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ABSTRACT
We present the Storyboard Programming framework, a new
synthesis system designed to help programmers write im-
perative low-level data-structure manipulations. The goal
of this system is to bridge the gap between the “boxes-and-
arrows”diagrams that programmers often use to think about
data-structure manipulation algorithms and the low-level
imperative code that implements them. The system takes
as input a set of partial input-output examples, as well as
a description of the high-level structure of the desired solu-
tion. From this information, it is able to synthesize low-level
imperative implementations in a matter of minutes.

The framework is based on a new approach for combin-
ing constraint-based synthesis and abstract-interpretation-
based shape analysis. The approach works by encoding both
the synthesis and the abstract interpretation problem as a
constraint satisfaction problem whose solution defines the
desired low-level implementation. We have used the frame-
work to synthesize several data-structure manipulations in-
volving linked lists and binary search trees, as well as an
insertion operation into an And Inverter Graph.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming; I.2.2 [Artificial Intelligence]: Program Synthesis

Keywords
Program Synthesis, Storyboard Programming, Data struc-
ture manipulations

1. INTRODUCTION
When implementing complex data-structure manipulations,

programmers must bridge the gulf that separates their in-
tuitive understanding of how the manipulation works from
the low-level code that actually implements it. The intuition
behind these manipulations often takes the form of “boxes-
and-arrows” diagrams which programmers might draw on a
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whiteboard to illustrate the evolution of the data-structure
as it is manipulated. Unfortunately the visual intuition re-
flected in these diagrams is absent from the low-level pointer
updates that make up the implementation. This seman-
tic gap between intuition and implementation makes data-
structure manipulations difficult to write and maintain.

To illustrate this gap, consider the example in Figure 1.
Part (a) of the figure shows a graphical description of the re-
moval of a node from a doubly linked-list. The diagram—we
call it a storyboard—communicates very clearly the effect of
the manipulation. By contrast, the imperative code in Fig-
ure 1(b) is short but not self-explanatory; understanding this
code essentially requires one to mentally recreate the image
from the storyboard in part (a). The system presented in
this paper bridges this gap by using constraint-based syn-
thesis technology to automatically implement data-structure
manipulations that are provably correct with respect to high-
level descriptions like the one illustrated by Figure 1.

a) Graphical intuition:
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b) Code:

void dllRemove (Node v ){
v . n . p = v . p ;
v . p . n = v . n ;

}

Figure 1: Doubly linked list deletion example

Our system is not yet a graphical programming system—
it lacks a graphical user interface—but it brings closer to
reality the promise of an effective graphical programming
model for data-structure manipulations. It does so by sup-
porting a form of Programming by Example (PBE) [6] where
the manipulations are synthesized from partial descriptions
of their effects. The main input to the system is a set of
descriptions of the state of a data-structure before and after
manipulation—essentially text descriptions of storyboards
like the one in Figure 1. Two important features, however,
distinguish our system from traditional PBE systems. The



first is the ability to abstract away those parts of the data-
structure that are not relevant to the manipulation, as is
done in Figure 1 through the use of ellipsis. This form of ab-
straction gives our system a lot of expressive power, because
it allows a single figure to succinctly describe the behavior
of the algorithm on an infinite number of concrete inputs,
turning a simple input-output pair into a partial specifica-
tion. The second difference with PBE is that our system
asks the user to provide information about the control-flow
structure of the solution; this information reduces the space
of possible implementations that the system needs to con-
sider and makes it less likely that the system will produce
a solution that only works for the given examples. These
two features allow us to synthesize complex data-structure
manipulations from relatively simple storyboards.

The system is made possible by a new synthesis algorithm
that combines previous work on constraint-based synthe-
sis [24, 29] with abstract interpretation. Our algorithm is
not the first to do this [29], but it is the first to scale to the
very large and complex abstract domains required to reason
about data-structure manipulations. The key idea behind
the algorithm is to use quantification to eliminate operations
that require complex set-based reasoning, and to use the
Sketch solver [24] to solve these formulas(Section 5). The
new synthesis algorithm allows us to combine constraint-
based synthesis with a form of shape-analysis loosely based
on TVLA [15]. The shape analysis algorithm used by our
system is not as powerful as many of those found in the lit-
erature [21], but it is powerful enough to reason about most
operations involving trees and lists. The strength of our par-
ticular form of shape analysis, however, lies in the ease with
which we can take the abstractions expressed as part of the
storyboard and use them as the basis for an abstract domain
that is then used to verify each candidate implementation.

In summary, the key contributions of the paper are:

• Development of a new model of interaction between
the synthesizer and the programmer, targeted at the
domain of data-structure manipulations (Section 2).

• A novel synthesis algorithm that combines constraint-
based synthesis with abstract interpretation to bridge
the gap between high-level graphical specifications and
their low-level implementation (Section 5).

• The development and evaluation of a tool to automat-
ically synthesize data-structure manipulations involv-
ing linked lists and trees from high-level graphical spec-
ifications (Section 6).

So far, we have used our system to successfully synthe-
size several data structure manipulations such as insertion,
deletion, search, reversal and rotation operations over singly
linked list, doubly linked list and binary search tree data
structures. We have also used our framework to synthe-
size small puzzle problems as well as some manipulations
involving a tricky real-world And Inverter Graph [18] data-
structure used in the ABC solver [3].

2. OVERVIEW: LINKED LIST REVERSAL
In this section, we present an overview of our framework

through a textbook data-structure manipulation example:
in-place linked list reversal. Reversing a list with a loop
and using only a constant amount of additional memory is

non-trivial; in fact, the algorithm for this manipulation is
a common question in technical interviews. In the remain-
der of the section, we describe how the user describes this
data-structure manipulation to the framework, and provide
a high-level view of how the synthesizer uses this input to
derive an implementation.

2.1 Storyboard
In order to synthesize the manipulation, our system takes

as input a storyboard composed of three elements: a set of
scenarios, each of which corresponds to an abstract input-
output pair; a set of fold and unfold definitions, and a skele-
ton of the looping structure of the desired algorithm.

A scenario in our system is an input-output pair describ-
ing the effect of the manipulation on a potentially abstract
data-structure, where abstraction is used to elide details of
the data-structure that are not considered relevant. For ex-
ample, Figure 2 below shows the main scenario describing
the effect of reversing a linked list. Like the more informal
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Figure 2: Graphical description of linked-list reverse

example in Figure 1, the scenario uses ellipses to abstract
away part of the list. In our notation, however, the ellipses
are formalized by using the concept of summary nodes. For
this example, the scenario uses a summary node mid to rep-
resent the middle part of the list, which may vary in size for
different runs of the algorithm. Out of all the nodes in the
sub-list represented by mid, the first and last node deserve
special attention because other nodes outside the sub-list
mid may point to them. We call these special nodes attach-
ment points of the summary node, and as we shall see, they
play an important role in reasoning about scenarios.

Figure 3 shows the complete set of scenarios needed for
this example, including scenarios to describe the behavior
of the algorithm on lists of length zero, one and two. Fig-
ure 3(a) presents the text notation used by our system to
describe one of the scenarios on the right. The storyboard
consists of an environment description and a sequence of
scenario descriptions. The environment defines the set of
variables used in the implementation, the set of fields in the
objects that make up the data-structure (which are called
selectors in the shape analysis literature), and the set of
concrete and summary locations. For this example there are
only four program variables (head, temp1, temp2 and temp3),
one selector corresponding to the field next, and eight con-
crete locations a, f, e, b, f’ and e’. The concrete locations f
and e (resp. f’ and e’ ) represent the two attachment points
of the summary node mid (resp. mid’). The environment de-
scription also states a global invariant that the next pointers
of locations f and f’ point to mid and mid’ respectively with a
value of 1/2 in a 3-valued logic similar to TVLA [21]. Each
scenario description, in turn, uses variable predicates, se-



Environment
vars Node head, temp1, temp2, temp3
selectors (Node,Node) next
locations Node a, f, e, b, f’, e’
summary Node (mid,f,e), (mid’,f’,e’)
invariant next(f,mid)=1/2, next(f’,mid’)=1/2

Scenario 1
input
head(a) //vars
next(a,f),next(e,b),next(b,null) //sels

output
head(b) //vars
next(b,f’), next(e’,a), next(a,null) //sels
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Figure 3: Storyboard for in-place linked list reversal

lector predicates and data constraint predicates to define a
pair of input-output state configurations. The variable pred-
icates of the form var(loc) denote that variable var points to
location loc, and the selector predicates of the form sel(loc1,
loc2) denote that the sel field of location loc1 points to loca-
tion loc2. The data constraint predicates define additional
constraints involving the data values of locations.

In order to make scenarios precise, it is often necessary to
provide additional information about the structure of sum-
mary nodes. For example, in Figure 2, the summary node
mid represents a set of nodes with a very particular struc-
ture; specifically, the scenario only makes sense under the
assumption that node e is reachable from node f. Our sys-
tem allows the user to provide this structural information
through fold and unfold predicates. For example, Figure 4
shows the fold and unfold predicates used to describe the re-
cursive structure of the mid summary node. The predicates
describe the structure of summary nodes in terms of their
attachment points, in a similar way as Fradet et al. [7] used
context-free graph grammars to describe shape types.

The exact syntax and semantics of the predicates will be
discussed in detail in Section 4.1; for now, it is enough to
understand that the predicates in Figure 4(a) are precise
text representations of the recursive definitions illustrated
in Figure 4(b). For example, the unfold rule shows two al-
ternatives for the summary node mid: either the attachment
points f and e are actually the same node x’, and this is the
only node in mid, or f is a node x’ whose next pointer points
to the attachment point f’ of another similar summary node
mid’. For this example, fold is an inverse of unfold and could
be derived automatically, but Section 4.1 will show other
examples where it is useful to define fold and unfold inde-
pendently as a way to guide the solver to a specific solution.

The scenarios and the fold and unfold definitions together
describe the effects of the desired manipulation, but recall
that our running example included some non-functional re-
quirements, such as the requirement that the implementa-
tion use of a single loop. This requirement is expressed by
providing a skeleton of the looping structure of the desired
algorithm. Figure 5 shows the skeleton for list reverse, which
states that the implementation should contain exactly one
while loop with some blocks of code before and after it. The
code produced by the synthesizer will have each of these

blocks replaced by a series of guarded assignments of the
form if(COND) then STMT. The conditional COND corre-
sponds to expressions EXP op EXP, where EXP is either an
expression of the form var(.sel?) or null and op ranges over
the set of comparison operators. The set of assignment state-
ments STMT corresponds to assignments of the form LHS =
EXP where LHS is the same set as EXP but excluding null.

Each of these elements—the scenarios, the loop skeleton
and the fold and unfold definitions—comprise a partial speci-
fication of the desired function. For example, the storyboard
above is a partial specification because the abstraction does
not define the relationship between mid in the input and
mid’ in the output. In this case, asking the synthesizer to
produce a solution with a small number of statements is suf-
ficient to ensure the correct answer, but sometimes the user
may have to provide the system with additional informa-
tion. In keeping with the PBE model, this additional infor-
mation usually takes the form of additional scenarios with
concrete examples, but it can also include providing inter-
mediate state configurations, adding predicates in scenarios
or providing a more detailed implementation sketch in place
of the simple loop skeletons. The strength of our synthesis
approach is that it can combine these different constraints
into a concrete implementation. Moreover, as shown in Sec-
tion 6, the constraints imposed by the storyboards are strong
enough that in the few cases where the specification has to
be strengthened, it only takes a few additional concrete sce-
narios or an intermediate state configuration to guide the
framework to synthesize the correct implementation.

2.2 Synthesizing code from storyboards
Our synthesis strategy is based on constraint-based syn-

thesis [24, 29]. The key idea behind this form of synthesis is
to define a space of possible solutions to the synthesis prob-
lem and to represent it as a parameterized program. For
example, in our case, each unknown assignment can be rep-
resented as a switch statement where an unknown parameter
determines which assignment is actually performed. This
means that the entire solution space can be represented as a
program P (in, c) where in is the input to the program and c
is a vector of control parameters that determines which com-
putations are performed. The goal of the synthesis process



unfold( f ,{(f, in, x′), (e, out, x′)} , [true] ) ;
unfold( f ,{(f, in, x′), (e, out, e′)} , [x′.next = f′] ) ;
fold(x ,{(x, in, f′), (x, out, e′)} , [true] ) ;
fold(x ,{(x, in, f′), (e, out, e′)} , [x.next = f] ) ;
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Figure 4: Unfold and fold predicate definitions for mid summary node

void l l R e v e r s e (Node head ){

/∗ 1 ∗/

whi le (/∗2∗/){/∗3∗/}

/∗4∗/
return head ;

}

Figure 5: Control flow sketch for list reversal. Each
number corresponds to an unknown block of code.

is then to find a value csol such that the program P (in, csol)
meets the storyboard specification for all inputs in.

This view of the synthesis problem is common to all con-
straint based synthesis approaches [24, 29]. In our frame-
work, we derive these constraints from the storyboard by
interpreting the input-output states in each scenario of the
storyboard as abstract states in a specially crafted abstract
domain. This allows us to use the theory of abstract in-
terpretation [5] to frame the correctness condition as a set
of equations. The fold/unfold predicates can be understood
in the context of abstract interpretation as a way of defin-
ing instrumentation predicates for summary nodes. Once
the correctness condition has been framed as a set of equa-
tions, the translation to constraints follows with only a small
amount of effort.

2.2.1 From storyboards to equations
Our framework uses a powerset domain as an abstract do-

main where the state is represented as a set of shapes. Each
shape, in turn, is represented as a set of predicates, following
a formalism similar to TVLA [15, 21]. Given this abstract
domain, the next step is to use the control flow sketch to
derive a set of equations relating the abstract states at pro-
gram points as described by Sharir and Pnueli in [23]. In
these equations, each one of the unknown blocks of code in
the control flow sketch is represented by a parameterized
transition function Fm(ti, c) that maps an abstract state to
an output abstract state for a given control value c. The
control flow sketch then defines a set of equations involv-
ing the transition functions. For example, the control flow
sketch in Figure 5 induces the following equations, where the

transition function Fi corresponds to block i in the sketch.

t0 = F1(in, c); (1)

t1 = F3(t0 ∪ t2, c); (2)

t2 = F2(t1, c); (3)

t3 = F2(t0 ∪ t2, c); (4)

out = F4(t3, c); (5)

If these equations came from a verification problem, each
of the Fi would be a transition function, and we could use an
iterative approach to find the least fixed point solution to the
equations and check that out matched the solution required
by the storyboard. But for synthesis, each Fi represents an
unknown block of code, and the c values we are interested
in finding do not form a lattice, so we cannot use a standard
iterative solver find csol. Instead, we provide an efficient
way to encode the problem in a form that an off-the-shelf
constraint solver can efficiently solve.
Transition Functions: Each transition function Fm(ti, c)
encodes the behavior of set of possible sequences of guarded
assignments that can be used to complete the control flow
skeleton. In addition to conditional statements, a transition
function can also include two special kinds of statements:
unfold var and fold var. The semantics of unfold and fold
correspond to no-ops in the concrete domain; their sole pur-
pose is to allow the abstract interpretation to reach a fixed
point while allowing for very precise reasoning within the
abstract domain. Figure 6 shows the role of the unfold and
fold functions in materializing abstract nodes [21] to allow
for more precise reasoning, and then collapsing multiple ab-
stract shapes into a single one to allow the abstract inter-
pretation to reach a fixed point. The semantics of fold and
unfold will be described in detail in Section 4 after we for-
malize the overall abstract interpretation framework.

2.2.2 Equations to Constraints
So far, we have described how to encode the problem in

terms of the least fixed point solution of a set of equations.
Our framework translates these equations into a 2QBF for-
mula, which in principle could be solved by any 2QBF solver,
although in practice we have found that only our Sketch
solver scales to large synthesis problems. As we will show
in Section 5, the key idea in the translation to constraints
is that instead of having the transfer functions produce sets
of states, we make the functions non-deterministically pro-
duce one element in the set. Therefore, by exploring all



Figure 6: unfold and fold operations in action

Node l l R e v e r s e (Node head ){
Node temp1 = nul l , temp2 = n u l l ;
Node temp3 = n u l l ;

temp1 = head ;
while ( temp1 != n u l l ){

// u n f o l d temp1 ;
head = temp1 ;
temp1 = temp1 . next ;
head . next = head ;
head . next = temp3 ;
temp3 = head ;
// f o l d head ;

} }

Figure 7: Synthesized list reverse implementation

non-deterministic choices, we guarantee that the entire set
is considered.

2.3 Synthesized Implementation
From a satisfying assignment to the constraints, the frame-

work derives the imperative implementation shown in Fig-
ure 7 for the linked list reverse manipulation. The condi-
tionals (all true) from the conditional assignment statements
have been removed for better readability of the code. It can
be noted that the implementation did not use the program
variable (temp2) and the loop body includes an extra dead
store assignment statement (head.next = head). Aside from
the additional assignment, the code is an efficient imple-
mentation of the desired algorithm, and the entire synthesis
process takes only a couple of minutes.

3. DATA STRUCTURE CONFIGURATIONS
In this section we present the formalism used by our frame-

work to encode and reason about the storyboard description.
The formalism is based on abstract interpretation, and is
similar to that of TVLA; the primary difference is our treat-
ment of summary nodes with attachment points. But before
we describe the abstract interpretation, we need to define the
concrete domain over which programs operate. In this con-
crete domain, the state of the program is defined by a fixed
set of local variables and a set of memory locations (also
called nodes), where each location can have a number of
fields pointing to other memory locations. Our framework
currently does not support the allocation of memory by a
synthesized routine, so the set of nodes that the program
has to reason about does not grow as the routine executes.

Let L# represent the set of memory locations the syn-
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Figure 8: An abstract list representing infinite con-
crete lists

thesized program will operate on. Then, the state of the
program is captured by two sets of predicates. First, for
every variable v and location l ∈ L# there is a predicate
v(l) that indicates whether v points to location l. Then, for
every field sel, there is a predicate sel(l1, l2) that indicates
whether a location l1 has a field sel that points to location l2.
These two sets of predicates encode a concrete shape which
defines the instantaneous configuration of the heap at any
point in the execution.

Shapes in the abstract domain.
The abstract domain consists of sets of abstract shapes,

where each abstract shape itself represents a set of concrete
shapes. The abstract shapes are defined in terms of a set of
locations L. Each location loc ∈ L can be either a summary
location or a concrete location; we use the predicate sm(loc)
to indicate that loc is a summary location, so ¬sm(loc) indi-
cates that the location is concrete. As we have stated before,
a concrete location loc may serve as an attachment point for
a summary location u, which we express with the notation
loc ∈ A(u); we use the predicate apt(loc) to indicate the role
of loc as an attachment point.
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Figure 9: State configuration for a singly linked list

Example 1. The state configuration in Figure 9 is en-
coded as follows. The set of locations is given by
L = {l1, mid, f, e, l2}, with a summary node mid and at-
tachment points A(mid) = {f, e}. The set of program vari-
ables are V= {head, temp1, temp2}. The variable predicates
head(l1), temp1(f) and temp2(l2) are true. The next selector
predicates next(l1, f), next(e, l2) and next(l2, null) are true,
and next(f,mid) = 1/2.



To make the definition of the abstract domain more for-
mal, consider a concrete shape S# with a set of nodes L#,
a selector predicate sel# and a variable predicate var#, to-
gether with an abstract shape S with a set of nodes L, selec-
tor sel and variable predicate var. We say that shape S# is
in the concretization of S (S# ∈ γ(S)) when there exists a
relation M : L# × L that satisfies the following conditions.

• Every node in S# maps to some node in S and vice versa:
i.e. ∀l1 ∈ L# ∃n1 ∈ L s.t. M(l1, n1) and ∀n1 ∈ L ∃l1 ∈
L# s.t.M(l1, n1)

• Nodes that do not map to summary nodes map to a single
concrete node: i.e. for any l1 ∈ L#, if ¬∃n2 s.t. sm(n2)∧
M(l1, n2) then M(l1, na) ∧M(l1, nb)⇒ na = nb.

• Summary nodes do not overlap: i.e.
sm(na)∧M(l1, na)∧M(l1, nb)⇒ (na = nb∨nb ∈ A(na)).

• Edges between concrete nodes are preserved: i.e. given
l1, l2 ∈ L# and n1, n2 ∈ L where ¬sm(n1) and ¬sm(n2),
let M(l1, n1) and M(l2, n2); then,
sel#(l1, l2)⇔ sel(n1, n2) and var#(l1)⇔ var(n1).

• Summary nodes own their associated attachment points:
i.e. if M(l1, n2) and n2 ∈ A(u) then M(l1, u)

• Any edge pointing to a summary node from the outside
must point to one of its attachment points: i.e. let
sel#(l1, l2)∧M(l2, nb)∧ sm(nb), then eitherM(l1, nb) or
∃na ∈ A(nb)s.t.M(l2, na), and for variables, var#(l2) ∧
M(l2, nb) ∧ sm(nb), then ∃na ∈ A(nb)s.t.M(l2, na)

• Selector edges for summary nodes not originating in an
attachment point are ignored: i.e. if sm(na)∨sm(nb) then
sel(na, nb) = 0 ∨ na ∈ A(nb).

• Selector edges from an attachment point to its enclosing
summary node will have value 1/2: i.e. if na ∈ A(nb) and
∃l1, l2 ∈ L# s.t. sel#(l1, l2) ∧M(l1, na) ∧M(l2, nb), and
¬∃nc s.t.M(l2, nc) ∧ ¬sm(nc), then sel(na, nb) = 1/2.

In shape analysis it is common to use 3-valued logic to
represent the values of selector and variable predicates in
abstract shapes. However, notice that the rules above specif-
ically require us to ignore most selector edges involving sum-
mary nodes. The restrictions imply that the only selector
edges that will potentially have value equal to 1/2 are edges
from an attachment point to its corresponding summary
node; that is why we have next(f,mid) = 1/2 in the earlier
example. As we shall see in the next section, the transition
rules in the abstract semantics are defined in such a way
that if the algorithm under analysis ever tries to dereference
a field corresponding to one of these half edges, it will tran-
sition into an error state. This makes the analysis simpler at
the expense of added imprecision, but our analysis compen-
sates for this imprecision by relying on the unfold predicates
to materialize[21] summary nodes.

4. ABSTRACT INTERPRETATION
Having defined the structure of the abstract domain, we

now describe the transition rules used to model statements
and conditionals, focusing on those aspects unique to our
framework. Figures 10 and 11 show respectively the state-
ments and conditionals considered by the synthesizer. The

figures also show the formal definitions of the transition
rules associated with each construct. The transition rules
relate the state before the transition—the pre-state repre-
sented with non-primed predicates—with the post-state rep-
resented with primed predicates. It is assumed that the val-
ues of all other predicates not mentioned in the transition
rule remain unchanged.

Statement Transition rule
x = null ∀ l ∈ L : x′(l) = 0

x = t ∀ l ∈ L : x′(l) = t(l)
x = t.sel assert ¬∃l1, l2 ∈ L : t(l1) ∧ sel(l1, l2) ∧ sm(l2)

∀ l ∈ L : x′(l) = ∃l1 t(l1) ∧ sel(l1, l)
x.sel = null assert ¬∃l1, l2 ∈ L : x(l1) ∧ sel(l1, l2) ∧ sm(l2)

∀ l1, l2 ∈ L : sel′(l1, l2) = ¬x(l1) ∧ sel(l1, l2)
x.sel = t ∀ l1, l2 ∈ L : sel′(l1, l2) = sel(l1, l2) ∨ (x(l1) ∧ t(l2)))

unfold x

unfoldPred(E,M,C) ∧ x(E) =⇒
((∀ l1

in→ l2 ∈ M : fresh(l2)∧
∀ v ∈ V : v′(l2) = v(l1) ∧ v′(l1) = 0 ∧
∀ l ∈ L : sel′(l, l2) = sel(l, l1) ∧ sel′(l, l1) = 0)∧

(∀ l1
out→ l2 ∈ M : fresh(l2)∧

∀ l ∈ L : sel′(l2, l) = sel(l1, l) ∧sel′(l1, l) = 0) ∧C)

fold x

foldPred(E,M,C) ∧ (x(E) ∧ C) =⇒
((∀ l1

in→ l2 ∈ M : fresh(l2)∧
∀ v ∈ V : v′(l2) = v(l1) ∧ v′(l1) = 0 ∧
∀ l ∈ L : sel′(l, l2) = sel(l, l1) ∧ sel′(l, l1) = 0)∧

(∀ l1
out→ l2 ∈ M : fresh(l2)∧

∀ l ∈ L : sel′(l2, l) = sel(l1, l) ∧ sel′(l1, l) = 0))

Figure 10: Abstract semantics of statements manip-
ulating pointers and pointer-valued fields

The rules follow a convention from shape analysis to as-
sume that every statement of the form exp = t is preceded
by a statement of the form exp = null, where exp is either
x or x.sel. This assumption simplifies the rules because the
transition rule for exp = t does not have to worry about de-
stroying the value previously stored at exp [21]. The other
important observation about the rules is the use of asser-
tions for the two rules that do field dereferences. These as-
sertions ensure that the system will transition into an error
state when it tries to dereference a selector that points to
a summary node, which in turn guarantees that 1/2 values
corresponding to these selector predicates will not propagate
through the representation.

The abstract semantics for the class of conditionals is
shown in Figure 11. It can be noted that although the as-
signment statements in our target language of programs ig-
nore data fields of the data-structure (.data as opposed to
.sel), the conditionals can reason about the data constraints.
We store data predicates using gt, gte, eq etc., which encode
data constraints over the data values of locations. We do
not consider conditionals involving selector dereferencing of
variables, e.g. of the form x.next == null, as they can be
reduced into a conditional of the form y == null where the
variable y is first assigned by the statement y = x.next.

4.1 Fold/Unfold semantics
The unfold operation is described with a triple unfoldPred

(E, M, C). The first argument E is called the enabling node,
and it represents the summary node that is being expanded.
The transition rule for the unfold x statement performs the
unfold operation only if the variable x points to the enabling
node E. The second argument M is the location mapping
M : loc → loc, which describes how nodes before expansion
relate to nodes after expansion. There are two kinds of loca-



tion mappings in M:
in→ mappings and

out→ mappings. An
in→

mapping maps a location loc1 to loc2 such that all variables
and selector edges pointing to loc1 in the pre-state should

point to loc2 in the post-state. An
out→ mapping maps a loca-

tion loc1 to loc2 such that all outgoing selector edges from
loc1 in the pre-state emanate from loc2 in the post-state.

Finally, the description of unfold also includes a set of
constraints C. These constraints describe how the new nodes
will be connected together, and are asserted to hold in the
post-state after unfolding. The transition rule for fold x
statement works similarly to the unfold rule. The difference
is that the fold operations are enabled only if the constraints
C are also satisfied by the state configuration in addition to
the requirement of x pointing to the enabling node E. The
unfold and fold predicate definitions on the summary node
mid are shown in Figure 4.

Another set of fold-unfold examples for the binary search
tree (bst) case studies is shown in Figure 12. The goal of bst
search is to search for a value x in the tree where r represents
its root. The bst search (contains) manipulation assumes
that the value x always exists in the tree. The three cases of
bst search (contains) unfold are: i) x < y.val, ii) x = y.val
and iii) x > y.val as shown in Fig 12(a), where y denotes
the root node of the subtree being unfolded. The unfold
definition for the more general case of bst search is shown
in Figure 12(b). The tree summary nodes labeled stuff are
given without any unfold rules, which means they cannot
be materialized, so the verifier will not be able to reason
about any implementation that tries to visit them. In this
way, the unfold rule is providing algorithmic insights, telling
the synthesizer that a given region of the tree should not be
visited or manipulated.

One important thing to note about unfold is that a given
shape can be expanded in many different ways, as illustrated
in Figure 4. This is expressed by having multiple unfoldPred
triples with the same enabling node. As a consequence, ev-
ery abstract shape in the pre-state of an unfold operation
may be expanded into a set of abstract shapes. This expan-
sion allows the analysis to maintain precision, but having to
represent sets of abstract shapes in the abstract interpreter
will pose an interesting challenge when we turn the problem
into a constraint satisfaction problem.

Another very important aspect about unfold is that the
presence of unfold changes the concretization relation γ be-
tween abstract and concrete shapes. In the absence of un-
fold, any arbitrary set of concrete nodes can be mapped to
a summary node by the relation M described in the previ-
ous section, but unfold has the effect of placing some struc-
tural constraints on the set of nodes that can be mapped
to a summary node. This is a result of the requirement
that unfold correspond to skip in the concrete domain; this
means that if a given abstract shape S can be transformed
by unfold into any shape in the set {Si}, then the set of con-
crete shapes γ(S) should equal

⋃
i γ(Si). So we can refine

the earlier definition of the concretization function to say
that S# ∈ γ(S) if it satisfies the requirements stated before
and if S# ∈

⋃
i γ(Si), where Si are all the shapes that can

be derived from S through the application of unfold. The
next section elaborates on how this definition relates to the
instrumentation predicates used by TVLA to describe the
structure of summary nodes.

Conditional Transition rule
x == null ∀ l ∈ L : ¬x(l)
x != null ∃ l ∈ L : x(l)
x == t ∀ l ∈ L : x(l) ⇐⇒ t(l)

x.data > t.data ∀ l1, l2 ∈ L : x(l1) ∧ t(l2) =⇒ gt(data, l1, l2)
x.data ≥ t.data ∀ l1, l2 ∈ L : x(l1) ∧ t(l2) =⇒ gte(data, l1, l2)

x.data == t.data ∀ l1, l2 ∈ L : x(l1) ∧ t(l2) =⇒ eq(data, l1, l2)
x.data != t.data ∀ l1, l2 ∈ L : x(l1) ∧ t(l2) =⇒ ¬eq(data, l1, l2)

Figure 11: Abstract semantics of the conditionals
involving the pointer variables

4.2 Relationship with TVLA
In order to understand some of the more subtle aspects of

our formalism, it is useful to understand how it relates to the
formalism in TVLA [15]. The two most apparent differences
between the two formalisms are the use of attachment points
as part of summary nodes and the use of fold and unfold.

In our system, the unfold definition serves two purposes:
it provides a mechanism to convey structural properties of
summary nodes, and it is also used to materialize summary
nodes, i.e. to produce a set of more refined shapes that to-
gether represent the same set of concrete configurations as
the original configuration. In TVLA, by contrast, structural
properties are described through instrumentation predicates.
These predicates are also used for materialization, but not
directly; instead, a focus operation first expands a summary
node into a set of possible shapes, and then a coerce oper-
ation uses the instrumentation predicates to refine the new
shapes and to remove those that do not satisfy the required
structural properties.

One can understand the unfold rules in our framework as
a specialized way of describing instrumentation predicates.
For example, from the unfold rule for mid we can derive the
following instrumentation predicate:

isMid(f, e) = (f = e) ∨ ∃f ′(f.next = f ′ ∧ isMid(f ′, e)) (6)

The predicate isMid encodes that every node in mid is reach-
able from the front attachment point, and therefore that
the sub-list between f and e is acyclic. When we say that
a summary node satisfies this predicate, it means that the
summary node can only represent sets of nodes where we
can find two nodes f and e that satisfy the predicate. The
unfold operation induces this predicate because we want the
effect of unfold in the abstract domain to be equivalent to
the effect of skip in the concrete domain, and this will only
be true if the summary nodes satisfy this predicate. It is in-
teresting to see, however, that the structure of the predicate
is very close to the structure of the unfold rules, with the
attachment points serving as convenient parameters to the
predicate.

Given such an instrumentation predicate, we can map
our summary nodes with attachment points to a shape in
TVLA; for example, Figure 13 shows how mid would look
like as a shape in TVLA. Our unfold operation is equiva-
lent to first applying materialization to partially concretize
the summary node and then coerce to remove invalid shapes
obtained after materialization.

The use of unfold in place of instrumentation predicates
and the use of attachment points both have a number of
advantages for the purpose of our framework. The first im-
portant advantage is that it simplifies the transition rules,
because it eliminates the need to track instrumentation pred-
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Figure 12: Unfold and fold operations for different
data structure manipulations
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Figure 13: unfold in 3-valued shape analysis

icates. Another important benefit of using summary nodes
with attachment points is that it simplifies the graphical
representations, as can be readily appreciated by comparing
Figure 13 with Figure 4. One clear difference between the
two representations is that Figure 13 includes a number of
selector edges with value 1/2 which are not present in the
diagrams in Figure 4. This is partly by convention, since we
omit from our representation the selector edges within sum-
mary nodes, and partly because the assumptions in Section 3
ensure that references from concrete to summary nodes al-
ways point to their attachment points.

Compared to TVLA, out formalism allows for a simpler
analysis and more concise graphical representations. The
downside, of course, is reduced expressive power. If one were
trying to verify arbitrary programs, the shortcuts taken by
our system would make the analysis impractical—it would
be too easy for the user to write a program that could not
be verified because it violated one of our assumptions. On
the other hand, as Vechev et al. have pointed out [31], the
combination of synthesis with abstract interpretation means
that the synthesizer can work around the limitations of the
abstract interpreter by producing programs that are easy
to verify. In our case, the way the synthesizer works around
the limitations imposed by our assumption is by using unfold
statements to materialize nodes at the right time and ensure
that the assumption is never violated.

5. CONSTRAINT BASED SYNTHESIS
Having defined our basic abstract interpretation frame-

work, we can now describe how we frame the synthesis prob-
lem as a set of constraints whose solution will describe the
implementation we are looking for. The starting point for
this process is the control flow sketch together with the sto-
ryboard.

The control flow sketch Sk constitutes the control flow
graph of the implementation; unlike a CFG, however, the
vertices are not just basic blocks because they can contain
conditional assignments. More formally, we represent the
control flow sketch Sk as a directed graph Sk = G(V,E)
where V represents a set of blocks of code which can ei-
ther be a sequence of conditional assignment statements or
a conditional (for loop exit conditions); E in turn repre-
sents potential transitions between these blocks of code. By
convention, we say that vertex v0 is the entry point of the
graph node and vN is the exit point; neither the entry nor
the exit blocks contain any code. As for scenarios, each of
them is represented as a pair of input and output states
Si = (Ini, Outi).

We use standard techniques to encode each block of un-
known statements as a parameterized function Fi(in, ci),
where the parameter ci selects which block of code out of



the set of possible blocks of code Fi will represent. The in-
puts and outputs of Fi are elements of the abstract domain,
which happen to be sets of shapes. Now, the set of possible
sequences of conditional assignments is infinite, but bound-
ing the maximum length of the statement sequence makes
the set finite as there are a finite number of assignment state-
ments and conditionals of the form shown in Figure 10 and
Figure 11 respectively.

The goal of the synthesis process is to find values of ci
such that for each scenario Sk, the least fixed point solution
to the following equation satisfies tN = Outk:

t0 = Ink ∧ ∀vi ∈ (V \ v0) ti = Fi(
⋃

j∈pred(vi)

tj , ci) (7)

The function pred(vi) in the equation above indicates the
set of predecessors of node vi. The equation above is fairly
simple, but two challenges prevent us from solving it directly
with an SMT solver. First, the equation above requires us to
find not just any solution, but the least fixed point solution.
Additionally, the ti in the equation above are elements in
the abstract domain, which is composed of sets of shapes.
Such sets can get quite big given the nature of our domain,
so representing them näıvely in an SMT solver is infeasible.
In the rest of this section, we describe how our framework
addresses both of these problems.

5.1 Computing Least Fixed Points
In order to find a least fixed point solution to Equation (7),

we start from the assumption that an iterative method can
reach a least fixed point after visiting each vertex in Sk at
most K times. Now, let PK be the set of all paths in Sk that
visit each vertex at most K times.For each path pi ∈ PK ,

we can define a path transformer pi(in,
~C) which is just the

composition of all the transfer functions Ft(in, ct) of all the

vertices vt in the path, where ~C = [c0, . . . , cN ]. Then, the
least fixed point solution to the value of tN in Equation (7)
will be given by ⋃

pi∈PK

pi(Ink, ~C)

The equivalence follows from the distributivity of F (i.e.
the fact that F (a ∪ b) = F (a) ∪ F (b)). Given a solution to
the equation above, it is easy to check the assumption of K
convergence by simply checking the solution against Equa-
tion 5.

5.2 Dealing with sets of abstract shapes
As we said before, in order to feed the constraints into a

solver, we would like to avoid having to reason about sets
of abstract shapes. Our strategy will be as follows. First,
from a transfer function F , we can define a function F j

that returns a singleton set containing the jth element of
the set returned by F , or an empty set if there is no jth

element. Thus, F (a) = ∪jF
j(a), where each F j produces

either singleton or empty sets.
The strategy even works when composing functions thanks

to the distributivity of F . Because of this property, if we
have a function F (a) and a function T (a), then the compo-
sition F (T (a)) can be computed as ∪i,jF

j(T i(a)).
In the case of our transfer functions Fi(in, c), it is rel-

atively easy to derive the functions F j
i (in, c). For exam-

ple, one of the statements that can produce multiple shapes
from a single one is unfold, so if we want a function to re-
turn only the jth shape produced by unfold, we only use
the jth unfoldPred instead of using all of them. Composing
the transfer functions for each block into path expressions,

we get a path expression p
~j
i (Ink, ~C), where instead of com-

posing functions Fi(in, ci) in the path, we compose func-

tions F ji
i (in, ci). With this transformation, the constraint

we need to solve becomes:

∃~C (Outk =
⋃
~j

⋃
pi∈P

p
~j
i (Ink, ~C))

The set unions in the equation above can be turned into
universal quantifiers to produce the following equation:

∃~C (∀~j∀pi∈P p
~j
i (Ink, ~C) ∈ Outk ∧

∃~j∃pi∈P p
~j
i (Ink, ~C) = Outk)

The universally quantified part of the equation forces the
union of the path transformers to be a subset of Outk, while
the existentially quantified part of the constraint ensures
that the singleton Outk is a subset of the union of the path
transformers. The equation above no longer has to reason
about sets with more than one element, but in exchange for
that, it has to cope with ∃∀ quantifier alternation. However,
the Sketch system is very effective in dealing with such
doubly quantified formulas, so our system actually translates
the above equation into a sketch and uses the Sketch solver
to find a solution to all the unknowns.

5.3 Termination
Equation 5 only ensures partial correctness, so there is no

termination guarantee for the synthesized implementation.
However, we have found that adding a few additional con-
straints was enough to guarantee terminating solutions for
all the examples we examined. The additional constraint
was to require that for every state reachable inside any loop
in the program it is possible to satisfy the loop exit condition
in an additional K loop unrollings. If the unfold and fold
predicates satisfy well-formedness constraints [19] and with
the restriction of using only one unfold and fold operation
per loop, the framework can guarantee termination of the
synthesized implementation using a reasoning similar to [4].
This restriction works for data-structure manipulations that
perform a single pass over the data-structure.

6. EXPERIMENTS
In our experiments with the Storyboard framework, the

key questions we explored were: i) how does it scale for syn-
thesizing reasonably complex data-structure manipulations,
ii) how much additional information is required to be pro-
vided in the storyboards other than just the input-output
scenarios, iii) how much having abstraction in the scenarios
help and iv) can we use it to synthesize user-defined data-
structure manipulations.

Table 1 presents the experimental results of the case stud-
ies that we performed with the framework. The experiments
were run on an Intel Core-i7 1.87GHz CPU with 4GB of
RAM. The first column in the table shows the name of the
manipulation where ll refers to singly linked-list, dll refers



to doubly linked-list and bst refers to binary search tree.
The table presents the details about number of scenarios
used in storyboard, the total time it took to synthesize the
implementation, the number of clauses in the SAT transla-
tion of the constraints and the memory used. Even though
this is not the most efficient encoding of the constraints, we
were able to synthesize all the manipulations in less than 6
minutes using less than 1 GB of memory.

For reducing the search space in our experiments, we had
to restrict the usage of unfold and fold statements to at most
once at the beginning and end locations inside the loop re-
spectively; which works well for single-pass algorithms. The
case studies with the Interm column marked yes in Table 1
required some additional intermediate state configuration,
e.g. in the storyboard for linked list insertion, we also had to
provide intermediate state configuration after the loop body
in the skeleton for helping the synthesizer to converge faster.
These intermediate configurations present a natural inter-
face for providing hints about the manipulation. Some case
studies also required composition of storyboards (marked
with a *), e.g. the bst-deletion storyboard required compo-
sition of bst-search and bst-find-min storyboards.

In some cases like bst-deletion, we found that the abstract
input-output specification was too weak and allowed many
undesired solutions; but it was easily fixed by providing a
couple of concrete input-output bst instances. We also per-
formed an experiment where we only provided concrete ex-
amples for these manipulations, the synthesizer either gen-
erated an undesired solution or got timed out and never
converged for most of these case studies. This experiment
shows the ability of abstract input-output examples to prune
a big search space of undesired programs.

We have used our framework to synthesize manipulations
for a complicated real-world AIG data structure. AIG is
a DAG that encodes the structural implementation of the
logical functionality of a circuit [18] using two-input AND
gates and inverters. Each internal node of AIG represents
an and gate and has two parents corresponding to the two
inputs of the gate. The child list information for each node
is overlayed inside the node itself by keeping a pointer to the
first child and pointers to the sibling nodes. Even though
our framework currently can not synthesize arbitrary graph
manipulations, we exploit the listness property of the child
lists of AIG nodes for synthesizing its manipulations.

Even for complicated data-structures like red-black trees,
where it is difficult to draw a simple storyboard expressing
the complex invariants about the data-structure, we found
the storyboard framework helpful for synthesizing fragments
of low-level code of different cases individually and then
manually composing the synthesized code to obtain a com-
plete implementation. Figure 14 shows the storyboard for
red-black tree fixInvariant method (part of the insertion

procedure) that we obtained from an online lecture note [1].
We used the framework to synthesize low-level code for the
four cases, which were then easily composed manually inside
the complete algorithm. Our tool and more details about the
case studies can be found at the storyboard website [2].

7. RELATED WORK
Software synthesis has been an active research area at

least since the early 80s when Waldinger and Manna [17,
16] did seminal work on deductive synthesis. A more algo-
rithmic approach to synthesis was pioneered by Pnueli and

Figure 14: Red-black tree fixInvariant storyboard

Manipulation #Scens Time #Clauses Memory Loops Interm
ll-insertion 4 2m9s 1.99M 0.75GB 1 Yes
ll-deletion 4 1m48s 1.88M 0.54GB 1 Yes
ll-reversal 4 1m49s 1.3M 0.35GB 1 No
ll-find-last 4 0m56s 1.02M 0.29GB 1 No

ll-swap-first-last 4 4m18s 1.08M 0.31GB 1 Yes
dll-traversal 4 1m58s 1.72M 0.88GB 1 No
dll-reversal 4 3m47s 2.04M 0.49GB 1 No

bst-search(contains) 1 1m02s 0.62M 0.37GB 1 No
bst-search 1 6m07s 0.77M 0.45GB 1 No

bst-find-min 1 0m58s 0.63M 0.18GB 1 No
bst-find-max 1 0m23s 0.57M 0.16GB 1 No
bst-left-rotate 3 3m18s 1.41M 0.50GB 0 No

bst-right-rotate 3 3m15s 1.47M 0.43GB 0 No
bst-insertion∗ 3 1m52s 1.04M 0.46GB 1 Yes
bst-deletion∗ 6 3m13s 0.63M 0.62GB 2 Yes
aig-insertion∗ 4 1m04s 0.17M 0.31GB 1 Yes

Table 1: Experimental results for case studies

Rosner in the context of finite state controllers [20]. More
recently, some of the ideas from the field of controller synthe-
sis have been applied to software, for example, to synthesize
program repairs [14]. For a recent survey, see [8].

The idea of using abstract interpretation for synthesis was
recently introduced by Vechev, Yahav and Yorsh [31], as a
follow up to earlier work on synthesis of concurrent data-
structures [30]. Their system is designed to synthesize effi-
cient synchronization for concurrent programs, and is very
different from ours, both in its scope and in the algorithms it
uses. Unlike their system, our synthesizer is based on a more
general constraint-based approach that allows us to handle
extremely large search spaces with no apparent structure.

The idea of using a constraint-based approach for ab-
stract interpretation was previously introduced by Gulwani
et al. [10]. Recently, their group has used similar tech-
niques to synthesize invariants [11] and even complete pro-
grams [29]. Some important distinctions between their work
and ours are the use of storyboards to capture insights, as
well as our path-based representation of the constraints to
support a very large and complex abstract domain.

The idea of using a sketch to define the structure of the im-
plementation was adapted from the original work on sketch
based synthesis [25]. The idea was originally applied to the
domain of bit-stream manipulations [27], such as ciphers and
error correction codes, and has been applied more recently to
scientific programs [25] and concurrent data-structures [26].
Although Sketch can synthesize some of the data-structure
manipulations, it requires the programmer to provide de-
tailed sketches and only provides bounded guarantees for the



synthesized implementation. Additionally, writing specifi-
cations for data-structure manipulations tend to be harder,
because they have to be written as tricky test harnesses.

Recent work in data representation synthesis [12] auto-
matically synthesizes efficient data-structure representations
for a given set of data usage patterns. The representations
are built from a library of data-structure building-blocks
and support only a fixed set of common interface methods.
Our framework supports the implementation of more gen-
eral data-structure manipulations, such as our list reverse
example. The price of the generality is a more involved in-
teraction model compared with the push-button interface
provided by that system.

Pins [28] introduced the idea of focusing on individual
paths when generating constraints. Their approach does not
build upon abstract interpretation as ours and our frame-
work lets the synthesizer select interesting paths automat-
ically using the Cegis algorithm unlike a heuristic tech-
nique used by Pins. Gulwani et al. [9, 13] have proposed
component-based synthesis techniques for synthesizing tricky
(but loop-free) code snippets from a given multi-set of com-
ponents. These techniques are not applicable in our setting
as we deal with loopy programs.
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