
Challenges in Model-Based Evolution and Merging of
Access Control Policies

Lionel Montrieux Michel Wermelinger Yijun Yu
Centre for Research in Computing & Computing Department

The Open University, Milton Keynes, UK
L.M.C.Montrieux@open.ac.uk M.A.Wermelinger@open.ac.uk Y.Yu@open.ac.uk

ABSTRACT
Access Control plays a crucial part in software security, as
it is responsible for making sure that users have access to
the resources they need while being forbidden from access-
ing resources they do not need. Access control models such
as Role-Based Access Control have been developed to help
system administrators deal with the increasing complexity
of the rules that determine whether or not a particular user
should access a particular resource. These rules, as well as
the users and their needs, are likely to evolve over time. In
some cases, it may even be necessary to merge several ac-
cess control configurations into a single one. In this position
paper, we review existing research in model-based software
evolution and merging, and argue the need for a specific
approach for access control in order to take its specific re-
quirements into account.

Categories and Subject Descriptors: I.6.4 [Computing
Methodologies]: Simulation and Modeling – Model Vali-
dation and Analysis

General Terms: Design, Security, Verification

Keywords: Security, UML, RBAC, model, verification, evo-
lution, incremental verification, merging, OCL, access con-
trol.

1. INTRODUCTION
Security is a growing concern in the software engineering

community. Software systems are increasingly connected,
and they have to manage very sensitive data, such as credit
card numbers, health records or corporate secrets. Access
control, specifically, is an important part of a system’s secu-
rity measures, as it is responsible for giving users access to
the resources.
Several access control models have been developed to help

administrators handle their access control configurations.
Role-Based Access Control (RBAC) [21] is one of them. It
introduces roles, which are assigned to users and give them
access to permissions. RBAC is an NIST standard that is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE-EVOL’11, September 5–6, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0848-9/11/09 ...$10.00.

divided in 4 levels, each level adding new requirements, such
as role hierarchies or separation of duty constraints, on top
of the levels below. It is a widely-known model that has
been used as the basis for other models, such as PRBAC
[20] or OrBAC [11]. In this paper, we choose to use RBAC
as an illustration of access control, as it contains many of
the usual and most interesting constructs of access control
models, such as roles, hierarchies and separation of duty
constraints.

With rules on who can access what growing more and
more complex, the maintenance of access control configu-
rations has become a very complicated problem. Admin-
istrators struggle to find the right balance between giving
users enough permissions so they can get their work done
and preventing them from accessing resources they should
not have access to. It is therefore essential to assist develop-
ers and system administrators in designing the right access
control configurations, so they can be confident that the con-
figuration they have chosen actually does enforce the access
control properties they need to follow.

Furthermore, the access control configuration is likely to
evolve, as new users come in, existing users leave or get new
responsibilities and privileges. The roles and role hierar-
chies can also change, and so can the permissions. Particu-
larly with complex configurations, even the smallest change
may have unpredicted consequences. System administra-
tors’ work would be made much easier if they had the possi-
bility to make sure that the changes they want to introduce
will not break any of the security properties they have previ-
ously defined. In this paper, we illustrate this problem with
a simple example, where a university uses a software system
to keep track of students’ grades.

Another case where an access control configuration will
evolve is the merging of two organisations: whether it is
a company buying another one or two organisations who
decide to become one, they will eventually have to merge
their access control configurations. Such an operation will
probably be non-trivial, as conflicts will arise with the same
role having completely different permissions in both organ-
isations, redundancies in the role hierarchies or in the per-
missions, or conflicts in the security properties. To illustrate
this case, we merge two different companies’ configurations.

The rest of this paper is organised as follows: section 2
discusses model-driven engineering approaches for security,
and especially for access control. Then, section 3 focuses on
software evolution in general, and reviews the existing ap-
proaches for software evolution and incremental consistency
checking. In section 4 we show how the general approaches

name diagrams config levels anti-pat.

secureUML class class all no
UMLsec activity tagged val. 0 - 1 no
authUML use cases predicates all no
ours class, act. access ctrl. all yes

Table 1: UML-based RBAC modelling approaches

discussed in the previous section are not optimal when it
comes to access control specifically, and we give a general
overview of how the problems highlighted in the previous
section can be solved, and we finally conclude in section 5.

2. MODEL-DRIVEN ENGINEERING
Model-Driven Engineering (MDE) is a model-centric ap-

proach to software engineering, where typically models are
constructed to provide a high-level description of a soft-
ware system, and then progressively refined into more de-
tailed models until the source code, which is also a model,
is produced. Arguably the most popular and widespread
MDE approach is Model-Driven Architecture (MDA), from
the OMG. It includes standards such as Universal Modeling
Language (UML) or Object Constraint Language (OCL).

2.1 Model-Driven Security Engineering
As the need for secure systems is growing, it becomes in-

creasingly important to integrate security concerns as soon
as possible in the software development cycle, therefore mak-
ing security a « first class » concern. This is especially true
for systems handling sensitive data. However, Fernandez-
Medina et al. point out that approaches that take security
into account early in the development cycle do not necessar-
ily make use of MDE [7]. Model-Driven Security (MDS) is
the approach pushed by Basin et al. [2] to integrate those
security concerns in a wider MDE approach.
Several MDS approaches have been proposed, allowing

one to model specific security concerns as well as verify the
model against properties or requirements that it should ful-
fil. This is in line with the challenges in software modelling
identified by Van Der Straeten et al. [22], such as domain-
specific modelling or model validation and verification.

2.2 Modelling RBAC properties with UML
Several approaches have been developed for modelling

RBAC configurations and properties on a UML model. Ta-
ble 1 compares four of these approaches: secureUML [12],
authUML [1], UMLsec [9] and our approach [18].
The different approaches first differ in the diagrams they

support, and ours is the only one to support several types of
UML diagrams. The way the access control configuration is
represented is another difference. SecureUML uses classes,
while UMLsec uses tagged values attached to an activity
diagram, authUML uses predicates, and our approach uses
an extension of class diagrams that we call access control
diagrams. All approaches but UMLsec support the entire
RBAC standard, and only our approach allows for the def-
inition of anti-patterns, which are requirements on what a
user should not be allowed to do.

3. MODEL-BASED EVOLUTION
Software is rarely something that is built once and then

never updated again. Instead, during its life-cycle, it will
receive not only bug fixes, but also new features, use new
technologies, or interact with different software packages, in
order to comply to changing requirements. Mens et al. [17]
identify several challenges in software evolution. The chal-
lenges we focus on in this paper are supporting model evo-
lution, in order to support evolution of high-level artifacts
such as models, formal support for evolution, that leads to
the development of formalisms to help software evolution,
and integrating change in the software life-cycle, in order to
make it usable by practitioners as an integrated part of their
daily activities.

In the Model-Driven Engineering terminology, evolution
and fixes to models are transformations. Mens et al. [16]
give a taxonomy of model transformations that helps identi-
fying exactly what kind of transformations should be consid-
ered in the case of model-driven evolution of access control
properties. Since the taxonomy targets graph transforma-
tion tools, we do not review all the categories presented, but
instead select a few of them that will help us understand
what kind of transformation we are dealing with: the num-
ber of source and target models, endogenous and exogenous
transformations, horizontal and vertical transformations, as
well as syntactic and semantic transformations.

A first criteria is the number of source and target models.
While in the case of evolution of an access control configura-
tion, the transformation is one-to-one, in the case of merging
several configurations into one, it is a many-to-one transfor-
mation. In both cases, the transformation is endogenous, i.e.
the source and target are instances of the same metamodel,
and also horizontal, as the transformations do not involve re-
finement or generalisation of the model. More importantly,
the transformations need to be semantical, as semantic infor-
mation is important to make sure that the resulting model is
still valid regarding the access control properties expressed.

UML itself does not come with any support for model evo-
lution. Fortunately, its extensible nature makes it possible
to build support for model evolution on top of UML. One of
the existing approaches for dealing with evolution of UML
models is to use reuse contracts integrated in the UML meta-
model [14]. Another approach is Judson et al.’s pattern-
based transformations of UML models [8], that allows one
to define transformations as metamodels, and models can be
checked against those metamodels for conformance to the
specified transformation. This approach, however, is lim-
ited to class and sequence diagrams. Jürjens et al. propose
UMLseCh to model evolution of UMLsec properties [10]. It
uses an approach similar to Mens’, but focused on security.

3.1 Incremental consistency checking
Consistency checking is about making sure that a model

is consistent, which means that its different diagrams do
not contradict each other, and that there is no contradic-
tion within a single diagram. Consistency checking can be
divided in two parts: the detection of inconsistencies, and
their resolution. In the context of software evolution, consis-
tency checking is about making sure that a particular change
to a model will not introduce any new inconsistencies. Given
the scope of this paper, we focus on inconsistency detection
and resolution for evolving models.

3.1.1 Inconsistency detection
The first part of the consistency checking process is to

identify inconsistencies. Our approach for modelling RBAC
properties and configurations [18] makes use of OCL con-
straints to enforce some consistency properties between dif-
ferent elements, whether or not they are part of different
diagrams. Egyed [4] also uses OCL constraints to enforce
consistency of UML models, providing almost instant verifi-
cation of 24 consistency rules. As opposed to our approach,
which currently does not handle evolution and therefore ver-
ifies all the consistency rules every time the verification is
triggered, Egyed’s approach is to only verify the constraints
that access elements that have been changed during the evo-
lution of the model. Constant monitoring of model changes
allows for immediate feedback, at the price of memory usage.
Another approach is provided by Blanc et al. [3], where

rules are defined using predicate logic, and checked with a
Prolog engine, which also allows to detect which rules need
to be re-checked when the model is modified. Yet another
one is Nentwich et al.’s xlinkit [19], that performs pairwise
consistency checking on any XML document, including an
XMI representation of UML models.

3.1.2 Inconsistency resolution
Once the inconsistencies have been detected, they need

to be resolved. Egyed provides a way of fixing inconsisten-
cies [5], and a way of generating and evaluating the several
possible choices [6].
Mens proposes an approach using graph transformations

to incrementally resolve inconsistencies [15], while Nentwich
et al.’s xlinkit also provides possible fixes.
During consistency resolution operations, two properties

are essential: correctness and completeness. Correctness is
about making sure that the proposed changes will lead to a
consistent model. Completeness is about making sure that
all the possible changes leading to a consistent model are
generated. While the approaches discussed here all ensure
correctness, their completeness is limited to atomic changes
that do not introduce any new element.

3.2 Model merging
Model merging is, as we discussed earlier, a many-to-

one transformation. In his survey on software merging [13],
Mens provides a classification of existing software merging
techniques. The particular type of merging we are interested
in is the one that applies to the example we mentioned in the
introduction: two organisations want to merge their access
control configurations and properties. The first distinction
made by Mens is between two-way and three-way merging.
Three-way merging takes into account a common ancestor
of the models to be merged, while two-way merging does
not.
Another important factor Mens discusses is how the mod-

els are represented, which can lead to textual, syntactic,
semantic or structural merging. Textual merging only con-
siders the artefact’s as text, usually dealing with it on a
line-by-line basis. Syntactic merging can take the syntax
of the language or model into account, producing a syn-
tactically correct model. Semantic merging takes it a step
further by also taking the semantics into account. Finally,
structural merging improves on semantic merging as it also
allows one to make sure that behaviour is preserved, but it
has the downside that user input can sometimes be neces-

sary to resolve a conflict that a structural merge algorithm
can not solve automatically.

Finally, the type of information considered is another as-
pect of software merging considered by Mens: state-based
techniques use information available from the current ver-
sions of the models to be merged, as opposed to change-
based techniques that consider all the changes that lead to
the current version. Then, operation-based techniques treat
change as transformations.

Most approaches for model merging, including Mens’ reuse
contracts [14], focus on the merging of models that have been
modified by separate developers.

4. MODEL-BASED EVOLUTION OF
ACCESS CONTROL

Now that we have reviewed the existing, general model
evolution approaches on UML, we discuss in this section
how they are not directly suited to deal with the specificities
of security, and access control in particular, as well as how
solutions focused on access control could be developed.

This section presents the three steps that need to be taken
in order to better handle evolution of access control at model-
level, in the correct order: inconsistency and violations de-
tection must be carried on first, followed by resolving those
inconsistencies and violations, since the resolution can only
be done once the problems have been identified. Merging
access control configurations and properties comes last, as
it makes use of resolution strategies when a conflict arises
during the merging process.

4.1 Incremental inconsistency and property vi-
olations detection

Incremental verification works well in general, but the spe-
cific case of access control, or even security in general, results
in current approaches still selecting rules that do not need to
be re-checked, especially when these rules happen to be quite
complex and take a relatively long time to verify. If Egyed’s
approach [4] works very well for general consistency check-
ing, there are cases where it will still select too many rules
to be re-verified. It is usually not a problem, as consistency
rules are generally relatively simple since they typically in-
volve very few, often only two, model elements.Putting too
much effort in detecting the rules that have to be re-verified
may then actually take longer than verifying a few rules that
did not need to be re-verified. Access control properties ver-
ification rules, on the other hand, usually involve more ele-
ments: if one wants to find out whether a user can perform a
specific action, then it is necessary to at least go through all
her/his roles and all the associated permissions. Depending
on the method used for the verification, even more elements
may be involved. It is also easy to detect some cases where,
although a modified element is accessed by a rule during
its verification, there is no need to re-evaluate the rule if
it was previously verified. Let’s take the first example that
we mentioned in the introduction: a professor can edit his
students’ marks, but a student can only read his own, and
can not edit any. A rule that determines whether a user can
or can not edit a mark will have to check whether s/he has
the roles allowing her/him to perform said action. If that
property is verified for user u in version N of the software,
then giving this user an additional role in version N +1 will
only give her/him more permissions. That makes the re-

verification of the rule useless, even though the added role
falls within the set of elements that are accessed by the rule.
Nentwich’s xlinkit [19] also has several limitations, as it

can only perform pairwise consistency checking, making it
impossible to detect some inconsistencies.
An incremental verification approach targeted specifically

to access control rules should take those cases into account
and make sure that such rules are not re-checked, while
still ensuring completeness, as all the rules that have to be
checked are checked, to detect all the inconsistencies.

4.2 Inconsistency and property violations res-
olution

The suggestion of repair actions for access control proper-
ties brings two new challenges: first, to extend the complete-
ness of the suggested repair actions, and second, to make
sure that these actions do not lower the security level, un-
less this is really what the user wants to do.
The existing approaches, while all correct, are only com-

plete within restrictive boundaries: the repair actions intro-
ducing new elements as well as those made of several atomic
changes are not considered. For access control in particular,
both these types of repair actions are important. Introduc-
ing new elements may be a very good way of making a model
fulfil its access control properties, for example by activating
a new role for a user before performing an action that re-
quires several permissions. If we go back to our student
marks system, we may want to make sure that a user with
the role Student cannot edit his own marks, or even the
marks of his fellow students. If the model allows the stu-
dent to perform such an operation, it is therefore invalid. If
we can add new elements to the model, then we can make
sure that a new permission, that the Student role does not
have, is necessary to perform a change in the marks. This
will lead to a valid model, without compromising the secu-
rity level. If, however, it is not possible to add new elements
to the model, then the only option left is to lower the re-
quirements and allow a student to change marks, leading to
a model that, while valid, has a lower security level than
originally intended.
Similarly, changes involving several atomic changes should

be considered too, for example when a role needs to be sepa-
rated in two different roles, each with its own set of permis-
sions, and the users assigned to the original role reassigned
to one or another of the resulting roles. Instead of only hav-
ing students and professors, for example, one may want to
introduce teaching assistants (TAs). TAs would be students
who would be able to edit other student’s marks, but marks
edited by a TA would have to be confirmed by a professor. It
would therefore be necessary to add a new role (one atomic
operation), give it the appropriate permissions (N atomic
operations, with N ≥ 1), and assign the role to the users
that should have it (M atomic operations, with M ≥ 1). At
least 3 operations would therefore be necessary. Since ex-
isting approaches will only suggest atomic changes instead
of sequences, they will not be able to suggest this solution,
although it is a valid one.
With multiple changes and new elements added comes an-

other problem, though: completeness can not be guaranteed,
as there is an infinite number of sequences of atomic changes
that can be generated. A solution to this problem would be
to allow one to limit the size of a sequence of changes. The
bigger the maximum sequence, the more potential solutions

can be found, but the longer the generation of those solu-
tions will take. Completeness would still be limited, but the
boundaries would be larger than with the existing solutions.

Ordering of the suggestions is another problem that will
greatly benefit from being handled at a more specific level,
since in access control, the smallest repair action is not nec-
essarily the most desirable one. For example, in an invalid
model that does not allow a specific user to perform a spe-
cific action, the smallest repair action may be to simply
remove the access control requirement for said action. It
would lead to a valid, but less secure, model. Other factors
need to be taken into account, such as how many security
properties will be impacted, whether the change will lead to
higher and/or lower permissions for some classes of users,
etc. These are by definition specific to access control.

4.3 Merging RBAC configurations and prop-
erties

Merging RBAC configurations and properties is another
case where general approaches do not apply well to the spe-
cific problem of access control. First, it differs from the
problem that most general approaches try to solve as the
models to be merged do not share a common ancestor, mak-
ing two-way merging the only available solution. In the sec-
ond example mentioned in the introduction, two companies
are merging. Since they are completely different companies,
created at different times by different people, their access
control configuration and properties have been developed
independently from the very beginning. Second, the speci-
ficities of access control are not captured by the general ap-
proaches: in the example, each organisation has its own set
of users, roles, permissions, and each one has different ex-
pectations about what a user should or should not be able
to do. Merging role hierarchies, for example, can be very
complicated. While identifying exact matches between roles
in the organisations is relatively easy, identifying similar,
yet not exactly identical roles is a much more complicated
problem. For example, both companies may have a role bank
clerk, but a completely different understanding of what a
bank clerk can do: s/he could grant credits for up to £1000
without supervision, and up to £20000 as long as her/his
direct supervisor approves the transaction, according to the
rules set up by the first organisation, but would be able to
grant a credit of up to £50000 without supervision accord-
ing to the second company’s rules. Even though both roles
have the same name, they are quite different. Another prob-
lem may arise when two roles are different, say bank clerk

in the first company and financial adviser in the second
one, but it turns out that they have almost the same set
of permissions. These may be merged together, but the de-
cision of whether to merge them and how is down to the
user. Unlike merging similar classes in a standard class di-
agram, where taking the union of the methods, attributes
and associations of the two original classes in order to pro-
duce the merged class may be an acceptable strategy, it is
not adapted to merging similar roles, as taking the union
of their permissions would result in a merged role that may
have more permissions than desired, therefore lowering the
security level of the entire model. Instead, user input is
necessary to determine which permissions are to be kept,
and which are to be abandoned. Furthermore, this process
may have an impact on the model verification, so it is also
necessary to detect which rules would need to be re-verified.

Finally, in the case where both the functional model and
the access control configuration and properties have to be
merged, it is possible that merging the access control con-
figuration first, and then only the functional model, may
actually help for the merging of the functional model, as the
access control configuration would provide additional infor-
mation of which elements are the same and which elements
are different.

5. CONCLUSION
Correctly specifying access control and evolving such spec-

ifications is an important problem for many organisations.
We have reviewed existing work (including our own) and
found that on the one hand Model-Driven Security Engi-
neering approaches for access control provide little support
for evolution, and on the other hand general model verifi-
cation and evolution do not apply very well to the specific
problem of access control. In particular, our analysis re-
vealed the following shortcomings in existing approaches.
To detect access control inconsistencies and violations,

users need

Smart rule checking: Access control rules, typically com-
plex, should not be unnecessarily re-checked when the
model changes, but naive heuristics are insufficient.

To resolve the detected inconsistencies and violations, users
need

Security-aware correctness: Obtaining a consistent
model is not enough, it must also fulfil the access con-
trol properties expressed.

Security-focused ordering: The possible resolution
strategies should be ordered according to their impact
on the security of the model.

Security impact visualisation: The designer must be
able to immediately see and understand the conse-
quences of a resolution strategy on the security of the
model.

Bounded completeness: Some access control inconsisten-
cies and violations can only be resolved by a trans-
action of atomic changes, but the transaction must
be bounded to achieve completeness of the resolution
strategy.

Flexible strategies: Suggested resolution strategies could
also involve creating new model elements, to provide
valid security hardening changes that would otherwise
not have been considered.

To merge models and access control configurations and prop-
erties, users need

Role and permission similarities detection: The user
should be pointed to roles and permissions that are
very similar, making them good candidates for being
merged, while still being able to see what the conse-
quences of such a merge would be on the security of
the model.

We therefore put forward the position that the above
problems must be addressed by the research community in
order to improve the support for evolving access control poli-
cies specified on system models.

6. REFERENCES
[1] K. Alghathbar and D. Wijesekera. authUML: a three-phased

framework to analyze access control specifications in use cases.
In Proc. workshop on Formal methods in security
engineering, pages 77–86. ACM, 2003.

[2] D. Basin, J. Doser, and T. Lodderstedt. Model driven security
for process-oriented systems. In Proc. symposium on Access
control models and technologies, pages 100–109. ACM, 2003.

[3] X. Blanc, A. Mougenot, I. Mounier, and T. Mens. Incremental
detection of model inconsistencies based on model operations.
In Proc. Int’l conf. on Advanced Information Systems
Engineering, pages 32–46. Springer-Verlag, 2009.

[4] A. Egyed. Instant consistency checking for the UML. In Proc.
Int’l conf. on Software engineering, pages 381–390. ACM,
2006.

[5] A. Egyed. Fixing Inconsistencies in UML Design Models. In
Proc. Int’l conf. on Software Engineering, pages 292–301.
IEEE, 2007.

[6] A. Egyed, E. Letier, and A. Finkelstein. Generating and
Evaluating Choices for Fixing Inconsistencies in UML Design
Models. In Proc. Int’l conf. on Automated Software
Engineering, pages 99 –108. ACM, 2008.

[7] E. Fernández-Medina, J. Jürjens, J. Trujillo, and S. Jajodia.
Model-driven development for secure information systems.
Information and Software Technology, 51(5):809 – 814, 2009.

[8] S. Judson, R. France, and D. Carver. Supporting rigorous
evolution of uml models. In Proc. Int’l conf. on Engineering
Complex Computer Systems, pages 128 – 137. IEEE, 2004.

[9] J. Jürjens. Secure Systems Development with UML.
Springer-Verlag, 2005.

[10] J. Jürjens, L. Marchal, M. Ochoa, and H. Schmidt. Incremental
security verification for evolving umlsec models. In Proc.
European Conf. on Modelling Foundations and Applications,
pages 52–68. Springer, 2011.

[11] A. Kalam, R. Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miege, C. Saurel, and G. Trouessin.
Organization based access control. In Proc. int’l workshop on
Policies for Distributed Systems and Networks, pages 120 –
131. IEEE, 2003.

[12] T. Lodderstedt, D. A. Basin, and J. Doser. SecureUML: A
UML-Based Modeling Language for Model-Driven Security. In
Proc. Int’l conf. on The Unified Modeling Language, pages
426–441. Springer-Verlag, 2002.

[13] T. Mens. A state-of-the-art survey on software merging.
Software Engineering, IEEE Transactions on, 28(5):449 –462,
may 2002.

[14] T. Mens and T. D’Hondt. Automating Support for Software
Evolution in UML. Automated Software Engg., 7(1):39–59,
2000.

[15] T. Mens and R. V. D. Straeten. Incremental resolution of
model inconsistencies. In Proc. Int’l conf. on Recent trends in
algebraic development techniques, pages 111–126.
Springer-Verlag, 2007.

[16] T. Mens and P. Van Gorp. A taxonomy of model
transformation. Electron. Notes Theor. Comput. Sci.,
152:125–142, 2006.

[17] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer,
R. Hirschfeld, and M. Jazayeri. Challenges in software
evolution. In Proc. Int’l Workshop on Principles of Software
Evolution, pages 13–22. IEEE, 2005.

[18] L. Montrieux, M. Wermelinger, and Y. Yu. Tool Support for
UML-Based Specification and Verification of Role-Based
Access Control Properties. In Proc. joint meeting of the
European Software Engineering Conference and ACM
SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2011.

[19] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein.
xlinkit: a consistency checking and smart link generation
service. ACM Trans. Internet Technol., 2:151–185, May 2002.

[20] Q. Ni, E. Bertino, J. Lobo, C. Brodie, C.-M. Karat, J. Karat,
and A. Trombeta. Privacy-aware role-based access control.
ACM Trans. Inf. Syst. Secur., 13(3):1–31, 2010.

[21] R. S. Sandhu, D. F. Ferraiolo, and D. R. Kuhn. The NIST
model for role-based access control: towards a unified
standard. In Proc. Workshop on Role-Based Access Control,
pages 47–63. ACM, 2000.

[22] R. Van Der Straeten, T. Mens, and S. Van Baelen. Challenges
in model-driven software engineering. In Models in Software
Engineering, volume 5421 of LNCS, pages 35–47. Springer,
2009.

