

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC'11, June 5-10, 2011, San Diego, California, USA
Copyright © 2011 ACM 978-1-4503-0636-2/11/06...$10.00

 1

Efficient SRAM Failure Rate Prediction via Gibbs Sampling
Changdao Dong and Xin Li

Electrical & Computer Engineering Department, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213

{changdao, xinli}@ece.cmu.edu

ABSTRACT
Statistical analysis of SRAM has emerged as a challenging issue
because the failure rate of SRAM cells is extremely small. In this
paper, we develop an efficient importance sampling algorithm to
capture the rare failure event of SRAM cells. In particular, we
adapt the Gibbs sampling technique from the statistics community
to find the optimal probability distribution for importance
sampling with minimum computational cost (i.e., a small number
of transistor-level simulations). The proposed Gibbs sampling
method applies an integrated optimization engine to adaptively
explore the failure region by sampling a sequence of one-
dimensional probability distributions. Several implementation
issues such as one-dimensional random sampling and starting
point selection are carefully studied to make the Gibbs sampling
method efficient and accurate for SRAM failure rate prediction.
Our experimental results of a commercial 65nm SRAM cell
demonstrate that the proposed Gibbs sampling method achieves
3~10� runtime speed-up over other state-of-the-art techniques
without surrendering any accuracy.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – Verification

General Terms
Algorithms

Keywords
Integrated Circuit, Process Variation, Memory

1. INTRODUCTION

As deep sub-micron technology advances, process variations
pose a new set of challenges on SRAM design. SRAM has been
widely embedded in a large amount of semiconductor chips. For
example, roughly half of the area of an advanced microprocessor
chip is occupied by SRAM [13]. SRAM cells are generally
designed with minimum-size devices [13] and can be significantly
impacted by large-scale process variations (e.g., local mismatches
caused by random doping fluctuations) at nanoscale technology
[1]. For this reason, it becomes increasingly critical to evaluate the
failure rate of SRAM cells both efficiently and accurately in order
to achieve a robust design.

Towards this goal, a number of statistical analysis methods
have been proposed for SRAM circuits [2]-[10]. For instance,
analytical performance models have been derived to predict
SRAM parametric yield [2]-[4]. While these models offer great
design insights to understand SRAM circuits, they may not

accurately capture the circuit behavior due to various
approximations that are made. Another possible approach for
SRAM failure rate prediction is based on transistor-level
simulation, including both Monte Carlo analysis [5]-[9] and
deterministic failure region prediction [10].

Since SRAM cells typically have extremely small failure
probability (i.e., 10�6~10�8), a simple Monte Carlo method by
directly sampling the variation space suffers from slow
convergence rate, as only few random samples will fall into the
failure region. To improve the sampling efficiency, a number of
importance sampling methods have been proposed for fast SRAM
failure rate prediction [5]-[9]. The key idea of importance
sampling is to directly sample the failure region based on a
distorted probability density function (PDF), instead of the
original PDF of process variations.

Applying importance sampling to SRAM analysis, however,
is not trivial. The efficiency of all existing importance sampling
algorithms heavily relies on the choice of the distorted PDF that is
used to generate random samples. Ideally, in order to maximize
prediction accuracy, we should sample the failure region that is
most likely to occur. Such a goal, however, is extremely difficult
to achieve, since we never exactly know the failure region in
practice. The challenging issue here is how to determine the
optimal PDF for importance sampling so that the SRAM failure
rate can be efficiently predicted.

In this paper, a novel Gibbs sampling method is proposed to
improve the efficiency of SRAM failure rate prediction. Unlike
the traditional Monte Carlo algorithm that samples a given PDF,
the proposed Gibbs sampling approach does not need to know the
sampling PDF explicitly. Instead, it adaptively searches the failure
region and then generates random samples in it. When applied to
SRAM failure rate analysis, Gibbs sampling can be conceptually
viewed as a unique Monte Carlo method with an integrated
optimization engine which allows us to efficiently explore the
failure region. As a result, SRAM failure probability can be
accurately predicted with a minimum number of sampling points
(i.e., a small number of transistor-level simulations). Our
experimental results of a commercial 65nm SRAM cell
demonstrate that compared to other state-of-the-art techniques, the
proposed Gibbs sampling algorithm achieves 3~10� runtime
speed-up without surrendering any accuracy.

While the Gibbs sampling method was initially developed by
the statistics community [11], [15], it is particularly tuned for our
SRAM analysis application via three important new contributions.
First, as previously mentioned, Gibbs sampling iteratively
searches the failure region. At each iteration step, it needs to
generate a random sample from an irregular one-dimensional PDF
that is not simply uniform or Normal. Such a sampling task cannot
be easily done by directly using an existing random number
generator. For this reason, we propose to adopt the inverse-
transform method [15] and incorporate it into our proposed Gibbs
sampling engine. As such, randomly sampling an arbitrary one-
dimensional PDF can be performed efficiently, which is a key
technique to make the proposed Gibbs sampling of practical
utility.

200

12.3

 2

Second, an efficient implementation of Gibbs sampling
requires a good starting point to speed-up the convergence. This is
similar to most optimization algorithms where a good starting
point facilitates fast convergence. In this paper, we propose a
model-based optimization to determine a good starting point so
that the Gibbs sampling algorithm can converge quickly (i.e.,
accurately predict the failure probability with a small number of
sampling points).

Finally, to further improve prediction accuracy and reduce
computational cost, a two-stage Monte Carlo flow is developed
where Gibbs sampling is applied to create a set of random
samples during the first stage and these samples are used to
“learn” the optimal PDF for importance sampling. Next, during
the second stage, a large number of random samples are
efficiently generated from the optimal PDF to accurately estimate
the failure probability.

The remainder of this paper is organized as follows. In
Section 2, we briefly review the background on importance
sampling and then propose the Gibbs sampling method in Section
3. A commercial 65nm SRAM cell is used to demonstrate the
efficacy of the proposed Gibbs sampling method in Section 4.
Finally, we conclude in Section 5.

2. BACKGROUND

Suppose that x is a d-dimensional random variable modeling
process variations and its joint PDF is p(x). Typically, x is
modeled as a multivariate Normal distribution [2]-[10]. Without
loss of generality, we further assume that the random variables {xi;
i = 1,2,…,d} in the vector x are mutually independent and
standard Normal (i.e., with zero mean and unit variance):

1 � � � ��
�

�
	

�
�

���

d

i
ixxp

1

2exp
2
1
�

. (1)

Any correlated random variables that are jointly Normal can be
transformed to the independent random variables in (1) by
principal component analysis (PCA) [14].

The failure probability of an SRAM cell can be
mathematically represented as [5]:
2 � ��

�

�� dxxpPf (2)

where � denotes the failure region, i.e., the subset of the variation
space where the performance of interest (e.g., read margin, write
margin, etc.) does not meet the specification. Alternatively, the
failure probability in (2) can be defined as:

3 � � � ��
��

��

��� dxxpxIPf (3)

where I(x) represents the indicator function:

4 � �
�
�
�

��
��

�
x
x

xI
0
1

. (4)

The failure probability Pf can be estimated by Monte Carlo
analysis. The key idea is to draw N random samples from p(x),
and then compute the mean of these samples:

5 � �� ��
�

��
N

i

iMC
f xI

N
P

1

1~
 (5)

where x(i) is the ith random sample generated by Monte Carlo
analysis.

For our proposed SRAM application, the failure probability Pf
in (3) is extremely small (e.g., 10�6~10�8) and most random
samples created by Monte Carlo analysis do not fall into the

failure region �. Hence, a large number of (e.g., over 109)
samples are needed by the Monte Carlo method to accurately
estimate the failure rate. Note that expensive transistor-level
simulation is required to create each sampling point. In order
words, 109 simulation runs must be performed in order to collect
109 random samples. It, in turn, implies that the aforementioned
Monte Carlo method is extremely expensive, or even infeasible,
when applied to most practical SRAM analysis problems.

To address this computational cost issue, importance sampling
has been proposed to improve the efficiency of Monte Carlo
analysis [5]-[9]. It aims to directly generate a large number of
random samples in the failure region by using a distorted PDF
q(x). In this case, the failure probability can be expressed as [5]:

6 � � � �
� � � ��

��

��

��
�

� dxxq
xq

xpxIPf . (6)

In other words, Eq. (6) calculates the expected value of the
function I(x)�p(x)/q(x) where the random variable x follows the
PDF q(x). If N sampling points {x(i); i = 1,2,…,N} are drawn from
q(x), the failure probability in (6) can be estimated by [5]:

7
� �� � � �� �

� �� ��
�

�
��

N

i
i

ii
IS
f xq

xpxI
N

P
1

1~
. (7)

Note that the estimated failure probabilities in (5) and (7) are
identical, if and only if the number of random samples (i.e., N) is
infinite. In practice, when a finite number of sampling points are
available, the results from (5) and (7) can be substantially
different. If the distorted PDF q(x) is properly chosen for
importance sampling, Eq. (7) can be much more accurate than the
simple Monte Carlo method in (5). In theory, the optimal PDF q(x)
with maximum estimation accuracy is [15]:

8 � � � � � �
f

OPT

P
xpxIxq �

� . (8)

Intuitively, if the PDF qOPT(x) in (8) is used, the function
I(x)�p(x)/qOPT(x) becomes a constant with zero variance. Hence, its
expected value can be accurately estimated by (7) using few
random samples.

Studying (8), we would notice two important properties of the
optimal PDF qOPT(x). First, qOPT(x) is non-zero if and only if the
variable x sits in the failure region. It, in turn, implies that we
should directly sample the failure region to achieve maximum
accuracy. Second, qOPT(x) is proportional to the original PDF p(x)
of process variations. In other words, the entire failure region
should not be sampled uniformly. Instead, we should sample the
variation space where performance failure is most likely to occur.

In practice, however, sampling the optimal PDF qOPT(x) in (8)
is not trivial, as the indicator function I(x) is not known in
advance. Most exiting importance sampling algorithms apply
various heuristics to approximate the optimal PDF qOPT(x) [5]-[9].
In this paper, we propose a new Gibbs sampling method that
adaptively samples the optimal PDF qOPT(x) without explicitly
knowing the indicator function I(x). As such, the SRAM failure
rate can be accurately predicted with minimum computational cost.

3. PROPOSED APPROACH

Our proposed SRAM failure rate analysis is facilitated by a
combination of several novel techniques. In this section, we will
discuss the details of these techniques and highlight their novelties.

3.1 Gibbs Sampling

As described in Section 2, directly sampling the optimal PDF

201

12.3

 3

qOPT(x) in (8) is difficult due to two reasons. First, the indicator
function I(x) is not known in advance, as the failure region is
unknown. Second, since qOPT(x) is not a simple multivariate
statistical distribution such as uniform distribution or Normal
distribution, it is extremely difficult, if not impossible, to directly
draw random samples from qOPT(x).

In this paper, we adopt the Gibbs sampling method [11], [15]
from statistics to predict the failure probability of SRAM cells.
Compared to other traditional techniques [5]-[9], Gibbs sampling
provides two promising features. First, it can efficiently search the
failure region and determine the indicator function I(x) on the fly.
From this point of view, Gibbs sampling can be conceptually
viewed as an integrated optimization engine that allows us to
adaptively sample the optimal PDF qOPT(x) in (8). To the best of
our knowledge, such optimal sampling is not possible by using
other existing techniques [5]-[9].

Second, Gibbs sampling does not directly draw random
samples from a multi-dimensional joint PDF. Instead, it iteratively
samples a sequence of one-dimensional PDF’s. These one-
dimensional PDF’s are not simply uniform or Normal, and, hence,
cannot be directly sampled by a simple random number generator.
However, as will be demonstrated in Section 3.2, the
aforementioned one-dimensional sampling can be efficiently
implemented with an inverse-transform method [15] with low
computational cost.

-5
0

5
-5

0
5

0

0.5

x2
x1

qO
PT

(x
1, x

2)

[x1
(1), x2

(1)]

-5 0 50

0.5

1

1.5

2

x1

qO
PT

[x
1 | x

2(1
)]

x1
(1) x1

(2)

 (a) (b)

-5
0

5
-5

0
5

0

0.5

x2
x1

qO
PT

(x
1, x

2) [x1
(2), x2

(1)]

-5 0 50

0.5

1

1.5

2

x2

qO
PT

[x
2 | x

1(2
)]

x2
(2) x2

(1)

 (c) (d)
Figure 1. A simple two-dimensional Gibbs sampling example
where [x1

(1),x2
(1)] is the starting point. (a) The intersection between

the joint PDF qOPT(x1,x2) and the plane x2 = x2
(1) defines the

conditional PDF qOPT[x1|x2
(1)]. (b) A new sampling point x1

(2) is
drawn from qOPT[x1|x2

(1)]. (c) The intersection of the joint PDF
qOPT(x1,x2) and the plane x1 = x1

(2) defines the conditional PDF
qOPT[x2|x1

(2)]. (d) A new sampling point x2
2 is drawn from

qOPT[x2|x1
(2)].

To intuitively illustrate the Gibbs sampling algorithm, we first
consider the simple two-dimensional example in Figure 1 where
our goal is to sample the PDF qOPT(x1,x2). In this example, Gibbs
sampling starts from an initial point [x1

(1),x2
(1)]. It first samples the

conditional PDF qOPT[x1|x2
(1)] and replaces x1

(1) by a new value
x1

(2), as shown in Figure 1(a)-(b). During this iteration step, we
generate a new sampling point [x1

(2),x2
(1)]. Next, Gibbs sampling

samples a different conditional PDF qOPT[x2|x1
(2)] and replaces x2

(1)

by a new value x2
(2), as shown in Figure 1(c)-(d). A new sampling

point [x1
(2),x2

(2)] is created. Since the random variable x is two-
dimensional in this example, Gibbs sampling varies x1 again at the
third iteration step. It draws a new random value x1

(3) by sampling
the conditional PDF qOPT[x1|x2

(2)], resulting in a new sampling
point [x1

(3),x2
(2)]. These iteration steps are repeatedly applied until

a sufficient number of random samples are created. It can be
proven that the aforementioned iteration yields a sequence of
random samples that follows the given distribution qOPT(x1,x2)
[11], [15].

The aforementioned two-dimensional Gibbs sampling can be
extended to the general case where the PDF qOPT(x) =
qOPT(x1,x2,…,xd) is d-dimensional. Starting from an initial point
[x1

(1),x2
(1),…,xd

(1)], Gibbs sampling assigns a new value to one of
the d random variables at each iteration step. This new value is
determined by randomly sampling the conditional PDF. For
instance, when sampling the ith random variable xi, the following
conditional PDF is used:
9 � � � �ii

OPT
diii

OPT xxqxxxxxq \111 |,,,,,| ��� �� (9)
where x\i denotes the vector x with xi removed. Such random
sampling is repeated with one random variable sampled at one
time. Algorithm 1 summarizes the major steps of Gibbs sampling.

As discussed at the beginning of this section, directly
sampling the multi-dimensional joint PDF qOPT(x) can be
extremely difficult. By using Gibbs sampling, we only need to
sample the one-dimensional conditional PDF qOPT(xi|x\i). As will
be demonstrated in Section 3.2, such one-dimensional sampling
can be efficiently implemented by using an inverse-transform
method [15], even if the indicator function I(x) in (4) and, hence,
the PDF qOPT(x) in (8) are not explicitly known. In addition, a
model-based optimization can be applied to determine a good
starting point [x1

(1),x2
(1),…,xd

(1)] so that the proposed Gibbs
sampling algorithm converges quickly. In what follows, we will
discuss these implementation issues in detail.

Algorithm 1: Gibbs Sampling
1. Start from a d-dimensional PDF qOPT(x1,x2,…,xd).
2. Select an initial starting point [x1

(1),x2
(1),…,xd

(1)].
3. For t = 1,2,…
4. For i = 1,2,…,d
5. Draw xi

(t+1) from the conditional PDF qOPT(xi|x\i) to create
a new sampling point [x1

(t+1),…,xi
(t+1),xi+1

(t),…,xd
(t)].

6. End For
7. End For

3.2 One-dimensional Inverse-transform Sampling

During each iteration of Gibbs sampling, one of the d random
variables (say, xi) is sampled by the one-dimensional conditional
PDF qOPT(xi|x\i). Such one-dimensional sampling can be efficiently
performed by using an inverse-transform method [15]. To derive
the one-dimensional sampling algorithm used in this paper, we
first write qOPT(xi|x\i) as:

10 � � � �
� �

� �
� �iOPT

OPT

i
OPT

ii
OPT

ii
OPT

xq
xq

xq
xxqxxq

\\

\
\

,| �� (10)

where qOPT(x\i) is the marginal PDF of x\i. Substituting (8) into
(10) yields:

11 � � � � � �
� �iOPT

f

iiii
ii

OPT

xqP
xxpxxI

xxq
\

\\
\

,,
|

�
�

� . (11)

Studying (11), we would have three important observations. First,
qOPT(xi|x\i) is linearly proportional to the actual probability

202

12.3

 4

distribution of process variations, i.e., p(xi,x\i). Second, qOPT(xi|x\i)
is non-zero if and only if the variable xi, combined with x\i, sits in
the failure region. Third, the denominator Pf�qOPT(x\i) in (11) is a
constant, given any fixed value of x\i.

Since the integral of the PDF in (11) must equal 1, we have:

12 � � � � � ��
��

��

���� iiiiii
OPT

f dxxxpxxIxqP \\\ ,, . (12)

To calculate the value of Pf�qOPT(x\i) in (12) and, hence, determine
the conditional PDF qOPT(xi|x\i) in (11), we consider two different
scenarios shown in Figure 2. In Figure 2, the symbol �i represents
the failure region of the ith dimension xi with a fixed value of x\i.
Note that the failure region �i is represented as either �i = (��, bi]
or �i = [bi, +�). In other words, we assume that there is only one
single continuous failure region and xi = bi is the boundary. Such
an assumption is valid, if we consider only one failure mechanism
(e.g., read margin when reading 0) at one time, similar to other
previous works [5]-[9].

xi

�i

qOPT(xi | x\i)

bi 0 xi

�i

qOPT(xi | x\i)

bi0
 (a) (b)
Figure 2. Two different scenarios of the SRAM failure region �i:
(a) �i = (��, bi], and (b) �i = [bi, +�).

Based on the assumption that �i is a single continuous region
with the boundary xi = bi, we first find bi by performing binary
search along the ith dimension of process variations. Once bi is
known, Eq. (12) can be re-written as:

13 � �
� � � �

� � � �
�
�
�

�

��
�

�

�

�����

�����

��

�

�
��
��

,,

,,

\

\

\

ii
b

iii

ii

b

iii

i
OPT

f

bifdxxxp

bifdxxxp
xqP

i

i

. (13)

Since the random variable x follows a multivariate Normal
distribution in (1), the integral in (13) can be calculated based on
the Gauss error function [14]. Once Pf�qOPT(x\i) is solved, the
analytical form of the conditional PDF qOPT(xi|x\i) in (11) is known.

It is important to note that qOPT(xi|x\i) in (11) is not a simple
statistical distribution such as uniform distribution or Normal
distribution. Hence, it cannot be directly sampled by using a
random number generator. To apply the inverse-transform method
to sample qOPT(xi|x\i), we need to calculate its cumulative
distribution function (CDF):

14 � � � ��
��

��
ix

i
OPT

i dxqxQ �� \| . (14)

The key idea of the inverse-transform method is to sample a new
random variable yi that is uniformly distributed over the interval
[0, 1]. Next, we map the sampling point yi back to xi based on the
inverse CDF:
15 � �ii yQx 1�� (15)
where Q�1(�) is the inverse function of Q(�). It can be proven that
the sampling point xi generated by the inverse-transform method
follows the statistical distribution qOPT(xi|x\i) in (11) [15].

Algorithm 2 summarizes the major steps of the
aforementioned inverse-transform method. It is important to

emphasize that the computational cost of Algorithm 2 is
dominated by Step 2 where multiple transistor-level simulations
are required to find the boundary bi of the failure region �i. All
other steps do not involve transistor-level simulation and, hence,
can be completed with low computational cost.

Algorithm 2: One-dimensional Inverse-transform Sampling
1. Start from a d-dimensional PDF qOPT(x), a given random

variable xi for sampling, and the sampled value of all other
random variables in the vector x\i.

2. Along the ith dimension xi, apply binary search to find the
boundary bi of the failure region: �i = (��, bi] or �i = [bi, +�).

3. Calculate the value of Pf�qOPT(x\i) by using (13).
4. Construct the conditional PDF qOPT(xi|x\i) in (11).
5. Construct the CDF Q(xi) in (14) and the inverse CDF Q�1(yi)

in (15).
6. Uniformly sample the random variable yi over the interval [0,

1].
7. Map the sampling point yi back to xi based on (15).

3.3 Initial Starting Point Selection

To efficiently implement the proposed Gibbs sampling
method, a good starting point x(1) = [x1

(1),x2
(1),…,xd

(1)] should be
appropriately selected to speed-up the convergence of Algorithm
1. This is similar to most optimization algorithms where a good
starting point facilitates fast convergence. Remember that the key
idea of importance sampling is to directly draw random samples
from the failure region that is most likely to occur. Hence, the
initial starting point x(1) should meet the following two
requirements: (1) x(1) is inside the failure region, and (2) the PDF
of process variations, i.e., p(x), takes a large value at x(1). These
two requirements can be mathematically translated to the
optimization problem:

16
� �� �

� � ��1

1

..

max
1

xTS

xp
x . (16)

In (16), we want to find the failure point x(1) that is most likely to
occur. Since the random variable x is modeled as a multivariate
Normal distribution in (1), the optimization in (16) can be re-
written as:

17
� �

� � ��1
2

1

..

min
1

xTS

x
x (17)

where ||�||2 represents the L2-norm of a vector. Eq. (17) aims to
find the failure point x1 that is closest to the origin x = 0. It is
similar to the norm minimization problem defined in [7].

Note that solving the optimization problem in (17) is not
trivial, since the failure region � is not explicitly known. To
address this issue, we propose to approximate the performance of
interest (e.g., read margin, write margin, etc.) as a linear or
quadratic model of the random variable x. Once the model is
available, the optimization in (17) can be solved by either
quadratic programming (for linear model) or semi-definite
programming (for quadratic model) [12]. The detailed algorithm
for performance modeling and optimization can be found in [12].

Finally, it is important to mention that even though the linear
or quadratic performance models may not be highly accurate to
cover a large variation space, we can still obtain a good starting
point required by the proposed Gibbs sampling. Note that our goal
is not to exactly solve (17). Instead, we only want to find an
approximated solution of (17) that can be used by Gibbs sampling
to further explore the variation space with high failure probability.

203

12.3

 5

3.4 Two-stage Monte Carlo Flow

To make the proposed Gibbs sampling algorithm efficient,
there is one additional implementation issue that should be further
addressed. As shown in Algorithm 2, multiple transistor-level
simulations are required to perform binary search and then
generate a single Gibbs sample. For this reason, once a set of (say,
M) Gibbs samples are created, it is desired to “learn” the PDF
qOPT(x) from these samples so that additional random sampling
points can be directly drawn from qOPT(x) without running binary
search. Such a strategy would help us to further reduce the
computational cost and/or improve the prediction accuracy.

Towards this goal, we propose to adopt a two-stage Monte
Carlo flow consisting of two sequential steps. First, Gibbs
sampling (i.e., Algorithm 1 and Algorithm 2) is applied to
generate M random samples inside the failure region. Next, in the
second stage, we approximate the optimal PDF qOPT(x) as a
multivariate Normal distribution q(x) where the mean value and
the covariance matrix of q(x) are calculated from the M Gibbs
samples. Once q(x) is known, we directly sample it to generate N
random samples and estimate the failure rate from these N
samples by using (7). Algorithm 3 summarizes the major steps of
the aforementioned two-stage Monte Carlo flow.

It should be noted that several traditional SRAM analysis
techniques also draw importance samples from a multivariate
Normal distribution [5], [7]. However, unlike the traditional
techniques that determine the sampling PDF q(x) by various
heuristics, we apply Gibbs sampling to find the optimal PDF
qOPT(x). Hence, the second-stage random sampling can converge
quickly. Compared to other traditional techniques, Algorithm 3
provides 3~10� speed-up without surrendering any accuracy, as
will be demonstrated by the experimental results in Section 4.

Algorithm 3: Two-stage Monte Carlo Flow
1. Start from a joint PDF p (x), a given value of M (the number

of Gibbs samples for the first stage), and a given value of N
(the number of random samples for the second stage).

2. Apply Algorithm 1 and Algorithm 2 to generate M Gibbs
sampling points.

3. Calculate the mean value and the covariance matrix of these
M Gibbs samples. Determine a multivariate Normal
distribution q(x) to approximate the optimal PDF qOPT(x).

4. Generate N random samples from the multivariate Normal
distribution q(x).

5. Calculate the failure rate from these N samples by using (7).

4. EXPERIMENTAL RESULTS

VTH1 VTH2

VTH5 VTH6

VTH3

VTH4

Figure 3. Circuit schematic of a 6-T SRAM cell.

In this section, a 6-T SRAM cell designed in a commercial
65nm process is used to demonstrate the efficacy of the proposed
Gibbs sampling method. Figure 3 shows the circuit schematic of
the SRAM cell where the local VTH mismatch of each transistor is
considered for Monte Carlo analysis. In this example, two

performance matrices, read noise margin (RNM) and write noise
margin (WNM), are used to assess the stability of the SRAM cell.
For testing and comparison purpose, three different importance
sampling methods are implemented: (1) mixture importance
sampling (MIS) [5], (2) minimum-norm importance sampling
(MNIS) [7], and (3) the proposed Gibbs sampling. All these three
methods employ a two-stage analysis flow. Namely, a
multivariate Normal distribution q(x) is first constructed during
the first stage and then importance samples are drawn from q(x) to
calculate the failure probability at the second stage.

Table 1. Number of simulations at the first stage to determine the
multivariate Normal distribution for importance sampling

 MIS [5] MNIS [7] Proposed
RNM 5600 2000 2026
WNM 3800 2000 1744

0 2 4 6 8

-6

-4

-2

0

2

�VTH1 (Normalized)
�

V TH
2 (N

or
m

al
iz

ed
)

Pass
Fail

0 2 4 6 8-2

0

2

4

6

�VTH3 (Normalized)

�
V TH

5 (N
or

m
al

iz
ed

)

Pass
Fail

 (a) (b)
Figure 4. Random samples generated by MIS [5] at the second
stage: (a) RNM and (b) WNM.

0 2 4 6 8

-6

-4

-2

0

2

�VTH1 (Normalized)

�
V TH

2 (N
or

m
al

iz
ed

)

Pass
Fail

0 2 4 6 8-2

0

2

4

6

�VTH3 (Normalized)
�

V TH
5 (N

or
m

al
iz

ed
)

Pass
Fail

 (a) (b)
Figure 5. Random samples generated by MNIS [7] at the second
stage: (a) RNM and (b) WNM.

0 2 4 6 8

-6

-4

-2

0

2

�VTH1 (Normalized)

�
V TH

2 (N
or

m
al

iz
ed

)

Pass
Fail

0 2 4 6 8-2

0

2

4

6

�VTH3 (Normalized)

�
V TH

5 (N
or

m
al

iz
ed

)

Pass
Fail

 (a) (b)
Figure 6. Random samples generated by the proposed Gibbs
sampling at the second stage: (a) RNM and (b) WNM.

Table 1 shows the number of transistor-level simulations that
are required by the first stage to determine the multivariate
Normal distribution q(x) for importance sampling. In this
example, 400 Gibbs samples are generated for our proposed
method at the first stage. Remember that each Gibbs sample
involves multiple transistor-level simulations (see Algorithm 2).
The total number of simulations is 2026 + 1744 = 3770 in this
example. Note that MIS and MNIS require more transistor-level
simulations in order to determine the PDF q(x) at the first stage.

204

12.3

 6

Next, to illustrate the difference between the three importance
sampling algorithms, Figure 4~Figure 6 plot the first 1000 random
samples that are generated at the second stage. For illustration
purpose, these figures only show the VTH mismatches of two
transistors that are critical to the performance of interest. As
shown in Figure 3, the mismatches between VTH1 and VTH2 are
important for RNM and the mismatches between VTH3 and VTH5
are important for WNM. Studying Figure 4~Figure 6, we would
have two key observations. First, both MIS and MNIS cannot
accurately capture the optimal PDF qOPT(x) for importance
sampling. These two traditional methods only attempt to identify
the mean value of qOPT(x), while the mutual correlation between
different random variables is completely ignored. Hence, a large
number of simulation samples generated at the second stage do
not fall into the failure region, as shown in Figure 4~Figure 5. On
the other hand, the proposed Gibbs sampling is able to accurately
capture both the mean value and the covariance matrix of qOPT(x)
(see Algorithm 3). For this reason, most sampling points
generated by Gibbs sampling are inside the failure region, thereby
substantially improving the accuracy of failure rate prediction.

102 103 104 105 1060.2

0.4

0.6

0.8

1

of Simulations

Fa
ilu

re
 R

at
e

(N
or

m
al

iz
ed

)

MNIS

MIS

Proposed

102 103 104 1050.1

0.2

0.3

0.4

of Simulations

Fa
ilu

re
 R

at
e

(N
or

m
al

iz
ed

)

MNIS

MIS

Proposed

 (a) (b)
Figure 7. Estimated failure probability (normalized) as a function
of the number of transistor-level simulations at the second stage:
(a) RNM and (b) WNM.

102 103 104 105 106

10-2

100

of Simulations

R
el

at
iv

e
Er

ro
r

MNIS

MIS

Proposed

102 103 104 10510-2

10-1

100

of Simulations

R
el

at
iv

e
Er

ro
r

MNIS

MIS

Proposed

 (a) (b)
Figure 8. Relative error of failure rate prediction (defined by 95%
confidence interval) as a function of the number of transistor-level
simulations at the second stage: (a) RNM and (b) WNM.

Figure 7 shows the estimated failure probability (normalized)
as a function of the number of transistor-level simulations at the
second stage. Note that all three importance sampling methods
yield the same failure probability, if the number of random
samples is sufficiently large. In this example, the proposed Gibbs
sampling is substantially more accurate than the other two
traditional methods (i.e., MIS and MNIS) given the same number
of random samples. Figure 8 further plots the relative prediction
error as a function of the number of simulations. Here, the relative
error is defined as the ratio of the 95% confidence interval over
the estimated failure probability. As shown in Figure 8, the
proposed Gibbs sampling achieves 3~10� runtime speed-up over
MIS and MNIS. To achieve 5% error, the proposed Gibbs
sampling only requires 3000~4500 simulations at the second stage,

while both MIS and MNIS require more than 9000 simulations.

5. CONCLUSIONS

In this paper, a novel Gibbs sampling method is proposed for
efficient failure rate prediction of SRAM circuits. The proposed
Gibbs sampling adaptively explores the variation space so that a
large number of random samples fall into the failure region. In
particular, it iteratively samples a sequence of one-dimensional
PDF’s by an efficient inverse-transform method. As is
demonstrated by our experimental results for a commercial 65nm
SRAM cell, the proposed Gibbs sampling achieves 3~10� runtime
speed-up over other state-of-the-art techniques without
surrendering any accuracy. The Gibbs sampling technique can be
further incorporated into a statistical analysis/optimization
environment for accurate and efficient parametric yield prediction
of SRAM circuits.

6. ACKNOWLEDGEMENTS

This work is supported in part by the Semiconductor Research
Corporation under contract 1836.044 and the National Science
Foundation under contract CCF–1016890.

7. REFERENCES
[1] B. Calhoun, Y. Cao, X. Li, K. Mai, L. Pileggi, R. Rutenbar and

K. Shepard, “Digital circuit design challenges and opportunities
in the era of nanoscale CMOS,” Proceedings of The IEEE, vol.
96, no. 2, pp. 343-365, Feb. 2008.

[2] S. Mukhopadhyay, H. Mahmoodi and K. Roy, “Statistical
design and optimization of SRAM cell for yield enhancement,”
IEEE ICCAD, pp. 10-13, 2004.

[3] K. Agarwal and S. Nassif, “Statistical analysis of SRAM cell
stability,” IEEE DAC, pp. 57-62, 2006.

[4] M. Abu-Rahma, K. Chowdhury, J. Wang, Z. Chen, S. Yoon and
M. Anis, “A methodology for statistical estimation of read
access yield in SRAMs,” IEEE DAC, pp. 205-210, 2008.

[5] R. Kanj, R. Joshi and S. Nassif, “Mixture importance sampling
and its application to the analysis of SRAM designs in the
presence of rare failure events,” IEEE DAC, pp. 69-72, 2006.

[6] A. Singhee and R. Rutenbar, “Statistical blockade: a novel
method for very fast Monte Carlo simulation of rare circuit
events, and its application,” IEEE DATE, pp. 1-6, 2007

[7] L. Dolecek, M. Qazi, D. Shah and A. Chandrakasan, “Breaking
the simulation barrier: SRAM evaluation through norm
minimization,” IEEE ICCAD, pp. 322-329, 2008.

[8] J. Wang, S. Yaldiz, X. Li and L. Pileggi, “SRAM parametric
failure analysis,” IEEE DAC, pp. 496-501, 2009.

[9] J. Jaffari and M. Anis, “Adaptive sampling for efficient failure
probability analysis of SRAM cells,” IEEE ICCAD, pp. 623-
630, 2009.

[10] C. Gu and J. Roychowdhury, “An efficient, fully nonlinear,
variability-aware non-Monte-Carlo yield estimation procedure
with applications to SRAM cells and ring oscillators,” IEEE
ASPDAC, pp. 754-761, 2008.

[11] C. Andrieu, N. Freitas, A. Doucet and M. Jordan. “An
introduction to MCMC for machine learning,” Machine
Learning, vol. 50, pp. 5-43, 2003.

[12] H. Zhang, T. Chen, M. Ting and X. Li, “Efficient design-
specific worst-case corner extraction for integrated circuits,”
IEEE DAC, pp. 386-389, 2009.

[13] A. Chandrakasan, W. Bowhill and F. Fox, Design of High-
Performance Microprocessor Circuits, Wiley-IEEE Press,
2000.

[14] A. Papoulis and S. Pillai, Probability, Random Variables and
Stochastic Processes, McGraw-Hill, 2001.

[15] G. Fishman, A First Course in Monte Carlo, Duxbury Press,
Oct. 2005

205

12.3

