skip to main content
10.1145/2024724.2024904acmconferencesArticle/Chapter ViewAbstractPublication PagesdacConference Proceedingsconference-collections
research-article

A fast solver for nonlocal electrostatic theory in biomolecular science and engineering

Published:05 June 2011Publication History

ABSTRACT

Biological molecules perform their functions surrounded by water and mobile ions, which strongly influence molecular structure and behavior. The electrostatic interactions between a molecule and solvent are particularly difficult to model theoretically, due to the forces' long range and the collective response of many thousands of solvent molecules. The dominant modeling approaches represent the two extremes of the trade-off between molecular realism and computational efficiency: all-atom molecular dynamics in explicit solvent, and macroscopic continuum theory (the Poisson or Poisson--Boltzmann equation). We present the first fast-solver implementation of an advanced nonlocal continuum theory that combines key advantages of both approaches. In particular, molecular realism is included by limiting solvent dielectric response on short length scales, using a model for nonlocal dielectric response allows the resulting problem (a linear integro-differential Poisson equation) to be reformulated as a system of coupled boundary-integral equations using double reciprocity. Whereas previous studies using the nonlocal theory had been limited to small model problems, owing to computational cost, our work opens the door to studying much larger problems including rational drug design, protein engineering, and nanofluidics.

References

  1. M. D. Altman, J. P. Bardhan, B. Tidor, and J. K. White. FFTSVD: A fast multiscale boundary-element method solver suitable for BioMEMS and biomolecule simulation. IEEE T. Comput.-Aid. D., 25:274--284, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. D. Altman, J. P. Bardhan, J. K. White, and B. Tidor. Accurate solution of multi-region continuum electrostatic problems using the linearized Poisson--Boltzmann equation and curved boundary elements. J. Comput. Chem., 30:132--153, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  3. J. P. Bardhan. Numerical solution of boundary-integral equations for molecular electrostatics. J. Chem. Phys., 130:094102, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  4. M. V. Basilevsky and D. F. Parsons. An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity. J. Chem. Phys., 105(9):3734, Aug 1996.Google ScholarGoogle ScholarCross RefCross Ref
  5. R. Diamond. Real-space refinement of the structure of hen egg-white lysozyme. J. Mol. Biol., 82, 1974.Google ScholarGoogle Scholar
  6. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73:325--348, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. L. Hess and A. M. O. Smith. Calculation of non-lifting potential flow about arbitrary three-dimensional bodies. J. Ship Res., 8(2):22--44, 1962.Google ScholarGoogle Scholar
  8. A. Hildebrandt, R. Blossey, S. Rjasanow, O. Kohlbacher, and H.-P. Lenhof. Novel formulation of nonlocal electrostatics. Phys. Rev. Lett., 93:108104, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. Hildebrandt, R. Blossey, S. Rjasanow, O. Kohlbacher, and H.-P. Lenhof. Electrostatic potentials of proteins in water: a structured continuum approach. Bioinformatics, 23(2):e99--e103, Jan 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. C. Inkson. Dielectric response in semiconductors. J. Phys. Chem., 7:1571--1581, 1974.Google ScholarGoogle Scholar
  11. S. Kapur and D. E. Long. IES3: Efficient electrostatic and electromagnetic simulation. IEEE Comput. Sci. Eng., 5(4):60--7, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. I. Klapper, R. Hagstrom, R. Fine, K. Sharp, and B. Honig. Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: Effects of ionic strength and amino-acid modification. Proteins, 1:47--59, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  13. A. A. Kornyshev, A. I. Rubinshtein, and M. A. Vorotyntsev. Model nonlocal electrostatics: I. J. Phys. C Solid State, 11:3307, Dec 1978.Google ScholarGoogle ScholarCross RefCross Ref
  14. K. Nabors and J. White. FASTCAP: A multipole accelerated 3-D capacitance extraction program. IEEE T. Comput.-Aid. D., 10(10):1447--1459, 1991.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Pennathur and J. G. Santiago. Electrokinetic transport in nanochannels. 1. theory. Anal. Chem., 77(21):6772--6781, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  16. B. Roux and T. Simonson. Implicit solvent models. Biophys. Chem., 78:1--20, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  17. A. Rubinstein and S. Sherman. Influence of the solvent structure on the electrostatic interactions in proteins. Biophys. J., 87(3):1544--1557, Sep 2004.Google ScholarGoogle ScholarCross RefCross Ref
  18. S. Rush, A. H. Turner, and A. H. Cherin. Computer solution for time-invariant electric fields. J. Appl. Phys., 37(6):2211--2217, 1966.Google ScholarGoogle ScholarCross RefCross Ref
  19. Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856--869, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Sanner, A. J. Olson, and J. C. Spehner. Reduced surface: An efficient way to compute molecular surfaces. Biopolymers, 38:305--320, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  21. M. F. Sanner. Molecular surface computation home page. http://www.scripps.edu/sanner/html/msms_home.html, 1996.Google ScholarGoogle Scholar
  22. K. A. Sharp and B. Honig. Electrostatic interactions in macromolecules: Theory and applications. Annu. Rev. Biophys. Bio., 19:301--332, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  23. D. Sitkoff, K. A. Sharp, and B. Honig. Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. B, 98:1978--1988, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  24. J. Tausch, J. Wang, and J. White. Improved integral formulations for fast 3-D method-of-moment solvers. IEEE T. Comput.-Aid. D., 20(12):1398--1405, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. B. J. Yoon and A. M. Lenhoff. A boundary element method for molecular electrostatics with electrolyte effects. J. Comput. Chem., 11(9):1080--1086, 1990.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A fast solver for nonlocal electrostatic theory in biomolecular science and engineering

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        DAC '11: Proceedings of the 48th Design Automation Conference
        June 2011
        1055 pages
        ISBN:9781450306362
        DOI:10.1145/2024724

        Copyright © 2011 Authors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 5 June 2011

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,770of5,499submissions,32%

        Upcoming Conference

        DAC '24
        61st ACM/IEEE Design Automation Conference
        June 23 - 27, 2024
        San Francisco , CA , USA

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader