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ABSTRACT 
Statistical analysis of SRAM has emerged as a challenging issue 
because the failure rate of SRAM cells is extremely small. In this 
paper, we develop an efficient importance sampling algorithm to 
capture the rare failure event of SRAM cells. In particular, we 
adapt the Gibbs sampling technique from the statistics community 
to find the optimal probability distribution for importance 
sampling with minimum computational cost (i.e., a small number 
of transistor-level simulations). The proposed Gibbs sampling 
method applies an integrated optimization engine to adaptively 
explore the failure region by sampling a sequence of one-
dimensional probability distributions. Several implementation 
issues such as one-dimensional random sampling and starting 
point selection are carefully studied to make the Gibbs sampling 
method efficient and accurate for SRAM failure rate prediction. 
Our experimental results of a commercial 65nm SRAM cell 
demonstrate that the proposed Gibbs sampling method achieves 
3~10� runtime speed-up over other state-of-the-art techniques 
without surrendering any accuracy. 
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1. INTRODUCTION 

As deep sub-micron technology advances, process variations 
pose a new set of challenges on SRAM design. SRAM has been 
widely embedded in a large amount of semiconductor chips. For 
example, roughly half of the area of an advanced microprocessor 
chip is occupied by SRAM [13]. SRAM cells are generally 
designed with minimum-size devices [13] and can be significantly 
impacted by large-scale process variations (e.g., local mismatches 
caused by random doping fluctuations) at nanoscale technology 
[1]. For this reason, it becomes increasingly critical to evaluate the 
failure rate of SRAM cells both efficiently and accurately in order 
to achieve a robust design. 

Towards this goal, a number of statistical analysis methods 
have been proposed for SRAM circuits [2]-[10]. For instance, 
analytical performance models have been derived to predict 
SRAM parametric yield [2]-[4]. While these models offer great 
design insights to understand SRAM circuits, they may not 

accurately capture the circuit behavior due to various 
approximations that are made. Another possible approach for 
SRAM failure rate prediction is based on transistor-level 
simulation, including both Monte Carlo analysis [5]-[9] and 
deterministic failure region prediction [10]. 

Since SRAM cells typically have extremely small failure 
probability (i.e., 10�6~10�8), a simple Monte Carlo method by 
directly sampling the variation space suffers from slow 
convergence rate, as only few random samples will fall into the 
failure region. To improve the sampling efficiency, a number of 
importance sampling methods have been proposed for fast SRAM 
failure rate prediction [5]-[9]. The key idea of importance 
sampling is to directly sample the failure region based on a 
distorted probability density function (PDF), instead of the 
original PDF of process variations. 

Applying importance sampling to SRAM analysis, however, 
is not trivial. The efficiency of all existing importance sampling 
algorithms heavily relies on the choice of the distorted PDF that is 
used to generate random samples. Ideally, in order to maximize 
prediction accuracy, we should sample the failure region that is 
most likely to occur. Such a goal, however, is extremely difficult 
to achieve, since we never exactly know the failure region in 
practice. The challenging issue here is how to determine the 
optimal PDF for importance sampling so that the SRAM failure 
rate can be efficiently predicted. 

In this paper, a novel Gibbs sampling method is proposed to 
improve the efficiency of SRAM failure rate prediction. Unlike 
the traditional Monte Carlo algorithm that samples a given PDF, 
the proposed Gibbs sampling approach does not need to know the 
sampling PDF explicitly. Instead, it adaptively searches the failure 
region and then generates random samples in it. When applied to 
SRAM failure rate analysis, Gibbs sampling can be conceptually 
viewed as a unique Monte Carlo method with an integrated 
optimization engine which allows us to efficiently explore the 
failure region. As a result, SRAM failure probability can be 
accurately predicted with a minimum number of sampling points 
(i.e., a small number of transistor-level simulations). Our 
experimental results of a commercial 65nm SRAM cell 
demonstrate that compared to other state-of-the-art techniques, the 
proposed Gibbs sampling algorithm achieves 3~10� runtime 
speed-up without surrendering any accuracy. 

While the Gibbs sampling method was initially developed by 
the statistics community [11], [15], it is particularly tuned for our 
SRAM analysis application via three important new contributions. 
First, as previously mentioned, Gibbs sampling iteratively 
searches the failure region. At each iteration step, it needs to 
generate a random sample from an irregular one-dimensional PDF 
that is not simply uniform or Normal. Such a sampling task cannot 
be easily done by directly using an existing random number 
generator. For this reason, we propose to adopt the inverse-
transform method [15] and incorporate it into our proposed Gibbs 
sampling engine. As such, randomly sampling an arbitrary one-
dimensional PDF can be performed efficiently, which is a key 
technique to make the proposed Gibbs sampling of practical 
utility. 
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Second, an efficient implementation of Gibbs sampling 
requires a good starting point to speed-up the convergence. This is 
similar to most optimization algorithms where a good starting 
point facilitates fast convergence. In this paper, we propose a 
model-based optimization to determine a good starting point so 
that the Gibbs sampling algorithm can converge quickly (i.e., 
accurately predict the failure probability with a small number of 
sampling points). 

Finally, to further improve prediction accuracy and reduce 
computational cost, a two-stage Monte Carlo flow is developed 
where Gibbs sampling is applied to create a set of random 
samples during the first stage and these samples are used to 
“learn” the optimal PDF for importance sampling. Next, during 
the second stage, a large number of random samples are 
efficiently generated from the optimal PDF to accurately estimate 
the failure probability. 

The remainder of this paper is organized as follows. In 
Section 2, we briefly review the background on importance 
sampling and then propose the Gibbs sampling method in Section 
3. A commercial 65nm SRAM cell is used to demonstrate the 
efficacy of the proposed Gibbs sampling method in Section 4. 
Finally, we conclude in Section 5. 
 
2. BACKGROUND 

Suppose that x is a d-dimensional random variable modeling 
process variations and its joint PDF is p(x). Typically, x is 
modeled as a multivariate Normal distribution [2]-[10]. Without 
loss of generality, we further assume that the random variables {xi; 
i = 1,2,…,d} in the vector x are mutually independent and 
standard Normal (i.e., with zero mean and unit variance): 
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Any correlated random variables that are jointly Normal can be 
transformed to the independent random variables in (1) by 
principal component analysis (PCA) [14]. 

The failure probability of an SRAM cell can be 
mathematically represented as [5]: 
2 � ��
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�� dxxpPf  (2) 

where � denotes the failure region, i.e., the subset of the variation 
space where the performance of interest (e.g., read margin, write 
margin, etc.) does not meet the specification. Alternatively, the 
failure probability in (2) can be defined as: 
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where I(x) represents the indicator function: 
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The failure probability Pf can be estimated by Monte Carlo 
analysis. The key idea is to draw N random samples from p(x), 
and then compute the mean of these samples: 
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where x(i) is the ith random sample generated by Monte Carlo 
analysis. 

For our proposed SRAM application, the failure probability Pf 
in (3) is extremely small (e.g., 10�6~10�8) and most random 
samples created by Monte Carlo analysis do not fall into the 

failure region �. Hence, a large number of (e.g., over 109) 
samples are needed by the Monte Carlo method to accurately 
estimate the failure rate. Note that expensive transistor-level 
simulation is required to create each sampling point. In order 
words, 109 simulation runs must be performed in order to collect 
109 random samples. It, in turn, implies that the aforementioned 
Monte Carlo method is extremely expensive, or even infeasible, 
when applied to most practical SRAM analysis problems. 

To address this computational cost issue, importance sampling 
has been proposed to improve the efficiency of Monte Carlo 
analysis [5]-[9]. It aims to directly generate a large number of 
random samples in the failure region by using a distorted PDF 
q(x). In this case, the failure probability can be expressed as [5]: 
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In other words, Eq. (6) calculates the expected value of the 
function I(x)�p(x)/q(x) where the random variable x follows the 
PDF q(x). If N sampling points {x(i); i = 1,2,…,N} are drawn from 
q(x), the failure probability in (6) can be estimated by [5]: 
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Note that the estimated failure probabilities in (5) and (7) are 
identical, if and only if the number of random samples (i.e., N) is 
infinite. In practice, when a finite number of sampling points are 
available, the results from (5) and (7) can be substantially 
different. If the distorted PDF q(x) is properly chosen for 
importance sampling, Eq. (7) can be much more accurate than the 
simple Monte Carlo method in (5). In theory, the optimal PDF q(x) 
with maximum estimation accuracy is [15]: 
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Intuitively, if the PDF qOPT(x) in (8) is used, the function 
I(x)�p(x)/qOPT(x) becomes a constant with zero variance. Hence, its 
expected value can be accurately estimated by (7) using few 
random samples. 

Studying (8), we would notice two important properties of the 
optimal PDF qOPT(x). First, qOPT(x) is non-zero if and only if the 
variable x sits in the failure region. It, in turn, implies that we 
should directly sample the failure region to achieve maximum 
accuracy. Second, qOPT(x) is proportional to the original PDF p(x) 
of process variations. In other words, the entire failure region 
should not be sampled uniformly. Instead, we should sample the 
variation space where performance failure is most likely to occur. 

In practice, however, sampling the optimal PDF qOPT(x) in (8) 
is not trivial, as the indicator function I(x) is not known in 
advance. Most exiting importance sampling algorithms apply 
various heuristics to approximate the optimal PDF qOPT(x) [5]-[9]. 
In this paper, we propose a new Gibbs sampling method that 
adaptively samples the optimal PDF qOPT(x) without explicitly 
knowing the indicator function I(x). As such, the SRAM failure 
rate can be accurately predicted with minimum computational cost. 
 
3. PROPOSED APPROACH 

Our proposed SRAM failure rate analysis is facilitated by a 
combination of several novel techniques. In this section, we will 
discuss the details of these techniques and highlight their novelties. 
 
3.1 Gibbs Sampling 

As described in Section 2, directly sampling the optimal PDF 
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qOPT(x) in (8) is difficult due to two reasons. First, the indicator 
function I(x) is not known in advance, as the failure region is 
unknown. Second, since qOPT(x) is not a simple multivariate 
statistical distribution such as uniform distribution or Normal 
distribution, it is extremely difficult, if not impossible, to directly 
draw random samples from qOPT(x). 

In this paper, we adopt the Gibbs sampling method [11], [15] 
from statistics to predict the failure probability of SRAM cells. 
Compared to other traditional techniques [5]-[9], Gibbs sampling 
provides two promising features. First, it can efficiently search the 
failure region and determine the indicator function I(x) on the fly. 
From this point of view, Gibbs sampling can be conceptually 
viewed as an integrated optimization engine that allows us to 
adaptively sample the optimal PDF qOPT(x) in (8). To the best of 
our knowledge, such optimal sampling is not possible by using 
other existing techniques [5]-[9]. 

Second, Gibbs sampling does not directly draw random 
samples from a multi-dimensional joint PDF. Instead, it iteratively 
samples a sequence of one-dimensional PDF’s. These one-
dimensional PDF’s are not simply uniform or Normal, and, hence, 
cannot be directly sampled by a simple random number generator. 
However, as will be demonstrated in Section 3.2, the 
aforementioned one-dimensional sampling can be efficiently 
implemented with an inverse-transform method [15] with low 
computational cost. 
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Figure 1.  A simple two-dimensional Gibbs sampling example 
where [x1

(1),x2
(1)] is the starting point. (a) The intersection between 

the joint PDF qOPT(x1,x2) and the plane x2 = x2
(1) defines the 

conditional PDF qOPT[x1|x2
(1)]. (b) A new sampling point x1

(2) is 
drawn from qOPT[x1|x2

(1)]. (c) The intersection of the joint PDF 
qOPT(x1,x2) and the plane x1 = x1

(2) defines the conditional PDF 
qOPT[x2|x1

(2)]. (d) A new sampling point x2
2 is drawn from 

qOPT[x2|x1
(2)]. 

To intuitively illustrate the Gibbs sampling algorithm, we first 
consider the simple two-dimensional example in Figure 1 where 
our goal is to sample the PDF qOPT(x1,x2). In this example, Gibbs 
sampling starts from an initial point [x1

(1),x2
(1)]. It first samples the 

conditional PDF qOPT[x1|x2
(1)] and replaces x1

(1) by a new value 
x1

(2), as shown in Figure 1(a)-(b). During this iteration step, we 
generate a new sampling point [x1

(2),x2
(1)]. Next, Gibbs sampling 

samples a different conditional PDF qOPT[x2|x1
(2)] and replaces x2

(1) 

by a new value x2
(2), as shown in Figure 1(c)-(d). A new sampling 

point [x1
(2),x2

(2)] is created. Since the random variable x is two-
dimensional in this example, Gibbs sampling varies x1 again at the 
third iteration step. It draws a new random value x1

(3) by sampling 
the conditional PDF qOPT[x1|x2

(2)], resulting in a new sampling 
point [x1

(3),x2
(2)]. These iteration steps are repeatedly applied until 

a sufficient number of random samples are created. It can be 
proven that the aforementioned iteration yields a sequence of 
random samples that follows the given distribution qOPT(x1,x2) 
[11], [15]. 

The aforementioned two-dimensional Gibbs sampling can be 
extended to the general case where the PDF qOPT(x) = 
qOPT(x1,x2,…,xd) is d-dimensional. Starting from an initial point 
[x1

(1),x2
(1),…,xd

(1)], Gibbs sampling assigns a new value to one of 
the d random variables at each iteration step. This new value is 
determined by randomly sampling the conditional PDF. For 
instance, when sampling the ith random variable xi, the following 
conditional PDF is used: 
9 � � � �ii

OPT
diii
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where x\i denotes the vector x with xi removed. Such random 
sampling is repeated with one random variable sampled at one 
time. Algorithm 1 summarizes the major steps of Gibbs sampling. 

As discussed at the beginning of this section, directly 
sampling the multi-dimensional joint PDF qOPT(x) can be 
extremely difficult. By using Gibbs sampling, we only need to 
sample the one-dimensional conditional PDF qOPT(xi|x\i). As will 
be demonstrated in Section 3.2, such one-dimensional sampling 
can be efficiently implemented by using an inverse-transform 
method [15], even if the indicator function I(x) in (4) and, hence, 
the PDF qOPT(x) in (8) are not explicitly known. In addition, a 
model-based optimization can be applied to determine a good 
starting point [x1

(1),x2
(1),…,xd

(1)] so that the proposed Gibbs 
sampling algorithm converges quickly. In what follows, we will 
discuss these implementation issues in detail. 

Algorithm 1: Gibbs Sampling 
1. Start from a d-dimensional PDF qOPT(x1,x2,…,xd). 
2. Select an initial starting point [x1

(1),x2
(1),…,xd

(1)]. 
3. For t = 1,2,… 
4. For i = 1,2,…,d 
5. Draw xi

(t+1) from the conditional PDF qOPT(xi|x\i) to create 
a new sampling point [x1

(t+1),…,xi
(t+1),xi+1

(t),…,xd
(t)]. 

6. End For 
7. End For 
 
3.2 One-dimensional Inverse-transform Sampling 

During each iteration of Gibbs sampling, one of the d random 
variables (say, xi) is sampled by the one-dimensional conditional 
PDF qOPT(xi|x\i). Such one-dimensional sampling can be efficiently 
performed by using an inverse-transform method [15]. To derive 
the one-dimensional sampling algorithm used in this paper, we 
first write qOPT(xi|x\i) as: 
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where qOPT(x\i) is the marginal PDF of x\i. Substituting (8) into 
(10) yields: 
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Studying (11), we would have three important observations. First, 
qOPT(xi|x\i) is linearly proportional to the actual probability 
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distribution of process variations, i.e., p(xi,x\i). Second, qOPT(xi|x\i) 
is non-zero if and only if the variable xi, combined with x\i, sits in 
the failure region. Third, the denominator Pf�qOPT(x\i) in (11) is a 
constant, given any fixed value of x\i. 

Since the integral of the PDF in (11) must equal 1, we have: 

12 � � � � � ��
��

��

���� iiiiii
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f dxxxpxxIxqP \\\ ,, . (12) 

To calculate the value of Pf�qOPT(x\i) in (12) and, hence, determine 
the conditional PDF qOPT(xi|x\i) in (11), we consider two different 
scenarios shown in Figure 2. In Figure 2, the symbol �i represents 
the failure region of the ith dimension xi with a fixed value of x\i. 
Note that the failure region �i is represented as either �i = (��, bi] 
or �i = [bi, +�). In other words, we assume that there is only one 
single continuous failure region and xi = bi is the boundary. Such 
an assumption is valid, if we consider only one failure mechanism 
(e.g., read margin when reading 0) at one time, similar to other 
previous works [5]-[9]. 

xi

�i

qOPT(xi | x\i)

bi 0      xi

�i

qOPT(xi | x\i)

bi0  
                            (a)                                         (b) 
Figure 2.  Two different scenarios of the SRAM failure region �i: 
(a) �i = (��, bi], and (b) �i = [bi, +�). 

Based on the assumption that �i is a single continuous region 
with the boundary xi = bi, we first find bi by performing binary 
search along the ith dimension of process variations. Once bi is 
known, Eq. (12) can be re-written as: 
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Since the random variable x follows a multivariate Normal 
distribution in (1), the integral in (13) can be calculated based on 
the Gauss error function [14]. Once Pf�qOPT(x\i) is solved, the 
analytical form of the conditional PDF qOPT(xi|x\i) in (11) is known. 

It is important to note that qOPT(xi|x\i) in (11) is not a simple 
statistical distribution such as uniform distribution or Normal 
distribution. Hence, it cannot be directly sampled by using a 
random number generator. To apply the inverse-transform method 
to sample qOPT(xi|x\i), we need to calculate its cumulative 
distribution function (CDF): 
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The key idea of the inverse-transform method is to sample a new 
random variable yi that is uniformly distributed over the interval 
[0, 1]. Next, we map the sampling point yi back to xi based on the 
inverse CDF: 
15 � �ii yQx 1��  (15) 
where Q�1(�) is the inverse function of Q(�). It can be proven that 
the sampling point xi generated by the inverse-transform method 
follows the statistical distribution qOPT(xi|x\i) in (11) [15]. 

Algorithm 2 summarizes the major steps of the 
aforementioned inverse-transform method. It is important to 

emphasize that the computational cost of Algorithm 2 is 
dominated by Step 2 where multiple transistor-level simulations 
are required to find the boundary bi of the failure region �i. All 
other steps do not involve transistor-level simulation and, hence, 
can be completed with low computational cost. 

Algorithm 2: One-dimensional Inverse-transform Sampling 
1. Start from a d-dimensional PDF qOPT(x), a given random 

variable xi for sampling, and the sampled value of all other 
random variables in the vector x\i. 

2. Along the ith dimension xi, apply binary search to find the 
boundary bi of the failure region: �i = (��, bi] or �i = [bi, +�). 

3. Calculate the value of Pf�qOPT(x\i) by using (13). 
4. Construct the conditional PDF qOPT(xi|x\i) in (11). 
5. Construct the CDF Q(xi) in (14) and the inverse CDF Q�1(yi) 

in (15). 
6. Uniformly sample the random variable yi over the interval [0, 

1]. 
7. Map the sampling point yi back to xi based on (15). 
 
3.3 Initial Starting Point Selection 

To efficiently implement the proposed Gibbs sampling 
method, a good starting point x(1) = [x1

(1),x2
(1),…,xd

(1)] should be 
appropriately selected to speed-up the convergence of Algorithm 
1. This is similar to most optimization algorithms where a good 
starting point facilitates fast convergence. Remember that the key 
idea of importance sampling is to directly draw random samples 
from the failure region that is most likely to occur. Hence, the 
initial starting point x(1) should meet the following two 
requirements: (1) x(1) is inside the failure region, and (2) the PDF 
of process variations, i.e., p(x), takes a large value at x(1). These 
two requirements can be mathematically translated to the 
optimization problem: 

16 
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In (16), we want to find the failure point x(1) that is most likely to 
occur. Since the random variable x is modeled as a multivariate 
Normal distribution in (1), the optimization in (16) can be re-
written as: 

17 
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where ||�||2 represents the L2-norm of a vector. Eq. (17) aims to 
find the failure point x1 that is closest to the origin x = 0. It is 
similar to the norm minimization problem defined in [7]. 

Note that solving the optimization problem in (17) is not 
trivial, since the failure region � is not explicitly known. To 
address this issue, we propose to approximate the performance of 
interest (e.g., read margin, write margin, etc.) as a linear or 
quadratic model of the random variable x. Once the model is 
available, the optimization in (17) can be solved by either 
quadratic programming (for linear model) or semi-definite 
programming (for quadratic model) [12]. The detailed algorithm 
for performance modeling and optimization can be found in [12]. 

Finally, it is important to mention that even though the linear 
or quadratic performance models may not be highly accurate to 
cover a large variation space, we can still obtain a good starting 
point required by the proposed Gibbs sampling. Note that our goal 
is not to exactly solve (17). Instead, we only want to find an 
approximated solution of (17) that can be used by Gibbs sampling 
to further explore the variation space with high failure probability. 
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3.4 Two-stage Monte Carlo Flow 

To make the proposed Gibbs sampling algorithm efficient, 
there is one additional implementation issue that should be further 
addressed. As shown in Algorithm 2, multiple transistor-level 
simulations are required to perform binary search and then 
generate a single Gibbs sample. For this reason, once a set of (say, 
M) Gibbs samples are created, it is desired to “learn” the PDF 
qOPT(x) from these samples so that additional random sampling 
points can be directly drawn from qOPT(x) without running binary 
search. Such a strategy would help us to further reduce the 
computational cost and/or improve the prediction accuracy. 

Towards this goal, we propose to adopt a two-stage Monte 
Carlo flow consisting of two sequential steps. First, Gibbs 
sampling (i.e., Algorithm 1 and Algorithm 2) is applied to 
generate M random samples inside the failure region. Next, in the 
second stage, we approximate the optimal PDF qOPT(x) as a 
multivariate Normal distribution q(x) where the mean value and 
the covariance matrix of q(x) are calculated from the M Gibbs 
samples. Once q(x) is known, we directly sample it to generate N 
random samples and estimate the failure rate from these N 
samples by using (7). Algorithm 3 summarizes the major steps of 
the aforementioned two-stage Monte Carlo flow. 

It should be noted that several traditional SRAM analysis 
techniques also draw importance samples from a multivariate 
Normal distribution [5], [7]. However, unlike the traditional 
techniques that determine the sampling PDF q(x) by various 
heuristics, we apply Gibbs sampling to find the optimal PDF 
qOPT(x). Hence, the second-stage random sampling can converge 
quickly. Compared to other traditional techniques, Algorithm 3 
provides 3~10� speed-up without surrendering any accuracy, as 
will be demonstrated by the experimental results in Section 4. 

Algorithm 3: Two-stage Monte Carlo Flow 
1. Start from a joint PDF p (x), a given value of M (the number 

of Gibbs samples for the first stage), and a given value of N 
(the number of random samples for the second stage). 

2. Apply Algorithm 1 and Algorithm 2 to generate M Gibbs 
sampling points. 

3. Calculate the mean value and the covariance matrix of these 
M Gibbs samples. Determine a multivariate Normal 
distribution q(x) to approximate the optimal PDF qOPT(x). 

4. Generate N random samples from the multivariate Normal 
distribution q(x). 

5. Calculate the failure rate from these N samples by using (7). 
 
4. EXPERIMENTAL RESULTS 

VTH1 VTH2

VTH5 VTH6

VTH3

VTH4

 
Figure 3.  Circuit schematic of a 6-T SRAM cell. 

In this section, a 6-T SRAM cell designed in a commercial 
65nm process is used to demonstrate the efficacy of the proposed 
Gibbs sampling method. Figure 3 shows the circuit schematic of 
the SRAM cell where the local VTH mismatch of each transistor is 
considered for Monte Carlo analysis. In this example, two 

performance matrices, read noise margin (RNM) and write noise 
margin (WNM), are used to assess the stability of the SRAM cell. 
For testing and comparison purpose, three different importance 
sampling methods are implemented: (1) mixture importance 
sampling (MIS) [5], (2) minimum-norm importance sampling 
(MNIS) [7], and (3) the proposed Gibbs sampling. All these three 
methods employ a two-stage analysis flow. Namely, a 
multivariate Normal distribution q(x) is first constructed during 
the first stage and then importance samples are drawn from q(x) to 
calculate the failure probability at the second stage. 

Table 1.  Number of simulations at the first stage to determine the 
multivariate Normal distribution for importance sampling 

 MIS [5] MNIS [7] Proposed 
RNM 5600 2000 2026 
WNM 3800 2000 1744 
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                             (a)                                                (b) 
Figure 4.  Random samples generated by MIS [5] at the second 
stage: (a) RNM and (b) WNM. 
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                             (a)                                                (b) 
Figure 5.  Random samples generated by MNIS [7] at the second 
stage: (a) RNM and (b) WNM. 
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                             (a)                                                (b) 
Figure 6.  Random samples generated by the proposed Gibbs 
sampling at the second stage: (a) RNM and (b) WNM. 

Table 1 shows the number of transistor-level simulations that 
are required by the first stage to determine the multivariate 
Normal distribution q(x) for importance sampling. In this 
example, 400 Gibbs samples are generated for our proposed 
method at the first stage. Remember that each Gibbs sample 
involves multiple transistor-level simulations (see Algorithm 2). 
The total number of simulations is 2026 + 1744 = 3770 in this 
example. Note that MIS and MNIS require more transistor-level 
simulations in order to determine the PDF q(x) at the first stage. 
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 6

Next, to illustrate the difference between the three importance 
sampling algorithms, Figure 4~Figure 6 plot the first 1000 random 
samples that are generated at the second stage. For illustration 
purpose, these figures only show the VTH mismatches of two 
transistors that are critical to the performance of interest. As 
shown in Figure 3, the mismatches between VTH1 and VTH2 are 
important for RNM and the mismatches between VTH3 and VTH5 
are important for WNM. Studying Figure 4~Figure 6, we would 
have two key observations. First, both MIS and MNIS cannot 
accurately capture the optimal PDF qOPT(x) for importance 
sampling. These two traditional methods only attempt to identify 
the mean value of qOPT(x), while the mutual correlation between 
different random variables is completely ignored. Hence, a large 
number of simulation samples generated at the second stage do 
not fall into the failure region, as shown in Figure 4~Figure 5. On 
the other hand, the proposed Gibbs sampling is able to accurately 
capture both the mean value and the covariance matrix of qOPT(x) 
(see Algorithm 3). For this reason, most sampling points 
generated by Gibbs sampling are inside the failure region, thereby 
substantially improving the accuracy of failure rate prediction. 
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                             (a)                                                (b) 
Figure 7.  Estimated failure probability (normalized) as a function 
of the number of transistor-level simulations at the second stage: 
(a) RNM and (b) WNM. 
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                             (a)                                                (b) 
Figure 8.  Relative error of failure rate prediction (defined by 95% 
confidence interval) as a function of the number of transistor-level 
simulations at the second stage: (a) RNM and (b) WNM. 

Figure 7 shows the estimated failure probability (normalized) 
as a function of the number of transistor-level simulations at the 
second stage. Note that all three importance sampling methods 
yield the same failure probability, if the number of random 
samples is sufficiently large. In this example, the proposed Gibbs 
sampling is substantially more accurate than the other two 
traditional methods (i.e., MIS and MNIS) given the same number 
of random samples. Figure 8 further plots the relative prediction 
error as a function of the number of simulations. Here, the relative 
error is defined as the ratio of the 95% confidence interval over 
the estimated failure probability. As shown in Figure 8, the 
proposed Gibbs sampling achieves 3~10� runtime speed-up over 
MIS and MNIS. To achieve 5% error, the proposed Gibbs 
sampling only requires 3000~4500 simulations at the second stage, 

while both MIS and MNIS require more than 9000 simulations. 
 
5. CONCLUSIONS 

In this paper, a novel Gibbs sampling method is proposed for 
efficient failure rate prediction of SRAM circuits. The proposed 
Gibbs sampling adaptively explores the variation space so that a 
large number of random samples fall into the failure region. In 
particular, it iteratively samples a sequence of one-dimensional 
PDF’s by an efficient inverse-transform method. As is 
demonstrated by our experimental results for a commercial 65nm 
SRAM cell, the proposed Gibbs sampling achieves 3~10� runtime 
speed-up over other state-of-the-art techniques without 
surrendering any accuracy. The Gibbs sampling technique can be 
further incorporated into a statistical analysis/optimization 
environment for accurate and efficient parametric yield prediction 
of SRAM circuits. 
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