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Abstract 
A method of showing the performance limiting effects of a product form queueing 
network as lines, planes, etc in a J dimensional space is given. The location 
of a certain critical point (Little's Law Point) in this space allows the 
asymptotic calculation of the normalizing constant G(K) of the network. This 
Little's Law point (LLP) is found by applying Little's Law to the augmented 
system generating function of the BCMP[i] network. The computational complexity 
of this algorithm is the Order(number of chains cubed * number of service centers 
in the system). Comparisons of numerical accuracy with other methods 
(Convolution, and another asymptotic method) are given. 

Introduction 
In the early stages of a project, either a new proposed system or an 

evolving system, a designer may have some idea on the resource usage (disks, 
processors, buses, and critical application code) that an application system 
requires. What is not always easy to understand is how the combined effect of 
these resource usage along with queueing effects of processors, disks etc. 
determine the overall system performance. Typically, one can build a detailed 
simulation model to estimate the relative importance of the critical parts of the 
design. As an alternative, an analytic model can be constructed in a shorter 
time, with fewer parameters. This allows the designer to widely vary these system 
parameters at little cost compared to simulation. However, not all effects can 
be accounted for by analytic models and a detailed simulation model or a 
approximate analytic model is usually needed as more detailed design parameters 
are understood and quantified. 

This paper describes an analytic modeling technique which growths in 
accuracy and relative efficiency as the queueing network grows in size since it 
relies on a form of the central limit theorem of probability. If the reader is 
familiar with transfer functions from linear circuits, he/she will find the 
methods quite familiar as the product form queueing network is analyzed as a 
product of "transfer functions" to produce a system generating function in a 
complex frequency domain. To use the central limit theorem it is required that 
we find a special point in this frequency domain. This point is found by applying 
Little's Law { Average jobs in the system = arrival frequency * mean system time} 
to the overall system generating function. The major part of the algorithm is in 
finding this Little's Law point. We will refer to this algorithm as LLP. The 
location of the LLP within the feasible region of the frequency domain gives this 
approach a simple geometric interpretation which we will demonstrate shortly. 

One can compare analytic modeling techniques by examining the computational 
complexity and performance measures that each method provides. The computational 
complexity of the LLP algorithm to compute the thruput for a chain K network, 
utilizations etc. is the O(K 3 J). Here K is the number of chains and J the number 
of service centers in the system. The dominant term in the algorithm is the 
calculation of a loop which has O(K2J) for each component of the K chains. This 
estimates, which has been experimentally verified, compares favorably with 
RECAL[4] and DAC[3]. The RECAL algorithm requires approximately J(J+K-i choose 
J) operations to compute the normalization constant. The dominant term in the 
computational complexity of DAC is (3J+i)(J+K choose J). The storage requirement 
of LLP grows as the square of the number of chains. DAC and RECAL are 
theoretically exact which leaves open the question of the accurate LLP even 
though it takes fewer operations. The accuracy question is addressed in the 
Numerical Experiments section. An asymptotic expansion for LLP which quantifies 
the error in the asymptotic terms can be obtained. This expansion follows the 
ideas of the accuracy of the gaussian distribution in probability theory. Rather 
than show this expression, we have chosen to use numerical experiments to 
illustrate the accuracy of LLP. 

LLP computes the normalization constant in a non-recursive manner. The 
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underflow/overflow problems which has presented difficulties for Convolution[7] 
and later RECAL[2],[4] has no impact on LLP. By contrast, LLP does not require 
a sequence of accurate calculations to obtain the next accurate value. 

Turning to the question of which performance measures are available, we 
note that LLP computes the normalization constant using an asymptotic technique. 
Once the normalization constant is obtained most performance measures are at 
hand[7]. DAC[3][2] has an advantage in calculating the joint distribution of 
queue lengths at some or all service centers. 

An alternative asymptotic method of was given by McKenna et al [5]. This 
method overcomes the numerical instability of Convolution and storage requirement 
limitations of MVA[5]. In addition, it has shown good accuracy even for small 
networks by using a few terms in its asymptotic expansion. Currently, this method 
applies to mixed networks with at least one IS center visited by each closed 
chain, single server fixed rate centers, and an assumption of "normal usage". 
This means a CPU utilization which is not too close to 100%. The requirement of 
at least one IS center in each chain is frequently met in practice. Different 
asymptotic expansions are required for "heavy usage" and are anticipated for 
general networks. LLP by contrast has the following characteristics. 

a)IS centers (a set of users at terminals) need not exists in t h e 
network. In addition, no special expansion is needed for heavy usage of large 
networks. The same LLP approximation is used over the entire range of CPU 
utilizations. See[5] pp 346. 

b)The accuracy of one term using the LLP compares favorably with the 
Convolution and Asymptotic methods even for moderate networks. 

d)The storage requirement of LLP method does not depend on the number 
jobs/processes in each chain. The storage requirement does grow as the square of 
number of chains in the network. 

e)Very heavy usage (>95%) is easily calculated by LLP. 
f) LLP does allow calculation of sensitivities by applying the central 

limit technique to the partial derivative of the augmented system generating 
function. See Appendix B for more details. If new service centers are shown to 
yield to the"product form" the LLP method will continue to apply provided that 
the generating function for that service center can be summed in a simple form. 

Restrictions of the LLP method include: 
a) All product form networks with the exception of general queue length 

dependent (QLD) service rate centers can be calculated. LLP requires that one can 
sum the generating function for a single QLD service center. 

b)If a single service center has an extremely large queue size a s 
compared to other centers in the model, the central limit theorem breaks down. 
In this case however, all performance is determined by this single service 
center. 

Using the Frequency Plane and the System Generating Function 

To illustrate LLP consider a closed model of a signal processing system [9] 
shown in Figure i. This model was derived from a data flow diagram of a radar 
signal processing system which removes clutter from radar signals. There are two 
chains (job types) in the system each with its own visit ratio and mean service 
times. A system designer often needs to understand the performance limits of a 
system. We illustrate this use of LLP for the system of Figure 1 as follows. 

A.Create the System Generating Function 
For each service center in the model construct the system generating function 
based on the type of service center, queueing discipline, and number of servers. 
These generating functions are selected from the basic results of Baskett, 
Chandy, Muntz and Palacios[l]. See Basic Result below. Form the product of these 
functions to get the overall system generating function (SGF). In addition, 
multiply the SGF by a factor which accounts for the population of chain 1 and 
chain 2 customers in the network. We will follow the notation described in E. de 
Souza de Silva and R.R. Muntz[2] using the following notation 
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J 
K 

Tjk 

ajk 

SSFR 
IS 
QLD 

= number of service centers. 
= Total number of chains. 
= mean service time of chain k customers at center j. 
= relative utilization of chain k customers at center j. 

This term combines the visit ratio and the average service time. 
= number of chain k customers at center j. 
= First come first serve service center 
= Single Server Fixed Rate per chain service center 
= Infinite number of parallel Server 
= Queue Length Dependent service centers, the rate of service 
changes with the total number of jobs at the service center. 

In the case at hand, with SSRF service centers we have : 

6 
-(Ni+1) -(N2+i)i--- 1 

W(Z I,z 2)=zI Z2 II ...... Eq 1 
j:l (l-aj,lzl-a~,2z2) 

z I and z 2 are complex varlables 
-(Ni+i) -(N2+I) 

the factors which account for the population are zl z 2 

B. Determine the Feasibility Region in the Frequency Domain 
Find the enclosed region bounded by the {xl,x 2 } axis and the line(s) nearest the 
origin as defined by the denominator of Eq.l. Figure 2 shows this region X for 
the model in Figure 1 and the specific values for the a~ . Note in this case the 

. I 

system bottle neck is determined by the S 5 server. We she immediately a version 
of Amdahl's Law which bounds the thruput rate for each of the chains to lie 
inside the region X. 

C. Find the Little's Law Point 
For a specific load {Ni,N2}, locate the Little's Law Point in the real plane 
{xl,x[} at which the augmented SGF (Eq i) is a minimum. To see that the minimum 
colncldes with Little s Law Point we take the natural log of Eq 1 and set both 
partial derivatives to zero. 

inW(z 1,z 2):-(NI+I) in(z I)-(N2+I ) in(z 2) 
6 

-~ in ( l-ajlzl-aj2z 2) ..... Eq 2 
1 

Taking partial derivatives and rearranging we have Eq 3. 

6 
ajl zl 

NI+i=Ei (i- aj i zl -aj2z2) 
6 

aj2z2 
N2+I=E (i ) 

1 -ajlzl-aj2z2 

........... Eq 3 

To notice Little's Law we see that each term on the right side of Eq. 3 has 
the form of arrival rate z k for a given chain, times the average response time 
with Poisson arrivals for ~he queue type. The left shows the total number of 
customers in a chain (plus I) which are distributed throughout the network in an 
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average sense as shown by the right hand side. 
Hence the point of zero derivatives is determined by the constraint of 

distributing the N~ customers of each chain over the 6 service centers in the 
network of Figure f. The large fraction of the number in a chain piling up where 
the Poisson wait times are large. Notice the interference between chains is 
expressed in the denominator of each of the above terms. 

Good numerical techniques for finding the minimum of W(zl,z2) in Eq 1 are 
available[8]. An algorithm for locating the LLP is given ~n [Ii] where the 
Davidon-Fletcher-Powell algorithm is used. 

D. Obtain Numerical Results 
Numerical values are obtained by plugging the LLP into Eq.8 in Section 
Calculating Performance Using the Central Limit Theorem . In the more lengthy 
report [ii] it is show how one can calculate the normalizing constant G(K). It 
turns out that the LLP will provide a vector (of dimension the number of chains) 
at which we can simply evaluate a function (Eq 8) to get G(K). Once G(K) is 
available many performance measures are readily calculated using this 
normalization constant. These include queue length distributions for each chain, 
utilizations, throughput, and response times. 

E. Visualize the Effect of System Changes 
Changes in the system performance can be estimated by viewing the motion of the 
Little's Law Point (LLP) and the boundary of the feasible region as shown in 
Figure 2a. 

Changes in the {a i. } show up geometrically as shifts in the lines which 
bound the region X shownJin Figure 2a,b. If the line determined by S 5 shifts to 
the right, the LLP reacts in the same direction. If this line shifts beyond an 
adjacent line then that line will provide a new boundary of the possible thruput 
values. 

For instance, if we change the service rate of the server $5 from 0.5 to 
1.0 then the new feasible will increase as shown in Figure 2b. Note that the line 
$5 has shifted to the right making the servers S2 and S7 the limiting system 
factors. In this case increasing the system load (Ni,N2) could achieve higher 
throughput. 

Changes in loads {N ,N } cause the LLP to shift along the axis 
• I 2 

corresponding to that chaln. Figure 2b ~llustrates the effect of increasing N I 
while holding N 2 constant. 

Q.s 

6.. 

e.• 

" & i . ] *1o: ,7 ,~ , ] , [ , I  i I~[*L~:,l~[, l~-[. I  ~ I , : , i , [ . -  
o .1  * . *  * . l  o . ~  . . ,  ~ . 1  * . *  L . s  x . 7  x . ~  * . *  • . *  

Figure 2a illustrating the feasible region for the 
system in Figure I. 

ii I \ . . .  

o . a  , . ,  . . ,  , . ~  o . i  1 . ,  L . ,  ~ . s  l . ,  , . ~  , . z  a . l  

Figure 2 b Showing ~he change in the feasible region 
as {aij } changes. 
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Calculating Performance Using the Central Limit Theorem 

Little's Law Point Gives an Asymptotic Expansion 

The basic result of the LLP method is stated here. A detailed description of this 
result is available in report [ii]. 

Basic Result Define J functions h.(Zl,Z2,...,z K ) of R complex variables, one 
variable for each chain. Here j ranges over all service centers {j= 1 .... ,J}. 
For each service center of a given type select hi() from one of four distinct 
types as shown below. 
Form the product W(z) = h1(z ) h2(z ) ... hj(z), 

for type 1 serive centers hi(z)- 1 
e k% zk) 

keK  

f o r  t y p e  2 o r  4 h j  ( z )  - 1 . . . . . . . . .  
( i-£ ajk z k) 

keK 

for type 3 hj(z)=exp(£ ajkz k) ....... 
keK 

then G(Ki , K2, "'. , K_)~ is the coefficient of the term with powers {KI,K2,...K K 
} in the p6wer serzes expansion of the analytic function W(z). For a large number 
of network serves in W(z) is basically a quadratic function of {z] } in the 
neighborhood of the LLP. Consequently, the technique relies on an integral which 
is the K dimensional version of the gaussian integral arising in the central 
limit theorem. 

f . . . .  f e x p C - @ y ' C y )  d y l . . . d y  K - 
. . . .  (detC) 2 

..... Eq 4 

In our context the matrix C is a positive definite matrix of partial derivative 
evaluated at the LLP. We will use the results of Eq 4 after applying Cauchy's 
Integral Theorem to Eq 5 below. 

The flexibility afforded by Cauchy's Integral theorem in K-complex 
variables allows us to chooses a path through the K dimensional space which 
passes through the critical point at which all first order partial derivatives 
of the integrand vanish. This point coincides with the Little's Law point. The 
question of uniqueness of the minimum for G(K) can be addressed by the use of 
convexity arguments. 

We can form an expression for the normalizing constant G(K) in terms of a 
transform integral of the function W(z) as follows (See [ii] for detailed steps). 

K J K 

G(K') = ~f...~pexp{-k__~ 1 (Kk+l) lnzk+~j=l in h j ( z  1 . . . . .  zK)}ilk=z 2=--7 d z k  " " E q  5 

Here the hj() are selected from those functions detailed in Basic Result. This 
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choice depends on how the designer models the system at hand. 
We now expand the analytic function w(z) in a power series about a point z 0. 
w(z) is the argument inside the exp{..} term of Eq 5. 

K K /~ 

w(z) = w(z 0)+/__~IDiw(z0) (Z-Z°) +~ ~Dijw(z°) (Z/-Z°i) (zJ-z°J) 
- j=l 

+ 1 d3w(~;z_zo) 
3! 

here ~ l i e s  on  t h e  l i n e  e n d i n g  i n  (z, z o) E q  6 

and choose a path which passes through the point z 0 = x 0 + i Y0 with Y0=0 so that 
the first partial derivatives in the x^. vanish. Note the value of this partial 
derivative is independent of the pat~ j through x 0. Since w(z) is an analytic 
function, this point is a minimum of w(z) in the x direction but a maximum in the 
y direction. We neglect the third and higher order terms in Eq.6 . This leaves 
the term w(s0) and the second order term involving the second partial derivatives 
evaluated at the LLP. 
If the number of servers is moderate to large there are a large number of 
positive second partial terms contributed for each service center. Consequently, 
the magnitude of the second partial term will be large, resulting in sharp 
behavior of the integrand in the vicinity of the LLP. Note this argument is the 
same one used in the central limit theorem[ 12 ], in which the log of the 
characteristic function is shown to essentially a quadratic function for a large 
number of random variables. In Eq. 7, the role of the number of random variables 
is played by the number of service centers in the network. The behavior of the 
integrand in the y dimension is a maximum since the second order term is 
quadratic in the variables iy k . Invoking Eqs 5,6 we have the final equation 
which can be used to compute G(K) 

i=R s=R 
G(Kg" exp{w(z 0) }~..; exp{-!~ ~Dijw(z0)yry s} dy Eq 7 

JXo+iY z 2 r=l s=l 

Applying Eq 4 to integrate of this equation we have a result which allows us to 
calculate G(K) in terms of the load for each chain, the service center transforms 
and the LLP. Using the log from we have: 

K J 

inG(K~ = -~ (Kk+l) in (xok) +~ in hj (x O) 
k=1 j=1 

-(K/2)in(2=)-!in{ det [Dijw(xo)] ...Eq8 
2 

Numerical Experiments 
We first consider experiments which directly compare the Asymptotic method 

of McKenna et al with the LLP method. Note that choosing this network is a test 
of the asymptotic method; a larger number of servers would increase the accuracy. 
The same table numbers are used as in [5] to make references easier. Reference 
[11] contains more extensive experiments for high CPU utilization. These results 
are shown to demonstrate the stability of the LLP method for high CPU usage and 
a large number of chains. In the last part, limitations of the LLP Method are 
discussed. 
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Comparing to Prior Results 
The first experiment in Figure 3 compares Table II in [5] with the results 

of LLP. The parameters of this experiment are noted in Figure 3. The network 
model consist of two chains, a set of terminals with various average think times 
accessing a single CPU with the specified processing times. In examining Figure 
3 we note a general agreement in the CPU utilization, deviations from are usually 
no more than 5 %. For the case of 90/60 jobs/processes there is a substantial 
disagreement which the author believes is a typing error. The last five rows 
show the high CPU utilization extension of this experiment. LLP easily converged 
to a relative change of one part in a million. 
NOTE: Only CPU utilizations are shown, as the response times in [5] can be 
directly calculated from the utilizations for these networks. 

The next set of experiments is defined in Figure 4A. The network 
configuration is the same as Table IV in [5]. There are 17 chains with a 
variety of CPU service rates as well as IS service rates. Note chains 4 and 5 
should have the same utilization as they are symmetric in IS service rates as 
well as CPU service rates. 

a) The left two columns Figure 4B shows a comparison with [5]. Once more the 
results are generally within 5% as measured by CPU usage. The total CPU 
utilization compares 44% in [5] and 43% for LLP . Chains 4 and 5 show identical 
CPU% for LLP, where as [5] shows 0.046 for chain 4 versus 0.040 for chain 5. 

b)The right most two columns in Figure 4B shows the effect of increasing the CPU 
usage by each chain by a factor of 2.5 and 5.0 respectively. Alternately, we 
could say that the network's CPU has been replaced by slower models in the same 
ratio. These results show good convergence of the LLP and maintenance of good 
symmetry between chains 4 and 5. These results show the added range which LLP can 
provide. More extensive experiments which extend the number of chains and cpu 
utilization are given in [ii]. 

Conclusions 

The LLP Method for large product form networks proves effective with 
computational complexity of O(K~J) for a large number of chains. Service center 
utilizations can be near 100%, and underflow/overflow problems are not 
encountered. This method complements Convolution, RECAi, DAC methods by solving 
networks. For small to moderate size networks Convolution and MVA are still very 
effective. 

Figu re  O n e  - M o d i f i e d  n e t w o r k  t a k e n  f rom " Q u e u e i n g  N e t w o r k  M o d e l  fo r  r a d a r  S ignal  P r o c e s s i n g  S y s t e m  " o f M c C a b e  & A s s o c i a t e s  
• A c lo sed  l oop  has  been  a d d e d  and  t w o  cha ins  a r e  in t roduced .  T h e  n u m b e r s  nea res t  the  q u e u e s  ind ica te  the  no rma l i zed  visit r a t ios  fo r  
each  chain .  T h e  n u m b e r s  neares t  the  Q ' s  a r e  serv ice  ra tes  fo r  each  se rv ice  center .  
The  s y s t e m  g e n e r a t i n g  func t ion  for  the  n e t w o r k  is s h o w n  here  : 

( I - O. 5z I - O. 5z 2 ) 2 (! _ 1.75z, - .  75zz )(1 - O. 65z, - O. 85z 2 )(l  - 0. 4z  I - O. 4z~ )( 1 - 2 .0z,  - 2. Oz 2 

I :.:,2.o 

Ol 1.0,1.0 
1.0, 1.0 

2.0, 2.0 

0.4, 0.4 

c>-f-r-r- 
Q4 

1.0,1.0 
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Degree of Total %CPU Total ~ CPU Total % CPU 
Multiprogramming CADS LLP-Method Euler(McKenna et al) 

i0/i0 0.118 0.121 0.119 
20/20 0.239 0.214 0.23 

30/30 0.358 0.362 0.35 
40/40 0.476 0.481 0.48 

50/50 0.593 0.599 0.60 
60/60 8D 0.71 0.70 

80/60 8D 0.75 0.72 
90/60 SD 0.776 0.97* 

100/50 80 0.705 0.69 
110/50 8D 0.726 0.71 

140/50 8D 0.788 0.79 
200/10 8D 0.54 0.54 

170/40 8D 0.76 0.75 
200/25 BD 0.683 NA 
200/50 BD 0.894 NA 
200/100 8D 0.982 NA 
200/200- 8D 0.994 NA 
400/400 SD 0.997 NA 

NA-not available 8D breakdown of method 
Input for this experiment: 
NO. of classes = 2, Think time class 1 = 
Think time class 2 = 150 seconds, 

450 sec., 

Processing Time are 1.0 seconds and 1.5 seconds respectively. 

Figure 3.Comparlson with the Table II (Euler Approximation) from [5] 

Class Service Rate Service rate 
of of Infinite for CPU 
Customer Server Class 

of 
1 0.0033 20 Customer 
2 0.033 2 

1 
3 0.0033 • 2 
• 0.033 4 

3 
5 0 . 0 3 3  4 4 
6 0.033 6 

5 
7 0.033 20 6 
8 0.00033 0.6 

7 
9 0.00055 0.6 8 
i0 0.0033 0.6 

9 
11 0.00033 0.2 10 
12 0.00055 0.2 

11 
13 0.0003 0.2 12 
14 0.033 1 

13 
15 0.00033 1 14 
16 0.00055 1 

15 
17 0.0003 1 16 

~ure 4A. Problem Specification - from Table IV in [5] 
degree of multlprogramming for each class is 5. 17 

Total CPU 

CPU% xl CPU % xl CPU % x2.5 CPU % x 5.0 
MoKenna LLP LLP LLP 

et al Point Point Point 

0.008 0.0008" 0.002 0.004 
0.080 0.081 0.164 0o148 

0.004 0.0041 0.010 0.019 
0.046 0.041 0.09157 0.109296 

0.040 0.041 0.09157 0.109296 
0.027 0.027 0.063 0.097 

0.008 0.008 0.020 0.035 
0.003 0.0027 0.007 0.013 

0.005 0.0046 0.011 0.021 
0.027 0.0273 0.063 0.097 

0.008 0.0083 0.020 0.035 
0.013 0.0137 0.033 0.053 

0.007 0.0075 0.018 0.032 
0.156 0.157 0.27 0.181 

0.002 0.0017 0.004 0.008 
0.003 0.0027 0.007 0.013 

0.001 0.0015 0.004 0.007 

0.44 0.43 0.882 0.967 

Figure 4B.Results of a 
Table IV(b) in [5]. 

Comparison of Euler and LLP aproximations. Compare to 
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