodes, patterns where the order of
the events does not matter, and serial episodes, requiring
that the events must occur in one given order. Proposals
have been made (see Section 2) for discovering episodes with
partial orders, but these approaches impose various limita-
tions on the events. In fact, to our knowledge, there is no
published work giving an explicit description of a miner for
general episodes.

We believe that there are two main reasons why general
episodes have attracted less interest: Firstly, implementing
a miner is surprisingly difficult: testing whether an episode
occurs in the sequence is an NP-complete problem. Sec-
ondly, the fact that episodes are such a rich pattern type
leads to a severe pattern explosion.

Another limitation of episodes is that they do not prop-
erly address simultaneous events. However, sequences con-
taining such events are frequently encountered, in cases such
as, for example, sequential data generated by multiple sen-
sors and then collected into one stream. In such a setting,
if two events, say a and b, often occur simultaneously, exist-
ing approaches will depict this pattern as a parallel episode
{a, b}, which will only tell the user that these two events
often occur near each other, in no particular order. This is
a major limitation, since the actual pattern contains much
more information.

In this paper we propose a novel and practical algorithm
for mining frequent closed episodes that properly handles
simultaneous events. Such a task poses several challenges.

Firstly, we can impose four different relationships between
two events a and b: (1) the order of a and b does not matter,
(2) events a and b should occur at the same time, (3) b should
occur after a, and (4) b should occur after or at the same time
as a. We extend the definition of an episode to handle all
these cases. In further text, we consider events simultaneous
only if they occur exactly at the same time. However, we can
easily adjust our framework to consider events simultaneous
if they occur within a chosen time interval.

Secondly, a standard approach for representing a partial
order of the events is by using a directed acyclic graph

http://arxiv.org/abs/1904.08741v1

(DAG). The mining algorithm would then discover episodes
by adding nodes and edges. However, we point out that such
a representation has drawbacks. One episode may be repre-
sented by several graphs and the subset relationship based
on the graphs is not optimal. This ultimately leads to out-
putting redundant patterns. We will address this problem.

Thirdly, we attack the problem of pattern explosion by
using closed patterns. There are two particular challenges
with closed episodes. Firstly, we point out that we cannot
define a unique closure for an episode, that is, an episode
may have several maximal episodes with the same frequency.
Secondly, the definition of a closure requires a subset re-
lationship, and computing the subset relationship between
episodes is NP-hard.

We mine patterns using a depth-first search. An episode
is represented by a DAG and we explore the patterns by
adding nodes and edges. To reduce the search space we use
the instance-closure of episodes. While it is not guaranteed
that an instance-closed episode is actually closed, using such
episodes will greatly trim the pattern space. Finally, the ac-
tual filtering for closed episodes is done in a post-processing
step. We introduce techniques for computing the subset re-
lationship, distinguishing the cases where we can do a sim-
ple test from the cases where we have to resort to recursive
enumeration. This filtering will remove all redundancies re-
sulting from using DAGs for representing episodes.

The rest of the paper is organised as follows: In Section 2,
we discuss the most relevant related work. In Section 3, we
present the main notations and concepts. Section 4 intro-
duces the notion of closure in the context of episodes. Our
algorithm is presented in detail in Sections 5, 6 and 7. In
Section 8 we present the results of our experiments, before
presenting our conclusions in Section 9. The proofs of the
theorems can be found in the Appendix and the code of the
algorithm is available online1.

2. RELATED WORK
The first attempt at discovering frequent subsequences, or

serial episodes, was made by Wang et al. [22]. The dataset
consisted of a number of sequences, and a pattern was con-
sidered interesting if it was long enough and could be found
in a sufficient number of sequences. A complete solution to
a more general problem was later provided by Agrawal and
Srikant [2] using an Apriori-style algorithm [1].

Looking for frequent general episodes in a single event
sequence was first proposed by Mannila et al. [14]. The
Winepi algorithm finds all episodes that occur in a sufficient
number of windows of fixed length. Specific algorithms were
given for the case of parallel and serial episodes. However,
no algorithm for detecting general episodes was provided.

Some research has gone into outputting only closed sub-
sequences, where a sequence is considered closed if it is not
properly contained in any other sequence which has the
same frequency. Yan et al. [23], Tzvetkov et al. [20], and
Wang and Han [21] proposed methods for mining such closed
patterns, while Garriga [5] further reduced the output by
post-processing it and representing the patterns using par-
tial orders.2 Harms et al. [12], meanwhile, experiment with
closed serial episodes. In another attempt to trim the out-

1http://adrem.ua.ac.be/implementations
2Despite their name, the partial orders discovered by Gar-
riga are different from general episodes.

put, Garofalakis et al. [8] proposed a family of algorithms
called Spirit which allow the user to define regular expres-
sions that specify the language that the discovered patterns
must belong to.

Pei et al. [17], and Tatti and Cule [19] considered restricted
versions of our problem setup. The former approach assumes
a dataset of sequences where the same label can occur only
once. Hence, an episode can contain only unique labels. The
latter pointed out the problem of defining a proper subset re-
lationship between general episodes and tackled it by consid-
ering only episodes where two nodes having the same label
had to be connected. In our work, we impose no restrictions
on the labels of events making up the episodes.

In this paper we use frequency based on a sliding window
as it is defined for Winepi. However, we can easily adopt
our approach for other monotonically decreasing measures,
as well as to a setup where the data consists of many (short)
sequences instead of a single long one. Mannila et al. pro-
pose Minepi [14], an alternative interestingness measure for
an episode, where the support is defined as the number of
minimal windows. Unfortunately, this measure is not mono-
tonically decreasing. However, the issue can be fixed by
defining support as the maximal number of non-overlapping
minimal windows [13,18]. Zhou et al. [24] proposed mining
closed serial episodes based on the Minepi method. How-
ever, the paper did not address the non-monotonicity issue
of Minepi.

Alternative interestingness measures, either statistically
motivated or aimed to remove bias towards smaller episodes,
were made by Garriga [4], Méger and Rigotti [15], Gwadera
et al. [9,10], Calders et al. [3], Cule et al. [7], and Tatti [18].

Using episodes to discover simultaneous events has, to our
knowledge, not been done yet. However, this work is some-
what related to efforts made in discovering sequential pat-
terns in multiple streams [6, 11, 16]. Here, it is possible to
discover a pattern wherein two events occur simultaneously,
as long as they occur in separate streams.

3. EPISODES WITH SIMULTANEOUS

EVENTS
We begin this section by introducing the basic concepts

that we will use throughout the paper. First we will describe
our dataset.

Definition 1 A sequence event e = (id(e), lab(e), ts(e)) is a
tuple consisting of three entries, a unique id number id(e), a
label lab(e), and a time stamp integer ts(e). We will assume
that if id(e) > id(f), then ts(e) ≥ ts(f). A sequence is a
collection of sequence events ordered by their ids.

Note that we are allowing multiple events to have the same
time stamp even when their labels are equivalent. For the
sake of simplicity, we will use the notation s1 · · · sN to mean
a sequence ((1, s1, 1), . . . , (N, sN , N)). We will also write
s1 · · · (sisi+1) · · · sN to mean the sequence

((1, s1, 1), . . . , (i, si, i), (i+ 1, si+1, i), . . . , (N, sN , N − 1)).

This means that si and si+1 have equal time stamps.
Our next step is to define patterns we are interested in.

Definition 2 An episode event e is a tuple consisting of
two entries, a unique id number id(e) and a label lab(e).
An episode graph G is a directed acyclic graph (DAG). The

http://adrem.ua.ac.be/implementations

graph may have two types of edges: weak edges WE(G) and
proper edges PE (G).

An episode consists of a collection of episode events, an
episode graph, and a surjective mapping from episode events
to the nodes of the graph which we will denote by nd(e). A
proper edge from node v to node w in the episode graph
implies that the events of v must occur before the events of
w, while a weak edge from v to w implies that the events of
w may occur either at the same time as those of v or later.

We will assume that the nodes of G are indexed and we
will use the notation nd(G, i) to refer to the ith node in G.

When there is no danger of confusion, we will use the
same letter to denote an episode and its graph. Note that
we are allowing multiple episode events to share the same
node even if these events have the same labels.

Definition 3 Given an episode G and a node n, we define
lab(n) = {lab(e) | nd(e) = n} to be the multiset of labels
associated with the node. Given two multisets of labels X
and Y we write X ≤lex Y if X is lexicographically smaller
than or equal to Y . We also define lab(G) to be the multiset
of all labels in G.

Definition 4 A node n in an episode graph is a descendant
of a node m if there is a path from m to n. If there is a path
containing a proper edge we will call n a proper descendant
of m. We similarly define a (proper) ancestor. A node n is
a source if it has no ancestors. A node n is a proper source
if it has no proper ancestors. We denote all sources of an
episode G by src(G).

We are now ready to give a precise definition of an occur-
rence of a pattern in a sequence.

Definition 5 Given a sequence s and an episode G, we say
that s covers G if there exists an injective mapping m from
the episode events to the sequence events such that

1. labels are respected, lab(m(e)) = lab(e),
2. events sharing a same node map to events with the

same time stamp, in other words, nd(e) = nd(f) im-
plies ts(m(e)) = ts(m(f)),

3. weak edges are respected, if nd(e) is a descendant of
nd(f), then ts(m(e)) ≥ ts(m(f)),

4. proper edges are respected, if nd(e) is a proper descen-
dant of nd(f), then ts(m(e)) > ts(m(f)).

Note that this definition allows us to abuse notation and map
graph nodes directly to time stamps, that is, given a graph
node n we define ts(m(n)) = ts(m(e)), where nd(e) = n.

Consider the first three episodes in Figure 1. A sequence
ab(cd) covers G1 and G3 but not G2 (proper edge (c, d) is
violated). A sequence (ab)cd covers G1 and G2 but not G3.

a b

c dG1

a b

c dG2

a b

cdG3

a a

b bH1

a a

b bH2

Figure 1: Toy episodes. Proper edges are drawn

solid. Weak edges are drawn dashed.

Finally, we are ready to define support of an episode based
on fixed windows. This definition corresponds to the defi-
nition used in Winepi [14]. The support is monotonically
decreasing which allows us to do effective pruning while dis-
covering frequent episodes.

Definition 6 Given a sequence s and two integers i and j
we define a subsequence

s[i, j] = {e ∈ s | i ≤ ts(e) ≤ j}

containing all events occurring between i and j.

Definition 7 Given a window size ρ and an episode s, we
define the support of an episode G in s, denoted fr(G; s), to
be the number of windows of size ρ in s covering the episode,

fr(G; s) = |{s[i, i+ ρ− 1] | s[i, i+ ρ− 1] covers G}|.

We will use fr(G) whenever s is clear from the context. An
episode is σ-frequent (or simply frequent) if its support is
higher or equal than some given threshold σ.

Consider a sequence abcdacbd and set the window size
ρ = 4. There are 2 windows covering episode G1 (given in
Figure 1), namely s[1, 4] and s[5, 8]. Hence fr(G1) = 2.

Theorem 8 Testing whether a sequence s covers an episode
G is an NP-complete problem, even if s does not contain
simultaneous events.

4. SUBEPISODE RELATIONSHIP
In practice, episodes are represented by DAGs and are

mined by adding nodes and edges. However, such a repre-
sentation has drawbacks [19]. To see this, consider episodes
H1 andH2 in Figure 1. Even though these episodes have dif-
ferent graphs, they are essentially the same — both episodes
are covered by exactly the same sequences, namely all se-
quences containing abab, a(ab)b, (aa)(bb), aa(bb), (aa)bb, or
aabb. In other words, essentially the same episode may be
represented by several graphs. Moreover, using the graph
subset relationship to determine subset relationships between
episodes will ultimately lead to less efficient algorithms and
redundancy in the final output. To counter these problems
we introduce a subset relationship based on coverage.

Definition 9 Given two episodes G and H , we say that
G is a subepisode of H , denoted G � H , if any sequence
covering H also covers G. If G � H and H � G, we say
that G and H are similar in which case we will write G ∼ H .

This definition gives us the optimal definition for a subset
relationship in the following sense: if G � H , then there
exists a sequence s such that fr(G; s) < fr(H ; s).

Consider the episodes given in Figure 1. It follows from
the definition that H1 ∼ H2, G1 � G2, and G1 � G3.
Episodes G2 and G3 are not comparable.

Theorem 10 Testing G � H is an NP-hard problem.

Proof. The hardness follows immediately from Theo-
rem 8 as we can represent sequence s as a serial episode
H . Then s covers G if and only if G � H .

As mentioned in the introduction, pattern explosion is the
problem with discovering general episodes. We tackle this
by mining only closed episodes.

Definition 11 An episode G is closed if there is no H ≻ G
with fr(G) = fr(H).

We should point out that, unlike with itemsets, an episode
may have several maximal superepisodes having the same

frequency. Consider G1, G3, and G4 in Figure 2, sequence
abcbdacbcd and window size ρ = 5. The support of episodes
G1, G3 and G4 is 2. Moreover, there is no superepisode of
G3 or G4 that has the same support. Hence, G3 and G4 are
both maximal superepisodes having the same support as G1.
This implies that we cannot define a closure operator based
on frequency. However, we will see in the next section that
we can define a closure based on instances. This closure,
while not removing all redundant episodes, will prune the
search space dramatically. The final pruning will then be
done in a post-processing step.

a b

c dG1

a b

c dG2

a b

c dG3

a b

c dG4

Figure 2: Toy episodes demonstrating closure.

Our final step is to define transitively closed episodes that
we will use along with the instance-closure (defined in the
next section) in order to reduce the pattern space.

Definition 12 Let G be an episode. A transitive closure,
tcl(G), is obtained by adding edges from a node to each of
its descendants making the edge proper if the descendant is
proper, and weak otherwise. If G = tcl(G) we say that G is
transitively closed.

It is trivial to see that given an episode G, we have G ∼
tcl(G). Thus we can safely ignore all episodes that are not
transitively closed. From now on, unless we state otherwise,
all episodes are assumed to be transitively closed.

5. HANDLING EPISODE INSTANCES
The reason why depth-first search is efficient for item-

sets is that at each step we only need to handle the current
projected dataset. In our setup we have only one sequence
so we need to transport the sequence into a more efficient
structure.

Definition 13 Given an input sequence s and an episode
G, an instance i is a valid mapping from G to s such that
for each e ∈ range(i) there is no f ∈ s − range(i) such that
lab(e) = lab(f), ts(e) = ts(f) and id(f) < id(e). We define
first(i) = min ts(i(n)) to be the smallest time stamp and
last(i) = max ts(i(n)) to be the largest time stamp in i. We
require that last(i)− first(i) ≤ ρ − 1, where ρ is the size of
the sliding window. An instance set of an episode G, defined
as inst(G) is a set of all instances ordered by first(i).

The condition in the definition allows us to ignore some
redundant mappings whenever we have two sequence events,
say e and f , with lab(e) = lab(f) and ts(e) = ts(f). If
an instance i uses only e, then we can obtain i′ from i by
replacing e with f . However, i and i′ are essentially the same
for our purposes, so we can ignore either i or i′. We require
the instance set to be ordered so that we can compute the
support efficiently. This order is not necessarily unique.

Consider sequence abcbdacbcd and G1 in Figure 2. Then
inst(G1) = ((1, 2, 3, 5), (1, 4, 3, 5), (6, 7, 8, 10), (6, 9, 8, 10))3.

Using instances gives us several advantages. Adding new
events and edges to episodes becomes easy. For example,

3For simplicity, we write mappings as tuples

adding a proper edge (n,m) is equivalent to keeping in-
stances with ts(i(n)) < ts(i(m)). We will also compute
support and closure efficiently. We should point out that
inst(G) may contain an exponential number of instances,
otherwise Theorem 8 would imply that P = NP. However,
this is not a problem in practice.

The depth-first search described in Section 6 adds events
to the episodes. Our next goal is to define algorithms for
computing the resulting instance set whenever we add an
episode event, say f , to an episode G. Given an instance i
of G and a sequence event e we will write i+ e to mean an
expanded instance by setting i(f) = e.

Let G be an episode and let I = inst(G) be the instance
set. Assume a node n ∈ V (G) and a label l. Let H be the
episode obtained from G by adding an episode event with
label l to node n. We can compute inst(H) from inst(G)
using the AugmentEqual algorithm given in Alg. 1.

Algorithm 1: AugmentEqual(I,n, l), augments I

input : I = inst(G), a node n, a label l
output: inst(G with n augmented with l)

1 return

{

i+ e |
i ∈ I, e ∈ s, lab(e) = l,
ts(n) = ts(e), i+ e is an instance

}

;

The second augmentation algorithm deals with the case
where we are adding a new node with an single event labelled
as l to a parallel episode. Algorithm Augment, given in
Alg. 2, computes the new instance set. The algorithm can
be further optimised by doing augmentation with a type of
merge sort so that post-sorting is not needed.

Algorithm 2: Augment(I, l), augments instances

input : I = inst(G), label l of the new event
output: inst(G with a new node labelled with l)

1 E ← {e ∈ s | lab(e) = l};
2 J ← {i+ e | i ∈ I, e ∈ E, i+ e is an instance};
3 Sort J by first(i);
4 return J ;

Our next step is to compute the support of an episode
G from inst(G). We do this with the Support algorithm,
given in Alg. 3. The algorithm is based on the observation
that there are ρ − (last(i) − first(i)) windows that contain
the instance i. However, some windows may contain more
than one instance and we need to compensate for this.

Theorem 14 Support(inst(G)) computes fr(G).

Proof. Since I is ordered by first(i), the first for loop
of the algorithm removes any instance for which there is an
instance j such that first(i) ≤ first(j) ≤ last(j) ≤ last(i).
In other words, any window that contains i will also contain
j. We will show that the next for loop counts the number of
windows containing at least one instance from W , this will
imply the theorem.

To that end, let in ∈ J be the nth instance in J and
define Sn to be the set of windows of size ρ containing in.
It follows that |Sn| = ρ− (last(in)− first(in)) and that the
first window of Sn starts at an = 1 + last(in) − ρ. Let
Cn =

⋃n

m=1 Sm. Note that because of the pruning we have
an−1 < an, this implies that Cn−1 ∩ Sn = Sn−1 ∩ Sn. We

Algorithm 3: Support(I), computes support

input : I = inst(G)
output: fr(G)

1 J ← ∅; l ←∞;
2 foreach i ∈ I in reverse order do
3 if last(i) < l then
4 Add i to J ;
5 l← last(i);

6 l ← −∞; f ← 0;
7 foreach i ∈ J do

8 d← ρ− (last(i)− first(i));
9 a← 1 + last(i) − ρ;

10 d← d−max(0, 1 + l − a);
11 f ← f + d;
12 l ← first(i);

13 return f ;

know that |Sn−1 ∩ Sn| = max(0, 1 + first(in−1)− an). This
implies that on Line 10 we have d = |Sn − Sn−1| and since
|Cn| = |Cn−1|+ d, this proves the theorem.

Finally, we define a closure episode of an instance set.

Definition 15 Let I = inst(G) be a set of instances. We
define an instance-closure, H = icl(I) to be the episode
having the same nodes and events as G. We define the edges

PE (H) = {(a, b) | ts(i(a)) < ts(i(b)) ∀i ∈ I} and

WE(H) = {(a, b) | ts(i(a)) ≤ ts(i(b)) ∀i ∈ I} − PE (H).

If G = icl(I) we say that G is i-closed.

Consider sequence abcbdacbcd and episodes given in Fig-
ure 2. Since events b and c always occur between a and
d in inst(G1), the instance closure is icl(inst(G1)) = G2.
Note that G2 is not closed because G3 and G4 are both su-
perepisodes ofG2 with the same support. However, instance-
closure reduces the search space dramatically because we do
not have to iterate the edges implied by the closure. Note
that the closure may produce cycles with weak edges. How-
ever, we will later show that we can ignore such episodes.

6. DISCOVERING EPISODES
We are now ready to describe the mining algorithm. Our

approach is a straightforward depth-first search. The algo-
rithm works on three different levels.

The first level, consisting of Mine (Alg. 4), andMinePar-

allel (Alg. 5), adds episode events. Mine is only used for
creating singleton episodes while MineParallel provides
the actual search. The algorithm adds events so that the
labels of the nodes are decreasing, lab(nd(G, i+ 1)) ≤lex

lab(nd(G, i)). The search space is traversed by either adding
an event to the last node or by creating a node with a single
event. Episodes G1, . . . , G5 in Figure 3 are created by the
first level. The edge in G5 is augmented by the closure.

The second level, MineWeak, given in Alg. 6, adds weak
edges to the episode, while the third level, MineProper,
given in Alg. 7, turns weak edges into proper edges. Both
algorithms add only those edges which keep the episode tran-
sitively closed. The algorithms keep a list of forbidden weak
edges W and forbidden proper edges P . These lists guaran-
tee that each episode is visited only once.

∅

G1 : a : 4 G2 : aa : 2

G3 : b : 2 G4 : b a : 2

G5 : b aa : 1

G6 : b a : 1

G7 : b a : 1

Figure 3: Search space for a sequence (aa)ba, window

size ρ = 2, and support threshold σ = 2. Each state

shows the corresponding episode and its support.

Algorithm 4: Mine, discovers frequent closed episodes

1 for x ∈ Σ do

2 I ← inst(singleton episode with the label x);
3 G← TestEpisode(I, ∅, ∅);
4 if G 6= null then MineParallel(I,G); ;

Algorithm 5: MineParallel(I,G), recursive routine
adding episode events

input : episode G, I = inst(G)
1 MineWeak(I,G, ∅);
2 M ← |V (G)|;
3 n← nd(G,M);
4 for x ∈ Σ, x ≥ max lab(n) do
5 if M = 1 or lab(n) ∪ {x} ≤lex lab(nd(G,M − 1))

then

6 J ← AugmentEqual(I, n, x);
7 H ← TestEpisode(J, ∅, ∅);
8 if H 6= null then

9 MineParallel(J,H);

10 for x ∈ Σ, x ≤ min lab(n) do
11 J ← Augment(I, x);
12 H ← TestEpisode(J, ∅, ∅);
13 if H 6= null then

14 MineParallel(J,H);

G6 and G7 in Figure 3 are discovered by MineWeak,
however, the weak edges are converted into proper edges by
the instance-closure.

Algorithm 6: MineWeak(I,G,W), recursive routine
adding weak edges

input : ep. G, I = inst(G), forbidden weak edges W
1 A← {(a, b) | a, b ∈ V (G), (a, b) /∈ E(G)};
2 MineProper(I,G, A, ∅);
3 for (a, b) /∈ E(G) ∪W do

4 if G+ (a, b) is transitively closed then

5 J ← {i ∈ I | ts(i(a)) ≤ ts(i(b))};
6 H ← TestEpisode(J,W, ∅);
7 if H 6= null then

8 MineWeak(J,H,W);

9 Add (a, b) to W ;

At each step, we call TestEpisode. This routine, given
a set of instances I , will compute the instance-closure icl(I)
and test it. If the episode passes all the tests, the algorithm
will return the episode and the search is continued, otherwise
the branch is terminated. There are four different tests. The

Algorithm 7: MineProper(I,G,W,P), recursive rou-
tine adding proper edges

input : episode G, I = inst(G), forbidden weak edges
W , forbidden proper edges P

1 for (a, b) ∈WE (G)− P do

2 if G+ proper edge (a, b) is transitively closed then

3 J ← {i ∈ I | ts(i(a)) < ts(i(b))};
4 H ← TestEpisode(J,W,P);
5 if H 6= null then

6 MineProper(J,H,W,P);

7 Add (a, b) to P ;

first test checks whether the episode is frequent. If we pass
this test, we compute the instance-closure H = icl(I). The
second test checks whether H contains cycles. Let G be
an episode such that I = inst(G). In order for H to have
cycles we must have two nodes, say n and m, such that
ts(i(n)) = ts(i(m)) for all i ∈ I . Let G′ be an episode
obtained from G by merging nodes in n and m together.
We have G � G′ and fr(G) = fr(G′). This holds for any
subsequent episode discovered in the branch allowing us to
ignore the whole branch.

If the closure introduces into H any edge that has been
explored in the previous branches, then that implies that
H has already been discovered. Hence, we can reject H
if any such edge is introduced. The final condition is that
during MineProper no weak edges should be added into
H by the closure. If a weak edge is added, we can reject
H because it can be reached via an alternative route, by
lettingMineWeak add the additional edges and then calling
MineProper.

The algorithm keeps a list C of all discovered episodes that
are closed. If all four tests are passed, the algorithm tests
whether there are subepisodes of G in C having the same
frequency, and deletes them. On the other hand, if there is
a superepisode of G in C, then G is not added into C.

Algorithm 8: TestEpisode(I,W,P), tests the episode
icl(I) and updates C, the list of discovered episodes

input : I = inst(G), forbidden weak edges W ,
forbidden proper edges P

output: icl(I), if icl(I) passes the tests, null otherwise
1 f ← Support(I);
2 if f < σ then return null; ;
3 G← icl(I);
4 if there are cycles in G then

5 return null;

6 if WE(G) ∩W 6= ∅ or PE (G) ∩ P 6= ∅ then
7 return null;

8 fr(G)← f ;
9 foreach H ∈ C, lab(H) ∩ lab(G) 6= ∅ do

10 if fr(G) = fr(H) and G � H then

11 return G;

12 if fr(G) = fr(H) and H � G then

13 Delete H from C;

14 Add G to C;
15 return G;

7. TESTING SUBEPISODES
In this section we will describe the technique for comput-

ing G � H . In general, this problem is difficult to solve
as pointed out by Theorem 10. Fortunately, in practice, a
major part of the comparisons are easy to do. The following
theorem says that if the labels of G are unique in H , then
we can easily compare G and H .

Theorem 16 Assume two episodes G and H. Assume that
lab(G) ⊂ lab(H) and for each event e in G only one event
occurs in H with the same label. Let π be the unique mapping
from episode events in G to episode events in H honouring
the labels. Then G � H if and only if

1. nd(e) = nd(f) implies that nd(π(e)) = nd(π(f)),
2. nd(e) is a proper child of nd(f) implies that nd(π(e))

is a proper child of nd(π(f)),
3. nd(e) is a child of nd(f) implies that nd(π(e)) is a

child of nd(π(f)) or nd(π(e)) = nd(π(f)),

for any two events e and f in G.

If the condition in Theorem 16 does not hold we will have
to resort to enumerating the sequences covering H . In order
to do that, we need to extend the definition of coverage and
subset relationship to the set of episodes.

Definition 17 A sequence s covers an episode set G if there
is an episode G ∈ G such that s covers G. Given two episode
sets G and H we define G � H if every sequence that covers
H also covers G.

We also need a definition of a prefix subgraph.

Definition 18 Given a graph G, a prefix subgraph is a non-
empty induced subgraph of G with no proper edges such
that if a node n is included then the parents of n are also
included. Given a multiset of labels L and an episode G
we define pre(G,L) to be the set of all maximal prefix sub-
graphs such that lab(V) ⊆ L for each V ∈ pre(G,L). We de-
fine tail(G,L) = {G − V | V ∈ pre(G,L)} to be the episodes
with the remaining nodes. Finally, given an episode set G
we define tail(G, L) =

⋃

G∈G tail(G,L).

Example 19 Consider episodes given in Figure 4. We have
tail(G, ab) = {H1,H2,H3} and tail(G, a) = {H1}.

a b

c dG

b

c dH1

a

c dH2 c dH3

Figure 4: Toy episodes demonstrating tail(G, ab).

The main motivation for our recursion is given in the fol-
lowing theorem.

Theorem 20 Given an episode set G and an episode H,
G � H if and only if for each prefix subgraph V of H, we
have tail(G, lab(V)) � H − V .

We focus for the rest of this section on implementing the
recursion in Theorem 20. We begin by an algorithm, Gen-

erate, given in Alg. 9, that, given a graph without proper
edges, discovers all prefix subgraphs.

Algorithm 9: Generate(G,V), recursive routine for
iterating the nodes of all prefix subgraphs of G

input : graph G, nodes V discovered so far
output: list of nodes of all prefix subgraphs

1 O ← ∅;
2 foreach n ∈ src(G) do
3 O ← O ∪ {V + n} ∪Generate(G− n, V + n);
4 Remove n and its descendants from G;

5 return O;

Given a prefix subgraph V of H , our next step is to dis-
cover all maximal prefix subgraphs of G whose label sets are
subsets of L = lab(V). The algorithm, Consume, creating
this list, is given in Alg. 10. Consume enumerates over all
sources. For each source n such that lab(n) ⊆ L, the algo-
rithm tests if there is another node sharing a label with n.
If so, the algorithm creates an episode without n and its de-
scendants and calls itself. This call produces a list of prefix
graphs W not containing node n. The algorithm removes
all graphs from W that can be augmented with n (since in
that case they are not maximal). Finally, Consume adds
n to the current prefix subgraph, removes n from G, and
removes lab(n) from L.

Algorithm 10: Consume(G,L, V), recursive routine for
iterating the nodes of all prefix subgraphs of G whose
labels are contained in L
input : graph G, nodes V discovered so far, L label set
output: list of nodes of all maximal prefix subgraphs

1 O ← ∅;
2 while src(G) 6= ∅ do
3 n← a node from src(G);
4 if lab(n) * L then

5 Remove n and its descendants from G;
6 continue;

7 if there is m ∈ V (G) s.t. lab(n) ∩ lab(m) 6= ∅ then
8 H ← G with n and its descendants removed;
9 W ← Consume(H,L, V);

10 O ← O ∪ {W ∈ W | lab(W) ∪ lab(n) * L};

11 V ← V + n; L← L− lab(n);
12 Remove n from G;

13 return O ∪ {V };

We are now ready to describe the recursion step of The-
orem 20 for testing the subset relationship. The algorithm,
Step, is given in Alg. 11. Given an episode set G and a
graph H , the algorithm computes G � H . First, it tests
whether we can apply Theorem 16. If this is not possible,
then the algorithm first removes all nodes from H not car-
rying a label from lab(G) for G ∈ G. This is allowed because
of the following lemma.

Lemma 21 Let G and H be two episodes. Let n ∈ V (H) be
a node such that lab(n) ∩ lab(G) = ∅. Let H ′ be the episode
obtained from H by removing n. Then G � H if and only if
G � H ′.

Step continues by creating a subgraph Y of H contain-
ing only proper sources. The algorithm generates all pre-
fix subgraphs V of Y and tests each one. For each sub-

Algorithm 11: Step(G,H), recursion solving G � H

input : episode set G and an episode H
output: G � H

1 foreach G ∈ G do

2 if Theorem 16 guarantees that G � H then

3 return true;

4 if Theorem 16 states that G � H and |G| = 1 then

5 return false;

6 V (H)← {n ∈ V (H) | lab(n) ∩ lab(G) 6= ∅, G ∈ G};
7 Y ← subgraph of H with only proper sources;
8 V ← Generate(Y, ∅);
9 foreach V ∈ V do

10 F ← H − V ; T ← ∅;
11 foreach G ∈ G do

12 X ← subgraph of G with only proper sources;
13 W ← Consume(X, lab(V), ∅);
14 T ← T ∪ {G −W |W ∈ W};

15 if Step(T , F) = false then

16 return false;

17 return true;

graph V ∈ V, Step calls Consume and builds an episode
set T = tail(G, lab(V)). The algorithm then calls itself re-
cursively with Step(T , H −V). If at least one of these calls
fails, then we know that G � H , otherwise G � H .

Finally, to computeG � H , we simply call Step({G} ,H).

8. EXPERIMENTS
We begin our experiments with a synthetic dataset. Our

goal is to demonstrate the need for using the closure. In
order to do that we created sequences with a planted pat-
tern (s1s2)(s3s4) · · · (s2N−1s2N). We added this pattern 100
times 50 time units apart from each other. We added 500
noise events uniformly spreading over the whole sequence.
We sampled the labels for the noise events uniformly from
900 different labels. The labels for the noise and the labels
of the pattern were mutually exclusive. We varied N from
1 to 7. We ran our miner using a window size of ρ = 10
and varied the support threshold σ. The results are given
in Table 1.

When we are using a support threshold of 100, the only
closed frequent patterns are the planted pattern and its sub-
patterns of form (sisi+1) · · · (sjsj+1), since the frequency of
these subpatterns is slightly higher than the frequency of
the whole pattern. The number of instance-closed episodes
(given in the 4th column of Table 1) grows more rapidly.
The reason for this is that the instance-closure focuses on
the edges and does not add any new nodes. However, this
ratio becomes a bottleneck only when we are dealing with ex-
tremely large serial episodes, and for our real-world datasets
this ratio is relatively small.

The need for instance-closure becomes apparent when the
number of instance-closed episodes is compared to the num-
ber of all possible general subepisodes (including those that
are not tranistively closed) of a planted pattern, given in the
5th column of Table 1. We see that had we not used instance-
closure, a single pattern having 6 nodes and 12 events ren-
ders pattern discovery infeasible.

Table 1: Results from synthetic sequences with a

planted episode P . The columns show the number

of nodes in P , the support threshold, the size of the

final output, the number of instance-closed episodes,

the number of subepisodes of P , and the number of

sequence scans, respectively.

|V (P)| σ |C| i-closed frequent scans

1 100 1 3 3 46
2 100 3 15 27 200
3 100 6 63 729 744
4 100 10 255 59 049 3 964
5 100 15 1 023 14 348 907 11 123
6 100 21 4 095 ≈ 1010 48 237
7 100 28 16 383 ≈ 2× 1013 191 277
7 50 29 16 384 > 2× 1013 191 243
7 40 32 16 387 > 2× 1013 191 298
7 30 39 16 394 > 2× 1013 191 463
7 20 127 16 488 > 2× 1013 197 773
7 10 684 52 297 > 2× 1013 480 517

As we lower the threshold, the number of instance-closed
episodes and closed episodes increases, however the ratio
between instance-closed and closed episodes improves. The
reason for this is that the output contains episodes other
than our planted episode, and those mostly contain a small
number of nodes.

We also measured the number of sequence scans, namely
the number of calls made to Support, to demonstrate how
fast the negative border is growing. Since our miner is a
depth-first search and the computation of frequency is based
on instances, a single scan is fast, since we do not have to
scan the whole sequence.

Our second set of experiments was conducted on real-
world data. The dataset consists of alarms generated in a
factory, and contains 514 502 events of 9 595 different types,
stretching over 18 months. An entry in the dataset consists
of a time stamp and an event type. Once again, we tested
our algorithm at various thresholds, varying the window size
from 3 to 15 minutes. Here, too, as shown in Table 2, we can
see that the number of i-closed episodes does not explode to
the level of all frequent episodes, demonstrating the need
for using the i-closure as an intermediate step. Further-
more, we see that in a realistic setting, the number of i-
closed episodes stays closer to the number of closed episodes
than in the above-mentioned synthetic dataset. This is no
surprise, since real datasets tend to have a lot of patterns
containing a small number of events.

As the discovery of all frequent episodes is infeasible, we
estimated their number as follows. An episode G has a(G) =

3|PE(G)|2|WE(G)| subepisodes (including those that are not
transitively closed) with the same events and nodes. From
the discovered i-closed episodes we selected a subset G such
that each G ∈ G has a unique set of events and a maximal
a(G). Then the lower bound for the total number of frequent
episodes is

∑

G∈G a(G). Using such a lower bound is more
than enough to confirm that the number of frequent episodes
explodes much faster than the number of closed and i-closed
episodes, as can be seen in Table 2.

Furthermore, our output contained a considerable num-
ber of episodes with simultaneous events — patterns that

no existing method would have discovered. The runtimes
ranged from just under 2 seconds to 90 seconds for the low-
est reported thresholds.

Table 2: Results from the alarms dataset.

win (s) σ/103 |C| i-closed freq.(est) scans

180 500 6 6 6 194
180 400 8 8 8 220
180 300 12 12 12 282
180 240 23 26 26 792

600 2 000 4 4 4 128
600 1 000 24 27 39 374
600 500 90 137 493 1 196
600 280 422 698 2 321 8 758

900 2 000 24 26 40 350
900 1 000 52 58 94 745
900 500 280 426 1 997 4 604
900 350 1 845 9 484 190 990 63 735

Our third dataset consisted of trains delayed at a single
railway station in Belgium. The dataset consists of actual
departure times of delayed trains, coupled with train num-
bers, and contains 10 115 events involving 1 280 different
train IDs, stretching over a period of one month. A win-
dow of 30 minutes was chosen by a domain expert. The
time stamps were expressed in seconds, so a single train
being delayed on a particular day would be found in 1800
windows. Therefore, the frequency threshold for interest-
ing patterns had to be set relatively high. The results are
shown in Table 3, and were similar to those of the alarm
dataset. The runtimes ranged from a few milliseconds to
55 minutes for the lowest reported threshold. The largest
discovered pattern was of size 10, and the total number of
frequent episodes at the lowest threshold was at least 33 mil-
lion, once again demonstrating the need for both outputting
only closed episodes and using instance-closure.

Table 3: Results from the trains dataset.

σ |C| i-closed freq.(est) scans

30 000 141 141 141 9 575
20 000 1 994 1 995 2 593 219 931
17 000 8 352 8 416 22 542 812 363
15 000 26 170 26 838 172 067 2 231 360
13 000 94 789 101 882 3 552 104 6 865 877
12 000 189 280 211 636 33 660 094 12 966 895

9. CONCLUSIONS
In this paper we introduce a new type of sequential pat-

tern, a general episode that takes into account simultaneous
events, and provide an efficient depth-first search algorithm
for mining such patterns.

This problem setup has two major challenges. The first
challenge is the pattern explosion which we tackle by discov-
ering only closed episodes. Interestingly enough, we cannot
define closure based on frequency, hence we define closure
based on instances. While it holds that frequency-closed

episodes are instance-closed, the opposite is not true. How-
ever, in practice, instance-closure reduces search space dra-
matically so we can mine all instance-closed episodes and
discover frequency-closed episodes as a post-processing step.

The second challenge is to correctly compute the subset
relationship between two episodes. We argue that using a
subset relationship based on graphs is not optimal and will
lead to redundant output. We define a subset relationship
based on coverage and argue that this is the correct defini-
tion. This definition turns out to be NP-hard. However,
this is not a problem since in practice most of the compar-
isons can be done efficiently.

10. ACKNOWLEDGMENTS
Nikolaj Tatti is supported by a Post-doctoral Fellowship

of the Research Foundation – Flanders (fwo).
The authors wish to thank Toon Calders for providing the

proof that checking whether a sequence covers an episode is
NP-hard on a small piece of paper.

11. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proceedings of the 20th
International Conference on Very Large Data Bases
(VLDB 1994), pages 487–499, 1994.

[2] R. Agrawal and R. Srikant. Mining sequential
patterns. 11th International Conference on Data
Engineering (ICDE 1995), 0:3–14, 1995.

[3] T. Calders, N. Dexters, and B. Goethals. Mining
frequent itemsets in a stream. In Proceedings of the
7th IEEE International Conference on Data Mining
(ICDM 2007), pages 83–92, 2007.

[4] G. Casas-Garriga. Discovering unbounded episodes in
sequential data. In Knowledge Discovery in Databases:
PKDD 2003, 7th European Conference on Principles
and Practice of Knowledge Discovery in Databases,
pages 83–94, 2003.

[5] G. Casas-Garriga. Summarizing sequential data with
closed partial orders. In Proceedings of the SIAM
International Conference on Data Mining (SDM
2005), pages 380–391, 2005.

[6] G. Chen, X. Wu, and X. Zhu. Sequential pattern
mining in multiple streams. In Proceedings of the 5th
IEEE International Conference on Data Mining
(ICDM 2005), pages 585–588, 2005.

[7] B. Cule, B. Goethals, and C. Robardet. A new
constraint for mining sets in sequences. In Proceedings
of the SIAM International Conference on Data Mining
(SDM 2009), pages 317–328, 2009.

[8] M. Garofalakis, R. Rastogi, and K. Shim. Mining
sequential patterns with regular expression
constraints. IEEE Transactions on Knowledge and
Data Engineering, 14(3):530–552, 2002.

[9] R. Gwadera, M. J. Atallah, and W. Szpankowski.
Markov models for identification of significant
episodes. In Proceedings of the SIAM International
Conference on Data Mining (SDM 2005), pages
404–414, 2005.

[10] R. Gwadera, M. J. Atallah, and W. Szpankowski.
Reliable detection of episodes in event sequences.
Knowledge and Information Systems, 7(4):415–437,
2005.

[11] R. Gwadera and F. Crestani. Discovering significant
patterns in multi-stream sequences. In Proceedings of
the 8th IEEE International Conference on Data
Mining (ICDM 2008), pages 827–832, 2008.

[12] S. K. Harms, J. S. Deogun, J. Saquer, and T. Tadesse.
Discovering representative episodal association rules
from event sequences using frequent closed episode
sets and event constraints. In Proceedings of the IEEE
International Conference on Data Mining (ICDM
2001), pages 603–606, 2001.

[13] S. Laxman, P. S. Sastry, and K. P. Unnikrishnan. A
fast algorithm for finding frequent episodes in event
streams. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge discovery and
data mining (KDD 2007), pages 410–419, 2007.

[14] H. Mannila, H. Toivonen, and A. I. Verkamo.
Discovery of frequent episodes in event sequences.
Data Mining and Knowledge Discovery, 1(3):259–289,
1997.

[15] N. Méger and C. Rigotti. Constraint-based mining of
episode rules and optimal window sizes. In Knowledge
Discovery in Databases: PKDD 2004, 8th European
Conference on Principles and Practice of Knowledge
Discovery in Databases, pages 313–324, 2004.

[16] T. Oates and P. R. Cohen. Searching for structure in
multiple streams data. In Proceedings of the 13th
International Conference on Machine Learning (ICML
1996), pages 346–354, 1996.

[17] J. Pei, H. Wang, J. Liu, K. Wang, J. Wang, and P. S.
Yu. Discovering frequent closed partial orders from
strings. IEEE Transactions on Knowledge and Data
Engineering, 18(11):1467–1481, 2006.

[18] N. Tatti. Significance of episodes based on minimal
windows. In Proceedings of the 9th IEEE International
Conference on Data Mining (ICDM 2009), pages
513–522, 2009.

[19] N. Tatti and B. Cule. Mining closed strict episodes. In
Proceedings of the 10th IEEE International Conference
on Data Mining (ICDM 2010), pages 501–510, 2010.

[20] P. Tzvetkov, X. Yan, and J. Han. Tsp: Mining top-k
closed sequential patterns. In Proceedings of the 3rd
IEEE International Conference on Data Mining
(ICDM 2003), pages 347–354, 2003.

[21] J. Wang and J. Han. Bide: Efficient mining of frequent
closed sequences. 20th International Conference on
Data Engineering (ICDE 2004), 0:79, 2004.

[22] J. T.-L. Wang, G.-W. Chirn, T. G. Marr, B. Shapiro,
D. Shasha, and K. Zhang. Combinatorial pattern
discovery for scientific data: some preliminary results.
ACM SIGMOD Record, 23(2):115–125, 1994.

[23] X. Yan, J. Han, and R. Afshar. Clospan: Mining
closed sequential patterns in large datasets. In
Proceedings of the SIAM International Conference on
Data Mining (SDM 2003), pages 166–177, 2003.

[24] W. Zhou, H. Liu, and H. Cheng. Mining closed
episodes from event sequences efficiently. In
Proceedings of the 14th Pacific-Asia Conference on
Knowledge Discovery and Data Mining(1), pages
310–318, 2010.

APPENDIX

A. PROOFS OF THEOREMS

Proof of Theorem 8. If s covers G, then the map f
mapping the nodes of G to indices of s provides the certifi-
cate needed for the verification. Hence, testing the coverage
is in NP.

In order to prove the completeness we reduce 3SAT to
the coverage. In order to do so, given the formula F , we
will build an episode G and a sequence such that sequence
s covers G if and only if F is satisfiable.

Assume that we are given a formula F with M variables
and L clauses. We define the alphabet for the labels to be
Σ = {α1, . . . , αM}∪{β1, . . . , βL}, where αi is identified with
the ith variable and βj is identified with jth clause.

We will now construct G. The nodes in the episode consist
of three groups. The first group, P = {p1, . . . , pM}, contains
M nodes. A node pi is labelled as lab(pi) = αi. These nodes
represent the positive instantiation of the variables. The
second group of nodes, N = {n1, . . . , nM}, also contains M
nodes, and the labels are again lab(ni) = αi. These nodes
represent the negative instantiation of the variables. Our
final group is C = {c1, . . . , c3L}, contains 3L nodes, 3 nodes
for each clause. The labels for these nodes are lab(c3j−2) =
lab(c3j−1) = lab(c3j) = βj . The edges of the episode G are
as follows: Let βj be the jth clause in F and let αi be the
kth variable occurring in that clause. Note that k = 1, 2, 3.
We connect pi to c3j+k−3 if the variable is positive in the
clause. Otherwise, we connect ni to c3j+k−3.

The sequence s consists of 5 consecutive subsequences s =
s1s2s3s4s5. We define s1 = s3 = α1 · · ·αM and s2 = s4 =
s5 = β1 · · ·βL, that is, s is equal to

α1 · · ·αMβ1 · · ·βLα1 · · ·αMβ1 · · ·βLβ1 · · ·βL.

Our final step is to prove that s covers G whenever F is
satisfiable. First assume that F is satisfiable and let ti be
the truth assignment for the variable αi. We need to define
a mapping f . If ti is true, then we map pi into the first
group s1 and ni into the third group s3. If ti is false, then
we map ni into s1 and pi into s3. Since each clause is now
satisfied, among the nodes c3j−2, c3j−1, and c3j there is at
least one node, say ck, such that the parent of that node (pi
or ni) is mapped to the first group s1. We can map ck into
the second group s2. The remaining two nodes are mapped
into the fourth and the fifth group, s4 and s5. Clearly this
mapping is valid since all the nodes are mapped and the
edges are honoured.

To prove the other direction, let f be a valid mapping of G
into s. Since the sequence has the same amount of symbols
as there are nodes in the graph the mapping f is surjective.
Define a truth mapping by setting the ith variable to true
if pi occurs in s1, and false otherwise. Each symbol in the
second group s2 is covered. Select one symbol, say βj from
that group. The corresponding node, say ck, has a parent
(either pi or ni) that must be mapped into the first group.
This implies that the truth value for the ith variable satisfies
the jth clause. Since all clauses are satisfied, F is satisfied.
This completes the proof.

Proof of Theorem 16. To prove the theorem we will
use the following straightforward lemma.

Lemma 22 Let G be a transitively closed episode. Let e and
f be two nodes. Then there exists a sequence s covering G
and a mapping m such that

1. if nd(e) 6= nd(f), then ts(m(e)) 6= ts(m(f)),
2. if nd(e) is not a child of nd(f), then

ts(m(e)) < ts(m(f)),
3. if nd(e) is not a proper child of nd(f), then

ts(m(e)) ≤ ts(m(f)),

The ’if’ part is straightforward so we only prove the ’only
if’ part. Assume that G � H and let e and f be two events
in G violating one of the conditions. Apply Lemma 22 with
H , π(e), and π(f) to obtain a sequence s and a mapping m.
We can safely assume that m is surjective. Define m′(x) =
m(π(x)) for an event x in G. Since every label is unique in
s, m′ is the only mapping that will honor the labels in G.
Now Lemma 22 implies that m′ is not a valid mapping for
G, hence G � H , which proves the theorem.

Proof of Theorem 20. Assume that the condition in
the theorem holds and let s be a sequence covering H and
let m be the corresponding mapping. We can safely assume
that m is surjective. Let t be the smallest time stamp in s
and E the events in s having the time stamp t. Let V be
the corresponding prefix subgraph,

V = {n ∈ V (G) | ts(m(n)) = t} .

By assumption, we have tail(G, lab(V)) � H − V , hence
there is G ∈ G and W ∈ pre(G,L) such that G−W � H−V
and lab(W) ⊆ lab(V). Let s′ be the sequence obtained from
s by removing E. Since s′ covers H − V , there is a map m′

mapping G −W to s′. We can extend this map to G by
mapping W to E. Thus s covers G, hence s covers G, and
by definition G � H .

To prove the other direction, assume that G � H . Let V
be a prefix subgraph of H . Let s′ be a sequence covering
H − V . We can extend this sequence to s by adding the
events with labels lab(V) in front of s′. Let us denote these
events by E. Sequence s covers H , hence it covers G.

By assumption, there is a mapping m′ from G to s for
some G ∈ G. Let W be the (possibly empty) prefix graph of
G mapping to E. We can assume that W ∈ pre(G, lab(V)),
that is, W is maximal, otherwise let W ′ ∈ pre(G, lab(V))
such that W ⊂ W ′. We can modify m′ by remapping the
nodes in W ′ − W to the events in E. This will make W
equal to W ′. Since s′ covers G−W , it follows that s′ covers
tail(G, lab(V)) which proves the theorem.

Proof of Lemma 21. The ’if’ part is trivial. To prove
the ’only if’ part, assume that G � H . Let s′ be a sequence
covering H ′ and let m′ be the mapping. If we can show that
s′ can be extended to s by adding events with the labels
lab(n) such that s covers G, then the corresponding mapping
m will also be a valid mapping from G to s′, which will prove
the lemma.

If n is a source or a sink (a node without children), then
we can extend s′ by adding the event with the label lab(n)
either at the beginning or at the end of s′.

Assume that n has parents and children. Let t1 be the
largest time stamp of the parents of n and let t2 be the
smallest time stamp of the children of n. Extend s′ to s
by adding an event f with the label lab(n) and the time
stamp t = 1/2(t1 + t2). Let x be a child of n and y a
parent of n. Since H is transitively closed, x is a child of y

in H ′. Since this holds for any x and y, we have t1 ≤ t2.
Hence ts(y) ≤ t ≤ ts(x). If x is proper descendant of n,
then it is also a proper descendant of any parent of n, hence
t1 < ts(x) and consequently t < ts(x). The same holds for
y. This implies that s covers G.

	1 Introduction
	2 Related Work
	3 Episodes with Simultaneous Events
	4 Subepisode Relationship
	5 Handling Episode Instances
	6 Discovering Episodes
	7 Testing Subepisodes
	8 Experiments
	9 Conclusions
	10 Acknowledgments
	11 References
	A Proofs of Theorems

