
Efficient WCRT Analysis of Synchronous Programs using
Reachability

ABSTRACT
Static computation of the worst-case reaction time (WCRT) is re-
quired for the real-time execution of synchronous programs. Ex-
isting approaches use model checking or integer linear program-
ming. we formulate this as an abstraction-based reachability analy-
sis yielding a lower worst case complexity. Benchmarking shows a
significant overall speed-up of 64-times over existing approaches.

Categories and Subject Descriptors
B.8.2 [Performance Analysis and Design Aids]

General Terms
Performance, Reliability, Algorithms

Keywords
Synchronous, Reachability, Worst Case Analysis

1. INTRODUCTION
Real-time systems must meet precise timing requirements in ad-

dition to being functionally correct. Synchronous programs are
ideal for real-time applications as they divide the program execu-
tion into discrete computation blocks, called ticks [3]. This leads to
simpler temporal semantics than asynchronous systems, and allows
efficient static timing analysis. Moreover, all correct synchronous
programs guarantee determinism (safety) and reactivity (liveness)
making them ideal for real-time system implementation [3].

In order to ensure that all real-time constraints are met, we must
find the longest time of any tick, called the worst-case reaction time
(WCRT) of the system. A synchronous program can guarantee that
it meets all timing constraints if its ticks are scheduled using a clock
with a period greater than or equal to the WCRT.

Given a synchronous program, the computation of the WCRT in-
volves a trade-off between the time taken to compute the WCRT
and the tightness. In order to reduce the time taken to compute
the WCRT, designers use various abstractions that may result in a
WCRT value which is an over-approximation of the actual WCRT of
the system [7, 10]. On the other hand, computing tighter WCRT val-
ues requires including more information about the program, such as
data variables, which increases the overall computation time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2011, June 5-10, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0636-2/11/06 ...$10.00.

In this paper, we propose a static WCRT computation method
based reachability analysis. We show that our technique achieves
significant speed-up compared to existing techniques while main-
taining the same tightness.

1.1 Related Work
Name Technique Notion of Complexity

Time

Max-plus [5] Linear search Real-time Linear in sum
of individual thread sizes

NUS [7, 6] ILP Real-time NP Hard
Taxys [4] Model checking Logical time Exponential
UoA MC[10] Model checking Real-time Product of thread

sizes× binary search
Proposed Reachability Real-time Product of thread sizes

Table 1: Qualitative comparison of timing analysis techniques
for synchronous programs

Tab. 1 summarizes the current WCRT analysis techniques. The
earliest work in this field is the max-plus approach [5], where the
WCRT of a multi-threaded program is calculated by summing the
WCRT of its individual threads. This method has a linear complex-
ity, but WCRT estimates are usually gross over-approximations.

In [7], an integer linear programming (ILP)-based formulation
has been presented. First, the synchronous program is compiled
into a sequential C program, and then ILP constraints over this se-
quential program are computed. In [6], this technique is extended
to include tick-alignment (to prune infeasible paths) by using an
additional automaton. The conversion of a concurrent synchronous
program into a sequential program, and then using additional in-
formation to remove infeasible paths is counter-intuitive. Also, the
worst case complexity of ILP is NP-hard.

Some approaches exploit the concurrent nature of synchronous
programs to view the WCRT computation problem as a model check-
ing problem. In [10], bounded-integer counting based model check-
ing is presented. A synchronous program is first compiled into
machine code to extract its precise timing characteristics. Then, a
higher level structure called Timed Concurrent Control Flow Graph
(TCCFG) is generated, which is then entered into the UPPAAL
model checker [2]. The user can then query the model checker
with a guess (obtained from a simple heuristic like max-plus) to
check if the guess is equal to or less than the WCRT of the system.
The guess is then refined by a binary search until the WCRT value
is found. This technique is more efficient than the ILP approach
[6] because path-pruning does not require additional information,
and the timing analysis can be performed on the concurrent pro-
gram description (contained in the TCCFG). However, the use of
binary search means that the model checking has to be carried out
in multiple steps.

In Taxys [4], a timed model of an Esterel program is extracted

Matthew Kuo, Roopak Sinha, Partha Roop
Department of Electrical and Computer Engineering

University of Auckland
mkuo005@aucklanduni.ac.nz, r.sinha@auckland.ac.nz, p.roop@auckland.ac.nz

480

27.3

and is composed with the synchronous model of a non-deterministic
environment (modelled by adding a npause instruction) to ex-
tract a global model. The technique can be used to check timing
properties such as delays between the reception of inputs and the
emission of outputs, and throughput constraints such as buffer over-
flows/underflows. However, this technique has exponential com-
plexity due to the use of real-valued clocks.

In [8], a WCRT computation method for Esterel programs execut-
ing on multiprocessor platforms is presented. This technique takes
micro-architectural features such as possible cache delays into ac-
count. At compile time it pre-computes feasible control states and
removes infeasible execution paths. However, it does not allow the
tracking of variables during WCRT computation.

In this paper, we show how WCRT computation can be solved
by on-the-fly reachability analysis of a synchronous program. The
main contributions of this paper are: (1) The proposed method has
lesser complexity than model checking; (2) the proposed technique
contains thread-level optimizations that are not present in existing
techniques, allowing us to significantly speed up the WCRT com-
putation; (3) we allow pruning of infeasible paths using variable
tracking between single and multiple ticks for tighter WCRT com-
putation; and (4) we provide extensive benchmarking results that
show an overall speed-up of 64-times over model checking [10].

We now present details of our approach. Sec. 2 presents an
overview of our approach using a motivating example. Sec. 3
presents the WCRT computation algorithm and associated concepts.
Sec. 4 shows how tighter WCRT analysis can be performed using
variable tracking. Benchmarking results appear in Sec. 5, and con-
cluding remarks and future directions are presented in Sec. 6.

2. OVERVIEW

1
3

2

Figure 1: A line-tracking robot

We use the motivating example of a line-tracking robot, as shown
in Fig. 1. The robot contains three frontal sensors to detect the
location of the line. A sensor returns a value 1 if it is over the
line. The thickness of the line allows up to 2 sensors to detect the
line at any time. Different combinations of the sensor values adjust
the robot back on to the line by turning the robot using the speed
differential between its wheels. The speed at which the robot can
travel is proportional to the computation time it takes for reading
the sensors. This is needed so that the robot can take appropriate
corrective measures to continue tracking. In this example, the speed
of the robot is dependent on the computation of the system’s WCRT.

To describe the above real-time system, we use PRET-C [1], a
synchronous language based on C. It is better suited for real-time
applications than other synchronous languages since C is the lan-
guage of choice for most embedded designers. In addition, using
PRET-C allows us to directly compare the effectiveness of our ap-
proach with the model checking approach presented in [10]. PRET-
C extends C by introducing a number of synchronous constructs.
For example, it is possible for a thread to spawn new threads, that
execute concurrently, using the par construct. In addition, threads
have local state boundaries (known as local ticks) marked by their
respective EOT nodes. These are synchronization barriers for com-
putation of a global tick of the program.

1 int main(void){
2 PAR(Decoder,MotorDriver);
3 if (error 1) set LED 1;
4 if (error 2) set LED 2;
5 else set both LED;
6 }
7 thread Decoder(void) {
8 initialize variables;
9 EOT;
10 while(1) {
11 process sensor data;
12 store previous motor instructions;
13 //set motor control according to sensor data
14 if (sensor==some value) {
15 set motor according to table 2
16 }
17 EOT;
18 if(robot is turning){stuckCounter++}
19 }else{reset stuckCounter;}
20 if(stuckCounter over threshold){
21 set error 2;
22 stop robot;
23 }
24 if(error > 0){break;}
25 else{EOT;}
26 }
27 }
28 thread MotorDriver(void){
29 int PWMCounter = 0;
30 EOT;
31 while(1){
32 if(error > 0){
33 stop robot;
34 break;
35 }else{
36 if(PWMCounter < goLeft){
37 leftMotor = 1; //set left high
38 }else{
39 leftMotor = 0; //set left low
40 }
41 if(PWMCounter < goRight){
42 rightMotor = 1; //set right high
43 }else{
44 rightMotor = 0; //set right low
45 }
46 PWMCounter++;
47 if(PWMCounter == maxSpeed){
48 PWMCounter = 0;
49 }
50 EOT;
51 }
52 }
53 }

Figure 2: PRET-C pseudo code of line following robot

Abstracted PRET-C code of the line-tracking robot is shown in
Fig 2. The main thread of the program (main) spawns two threads,
one each for sensor decoding (Decoder) and motor PWM gen-
eration (MotorDriver), using the PAR construct (line 2). The
thread main resumes when the other two threads terminate (an er-
ror state is reached) (line 3).

Sensor Motor Error
Left Middle Right Left Right One

0 0 0 0 0 0
1 0 0 0 2 0
0 1 0 1 1 0
1 1 0 0 1 0
0 0 1 2 0 0
1 0 1 0 0 1
0 1 1 1 0 0
1 1 1 0 0 0

Table 2: Look-up table for tracking

Decoder reads sensor values and sets the direction of the robot
by setting the motor speed to 0, 1 or 2 for each wheel. This is used
to adjust the robot’s movement by using a differential drive. De-
tails of how the robot responds based on sensor input is presented
in Tab. 2. MotorDriver generates PWM waveforms control-
ling each wheel by incrementing a PWM counter between 0 and
2. Speed values of 0, 1 and 2 generate 0%, 50%, and 100% duty
cycles respectively for the corresponding wheel. The motor thread
terminates when an error state is detected by the decoder thread and
the output to each wheel is set to 0 (line 29).

481

27.3

2.1 WCRT computation process

Assembly

Code

Generated

C Code

Flow Graph

Construction

Worst Case

Reaction Time

TCCFG

PRET-C

Code

Reduced FSM

GCC
PRET-C

Compiler

Reachability

Analysis

TCCFG to FSM
FSM

Representation

FSM level optimisation

1 2

34

5

With/without path pruning

Figure 3: WCRT computation process

Fig. 3 shows the process involved in determining the WCRT of a
PRET-C program. The PRET-C code is compiled using the PRET-
C translator (compiler) into C code (step 1), which is then compiled
into assembly using gcc (step 2). The assembly code, from which
accurate timing information about every single instruction can be
obtained, is analyzed to create a Timed Concurrent Control Flow
Graph (TCCFG). This step assumes that speculative features such
as memory hierarchy are not used by the program. In other words,
the program fits entirely on the on-chip cache of the chosen proces-
sor. We choose the MicroBlaze processor [9] to be able to directly
compare our approach with the UoA Model Checker (UoA MC)
approach [10]. The TCCFG is a monolithic structure that contains
information about concurrent control flow and tick boundaries. We
follow the process to create a TCCFG as presented in [10].

A readable abstraction of the TCCFG for the line-tracking robot
is shown in Fig. 4. The TCCFG has unique start and end nodes,
and EOT nodes mark the end of a tick. Action nodes correspond
to computations, while conditional nodes correspond to branching
based on testing the values of program variables. Fork nodes de-
scribe the concurrent behavior of the program, where each outgo-
ing transition corresponds to a newly spawned thread. When each
thread ends, the corresponding join node is entered, allowing the
spawning thread to resume execution. Each block has an associ-
ated cost, which is equal to the number of processor clock cycles
needed to execute the corresponding code. The problem of finding
the WCRT is equivalent to determining the longest execution path
between two tick boundaries.

In our approach, the TCCFG is first translated into individual
FSMs which correspond to individual threads of the system (step
4). The resulting FSMs contain exactly the same information about
each thread as the TCCFG. However, this step allows us to optimize
the state space of individual threads before performing reachability.
After these optimizations, we compute the synchronous composi-
tion of the FSMs, and use a global variable, called WCRT, which
contains the highest reaction time visited at any stage during reach-
ability (step 5). On termination, this variable contains the highest
reaction time of a single tick.

3. WCRT ANALYSIS USING REACHABIL-
ITY

3.1 Thread-level processing
The first step involves translating the TCCFG into thread FSMs,

each relating to a single thread. This step allows us to perform
optimizations that are not done in other techniques [6, 10].

Each Fork and Join path in a TCCFG relates to a thread. We
convert each individual path starting from a Fork node into a sep-

Start/End

Action node

Conditional

EOT

Fork

Join

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

no

yes

stuckCoutner > 1000

no

error |= 2;

goLeft = 0;

goRight = 0;

yes

error > 0

no

yes

yes

no

leftMotor = 0;

rightMotor = 0;

PWMCounter < goLeft

no yes

no yes

PWMCounter = 0

no

yes

error == 1

error == 2

Legend

maxSpeed = 2;

goLeft = 0;

goRight = 0;

goLeft = 0;

goRight = 2;

goLeft = 1;

goRight = 1;

goLeft = 0;

goRight = 1;

goLeft = 2;

goRight = 0;

goLeft = 0;

goRight = 0;

error > 0

errorLED1 = 1;

errorLED2 = 1;

errorLED1 = 1;

errorLED2 = 1;

PWMCounter < goRight

rightMotor = 1;rightMotor = 0;

PWMCounter = 0;

stuckCoutner++;stuckCoutner = 0;

preGoLeft == goLeft

&&preGoRight == goRight

&& goRight != 1

&& goLeft != 1

error |= 1;

goLeft = 0;

goRight = 0;

preGoLeft = 0;

preGoRight = 0;

stuckCoutner = 0;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29

30

31

32

33

34

35 36

37

38

39 40

41

42

43

PWMCounter++;

PWMCounter == maxSpeed

44

45

46

47

48

49

50

51

leftMotor = 1;leftMotor = 0;

x Node ID

Figure 4: TCCFG of the line-tracking robot
arate thread FSM. The original Fork node is left with a single
transition to the corresponding Join node. This transition fires
when all children thread terminate. The individual FSMs contain
the same types of nodes as a TCCFG. The only difference is that
Fork nodes have only one outgoing transition to a Join node.

Fig. 5a shows how the TCCFG for the line-tracking robot shown
in Fig. 4 is translated into three FSMs. The two concurrent paths,
relating to Decoder and MotorDriver starting from the Fork
node (node 3 in Fig. 4), are converted into individual FSMs. The
main FSM still contains the Fork node, but has only 1 transition
to the Join node (node 45). The information about the threads
being spawned is added to the transition leading to the Fork node.

In addition, we process each FSM by moving the cost associated
with nodes in the TCCFG to transitions in the individual FSMs.
This step is linear in the size of the FSM being processed, and
serves as the basis of the following thread-level optimizations.

3.1.1 Thread-level Optimizations

482

27.3

Spawn:

 Decoder

 MotorDriver

Main Thread Decoder Thread MotorDriver Thread

1

51

45

3

5

20

28

44

30

52 53

54 55

(a) Translation of TCCFG into FSMs

1

3

52

53

3

5

30

3 28

3 28

3 54

3

54

55

45 51
3

20

44

55

44

44

Thread

Termination

Tick 1 Tick 2 Tick 3

(b) Reachability illustration

Figure 5: Example of optimization and reachability analysis

Cost = 11

Cost = 5Cost = 3

Cost = 3

Step 1

Cost

= 11+3

= 14

Cost

= 11+5+3

= 19
Step 2

Cost = 19

(a) (b) (c)

Figure 6: Thread-level optimizations

We perform the following optimizations for each thread:
• O1: Removal of redundant nodes: This step involves remov-

ing redundant nodes from thread FSMs. For example, each ac-
tion node is removed (shown as step 1 in Fig. 6), and is sim-
ilar to the TCCFG optimization presented in [10]. Each tran-
sition leading to that node is combined with every transition
leading out from that node, and the cost of the combined tran-
sition is the sum of its constituent transitions. Similarly, each
conditional block is removed, and its outgoing transitions are
combined with every incoming transition. As the goal of the
WCRT analysis is to find the largest cost between two EOTs,
reducing the number of nodes between EOTs helps in faster
reachability analysis. This optimization removes unnecessary
conditional and action nodes, minimizing the number of nodes
in each FSM. This optimization ignores the status of program
variables, and hence may result in an over-approximation of the
WCRT. We address this issue later in Sec. 4.
• O2: Removal of duplicate transitions: We prune duplicate

transitions by finding all equivalent transitions in a thread, and
retaining only one transition that has the largest associated cost
(shown as step 2 in Fig. 6). Two transitions are equivalent if
they have the same source and destination nodes. We weaken
this notion of equivalence later in Sec. 4, so that variable con-
ditions and assignments are also taken into account.

3.2 Reachability using on-the-fly composition
The algorithm uses PRET-C composition to compute the reach-

able states. In PRET-C, threads that execute in parallel have a fixed
order of execution. This order of execution is the order of the
spawned threads in the invocation of PAR. In line 2 of the PRET-
C code in Fig. 2, PAR(Decoder,MotorDriver) implies that
in every tick, Decoder executes before MotorDriver. Also,
the spawning thread is suspended until all spawned threads ex-
ecute. We maintain this fixed order of execution while comput-
ing the reachable state-space, in order to preserve the semantics of

PRET-C.
Consider Fig. 5b which shows a part of the forward reachabil-

ity computation for the three abstracted threads shown in Fig. 5a.
The initial state of the reachability graph relates to the initial node
(node 1) of the main thread (main). We traverse the reachable
state space in a depth-first fashion. Whenever a transition to a fork
node is seen (for example from node 1 to 3 in main), the initial
nodes (52 and 53) of the newly spawned threads (Decoder and
MotorDriver) are added to the state tuple. The spawing thread
node (node 3 of main) is suspended and must wait for the spawned
threads to finish. From (3, 52, 53), the two spawned threads make
transitions to EOT nodes 5 and 30 respectively, marking the end of
the first global tick. Note that in any tick, the order of execution is
always Decoder followed by MotorDriver (the order in which
they are spawned). Next, both threads take transitions to nodes 20
and 44 respectively, marking the end of the second tick.

Now, from (3, 20, 44), there are four possible transitions. Tran-
sitions to (3, 28, 55), (3, 54, 44) and (3, 28, 44) indicate the end
of the third global tick (as one of the threads reaches an EOT node
while the other one also reaches EOT or finishes execution). We
do not further illustrate how reachability continues for these three
cases. The fourth successor (3, 54, 55) represents the termination
of both spawned threads, which re-enables the Fork node 3 to take
its lone transition to the Join node 45 (shown in Fig. 5a) within
the same tick. Then, 45 takes its lone transition to the end node 51,
which marks the end of the third global tick.

During the above reachability computation, when a global tick
finishes, a global variable WCRT (initialized to 0) is compared to the
computed tick length. If WCRT is smaller than the tick length (sum
of the cost of the transitions taken), we update its value. Otherwise,
we leave it unchanged. On termination, WCRT contains the actual
WCRT of the program.

Termination of the reachability computation is guaranteed be-
cause a previously visited state is never visited again. For example,
in Fig. 5b, we can reach state (3, 28, 44) from (3, 20, 44). Now
(3, 28, 44) also has a transition back to (3, 20, 44). However, as
(3, 20, 44) has already been visited earlier, it is not explored again.

In general, given a set of thread FSMs, we can extend the reach-
ability computation to compute WCRT for any synchronous lan-
guage. This extension will involve using the relevant composition
operator for the chosen language.

In [10], the UPPAAL model checker uses an extra global tick
thread to handle termination of spawned threads and resumption of
suspended threads. In our case, a global tick thread is not needed,
and the details of the parallel composition are handled during the

483

27.3

reachability analysis. During reachability, it is not necessary that
every EOT state in a thread is combined with every EOT state in
a parallel thread. Only reachable states are analyzed. In [6], an
additional automaton is required to ensure this tick alignment.

4. INFEASIBLE PATH PRUNING
The reachability algorithm presented in the previous section does

not take into account the context of program variables. PRET-C
provides thread-safe access to shared variables due to its fixed or-
der of thread execution in every tick. Threads may use variables set
by other threads to decide on execution paths, making some paths
infeasible, and potentially reducing the WCRT [6]. In this section,
we show how our method can be extended to use this information
for tighter WCRT analysis by pruning infeasible paths using vari-
able tracking.

Each PRET-C program defines a set V of variables, and this in-
formation is contained within the TCCFG (as shown in Fig. 4). We
allow users to choose to track a subset Vt of V . A user may choose
to track no variables (Vt = ∅), resulting in the same outcome as
described in Sec. 3. Alternatively, tighter results can be obtained
by tracking one, or all variables. Each tracked variable has a spe-
cific type (e.g. int), an initial value, and a finite range. Variable
tracking affects thread-level optimizations as well as the reachabil-
ity computation.

(PWMCounter

>= goRight)

rightMotor = 1;

(PWMCounter

< goRight)

rightMotor = 0;

(PWMCounter

< goLeft0

leftMotor = 0;

(PWMCounter

>= goLeft)

leftMotor = 1;

Tracking 2 variables Tracking 1 variable No variable tracking

rig
h

tM
o

to
r =

 1
;

rig
h

tM
o

to
r =

 0
;

rig
h

tM
o

to
r =

 0
;

rig
h

tM
o

to
r =

 1
;

le
ftM

o
to

r =
 0

;rig
h

tM
o

to
r =

 0
;

le
ftM

o
to

r =
 1

;rig
h

tM
o

to
r =

 0
;

le
ftM

o
to

r =
 0

;rig
h

tM
o

to
r =

 1
;

le
ftM

o
to

r =
 1

;rig
h

tM
o

to
r =

 1
;

34 34

38

30

44

30 30

44 44

(PWMCounter

< goLeft0

leftMotor = 0;

(PWMCounter

>= goLeft)

leftMotor = 1;

Figure 7: FSMs resulting from tracking different variables

During the pre-processing of individual FSMs (Sec. 3.1.1), we
read additional information about test and set operations on tracked
variables into the individual thread FSMs. However, all informa-
tion about non-tracked variables is removed, in order to achieve a
compact representation for each thread.

In O1 (removal of redundant nodes), we do not remove condi-
tional nodes that check the values of tracked variables. Fig. 7 shows
a snippet the MotorDriver thread (Fig. 5a). The first conditional
node is based on comparing the variables PWMCounter and goLeft,
whereas the second conditional block compares PWMCounter with
goRight. If we track both goLeft and goRight (along with PWM-
Counter), we retain both conditional nodes from the thread FSM.
However, if we track only goLeft, the second conditional node
is removed. If both variables are not tracked, we remove both con-
ditional blocks to get only transitions only between EOTs. transi-
tions. We do not allow tracking of variables that depend on any
non-tracked variables. For example, given an assignment v2 = v3
somewhere in a thread, we do not allow v2 to be tracked if v3 is
not tracked.

For optimization O2, we use stricter criteria to prune equivalent

S1 S2 V1 V2 S1 S2 V1 V2

Figure 8: Different notion of state equivalence

transitions. Recall that with no variable tracking, we consider all
transitions with the same source and destination nodes as equiva-
lent. However, with variable tracking, two transitions are consid-
ered equal when their source and destination nodes are the same,
as well as when their conditions and assignments are the same too
(Fig. 8).

Finally, the reachability algorithm is extended as follows. Each
state in the composition is considered to be a tuple of nodes of ex-
ecuting threads and a unique valuation for each tracked variable.
Two states corresponding to the same thread nodes (in the same
order) but variable valuations are considered to be different. There-
fore, the EOT to EOT transitions of both states are explored (as
shown in Fig. 8).

In [10], the original TCCFG is retained regardless of the number
of variables being tracked. This causes the time taken to compute
the WCRT to actually decrease when more variables are tracked.
This is indeed counter-intuitive, because adding information about
integer variables with finite ranges should cause the model checker
to search over a larger state-space. In our case, we get a gradual
increase in the time taken to compute the WCRT, and even when all
variables are tracked, the complexity of our approach is still lower
than that of [10] due to the absence of binary search.

5. RESULTS
In this section we test our approach using the PRET-C bench-

marks presented in [10], along with two larger examples (Synthetic
1 and 2) (Tab. 3). These programs vary from 496 (Synchronizer)
to 1630 (Synthetic 2) lines of PRET-C code. These programs fit
entirely on the on-chip memory of the MicroBlaze processor [9].

We implement the model checking approach presented in [10] to
compare the effectiveness of our approach. We have also extended
the approach of [10] with infeasible path pruning to make the two
approaches equivalent with respect to capability. Due to the need
for binary search, the UoA MC approach takes much longer to ex-
ecute. For a fairer comparison, we report the time for only the final
step in the binary search process for each benchmark.

Tab. 3 presents the speed of WCRT analysis for each benchmark
with and without variable tracking. Reachability produces the same
WCRT values as the UoA MC approach, but achieves significant
speed-ups. On average, we observe a speed-up of 320 times when
no variable tracking is used. When all variables are tracked, our ap-
proach is on average 16.4 times faster than the UoA MC approach.

Fig. 9 shows how the time taken to compute the WCRT varies
when we increasingly track more and more variables for the Robot-
Sonar example [10]. This program has 1081 lines of code, and con-
tains 7 shared variables. As more variables are tracked, reachability
takes steadily longer because the reachable set of states increases
by a factor of the ranges of variables being tracked. However, some
of this increase is countered by the extra variable information which
helps in pruning infeasible paths.

Fig. 10 shows how WCRT computation time varies as more vari-
ables are tracked. We make two important observations here. First,
the computation time for our approach is always less than the model
checking approach for the three largest benchmarks. As more vari-
ables are tracked, the performance of reachability is very similar
(slightly better) to that of a single pass of the model checking ap-
proach. This is due to increased infeasible path pruning in the

484

27.3

No Variable Tracking Tracking All Variables
Calculated UoA MC (Single Parse) Proposed Speed-up Calculated UoA MC (Single Parse) Proposed Speed-up

Example LOC WCRT A) Time Taken(ms) B) Time Taken(ms) A / B WCRT A) Time Taken(ms) B) Time Taken(ms) A / B
Synchronizer 455 487 140 1 140.00 268 141 7 20.14
ProdCons 567 674 157 1 157.00 294 140 3 46.67
Smokers 648 1171 297 1 297.00 512 172 4 43.00
ChannelProtocol 727 1092 969 9 107.67 685 219 33 6.64
Robot Sonar 1081 1822 9407 13 723.62 858 250 170 1.47
Synthetic 1 1569 2462 19423 32 606.97 1022 328 236 1.39
Synthetic 2 1630 2170 13203 64 206.30 942 297 127 2.34

Table 3: Comparison of Time taken for WCRT computation

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7

V
e

ri
fi

ca
ti

o
n

 t
im

e
 (

m
s)

Number of Tracked Variables

All

Figure 9: WCRT computation time vs no. of variables tracked

10

100

1000

10000

100000

None All

Ti
m

e
 t

ak
e

n
 f

o
r

ve
ri

fi
ca

ti
o

n
 (

m
s)

Number of Variables Tracked

RobotSonar (UoA MC)
Synthetic 1 (UoA MC)
Synthetic 2 (UoA MC)
RobotSonar (proposed)
Synthetic 1 (propsoed)
Synthetic 2 (proposed)

Figure 10: Computation time trends

model checking method, and a larger state space to be processed
by our method.

These results also show the power of the thread-level optimiza-
tions which are not done in the UoA MC approach. With no vari-
able tracking, our thread-level optimizations significantly reduce
the state-space for faster reachability. The number of nodes and
transitions removed during thread-level optimizations decreases as
more variables are tracked, resulting in a gradual increase in com-
putation times. For the UoA MC approach however, as more vari-
ables are added, the computation time decreases due to increased
infeasible path pruning.

6. CONCLUSIONS
In this paper, we presented a static analysis method based on

reachability, and aided with thread-level optimizations, to compute
the worst-case reaction time, or WCRT, of synchronous programs.
Even though reachability has lower complexity, we achieve the
same tightness in WCRT computation as more complex techniques
such as model checking. For the same benchmarks, our technique
significantly out-performs model checking by an overall speed-up
of 64-times. This approach is also more general, as it can be ex-
tended to other synchronous languages by simply using different
synchronous parallel operators during reachability.

Future directions include the use of abstract interpretation for
more efficient variable tracking, and the creation of models for
speculative features such as caches and pipelines to allow more ac-
curate WCRT analysis.

7. REFERENCES
[1] S. Andalam, P. S. Roop, and A. Girault. Predictable multithreading of

embedded applications using PRET-C. Proceedings of ACM-IEEE
International Conference on Formal Methods and Models for
Codesign (MEMOCODE), July,2010.

[2] G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL. In
M. Bernardo and F. Corradini, editors, Formal Methods for the
Design of Real-Time Systems: 4th International School on Formal
Methods for the Design of Computer, Communication, and Software
Systems, SFM-RT 2004, number 3185 in LNCS, pages 200–236.
Springer–Verlag, Sept. 2004.

[3] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone. The synchronous languages 12 years later.
Proceedings of the IEEE, 91(1):64 – 83, Jan. 2003.

[4] V. Bertin and et al. Taxys = Esterel + Kronos - a tool for verifying
real-time properties of embedded systems. In IEEE Conference on
Decision and Control, 2001.

[5] M. Boldt, C. Traulsen, and R. von Hanxleden. Worst case reaction
time analysis of concurrent reactive programs. Electronic Notes in
Theoretical Computer Science, 203(4):65–79, June 2008.

[6] L. Ju, B. Huynh, S. Chakraborty, and A. Roychoudhury.
Context-sensitive timing analysis of esterel programs. In Design
Automation Conference, 2009. DAC ’09. 46th ACM/IEEE, pages 870
–873, July 2009.

[7] L. Ju, B. K. Huynh, A. Roychoudhury, and S. Chakraborty.
Performance debugging of Esterel specifications. In CODES+ISSS,
pages 173–178, 2008.

[8] L. Ju, B. K. Huynh, A. Roychoudhury, and S. Chakraborty. Timing
analysis of esterel programs on general-purpose multiprocessors. In
Proceedings of the 47th Design Automation Conference, DAC ’10,
pages 48–51, New York, NY, USA, 2010. ACM.

[9] Micrium. uC-OSII and Xilinx Microblaze processor, Application
Note AN-1013, 2008.

[10] P. S. Roop, S. Andalam, R. von Hanxleden, S. Yuan, and C. Traulsen.
Tight WCRT analysis for synchronous C programs. In Proceedings
of the International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES’09), Grenoble, France,
October 2009. IEEE.

485

27.3

