
The Use of Application Scanners
in Software Product Quality Assessment∗

Stefan Wagner
Institute of Software Technology

University of Stuttgart
Stuttgart, Germany

stefan.wagner@informatik.uni-stuttgart.de

ABSTRACT
Software development needs continuous quality control for
a timely detection and removal of quality problems. This
includes frequent quality assessments, which need to be au-
tomated as far as possible to be feasible. One way of au-
tomation in assessing the security of software are application
scanners that test an executing software for vulnerabilities.
At present, common quality assessments do not integrate
such scanners for giving an overall quality statement. This
paper presents an integration of application scanners into a
general quality assessment method based on explicit quality
models and Bayesian nets. Its applicability and the detec-
tion capabilities of common scanners are investigated in a
case study with two open-source web shops.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software
Quality Assurance

General Terms
Security, measurement

Keywords
Application scanner, quality assessment, Bayesian net, qual-
ity model

1. INTRODUCTION
Continuous quality control means to assess and improve

software quality almost continuously, i.e., on an hourly or
daily basis. This allows the developers to detect quality
defects and to remove them early after their introduction
into the system, which avoids a general quality decay and far
higher costs in later phases in the software’s life cycle. These

∗This work has partially been supported by the German
Federal Ministry of Education and Research (BMBF) in the
project QuaMoCo (01 IS 08023B).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WoSQ’11, September 4, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0851-9/11/09 ...$10.00.

benefits, however, come at the cost that quality assessments
need to be done often and hence are elaborate. Therefore,
automation and good tool support is necessary to employ
continuous quality control in practice [10].

1.1 Problem Statement
Software product quality assessments need to cover a large

variety of topics including security. The assessment of prod-
uct security is – as all quality analyses – elaborate. Hence,
also for security, automation is necessary for practical adop-
tion. In quality assessments automation relies to a large
degree on automated static analysis. Static analysis, how-
ever, can only assess security partial. Dynamic analyses
are needed to complement the static ones. Most existing
automatic dynamic analyses for security are not integrated
into product quality assessment methods. Instead, dynamic
analysis tools, mostly so-called application scanners, are used
solely for analysing the security of networks and hosts.

1.2 Research Objective
Similar to static analysis tools, there is a a plethora of

tools for automatic dynamic security analysis. Especially
application scanners are available commercially as well as
open source. Those tools scan the executing application
automatically for vulnerabilities and hence are a promising
addition to static analysis. Our overall objective is to in-
vestigate the available tools and the kinds of vulnerabilities
they detect to define how these tools should be integrated
in a general quality assessment.

1.3 Contribution
We employ an existing quality assessment method based

on explicit quality models and Bayesian nets and extend
it by defining how application scanners can be used in the
assessment. This extended method is performed using three
well-known open source application scanners (w3af, Wapiti,
and Grendel Scan) on two open source web shops (PHP Shop
and Zen Cart). We show the principal applicability of the
method to these real-world applications and also find first
indications that the scanners find different vulnerabilities
and, hence, should be used in combination. Therefore, this
paper is only a first step in the direction of the research
objective.

1.4 Context
The approach is applicable in principle to any kind of soft-

ware. Most application scanners focus on web applications
at present. The used application scanners and study object
are open source but in use in commercial contexts.

1.5 Outline
We start by introducing application security scanners and

especially the used scanners in section 2. We then explain
the quality assessment method based on an explicit quality
model and Bayesian nets that we will use as an example
method into which we integrate the scanner results in sec-
tion 3. In section , we describe the design and results of
the case study. Finally, we compare our results with related
work (section 5) and give final conclusions (section 6).

2. APPLICATION SECURITY SCANNERS
We first give a general introduction into what application

security scanners are and present three scanners that are
also used in the case study in Section 4.

2.1 General
In general, an application scanner is a software that per-

forms automatic penetration testing. Most scanners use a
set of common patterns of inputs that they send to the ap-
plication and decide, based on the output, whether there is
a vulnerability that might be exploited. In addition, they
have many possibilities to configure the penetration tests so
that they fit to the system under analysis. Most applica-
tion scanners concentrate on web applications as these are
most exposed to attacks. Black et al. define in [7] a Web ap-
plication security scanner as an “automated program that
searches for software security vulnerabilities within web ap-
plications”.

There are several groups that work on specific application
scanners (e.g., [4,19,20]) in order to either find new vulner-
abilities or improve the detection of vulnerabilities. There
are also specialised tools that dynamically and (partly) stati-
cally detect specific vulnerabilities [3]. However, these differ-
ent tools have not been compared and analysed w.r.t. their
usage in product quality assessment. We discuss three com-
mon open-source scanners in the following.

2.2 w3af
The Web Application Attack and Audit Framework (w3af)

provides a framework as well as a complete graphical and
command-line interface to run application scans and view
results. The framework provides simple wrappers for HTTP
communication, web services, sessions, and HTML parsing.
It also contains many plugins that implement scanning and
testing an application. It is written in Python and is avail-
able at http://w3af.sourceforge.net/.

2.3 Wapiti
The Web application vulnerability scanner / security au-

ditor (Wapiti) is a command-line tool that scans the web
pages of an application and identifies scripts and forms to
inject data. Using these scripts and forms it acts like a
fuzzer and injects payloads to see if a script is vulnera-
ble. Wapiti is developed in Python. It is available at http:

//wapiti.sourceforge.net/.

2.4 Grendel-Scan
Grendel-Scan is a web application security testing tool

that also provides a graphical user interface. It contains an
automatic application scanner that detects common web ap-
plication vulnerabilities. It is written in Java and is available
at http://www.grendel-scan.com/.

3. QUALITY ASSESSMENT METHOD
Quality assessment is the part in quality control that com-

pares the actual state of an application with its require-
ments. It evaluates if and how well the software fits to what
was intended. There are various ways to perform this assess-
ment and the major difficulty lies in combining the various
quality assurance results and measures to a common qual-
ity statement. In the project Quamoco1, we developed such
a quality assessment method. One specific instance of this
method uses Bayesian nets to describe the uncertainties in
the results and measures as well as to calculate a quality
statement. In the following, we propose how application
scanners can be integrated in the method for a substantial
security assessment.

3.1 Quamoco
In the project Quamoco, we develop a quality model with

a corresponding quality assessment method that has the
aim to facilitate continuous improvement based on objective,
quantitative feedback [21]. It has its origins in the Quality
Improvement Paradigm [5] and the Goal/Question/Metric
(GQM) approach [6]. We built one specific instance us-
ing Bayesian nets as a means for analysing assessment re-
sults [26] that was specifically aimed at using activity-based
quality models [12].

We give a brief overview on the quality models developed
in Quamoco and describe the assessment method from [26]
adapted to the Quamoco quality models.

3.2 Quamoco Quality Models
In general, there are two main uses of quality models in

a software project: (1) as a basis for defining quality re-
quirements and (2) for defining quality assurance techniques
and measurements for the quality requirements. The qual-
ity models developed in Quamoco advance existing quality
models as they combine the practically shown advantages of
different models [12, 17, 25, 28]. The idea is to use not only
high-level “-ilities” for defining quality but instead to break
it down into detailed factors and their influence on quality
attributes. The quality attributes we use in this paper are
the activities performed on and with the system, which are
derived from activity-based quality models [12]. In the area
of security, we use a hierarchy of attacks as activities [27];
in this case activities that should be prevented.

We developed an explicit meta-model in Quamoco that
defines the quality model elements and their relationships.
Five elements of the meta-model are most important in the
context of this paper: entity, property, measure, impact, and
activity. An entity can be any thing, animate or inanimate,
that has an influence on the software’s quality, e.g., the
source code of a PHP function or an HTML form. These en-
tities are characterised by properties such as structuredness
or conformity. The combination of an entity and a property
is called a factor. These factors are measurable either by au-
tomatic measurement or by manual review. This is specified
in the measures for a factor.

Entities as well as activities are organised in hierarchies.
An influence of a factor is specified by an impact. We con-
centrate on the influences on attack activities, for example,
SQL injection or password brute forcing. The impact on an
activity can be positive or negative.

1http://www.quamoco.de/

Use Maintenance

Activity

O
rg

an
is

at
io

n
E

nv
iro

nm
en

t
S

ys
te

m

S
itu

at
io

n

Constrained-
ness

Distribution

- -
+ +

-
-

-
-

Structured-
ness

...

...

Danger

...

Personnel
turnover

...

Attack

Sanitation

Figure 1: High-level view on an activity-based qual-
ity model as a matrix (based on [26])

The two hierarchies, the factor tree and the activity tree,
together with the impacts of the facts on the activities can
be visualised as a matrix (Figure 1). The factor tree is shown
on the left, the activity tree on the top. The impacts are
depicted by entries in the matrix where a “+” denotes a pos-
itive and a “–” a negative impact. The associations between
factors in the factor tree denote a “kind-of” relationship.

3.3 Bayesian Nets
Bayesian nets are a means for modelling uncertain rela-

tionships that can be simulated and that predicts probable
outcomes. They are a modelling technique that can repre-
sent causal relationships based on Bayesian inference. They
are represented as a directed acyclic graph with nodes for
uncertain variables and edges for directed relationships be-
tween the variables. This graph models all the relationships
abstractly.

For each node or variable there is a corresponding node
probability table (NPT). These tables define the relation-
ships and the uncertainty in these variables. For each state
of each variable, the probability that the variable is in this
state is specified. If there are parent nodes, i.e., a node that
influences the current node, these probabilities are defined
in dependence on the states of these parents. A complete
Bayesian net allows the forward and backward calculation
for different scenarios based on observations or desired out-
comes.

3.4 Steps
The assessment method [26] consists of four steps for build-

ing a Bayesian net derived systematically from a Quamoco
quality model. The resulting Bayesian net contains three
types of nodes:

• Activity nodes that represent activities from the qual-
ity model

• Factor nodes that represent factors from the quality
model

• Measure nodes that represent indicators for activities
or factors

We need four steps to derive these nodes from the informa-
tion of the quality model.

1. We identify the relevant activities with measures based
on the assessment goal. We use GQM [6] to structure
that derivation. We first define the assessment goal,
for example, optimisation of security assurance, which
leads to relevant activities, such as attack. This is re-
fined by stating questions that need to be answered to
reach that goal.

2. Influences by sub-activities and factors are identified.
This step is repeated recursively for sub-activities. The
resulting factors together with their impacts are mod-
elled.

3. Suitable measures for the factors are added.

4. The node probability tables (NPT) are defined to re-
flect the quantitative relationships. This includes defin-
ing node states as well as filling the NPT for each node.
The activity and factor nodes are usually modelled as
ranked nodes, i.e., in an ordinal scale. Having that,
the Bayesian net can be used for simulation by setting
values for any of the nodes.

The definition of NPTs is the most complicated part in
building Bayesian nets. The approach by Fenton, Neil and
Galan Caballero [14] simplifies that by approximating the
specific values in an NPT by general distributions or expres-
sions. They formalise the behaviour observed with experts
that have to estimate NPTs, who usually estimate the cen-
tral tendency or some extreme values based on the influenc-
ing nodes. The remaining cells of the table are then filled
accordingly. For example, it renders it possible to model
the NPT of a node by a weighted mean over the influencing
nodes.

In general, the NPTs of the measure nodes are defined
using either common industry distributions or information
from company-internal measurements. The influence of the
activity or factor node it belongs to can be modelled in at
least two ways: (1) partitioned expressions and (2) arith-
metic expressions. The latter describes a direct arithmetical
relationship from the level in the activity or factor node to
the measure. Using a partitioned expression, the additional
uncertainty can be expressed by defining probability distri-
butions for each level of the activity or factor node.

3.5 Integration of Application Scanners
Application scanners provide findings of probable vulner-

abilities for the analysed software. We can use them as mea-
sures for factors. Hence, the integration of application scan-
ners affects the steps 3 and 4 of the assessment method. We
define measure nodes that correspond to scanner findings.
All scanners classify the found vulnerabilities into different
types. Each vulnerability type forms a measure. These mea-
sures are matched to existing factors or new factors are gen-
erated enriching the knowledge about how to develop secure
software applications.

For example, an application scanner might detect buffer
overflows if the software is configured to return error pages.
The assessment method user would create a measure node
Buffer Overflow Error Page that represents the findings of
the scanner. The quality model already contains a fac-
tor Confinement of Buffer, which specifies that the limits

of buffers are respected. This factor is represented in the
Bayesian net as a factor node and the assessor adds an in-
fluence to the measure node.

The factors that are measured by application scanners can
have an impact on a very specific attack or in general ease
attacking. This is reflected by the hierarchy level of the
attack that has the impact. A general impact goes to a more
generic attack in the activity hierarchy. For the example of
the buffer overflow, the impact might be on the attack Forced
Integer Overflow that represents the setting of a controllable
integer value to an unexpected value.

For measures from static analysis, we calculate densities to
reflect how large the problems are in relation to the software
size. As each found vulnerability can potentially corrupt
the complete application, we use a simpler yes/no voting. If
there is at least one vulnerability of a type, the measure has
the value yes. For example, if the scanner detects at least one
buffer overflow error page, the assessor sets the observation
of the measure node to yes. The NPT in the measure node is
modelled by a partitioned expression. In the buffer overflow
example, if Confinement of Buffer is in the state high, Buffer
Overflow Error Page is in the state no and vice-versa. The
expression should also add an uncertainty range depending
on how well the measure indicates the factor.

If we employ more than one scanner, we can run into the
problem that the scanners do not agree on the detection of
specific vulnerabilities. We prefer a pessimistic assessment
– possibly worse than it actually is – and hence vote yes if
at least one scanner reports a vulnerability.

4. CASE STUDY
The case study shows the applicability of the method and

to a smaller degree the detection capabilities of application
scanners. We define the study design, describe the used
study objects, and show and discuss the results.

4.1 Study Design & Procedure
The aim of this case study is a proof-of-concept that anal-

yses the method’s applicability to real-world software. In
particular, we are interested in the effort needed to incor-
porate and use the scanners as well as if they give useful
results. Furthermore, the execution time for analysis should
be short enough to be able to run the scanners often, e.g.,
on a daily basis. This leads to our first research question:

RQ 1. Is the assessment method applicable to realistic
software systems?

Moreover, we investigate if common scanners are compa-
rable in terms of the vulnerabilities they detect. The ex-
perience with static analysis has shown that different tools
detect partly different classes of defects. If this is not the
case, we could resort to just one tool in quality control,
which would reduce our effort considerably. Hence, our sec-
ond research question asks for the differences in vulnerability
detection:

RQ 2. Are there differences between the detection capa-
bilities of different application scanners?

We analyse both questions by applying 3 widely known
open-source application scanners (see Section 2) to 2 open-
source web shops. We install both web shops with their
standard installation and run each scanner on each web

shop. The scanners are configured to reasonable settings
w.r.t. the study objects. For example, attacks specifically for
Microsoft SQL Server make no sense as a MySQL database
system is used by the study objects.

The vulnerabilities found by all scanners are partitioned
into classes that stem from the types of vulnerabilities found
by the scanners. The classes are used in the quality assess-
ment method to make a quality statement about the study
objects. The Bayesian net for that is built using the tool
AgenaRisk. We analyse this application of the method qual-
itatively to answer RQ 1. Then we compare the results of
all three scanners separately and compare their findings for
answering RQ 2. The comparison analyses to what degree
there are overlaps in the found classes of vulnerabilities. The
vulnerabilities are not checked for false positives.

4.2 Study Objects
The study objects are two different web shops, one – Zen

Cart – a large application, which is also the most popular of
this kind on sourceforge. The other application – PHP Shop
– is simple and small in comparison to Zen Cart. Hence, in
the case selection, triangulation is used as far as possible.
Detailed descriptive information about both study objects
is given in Table 1.

Table 1: Information about the study objects
PHP Shop Zen Cart

Language PHP PHP/Perl
1. Release 1999 2004
Database MySQL MySQL
Used Version 0.8.1 1.3.8
SLOC 8,052 73,001
Downloads 53,000 625,000

Both applications were installed in the standard Apache
web server available in Mac OS X and connected to a local
MySQL installation as database management system. As
far as possible all configuration were left with the default
values.

4.3 Results
As a result for the applicability of the approach, we de-

scribe the concrete application together with our experi-
ences. We start with the first step of our assessment ap-
proach and identify the relevant activities and correspond-
ing measures. We analyse security, in particular the risk of
vulnerabilities in the system. The risk can be the basis for
deciding whether further security improvements needs to be
employed. Therefore, the goal is “Planning of further se-
curity improvements”. For security improvements, attacks
on the system need to be confounded. Hence, the activ-
ity Attack needs to be analysed. We derive the question
“How many vulnerabilities are there in relation to the soft-
ware size?”. For the security improvement planning, it is
not only important how many vulnerabilities there are but
also whether this number is in a reasonable relation to the
system size. It might be economically inadvisable to invest
in removing all vulnerabilities. The corresponding metric
vulnerability density that measures the number of vulnera-
bilities by source code size in KSLOC can be directly derived
from the question.

In the second step of the assessment method, we build
the Bayesian net. The selection of the nodes in the study

is driven by the detection possibilities of the used scanners.
There is the top-level activity Attack that we measure by
the above derived vulnerability density. It has a direct im-
pact from Visibility of Public Code Comment that describes
that it is easier to attack if there are code comments vis-
ible to the public. Then, we break Attack down to Prob-
abilistic Techniques, Injection, and Exploitation of Trusted
Credentials. These are further refined into Password Brute
Forcing, Script Injection, SQL Injection, Cross site Request
Forgery, and Session Credential Falsification Through Pre-
diction. Figure 2 shows in the top left the activity tree as
represented in the Bayesian Network.

We include 6 impacts on these activities. The impacts are
chosen so that their corresponding factors can be measured
by the investigated application scanners. The factors used
are:

• Completeness of Password Change: Any implementa-
tion of changing user passwords is also responsible for
the quality of that password to avoid password brute
forcing. If such a check is missing, we consider the
implementation to be incomplete.

• Sanitation of Dynamic Web Page: If a web applica-
tion does not sufficiently sanitise the data it is using
in output, arbitrary content, including scripts, can be
included by attackers.

• Sanitation of SQL Statement : Analogously to dynamic
web pages, the used SQL statements need to be sani-
tised to avoid unwanted changes or reads to the database.

• Visibility of Public Code Comment : Comments in HTML
or Java Script code visible to the public may give at-
tackers information they can exploit.

• Authenticity of Request : The application needs to be
able to undoubtedly decide on the authenticity of a
request. If this is not the case, Cross Site Request
Forgery is possible.

• Uniqueness of Session ID : Each session needs a unique
ID that cannot easily be guessed. Otherwise an at-
tacker may predict an ID and gain access to the appli-
cation

In the fourth step of the approach, measures are defined
for all impacts. The measures here are derived from the vul-
nerabilities identifiable by the scanners and are attributable
to the application – as opposed to the environment. The fi-
nal topology of the Bayesian net is shown in Figure 2. Over-
all, building the Bayesian net took less than a day.

The execution of the scanners took between several min-
utes (PHP Shop) and several hours (Zen Cart) on a cur-
rent MacBook Pro that runs both the web server and the
scanners. The found vulnerabilities are shown in Table 2.
Waipiti did not find any vulnerabilities in both cases. We
analysed its execution in detail to avoid any misconfigura-
tions, but it seems that it is not able to detect problems in
the analysed software. Most vulnerabilities were detected
by Grendel Scan, 3 vulnerabilities were reported by w3af.

This information was then used in the Bayesian net to as-
sess the quality of the two applications. Two vulnerability
classes from Table 2, the input/output flows and unidentified
vulnerabilities, were not further used because they cannot

Table 2: The vulnerabilities found in the scans. The
characters A–C denote which scanner found the vul-
nerability: A=w3af, B=Wapiti, C=Grendel Scan.

Vulnerability PHP Shop Zen Cart
Duplicate Session ID C C
Potential CSRF A, C C
SQL Injection A, C
Code Comments C C
Unidentified Vuln. A
Input/Output Flows C

be attributed to a specific product entity. The predicted vul-
nerability densities (vulnerabilities/KSLOC) of both appli-
cations are very close. The net calculated a mean of 0.0064
for PHP Shop (standard deviation 0.0028) and a mean of
0.0066 for Zen Cart (standard deviation 0.0028).

4.4 Discussion & Threats to Validity
The assessment method including application scanners is

applicable to the real-world systems we analysed. Yet, the
results are close for both systems and the correctness of the
results cannot be validated as we have no data about the real
vulnerability density. Nevertheless, the effort for performing
the assessment is reasonable. The setup of the scanners and
a corresponding test environment is more demanding than
the subsequent analysis using the Bayesian net. Altogether
it took only a few days to set up the analysis. Also the
time needed for running the scanners is promising and allows
them to be included in continuous quality control.

An important decision in modelling application security
is the border between the application that is analysed and
its environment. For example, is the application responsible
for passwords that are not prone to brute force attacks?
In the case study we made subjective choices and for the
example of passwords specified that the application has a
partial responsibility.

The answer to RQ 2 is more clear as the found vulnerabil-
ities differ between the used scanners. Wapiti did not find
a single vulnerability, Grendel Scan found 8 and w3af found
3 vulnerabilities. For potential cross site request forgery in
PHP Shop and SQL injection in Zen Cart both scanners had
findings. However, only Grendel Scan detected a potential
CSRF in Zen Cart. All these differences indicate that there
are significant differences between the detection capabilities
of different scanners.

As this is only a first, explorative study on the use of ap-
plication scanners in quality assessment, there are various
threats to the validity of the results. The internal validity is
threatened because there were several subjective decisions in
building the Bayesian net. We mitigated this threat by us-
ing comparable decisions as for static analysis. Furthermore,
we did not check whether the found vulnerabilities are ac-
tual problems in the software. This especially affects RQ 2,
because the results might be misleading. The external valid-
ity is also limited as we only analysed two applications and
three scanners, which are all open source. For more reliable
results, especially for the detection capabilities, we need to
run larger studies that also involve commercial applications
and scanners.

Figure 2: The Bayesian net for the analysis from AgenaRisk

5. RELATED WORK
We discuss quality models, guidelines and measures and

especially several security assessment approaches.
There is a wide variety of quality models. Deissenboeck et

al. [11] differentiate between quality definition models and
quality assessment models. The former is a specification
of what constitutes quality in a software system, the latter
describes how a software system’s quality can be assessed
according to specific rules. In the area of software security,
security pattern collections are an example of quality defi-
nition models, e.g., [18].

Quality definition models are either general but too ab-
stract for a concrete use in assessing software quality (e.g.,
ISO 9126) or specialised for a specific quality attribute and
hence difficult to integrate into general quality assessments
[12]. In [12], Deissenboeck et al. propose a quality model
(ABQM) that tackles this problem by breaking quality at-
tributes into entities, their properties, and their influence on
activities. In [27] we used the ABQM approach for modelling
security but with a focus on security requirements.

Quality guidelines are developed by various companies
and organisations and usually include technical aspects that
have to be taken into account. For example, the Com-
mon Criteria catalog (CC) [9] and the German BSI IT-
Grundschutz Manual [13] describe security requirements. Usu-
ally guidelines do not give rationales [12]. Hence, they do
not guide through a structured process, are often read once
and followed in a sporadic manner only [8]. Furthermore,
it is often not checked whether guidelines are followed or
not [12].

Common metric-based/stochastic approaches describe qual-
ity by measurable concepts that imply strong assumptions.
While for some quality attributes, those assumptions are sta-
ble for others, such as security, the assumptions are chang-
ing fast [1]. Due to their single-value representation, met-

rics often do not explain how system properties influence
the quality related activities that are performed with the
system [12]. Hence, metrics are not well established for se-
curity [2] and unstable due to fast variation of the security
underlying “physics” (i.e., the IT system) [1].

Artsiom et al. [29] propose an security assessment method
that has similarities to the method in this paper. It also de-
fines metrics and aggregates them to quality attributes. This
method, however, uses “-ilities” similar to ISO 9126 that
have several well-known problems. Moreover, they concen-
trate on the architecture of the software (white-box view)
whereas this paper focuses on testing by application scan-
ners (black-box view).

Frigault et al. [16] use Dynamic Bayesian Networks to
investigate the security of networked systems. Their focus
is more on the combined effects of different vulnerabilities
as opposed to a complete quality statement for the system
incorporating scan results.

There are several so-called scoring systems that evaluate
vulnerabilities in applications. The most advanced scoring
system is the Common Vulnerability Scoring System (CVSS)
[15,22]. It provides a set of metrics and corresponding equa-
tions that combine these metrics with weights to provide a
score for a vulnerability. It considers the constraints as well
as the impacts of a vulnerability, but does describe how to
find vulnerabilities and how to relate the results to a general
quality assessment.

Recently the Common Weakness Scoring System (CWSS) [23]
was released that analyses weaknesses in a software system
and assigns scores for it for prioritising the weaknesses. One
part of the scoring is the technical impact. Hence, there are
similarities to the Quamoco quality model, which we should
exploit in the future. By itself, the CWSS describes not how
it fits into an overall quality assessment.

The Open Web Application Security Project (OWASP) is
a non-commercial initiative to develop guidelines and stan-

dards for the security of web applications. Their OWASP
Application Security Verification Standard 2009 (ASVS) [24]
defines 4 security verification levels that describe what has
to be done to provide appropriate security for an applica-
tion. The developer of an application decides on its critical-
ity and the standards gives the corresponding verification
requirements that have to be met. This ranges from mostly
automatic analysis to complete manual code reviews. A level
is reached if all these requirements are checked. It does not
contain more fine-grained evaluations and it is also not set
into the context of a general quality assessment.

6. CONCLUSIONS
We summarise the contribution of this paper and discuss

directions for future research.

6.1 Summary
Application security scanners, as employed in the area of

web applications, are one promising possibility to automate
the assessment of software application security. This au-
tomation could then be used in product quality assessments
in the context of continuous quality control. However, the
usage of application scanners in this kind of quality assess-
ment has not been investigated so far.

We provide a first step to incorporate application scanners
into quality assessment by extending an existing method
based on explicit quality models and Bayesian nets. In the
Quamoco quality models, measures are defined to make use
of the scanning results. It is also defined how these results
can be further used for a general quality statement.

We show in a case study how three open source applica-
tion scanners can be used in the quality assessment of open
source web shop applications. We found that the method is
applicable in principle and that the detection capabilities of
the scanners differ. Moreover, the needed time for perform-
ing the scans is promising for their inclusion into continuous
quality control.

6.2 Future Work
A threat for the case study is that only three scanners

are used. We plan to evaluate more application scanners,
especially tools developed commercially. For a more reli-
able result we also plan to investigate further cases involving
software developed in industry for which we also analyse the
false positive rate of scanners.

The assessment method will be extended to be able to
handle false positives explicitly. The found differences be-
tween scanners might also be an indication for false positives
and then the method could mitigate that by a larger weight
for vulnerabilities that are found by more than one scanner.
Finally, a study involving the combination and comparison
with static analysis would show the strength and weaknesses
of both approaches.

Acknowledgements
I am grateful to Elmar Juergens for helpful suggestions on
the manuscript.

7. REFERENCES
[1] M. D. Aime, A. Atzeni, and P. C. Pomi. The risks

with security metrics. In Proc. 4th ACM Workshop on
Quality of Protection (QoP ’08), pages 65–70. ACM
Press, 2008.

[2] A. Atzeni and A. Lioy. Why to adopt a security
metric? a brief survey. In Quality of Protection,
volume 23 of Advanced in Information Security, pages
1–12. Springer, 2006.

[3] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda, C. Kruegel, and G. Vigna. Saner:
Composing Static and Dynamic Analysis to Validate
Sanitization in Web Applications. In Proc. IEEE
Symposium on Security and Privacy, pages 387–401.
IEEE Computer Society, 2008.

[4] D. Balzarotti, M. Cova, V. Felmetsger, and G. Vigna.
Multi-module vulnerability analysis of web-based
applications. In Proc. ACM Conference on Computer
and Communication Security (ACM CCS). ACM
Press, 2007.

[5] V. Basili and H. Rombach. The TAME project:
Towards improvement-oriented software environments.
IEEE Transactions on Software Engineering,
14(6):758–773, 1988.

[6] V. R. Basili, G. Caldiera, and H. D. Rombach. Goal
question metric paradigm. In J. C. Marciniak, editor,
Encyclopedia of Software Engineering, volume 1. John
Wiley & Sons, 1994.

[7] P. Black, E. Fong, V. Okun, and R. Gaucher. Software
assurance tools: Web application security scanner
functional specification version 1.0. Special
Publication 500-269, National Institute of Standards
and Technology, 2008.

[8] M. Broy, F. Deissenboeck, and M. Pizka. Demystifying
maintainability. In Proc. Intern. Workshop on
Software Quality (WoSQ ’06), pages 21–26. ACM
Press, 2006.

[9] CCRA. Common criteria for information technology
security evaluation, version 3.1.
http://www.commoncriteria.org, 2009.

[10] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner,
B. Mas y Parareda, and M. Pizka. Tool support for
continuous quality control. IEEE Softw., 25(5):60–67,
2008.

[11] F. Deissenboeck, E. Juergens, K. Lochmann, and
S. Wagner. Software quality models: Purposes, usage
scenarios and requirements. In Proc. 7th International
Workshop on Software Quality (WoSQ 09). IEEE
Computer Society, 2009.

[12] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert,
and J. F. Girard. An activity-based quality model for
maintainability. In Proc. IEEE International
Conference on Software Maintenance (ICSM 2007),
pages 184–193. IEEE Computer Society, 2007.

[13] Federal Office for Information Security (BSI) in
Germany. IT-Grundschutz Catalogues.
https://www.bsi.bund.de/, 2007.

[14] N. E. Fenton, M. Neil, and J. G. Caballero. Using
ranked nodes to model qualitative judgments in
Bayesian networks. IEEE Transactions on Knowledge
and Data Engineering, 19(10):1420–1432, 2007.

[15] FIRST. Common vulnerability scoring system (CVSS).
http://www.first.org/cvss/cvss-guide.html, 2009.

[16] M. Frigault, L. Wang, A. Singhal, and S. Jajodia.
Measuring network security using dynamic bayesian
network. In Proc. 4th ACM Workshop on Quality of
Protection (QoP ’08), pages 23–30. ACM Press, 2008.

[17] M. Grossmann. Towards an applicable software
quality model for individual software projects. In
Workshop-Band Softwarequalitätsmodellierung und
-bewertung (SQMB ’09). TU München, 2009.

[18] M. Hafiz, P. Adamczyk, and R. Johnson. Organizing
security patterns. IEEE Softw., 24(4):52–60, 2007.

[19] Y.-W. Huang, C.-H. Tsai, D. Lee, and S.-Y. Kuo.
Non-detrimental web application security scanning. In
Proc. 15th International Symposium on Software
Reliability Engineering (ISSRE 2004), pages 219–230.
IEEE Computer Society, 2004.

[20] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic.
Secubat: a web vulnerability scanner. In Proc. 15th
International Conference on World Wide Web (WWW
’06), pages 247–256. ACM Press, 2006.

[21] C. Lampasona, A. Trendowicz, M. Kläs, and
J. Heidrich. Measurement-based software quality
evaluation. In Tagungsband des DASMA Software
Metrik Kongresses 2009. Shaker, 2009.

[22] P. Mell, K. Scarfone, and S. Romanosky. Common
vulnerability scoring system. IEEE Security and
Privacy, 4(6):85–89, 2006.

[23] Mitre. Common weakness scoring system (CWSS).
http://cwe.mitre.org/cwss/.

[24] OWASP. OWASP application security verification
standard 2009. http://www.owasp.org/.

[25] R. Plösch, H. Gruber, A. Hentschel, C. Körner,
G. Pomberger, S. Schiffer, M. Saft, and S. Storck. The
EMISQ method and its tool support-expert-based
evaluation of internal software quality. Innovations in
Systems and Software Engineering, 4(1):3–15, 2008.

[26] S. Wagner. A Bayesian network approach to assess
and predict software quality using activity-based
quality models. Information and Software Technology,
52(11):1230–1241, 2010.

[27] S. Wagner, D. Mendez Fernandez, S. Islam, and
K. Lochmann. A security requirements approach for
web systems. In Workshop Quality Assessment in Web
(QAW 2009). 2009.

[28] S. Winter, S. Wagner, and F. Deissenboeck. A
comprehensive model of usability. In In Proc.
Engineering Interactive Systems 2007 (EIS ’07,
volume 4940 of LNCS, pages 106–122. Springer, 2007.

[29] A. Yautsiukhin, R. Scandariato, T. Heyman,
F. Massacci, and W. Joosen. Towards a quantitative
assessment of security in software architectures. In
Nordic Workshop on Secure IT Systems (NordSec),
October 2008.

