
Adaptable Object Migration:
Concept and Implementation

Wolfgang Lux

G M D , I n s t i t u t e for S y s t e m Design Technology
D 53757 St. Augus t in , G e r m a n y

N o v e m b e r 7, 1994

Abstract
Migration is one example of the insufficiently used potentials of distributed systems. Although migration

can enhance the efficiency and the reliability of distributed systems, it is still rarely used. Two limitations
contained in nearly all existing migration implementations prevent a widespread usage: migration is restricted
to processes and the migration mechanism, i.e. the way state is transferred, is not adaptable to changing
requirements.

In our approach, migration is an operation provided by every object of any type. Triggered by higher
level migration policies, the object migrates itself using an object-specificmigration mechanism. Changing
requirements are handled by higher level migration policies that adapt migration by exchanging the object's
mechanisms.

Adaptable migration was implemented within the BirliX operating system. Different migration mecha-
nisms are accomplished by different meta objects, which can be attached to other objects. I f an object has
to be migrated, the meta object does the migration. Changing environmental requirements are handled by
exchanging the meta object. As a result, each object has its own migration mechanism. The approach has
been examined by implementing a couple of well-known migration mechanisms via meta objects. This paper
describes the meta object implementation of the Charlotte migration mechanism.

1 Introduction
Although efficient networks provide a suitable base for distributed systems, distributed systems do still not
exploit all of their potentials. Migration, i.e. dynamically changing the location of objects 1, is one example
of these insufficiently used potentials. Migration can be used to enhance the efficiency and the reliability of
distributed systems:

• Administration:
When maintaining or replacing computers, their services can be migrated to other hosts without
interrupting usage [TH92].

• Communication support:
To minimize communication overhead, communication partners are migrated to hosts at close range
[Sch90]. Collecting communication partners on one host renders predictable execution times for real
time critical applications [RS84].

1 With in this paper, we only consider migrat ion of coarse-grained operat ing system objects.

54

http://crossmark.crossref.org/dialog/?doi=10.1145%2F202213.202221&domain=pdf&date_stamp=1995-04-01

• Fault avoidance:
To meet security demands, documents that become security sensitive are migrated to trustworthy
computers. To enhance the availability of replicated objects, individual replicas can change their
location [Fen93].

• Resource usage:
To balance processor loads, processes are migrated from highly loaded computers to lowly loaded ones
[BS85]. To enable mobile computing, objects are migrated from/to mobile stations before decoupling
from the system and migrated back after recoupling [BAI93].

Although a lot of applications can profit from migration, only a few systems provide a migration feature. In
most cases, these systems are special solutions for load-balancing by process migration. Restricting migration
to processes impedes the usage of migration in many applications. For an application with a high degree
of file i/o, separating the processes from the accessed files is counter-productive because of the additional
communication overhead. Migrating the processes together with all their files avoids this overhead.

Requ i r emen t : A system must provide migration for objects of different types.

The Charlotte operating system [AF89] introduced the first step in making migration adaptable to various
applications by dividing migration into a migration policy and a migration mechanism. The policy makes
the decision about when and where to migrate an object; the mechanism transfers the resources belonging
to an object from one host to another. Thus, a policy does not need to care about resources, but can use the
object migration provided by the mechanism. The goal is a generic, policy-neutral mechanism supporting
various policies. Unfortunately, a single mechanism is not suitable for all applications. For example, files may
be migrated in a fault-tolerant way to avoid loss of information. The overhead needed for fault-tolerance is
undesirable for fast process migration. An inappropriate mechanism can even be counterproductive, i.e. the
Accent [Zay87] lazy migration mechanism leaves residual dependencies, which conflict with fault-tolerance
requirements.

Requ i r emen t : A system must support the coexistence of different migration mechanisms.

As systems are still evolving, new requirements will arise during their life time.

Requ i r emen t : A system must support the dynamic integration of new migration mechanisms.

To get a widespread usage, a migration system must offer sufficient performance. In existing implementations,
the whole state of an object is transfered. The use of semantic knowledge about the object state can reduce
the the amount of transferred state. For example, the data cached within a database application does not
need to be transferred, since the cache can be rebuild at the destination system.

Requ i r emen t : A system must incorporate semantic knowledge for migration.

To make a decision, migration policies need information about participating hosts and objects. The nec-
essary information depends on the decision criteria of individual policies. Different policies need different
information. Newly developed policies probably need new information.

Requ i r emen t : A system must support the dynamic integration of mechanisms for information
collection.

Adaptable migration is an approach complying with all of these requirements. Section 2 presents the
concept of adaptable object migration. Migration of an object becomes adaptable by attaching a meta
object containing an individual migration mechanism. The BirliX operating system which has been used
for the implementation is introduced in section 3. Section 4 describes the implementation of adaptable
migration. As well as selected interfaces for migration, a migration meta object and some measurements are
also presented.

55

2 Adaptable Migration
Our approach is based on the adaptable object model described in [SHKL94]. The execution environment
consists of a set of hosts interconnected by a communication system. At each host there is an object
management system managing the local objects. Objects have functional and non-functional properties.
Functional properties are defined by the type of an object, non-functional properties are defined by the
object's infrastructure. The type determines, for all of its objects, the internal data structures (attributes)
and the operations (methods) used to manipulate the data structures. An infrastructure is a run-time
environment for an object and the execution of its methods. It provides communication, encapsulation
and non-functional properties. For example, the infrastructure of an operating system object defines non-
functional properties such as persistence, protection and migratability. The adaptability of non-functional
properties to environmental requirements is achieved by dispersing parts of its infrastructure into a set of
meta objects [TY92], as shown in figure 1. A meta object is an object containing the implementation of
a non-functional property. Non-functional properties of an object are adapted to specific requirements by

ect write
.

migrate] [checkpoint] | encrypt]
eta object) ~meta object ,) ~meta object)

Figure 1: An Object with its Meta Objects

substituting its meta objects.
Migration is the transfer of an object from one object management system to another. The object

management system provides a type-independent standard implementation for migration and information
collection. Thus, objects of different types can be migrated without support from its type. This is possible
because the state of an object is completely represented within its type and its infrastructure. The object
management system migrates the object to the specified destination hostlby:

• Creating a transferable representation of the object at the source host,

• sending the representation to the destination host and

• reconstructing the object from the transferred representation.

Adapting migration to changing environmental requirements is achieved by meta objects. Different
migration mechanisms and information collectors are stored within different meta objects. Attaching a meta
object to a single object enables object-specific migration and information collection. Higher-level migration
policies handle changing requirements by substituting attached meta objects.

When the migrate method of an object is called, its infrastructure forwards the call to the attached
migration meta object. To be able to create a transferable representation, the meta object needs access to
the internal components of the object. To do this, the object's infrastructure provides an internal interface
to the meta object. The offered operations, e.g. suspension of activities and extraction of kernel state, are
comparable to those provided by micro kernels.

The information collector collects information about its attached object. As the state of an object mostly
depends on its communication, most information can be got by observing the communication. To do this,
the infrastructure provides the sequence of called methods to the attached information collector.

56

In many cases, knowledge about the type implementation can make migration more efficient. One example
is reducing the amount of state to be transferred. Adapting an object to the resources of the destination
host is another potential of type-specific knowledge. For example, the number of parallel activities within
an object is changed to the number of processors at the destination host. To use this knowledge, a type
description should provide an internal interface to the meta object. Type-specific migration is an option for
a type programmer, he can still rely on type-independent meta migration.

The concept of adaptable migration is open to several implementations; though each implementation
must treat the following topics:

Splitting objects into system/user parts:
Each object known to the object management system has an anchor within the system, such as its
binding to physical resources. Consistency, flexibility and efficiency are criteria used to determine
which parts of an object are system defined and which are administrated at user level. For user level
migration, it is important to know, which parts of the system state can be extracted by the user part
during migration.

Defining the interfaces of meta objects:
A mechanism in a meta object depends on the calling parameters, the information provided by the
object's infrastructure and the object management system. While the infrastructure must provide op-
erations for accessing the object's resources, the object system must provide operations for transferring
the contents of these resources.

Communication with meta objects:
Efficiency of communication between an object and its meta objects is important. Meta objects can be
implemented as independent objects or integrated into the attached objects. To get high availability,
an attached meta object should reside on the object's host, i.e. it should be migrated along with the
object.

3 The BirliX Type System

Adaptable migration was implemented within the BirliX operating system developed at GMD. The goal
of BirliX is the support of fault-tolerant and secure applications in a distributed environment [KHKL90].
The BirliX kernel is basically an abstract data type management system providing mechanisms for the
definition and instantiation of BirliX types, the identification of instances 2 and communication between
instances. BirliX types are very similar to Eden types [ABLN85]. All BirliX types share a common set of
type-independent attributes and type-independent methods inherited from a kernel-defined primary type.
The type system and the primary type together provide the infrastructure of an instance. The functional
extension of a BirliX system is easily done by adding new BirliX types.

An application in BirliX consists of a cluster of communicating instances. Instances communicate via
instance calls, which are implemented by network transparent remote procedure calls (RPCs).

3.1 I n s t a n c e F e a t u r e s

BirliX instances are autonomous units, their state can only be changed by calling methods of the instance.
The change of state is made by the instance itself.

BirliX instances are persistent. The lifetime of an instance depends on internal activities and references
in name servers. The BirliX type system manages an instance as long as there is at least one internal activity
or one external reference. Name server instances are used to locate an instance. They map symbolic names
of instances to their unique identifiers. Additionally, they provide hints about their current location. At any

2The term 'instance' is used instead of 'object ' because of the restricted inheritance.

57

time, an instance resides at one host. Executing the primary method Migrate changes the location of an
instance.

Security in BirliX is based on the encapsulation of instances and on authenticated message transfer
[KH90]. Access control lists and subject restriction lists are the current mechanisms to control access.
Access control lists specify access rights of human users, instances and types for instance methods. When
receiving a call, the instance checks the sender identification and the called method against the access control
list. Subject restriction lists are used to restrict the sight of an instance to a certain set of instances. The
authenticity of messages assures that sender identifications are not falsified.

In order to support fault-tolerant applications, the state of an instance can be saved in a checkpoint.
During recovery, the saved state is restored. Interrupted communication'connections are reestablished by a
rebinding mechanism in the type system.

3 .2 T e a m s

A BirliX instance is implemented by a type-independent general implementation structure called a team
(Figure 2). A team provides the storage and computing resources needed by an instance in its active phase.
A team is a collection of threads sharing an address space and a collection of segments mapped into that
address space. Communication connections to other teams are maintained in access descriptors.

agents

segments ac

©
agents natives

Q g
segments access dese

Host A

$
agents

D
segments aCCCSSdeSc J]

Host B

Figure 2: Communicating Teams

Threads are sequential activities running in parallel with each other. Each thread is bound to an address
space and several threads can be active at the same time. Within an address space, threads communicate
via shared memory synchronized by Hoare monitors. Communication crossing the address space is done by
synchronous message passing. Each thread consists of a kernel coroutine and a user coroutine. The kernel
coroutine executes the methods of the type system and the user coroutine those of the BirliX type. Depending
on their role, threads are divided into agents and natives. Each calling instance (client) is represented within
the called instance by an agent. This agent receives the messages of its client, checks the method against the
access control list and executes the method. Natives are used for internal activities running asynchronously

58

to agents and other natives. For example, a native executes the Unix program in an instance of type Unix
process.

Segments are an abstraction of storage resources provided by the memory management system. Segments
are comparable to memory objects in Mach [TR86] or segments in Chorus [R+88]. Each segment possesses
a unique identifier. The root segment is the root of all segments belonging to an instance. It contains a
descriptor for the team and has the same unique identifier as the corresponding instance.

Communication connections between instances are managed at the client side in access descriptors. An
access descriptor contains a network transparent pointer to an agent and protocol information about the
connection. The one-to-one relation between an access descriptor and an agent makes the rebinding of
interrupted connections possible.

3 . 3 I n s t a n c e M a n a g e r

At each host, there is one instance manager, which is responsible for the administration of the local instances.
The manager maintains a descriptor for each team. A team descriptor contains information about a team,
such as the team state, descriptors for the agents and natives, an access control list, a subject restriction list
and identifications of the segments belonging to the team. When an instance is created from a BirliX type,
the manager creates a team with one agent. The kernel coroutine of this agent creates an address space
and the needed segments. The code segment is built using the type description. Then, all segments of the
instance are mapped into the address space. Control is transferred to the user coroutine which performs the
type-specific initialization of the instance. Finally, the agent sends a reply message to the client and waits
for the next message of the client (figure 3).

client address space instance address s)ace

segment-
mapping

stacks

type description

l manager

kernel address space

Figure 3: Establishing a Communication Connection

The manager creates a new agent for each additional communication request. On receiving a message,
the agent checks the method name in the message against the access control list. If the method name
specifies a primary method, it is executed by the kernel coroutine; type-specific methods are forwarded to
the user coroutine. When the primary method to delete the communication connection is called, the agent
is deleted by the manager. Natives are created and deleted during the execution of type-specific methods.
The manager passivates an instance with external references when all agents and natives are deleted. Any
further communication request causes the manager to reconstruct the team using the passive representation
in the segments. If there is no external reference during passivation, the manager deletes the instance along
with all of its segments.

59

4 M i g r a t i o n in B i r l i X

4.1 P r i m a r y T y p e M i g r a t i o n

The BirliX type system provides type-independent migration of instances. Using the primary method
l~£grate, an instance is migrated within a network of homogeneous BirliX hosts. Migration is transpar-
ent to the user and to the type programmer: a client uses a single method to migrate instances of different
types and the programmer of a type does not need to care about migration. To aid the decision about
which instance should be migrated, each instance provides an additional primary method NigInfo. MigIn~o
returns relevant information about the instance. Like all primary methods, the execution of Migrate and
MigInfo is protected by the access control list of the instance.

During Migration, the current state of an instance is transferred to the destination host. As this state
is given by the corresponding team, instance migration is done via team migration. Figure 4 shows the
effect of team migration applied to figure 2. For team migration we need a team checkpoint, which is a

I 1

ac :

(-.'.,) (-'.,) ...-.....
• - % , , . . '

Host A

;2
agents

segments

(3
natives

access desc

Host B

Figure 4: Team Migration

representation of its state on backup storage. Team checkpointing is an existing mechanism in BirliX used
to support fault-tolerance. As most of the state is contained in segments, checkpointing mainly consists of
collecting the kernel state in the root segment. Thus, migration could be implemented easily by combining
already existing kernel functionality:

• Create a team checkpoint at the source host,

• transfer all segments of the instance to the destination host,

• recover the team state from the checkpoint,

. rebind the communication connections of the team.

60

The primary type provides a standard implementation for type-independent migration [LHK93]. The mi-
gration protocol is responsible for the communication between the agents and manager as shown in figure 5:

client

request

source system

suspend

] request

----•f reply

0__~ checkpoint

) send segments ,0~--

J :L D

~ . agent id ~ - ~ . agent id

destination

manager

.@

-]
recover

next calls ~ ~

Figure 5: Migration Protocol

• A client sends a migration request to his agent (src-agent).

• Src-agent blocks the team communication (ingoing and outgoing), suspends all threads and sends a
migration request to the manager at the destination host.

• The manager creates an agent (dest-agent) and forwards the request to dest-agent.

• Dest-agent announces the instance to the destination host by allocating a team descriptor and sends
an acknowledgment to src-agent.

• Src-agent creates a checkpoint and sends all segments to dest-agent.

• Dest-agent recovers the team from the received segments and sends the new identification of the agent
to src-agent.

• Src-agent enters a hint for the new location of the instance, releases all resources at the source host
and sends the new identification of the agent to the client.

6 i

Dest-agent resumes all threads and unlocks the team communicatiom

This standard implementation supports migration of multi-threaded instances of any type. Nevertheless, the
unchangeable kernel implementation is not able to adapt migration to changing requirements.

4 .2 A d d i n g A d a p t a b i l i t y

BirliX is based on a simple, but extensible object model: if the kernel implemented primary methods are
not satisfactory for a user, he can substitute them with user-level implementations. Applied to migration,
special requirements concerning state transfer and efficiency can be fulfilled by adding functionality to the
standard implementation or by substituting it with a new one. For example, one can add encryption to the
standard protocol, or even use a completely different protocol. In specia) cases, the amount of transferred
data can be reduced by using type-specific knowledge. By changing the ~implementation, it is possible to
adapt migration to changing execution environments and to use type-specific knowledge for migration. The
type-independent interface for the client still remains unchanged.

4.2.1 Meta Migration

The adaption of a primary method is done using meta instances. A meta instance is an instance containing
the implementation of a primary type method. Using the method A1;tachMeta, a meta instance is attached
to an instance. When the corresponding primary method is called, the.primary type activates the meta
implementation instead of the kernel defined one. Since attaching a meta implementation is a security
sensitive action, AttachI4eta itself is a primary type method protected by the access control list. Applied
to migration, different migration implementations are stored in different meta instances. Depending on the
application-specific requirements, higher-level migration policies attach suitable meta instances to individual
instances.

The availability of meta instances is a problem. To get maximal availability , an instance and its meta
instances must reside at the same host. On the other hand, it should be possible to use a meta implementation
by different instances at different hosts. In our solution, each instance has: an additional segment containing
primary type methods. During execution of Attachl4eta, the implementation is transferred from the meta
instance to the primary segment. Thus, each instance possesses its own implementation which is migrated
together with the other segments.

At the start of migration, the primary type maps the primary segment to a reserved range of the instance's
address space and calls the meta method. This meta method handles the migration protocol at the source
host. As the meta implementation must also work at the destination host~ there must be some initialization
at the destination host. Therefore, the migration request message specifies if the standard or the meta
implementation is used. If the meta implementation is used, the manage~ at the destination host maps the
first received segment containing the meta implementation to a newly created instance address space and
calls the meta method. The meta methods at the source and destination hosts handle then the remaining
migration protocol.

4.2.2 Type-specific Migration

Adapting migration to types is in apparent contradiction to the decision not to encumber a type programmer
with migration. A BirliX type does not need to support migration. Rather, a type programmer can use his
knowledge about the implementation to make migration faster. Restartable threads and currently unused
storage resources do not need to be transferred. An empty stack can be migrated by transferring the
information "stack is empty".

The BirliX concept is not powerful enough to reduce an empty stack to this kind of information. A
BirliX instance is too heavy-weighted, it has a team descriptor and communication connections. Therefore,
type-specific migration is aligned to resource compression. If a data type Supports compression, the primary

62

type calls the compression method before migration at the source host and its inverse method after migration
at the destination host.

4 .2 .3 C o o p e r a t i o n o f M e c h a n i s m s

For migration there are potentially three different mechanisms: standard , meta and type-specific. Cooper-
ation of the different mechanisms is determined by the primary type as shown in figure 6. On a migration

PROCEDURE NigrateSrc((*InOut*) AgentId:
(*InOut*) Location:
:ResultT;

BEGI|
cM1 type-specific migrate for source host ;
IF meta implementation exists THEi

activate meta implementation
ELSE

call s tandardimplementat ion
E|D;

E~D MigrateSrc;

AgentIdT;
LocationT)

PROCEDURE MigraCeDest (Message: MessageT)
: ResultT ;

BEGII
IF meta implementation exists THEI

activate meta implementation
ELSE

call standard implementation
E|D ;
call type-specific migrate for destination host ;

EID NigrateDest

Figure 6: Cooperation of Mechanisms

request, the agent at the source host executes the operation MigrateSr¢ and the agent at the destination
host executes HigrateDest. State transfer is bracketed by the execution of the type-specific calls. If there
is an attached meta object, the meta implementation is used in preference to the standard implementation.

4 . 2 . 4 Interfaces

Adaptable migration is done by the cooperation of a client, the primary type and the meta implementation.
The communication between these parties is specified by three migration interfaces.

C l i e n t - P r i m a r y Type

The primary type of an instance provides its clients with the interface shown in figure 7. After establishing
a communication connection via Inscauce0pen, a migration policy can use the operations AtCachMeta,
InstanceMigrate and Ins tanceInfo . At the system interface of BirliX, these operations are provided via
procedure calls. Using the call parameters the type system generates a corresponding message and sends
it to the agent. The agent calls the requested operation, puts the return parameters into the message and
sends the message back to the client. If the operation could not be executed correctly, the message contains
an error code.

63

PROCEDURE AttachMeta((*In*) AgentId: AgentIdT;
(*In*) 0pCode: OpCodeT;
(*In*) MetaInstance: UniqueIdT;
(*In*) MetaLocation: LocationT)
: ResultT;

(* AttachMeta a t t a c h e s t h e m e t a i m p l e m e n t a t i o n f o r t h e m e t h o d 0pCode to the
(* ins tanceident i f ied by AgsntId. The implementa t ionis stored within t he in s t ance
(* MetaIns tance at host MetaLocation.

PROCEDURE InstanceMigrate((*InOut*) VAR AgentId: kgentldT;
(*InOut*) VAR Location: LocationT)
: ResultT;

(* In s t anceMigra t e migrates the instance identified by AgentId to the host specified
(* by Locat ion. A~er execution Agentld contorts the new identification of the agent
(* and Loca t ion contorts the location of the instance.

PROCEDURE Instancelnfo((*In*) Agsntld: AgentIdT;
(*OUT*) VAR Info: InfoT)
: ResultT;

(* InstanceInforeturnsin Infoinformation about theinstanceidentified by AgentId.

,)
,)
,)

,)
,)
,)

,)

Figure 7: Operations provided by the Primary Type

P r i m a r y T y p e - M e t a I m p l e m e n t a t i o n

Figure 8 shows the operations which a meta instance must provide for the primary type. Higra teSrc and
MigrateDest are implemented within a meta instance for migration and C o l l e c t I n f o and GetInfo within a
meta instance for information collection. The programmer of a meta instance must respect these interfaces to
get the correct call parameters. When calling the operation, control is transferred from the kernel coroutine
(primary type) to the user coroutine, which executes the meta implementation. After execution control is
changed back.

PROCEDURE MigrateSrc((*Out*) VAR Agentld: AgentIdT;
(*InOut*) VAR Location: LocationT)
: ResultT;

(* MigrateSrc executes the migration protocol at the source host. The destination
(* system is specified by Location. A~er execution AgentId contorts the new
(* identification of the agent and Location contorts the location of the instance.

PROCEDURE MigrateDest((*In*) Message: MessageT)
: ResultT;

(* MigrateDest executesthemJgration protocol at the destination host. Kessage
(* con tMns themessage received by the manager.

PROCEDURE CollectInfo((*In*) Message: MessageT);
(* CollectInfo coUectsinforination using the message Message.

PROCEDURE GetInfo((*0ut*) VAR Info: InleT);
(*In*) Initialize: BOOLEAN);

(* GetInfo r e t u r n s i n Info the information coUected by the me ta implementa t ion .
(* I n i t i a l i z e specifies, if coUectingshould be initialized.

,)
,)
,)

,)
,)

,)

,)
,)

Figure 8: Operations provided by the Meta Implementation

64

M e t a I m p l e m e n t a t i o n - P r i m a r y Type

To migrate an instance, the meta implementation needs access to the primary type. Since many different
meta implementations may exist, it is difficult to find an interface suitable for all. A low-level interface
preserving the consistency of the primary type and type system seems to be most flexible. Figure 9 shows
the current interface. On calling the operations, control is transferred from the user coroutine to the kernel

PROCEDURE SuspendExternalRequests();
(* SuspendExternalRequests suspends establishing and deleting of conununication *)
(* connections to the instance. *)

PROCEDURE ResumeExternalRequests() ;
(* ResumeCommunication rescinds the lock for establishing and deleting of
(* communication connections.

PROCEDURE SuspendTeam() ;
(* SuspendTeam suspends all threads of the team (except the calling one)

PROCEDURE ResumeTeam() ;
(* ResumeTeam activates the suspended threads.

PROCEDURE CollectKernelState() ;
(* CollectKernelState collects the team state and puts it to the root segment.

*)
*)

*)

*)

*)

PROCEDURE DistributeKernelState();
(* DistributeKernelStatedlstributes the tearn state stored in the root segment *)
(* to the system tables. *)

PROCEDURE ReleaseResources();
(* ReleaseResources releases not yet needed resources o f the ins t ance .

PROCEDURE SegmentDup((*In*) 0rigUniqueId: UniqueIdT;
(*Out*) VAR DupUniqueId: UniqueIdT);;

(* SegmentDup creates a dupHcate ~ o m a segment. 0r igUniqueldis the name o f t h e
(* original s egmentand DupUniqueIdis the name o f t h e duplicate.

PROCEDURE SegmentDelete((*In*) UniqueId: UniqueIdT) ;
(* SegmentDelete deletes the segment OniqueId.

*)

*)
*)

,)

Figure 9: Operations provided by the Primary Type

coroutine, which performs the desired action. After execution control is returned to the user coroutine.

4 .3 R e l i a b l e M i g r a t i o n v i a M e t a I n s t a n c e

After integrating adaptable migration into the BirliX system, a couple of different migration mechanisms
were implemented [Lux94]. This paper shows the implementation of reliable migration developed within
the Charlotte operating system. Charlotte supports reliable and efficient process migration: "Migrat ion
may fail in case of machine or communicat ion failures, but it should do so completely. That is, the effect
should be as i f the process were never migrated at all, or, at worst, as i f the process had terminated due to
machine failure [AF89]." To rescue a migrating process from failure, the Charlotte implementation makes
three arrangements:

• Responsibility for the migrating process changes as late as possible to survive failures of the destination
host.

• The process is detached completely from the source host to survive failures of the source host.

65

• The migrating process is protected from failures of other hosts by automatically destroying links to
crashed hosts.

Charlotte does not rescue migrating processes under all failures, since this would need complex recovery
protocols with large overhead.

Within BirliX, the arrangements are transformed in the following way:

• The responsibility for a migrating instance is bound to the root segment. Sending the root segment
within the last message changes responsibility as late as possible.

• By sending all segments to the destination host 3 and releasing the kernel resources, an instance is
detached completely from the source host.

• The crash of a host participating in migration is recognized by the BirliX message system.

PROCEDURE MigrateSrc((*Out*) VAR lgentld: AgentldT;
(*In0ut*) VAR Location: LocationT)
: RosultT ;

BEGIN
suspend external requests and suspend the t eam ;
IF NOT send migra t ion request TEEN

resume t eam and resume external requests ;
RETURN Error

END
duplicate all segments of the instance ;
collect kernel s ta te ;
IF NOT send original segments THEN

rename duplicates of the sent segments to the original ones ;
delete the duplicates of the segments not sent ;
resume teaxn and resume extel~al requests ;
RETURN E r r o r

EID
register h int to new locat ion;
delete dupl icated segments ;
release resources ;

END Nig ra roSrc ;

PROCEDURE Hig ra t eDes t (Message : RessageT) : Rosul tT;
BEGIN

announce the instance ;
IF NOT receive all segments THEN

delete all received segments ;
RETURN E r r o r

END
distribute kernel state ;
resume team and resume external requests ;

END NigrateDest

Figure 10: Reliable Migration

Figure 10 shows the implementation of reliable migration by a meta instance. To be able to rescue an
instance from destination host crashes, a duplicate of each segment is created before sending it. If migration
fails, at the source host the duplicated segments are renamed to the original ones and at the destination
host the received segments are deleted. The links to crashed hosts are handled by the rebinding mechanism
using the hints. Our current meta implementation (figure 10) does not, have a complex recovery protocol.
However, it is not very difficult to build a meta instance with a recovery protocol. It is then possible to
choose between both meta implementations depending on the overhead tolerance.

3The message sys t em deletes a segment at the source host as soon as an acknowledgment for the complete arrival is received.

66

4.4 P e r f o r m a n c e

Measurements were made to compare adaptable migration to other migration systems and to find points for
optimization. Comparing migration is difficult because of the different hardware used. Our measurements
were done on a network of Sun-3/60 machines connected by a 10 Mb Ethernet. An empty RPC to another
host needs 3.55 msec. Figure 11 shows the migration times for the standard implementation and a meta
implementation by varying the number of agents and the size of state. The figure shows a fixed part for the

m

i
g
r
a

t
i
O
n

t
1

m
e

4000

3500

3000

2500

2000

1500

1000

500

meta: 15 agents
°°,'

..-'~°2°-" standard: 15 agents
.°. .°" • /

.°°°° • ~

°..'" • 1 • . meta: 1 agent
oo°° • o "

oO° • ~ o
o.°°° 1 1 ~ •

.... • .-" ~ standard: 1 agent

. , ° I • .°o° • . "

°o°°° • . ~

260 4()0 6(}0 8(}0 10'00 12'00

size of state (KByte)

Figure 11: Migration Times in msec

meta implementation and for each agent and a linear effect for the size of the state.
Detailed measurements concerning the following topics are presented in [Lux94]:

• Migration times for different types in the Unix emulation.

• Execution times for the partial operations during migration.

• The effect of migration in a distributed application.

• A comparison with other migration systems.

Altogether, measurements have shown that adaptable object migration is not worse than special solution
migration and that there are still a couple of points for optimization, such as improving RPC performance
and reducing the size of a team's state.

5 R e l a t e d Works

Nuttall [Nut94] gives a nearly complete overview about existing migration mechanisms. As mentioned in
the introduction, process migration plays an important role and most of the systems are not able to adapt
migration to changing requirements. Task'migration [Mil93] supports multiple migration mechanisms via
different migration servers. Adaptability can be achieved by selecting a suitable migration server. Although
both task migration and adaptable object migration fulfil our requirements for migration, their handling of
adaptability is quite different.

67

6 C o n c l u s i o n

There are a lot of distributed applications which can profit from migration. Unfortunately, the existing
migration systems are insufficient, as they are designed as special solutions. A universal migration system
requires migration of objects of different types and must be adaptable to changing requirements. Adaptable
object migration is a concept which meets these requirements. In this concept, each object has its own
migration mechanism contained in an attached meta object. Changing meta objects renders object-specific
adaptation.

In order to show its practicability, adaptable object migration was incorporated into the BirliX operating
system. BirliX is an abstract data type management system providing mechanisms for the definition and
instantiation of BirliX types, the identification of instances and communication between instances.

To integrate adaptable migration, the type system was extended. Migration became one of the kernel
provided primary type methods inherited by all instances. The type system provides a standard implementa-
tion which migrates an instance by transferring a checkpoint and recovering the instance at the destination
host. Adaptability is added by using meta instances containing the implementation of user level mecha-
nisms. Attaching a meta instance enables instance specific migration depending on the current execution
environment. Thus, adaptable migration in BirliX has the properties:

• The primary type supports the migration of instances of different ty'pes.

• Different migration mechanisms are available by different meta instances.

• By attaching a meta instance, migration mechanisms can be exchanged dynamically.

• Semantic knowledge can be obtained by calling the BirliX type.

• Mechanisms for information collection can be integrated dynamically.

The usability of the approach has been shown by implementing some well-known migration mechanisms.
This paper has described the implementation of reliable migration. The performance analysis has shown,
that the performance of adaptable migration is comparable to special solution mechanisms.

R e f e r e n c e s

[ABLN85]

[AF89]

[BAI93]

[BS85]

[Fen93]

[KH90]

[KHKL90]

Guy T. Almes, Andrew P. Black, Edward D. Lazowska, and Jerre D. Noe. The Eden System: A
Technical Review. Transactions On Software Engineering, 11(1), January 1985.

Y. Artsy and R. Finkel. Designing a Process Migration Facility The Charlotte Experience. IEEE
Computer, pages 47-56, September 1989.

B. R. Badrinath, A. Achary, and T. Imielinski. Impact of Mobility on Distributed Computations.
ACM Operating System Reviews, 27(2):15-20, April 1993.

A. Barak and A. Shiloh. A Distributed Load Balancing Policy for a Multicomputer. Software -
Practice and Experience, 15:901-913, September 1985.

I. Fenske. Virtuelle verteilte Objekte: eine Gruppenarchitektur fiir verteilte Systeme. PhD thesis,
Technische Hochschule Darmstadt, 1993.

O.C. Kowalski and H. H~irtig. Protection in the BirliX Operating System. In Proceedings lOth
International IEEE Conference on Distributed Computing Systems, Paris, May 1990.

Winfried E. Kfihnhauser, H. H~rtig, O.C. Kowalski, and W. LuX. Mechanisms for Persistence And
Security in BirliX. In John Rosenberg and J.Leslie Keedy, editors, Proceedings of the International
Workshop on Security And Persistence, Bremen, May 1990. springer.

68

[LHK93]

[Lux94]

[Mil93]

[Nut94]

[R+88]

[RS84]

[Sch90]

[SHKL94]

[TH92]

[TR86]

[TY92]

[Zay87]

W. Lux, H. I-Iiirtig, and W. Kfihnhauser. Migrating Multi-Threaded, Shared Objects. Proc.
IEEE HICSS 26 II, pages 642-649, Jan 1993.

W. Lux. Adaptierbare Objektmigration und eine Realisierung im Betriebssystem BirliX. PhD
thesis, submitted at University Hildesheim, 1994.

D. Milojicic. Task Migration on Top of Mach. PhD thesis, Universitiit Kaiserslautern, 1993.

M. Nuttall. A Brief Survey of Systems providing Process or Object Migration Facilities. A CM
Operating System Reviews, 28(4):64-80, October 1994.

M. Rozier et al. CHORUS Distributed Operating System. Computing Systems, Vol. 1, No. 4,
1988.

K. Ramamritham and J. A. Stankovic. Dynamic task scheduling in distributed hard real-time
systems. Proceedings of the .~. International Conference on Distributed Computing Systems, pages
96-107, May 1984.

A. Schill. Migrationssteuerung und Konfigurationsverwaltung fiir verteilte objektorientierte An-
wendungen. Informatik Fachberichte 241. Springer Verlag, 1990.

S. Sonntag, H. H~irtig, W. Kiihnhauser, and W. Lux. Adaptability Using Reflection. In Proc.
IEEE HICSS 27, Jan 1994.

M. Theimer and B. Hayes. Heterogeneous Migration by Recompilation. Xerox Corporation
Technical Report CSL-92-3, March 1992.

A. Tevanian and R.F. Rashid. MACH - A Basis for Future Unix Development. In EUUG
Conference Proceedings, Manchester, 1986.

M. Tokoro and Y. Yokote. The New Structure of an Operating System: The Apertos Approach.
5. ACM SIGOPS Workshop on Models and Paradigms for Distributed Systems Structuring, 1992.

E. Zayas. Attacking the Process Migration Bottleneck. Proc of the ACM-SIGOPS 11th Syrup on
OS Principles, pages 13-24, November 1987.

69

