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Abstract: We continue the study of a new family of multivariate wavelets which are obtained by 
"polyharmonic subdivision". We provide the results of experiments considering the distribution of the wavelet 
coefficients for the Lena image and for astronomical images. The main purpose of this investigation is to find 
a clue for proper quantization algorithms. 
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1  Introduction 
The big success of JPEG relies upon an ingenious quantization algorithm, [9]. Let 

us recall that in the standard JPEG algorithm which is based on 88×  rectangle pixel tiling 
of an image, we normally assume that the image has a size which is the power of 2.  For 

example, we take 128128×  or 256256× . To every rectangle jR  for ,1,2,...,= Nj  one 

applies the Discrete Cosine Transform (DCT). Hence, one obtains 64  coefficients { }64

1=k

j

kR  

which are put in one array, and proceeds with a quantization algorithm. An important 
point is the statistical observation about the distribution of these 64×N  coefficients; in the 
case of a 128128×  pixel image, 256=N , hence we have a total of 16384=64256×  
coefficients. 

Alternatively, one may apply a wavelet transform to the 88×  pixel or bigger tiles of 
the image. This is the idea of JPEG2000 where the tiling of the image is not into 88×  

pixels but adaptively chosen, and a wavelet transform is applied to the rectangles .jR  

However the performance of JPEG2000 is reported by different authors to be no more 
than 20%  better than JPEG. To be more precise, let the one-dimensional signal f  have 

the expansion  
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where we have taken several levels of details D; here jk ,
ψ  are the mother wavelets, and 

their coefficients { }
jkf ,

 are starting with the biggest "detail" until level ,K  and respectively 

jk ,
ϕ  are the dilations-shift of the father wavelet which are representing the Approximation A 

below level K . Roughly speaking, the terms containing the mother wavelets ( )tf jkjk ,,
ψ  

capture  the "edge structures" of the image, while the terms containign the father wavelets 

( )tg jkjk ,,
ϕ  capture  the "intra-edge structures" of the image. Both sets of coefficients { }

jkf ,
 

and { }
jkg

,
  enjoy a nice “wavelet type” structure for natural images: very few of them are 

really large while the majority are small. However one needs to find more structure in the 
smaller coefficients which would allow for better quantization and compression of the 
natural images. This is especially urgent in the analysis of images. Indeed, the efforts in 
this direction by a generation of people devoted to Wavelet Analysis show, that up to now, 
it does not seem that the existing wavelet families possess such a structure susceptible to 
quantization. Beyond the standard tensor product wavelets one has to mention also a  
 
 
 
 
 



 

 

 
             

 

more tricky constructions having elongated support which are able to capture “directional  
information”, as curvelets and ridgelets (Donoho-Candes), bandlets (Mallat), contourlets  
(Vetterli), brushlets (Coifman), shearlets (Kutyniok), and others, cf. e.g. [6], [7]. 
In the present paper we continue the study of the new family of wavelets which have 
elongated support and were termed Polyharmonic Subdivision Wavelets, [3],  [4], [5]. 
The main purpose of the present work is to investigate experimentally the possibility to 
find structures in the coefficient sets of  the Polyharmonic Subdivision Wavelets which 
yield to quantization.  

 
2  Definitions and the wavelet algorithm 
Let 1≥N  be a fixed integer. It will correspond to the integer N  in the construction of 

Daubechies (cf. [1], formula (6.6)). We have the following definitions and the algorithm: 
  
    1.  For fixed 0≥ξ  and Z∈k  we define the polynomial  
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    2.  We define the polynomial  
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(which corresponds to the polynomial 
NP  in the notations of [2] and [1]), and define the key 

polynomial  

 ( ) ( ) ( )
.

2

11
2= 









−

−−
−

−

η

η
η

x
RxQ N

N
 (3) 

    3.  Further, we define the trigonometric polynomial [ ]( )zb
k  by putting  
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    4.  Let us denote the zeros of the polynomial (2) by ,
D

jc  i.e.  

 ( ) ( )
( )( )

( ).
!1

!22
=

1
=

1

1=

2

1

0=

D

j

N

j

j
N

j

N cy
N

N
y

j

jN
yR −

−

−







 −+
∏∑

−−

 

Then the polynomial Q  as defined in formula (3) is given by  
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    5.  We take the trigonometric polynomial  
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 as the " square root" of [ ]( ),zd
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    6.  The polynomial 
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 is obtained by using the roots D

jc  of the polynomial .NR  Let the polynomial Q  have the 

zeros jC  defined in (5) and let us put  .21= jj Cc −  We see that ( )ω
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some polynomial Q  and jc  are the zeros of Q .  At this point we apply the algorithm for the 

Riesz representation of Q , see e.g. [1], p. 198.197 −  

    7.  For every integer 0≥m  and a real number 0≥ξ  the family of functions  
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 represents the refinement masks for the family of scaling functions (father wavelets) 

( ){ } .
0≥mm tϕ  Let us remark that they are different at different levels since the Multiresolution 

Analysis is non-stationary. 

    8.  The construction of the mother wavelets ( ){ }
0≥mm tψ  (and their filter coefficients) 

does not differ from the standard construction for the usual stationary wavelets, as in [2], 

[1], [8]. In particular, for the scaling function 
mϕ  we have  
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Hence, the mother wavelet is obtained as  
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Here [ ] ξ,m

jM  are the coefficients of the polynomial ( ).zM  

    9.  For simplicity we assume that the Image which we consider is a function 

( ),, ytu  for [ ]bat ,∈  and is −π2 periodic in .R∈y  We have  
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 For every fixed Z∈η  and ηξ =  we make Wavelet Analysis which is based on the non-

stationary father and mother wavelets ( ){ }
0≥mm t

ξϕ  and ( ){ } .
Z∈mm t

ξψ  

    10.  Assume that we fix some level of the "Details" of the wavelet expansion. 
Thus we have the following expansion  
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 This means that we perform the wavelet expansion only down to a certain level 
0

m in the 

details part D. The "Approximation" part A contains the expansion in father wavelets.  
 
 



 

 

 
             

 

3  Experiments 
3.1  Experiments with the Lena image  

In Figure 1 below we provide the distributions of the (complex) coefficients { }
jm,,ηγ  

and { }
jmg

,,η  for the Lena image of 128128×  pixels. On the other hand, due to boundary 

effects the coefficients are not precisely the same number 2
128  but their number is about 

26.000  in the complex plane:  
 

 

 
Figure 1 

 
  We see that there are few coefficients which are really large of size about 20.000.  

The coefficients have a very intricate structure which is revealed only after zooming them. 
The following two figures, Figure 2 and Figure 3, show this structure:  

 
 

 
Figure 2 

 
  



 

 

 
             

 

  
Figure 3 

  
On the other hand, it is instructive to see what is the distribution of the coefficients 

of the usual two-dimensional Daubechies wavelets on Figure 4.  
 

  
Figure 4 

 
Finally, we have the approximation of the Lena image in Figure 5 below. On the top 

right we have the PH wavelets and at the bottom are DB (the usual Daubechies wavelets).  
We have the following parameters of the application of the methods: 

Original image: Lena128_Greyscale.bmp 
Reconstructed images: (upper left - original, upper right - PH, lower left - DB); 
Used: 9bit quantizer 
Compression ratio of PH Wavelet encoding without rotation 3.1196=  
PSNR of PH Wavelet reconstruction after quantization 80.7606=  



 

 

 
             

 

Compression ratio of DB Wavelet encoding 3.0910=  
PSNR of DB Wavelet reconstruction after quantization 72.7275=  

 
 

  
Figure 5 

 
3.2  Experiments with Astronomical images  
We use the image ROZ050 000046 of Rozhen Observatory, which is represented 

by a 128128×  pixel image.  

In Figure 6 we obtain the distribution of the coefficients { }
jm,,ηγ  and { }

jmg
,,η :  

 
 

 
Figure 6 



 

 

 
             

 

  
As in the case of the Lena image we see that the coefficients are very much 

concentrated in a small area. It is important to emphasize that these coefficients are more 
concentrated than the corresponding coefficients in the Lena image. It is interesting 
however that the coefficient set has a structure similar to the one we have discovered in 
the case of the Lena image, and again it may be discovered only after zooming it; we 
provide the following two Figures 7 and 8 where we see this structure:   

 
Figure 7 

 
Figure 8 

  
In Figure 9  we see completely clearly that there is a circle pattern close to the 

origin:  
 



 

 

 
             

 

  
Figure 9 

  
In Figure 10 we provide the coefficients of the application of the DB wavelets to the 

Astronomical image. We see that they are more scattered to a large area compared to the 
coefficients in the case of the Lena image:  

 
 

 
Figure 10 

  
 
 
 
 



 

 

 
             

 

In Figures 11 and 12 we have the original image of the astronomical plate with the 
result of application of the PH wavelets and the standard DB wavelets:  

 

  
Figure 11  

 
  and the following which has less compression ratio:  
 

  
Figure 12 

 
  
The parameters of the application are the following: 
Original image: ROZ050 000046_128x128_vert.gif 
For Figure 11: 
Compression ratio of PH Wavelet encoding without rotation 2.7012=  



 

 

 
             

 

PSNR of PH Wavelet reconstruction after quantization 81.1902=  
Compression ratio of DB Wavelet encoding 2.4414=  
PSNR of DB Wavelet reconstruction after quantization 78.1313=  
The parameters for Figure 12 above are: 
Compression ratio of PH Wavelet encoding without rotation 2.0208=  
PSNR of PH Wavelet reconstruct after quantization 83.2997=  
Compression ratio of DB Wavelet encoding 2.0231=  
PSNR of DB Wavelet reconstruction after quantization 78.4700=  
 
Conclusion The coefficients of the Polyharmonic Subdivision Wavelets show non-

trivial structure in the complex plane which may be susceptible to successful application of 
further  quantization procedures.  
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