Inferring Data Polymorphism in Systems Code-

Brian Hackett
Stanford University
bhackett@cs.stanford.edu

ABSTRACT

We describe techniques for analyzing data polymorphism in
C, and show that understanding data polymorphism is im-
portant for statically verifying type casts in the Linux kernel,
where our techniques prove the safety of 75% of downcasts
to structure types, out of a population of 28767. We also
discuss prevalent patterns of data polymorphism in Linux,
including code patterns we can handle and those we cannot.

General Terms

Verification, Experimentation

Keywords

type checking, type casting, static analysis

1. INTRODUCTION

Consider a typical Linux function, saa7146_buffer_timeout,

which is part of the device driver for the saa7146 chipset:

// drivers/media/common/saa7146_fops.c
void saa7146_buffer_timeout(unsigned long data)

{
struct saa7146_dmaqueue *q = (struct saa7146_dmaqueue*)data;
struct saa7146_dev *dev = gq->dev;
unsigned long flags;

}

This function casts its integer parameter data to a pointer
to type saa7146_dmaqueue and then accesses the contents of
that structure. If data really is an integer, or if data is a
pointer to an object that is not of type saa7146_dmaqueue,
then these accesses will corrupt or crash the system. Type
casts like this one are ubiquitous in Linux and other large
C codebases. Analyzing these casts to determine their cor-
rectness requires deep reasoning about the heap, control flow
and data flow of the system. In addition, many of these casts

*This work was supported in part by NSF grants CNS-
050955 and CCF-0430378 with additional support from
DARPA and gifts from Intel and IBM.

Permission to make digital or hard copies of all or part of thizrkvfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aati¢bpies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquires prior specific
permission and/or a fee.

ESEC/FSE' 11, September 5-9, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

Alex Aiken
Stanford University
aiken@cs.stanford.edu

are used to implement polymorphism (including the above
cast), and thus any successful analysis needs to model com-
mon patterns of polymorphism.

We have developed a static analysis that, augmented with
177 programmer annotations, proves the safety of 75% of the
downcasts to structure types in Linux 2.6.17.1. The com-
plete analysis consists of many components [11]; in this pa-
per we focus on what we consider the most novel and difficult
issue, the problem of analyzing data polymorphism, which is
needed for 40% of the casts we are able to verify as well as
most of the casts we are not able to verify. In Section 2
we expand the example, show why the cast is correct and
motivate the problem of understanding data polymorphism.
In Sections 3, 4 and 5 we reduce the problem of analyzing
data polymorphism to discovering structural relationships
and structural correlations and describe our algorithm. Sec-
tion 6 presents experimental results, including examples that
are beyond the reach of our fully automatic analysis, which
we handle using programmer annotations. We postpone a
discussion of our contributions until Section 3, after we have
presented the extended example and the definition of struc-
tural relationships and structural correlations, the key ideas
underlying our approach.

2. EXAMPLE

To verify the cast in saa7146_buffer_timeout, we must
show the function’s callers always pass a pointer to a value
of type saa7146_dmaqueue. Now, saa7146_buffer_timeout
is never called directly. In fact, it is mentioned in only two
functions. The two cases are similar; one is shown below:

// drivers/media/common/saa7146_vbi.c
static void vbi_init(struct saa7146_dev *dev,
struct saa7146_vv *vv)
{
INIT_LIST_HEAD(&vv->vbi_q.queue);
init_timer (&vv->vbi_q.timeout) ;

vv->vbi_q.timeout.function = saa7146_buffer_timeout; (*)
vv->vbi_q.timeout.data = (unsigned long) (&vv->vbi_q);
vv->vbi_q.dev = dev;

The timeout field has type timer_list, a core kernel struc-
ture with a function pointer field function and an integer
field data, among others. After the function field of the
timer_list is assigned saa7146_buffer_timeout, where can
the function eventually be called? The function field never
has its address taken and is only assigned to a local variable
fn in the core kernel function __run_timers:

// kernel/timer.c
static inline void __run_timers(tvec_base_t *base)
{

struct timer_list *timer;
while (...) {

void (*fn) (unsigned long);

unsigned long data;

timer = list_entry(head->next,struct timer_list,entry);
fn = timer->function;

data = timer->data;

fn(data);

Function __run_timers repeatedly pulls timer_lists off
of lists and calls timer->function with timer->data. This
exposes the design intent of the timer_list structure: what-
ever is stored in the function field of a timer_list is called
with the data field of that same timer_list. The function
field points to saa7146_buffer_timeout for timers whose
data field was written by vbi_init. After such writes, the
data field points to the vbi_q field of a saa7146_vv struc-
ture, which has type saa7146_dmaqueue, which is just what
saa7146_buffer_timeout expects. Thus, we know that if
the function saa7146_buffer_timeout is only called with
vbi_q for its data parameter, then the cast it performs is
safe.

So, might saa7146_buffer_timeout be called with a pa-
rameter other than vbi_q? Two possibilities must be con-
sidered. First, the data field could be assigned another value
(of a possibly different type) between the calls to vbi_init
and __run_timers. Second, the function field could be
called somewhere outside __run_timers with a parameter
other than the data field of the timer_list. It turns out
both possibilities actually occur (see below), but neither af-
fects any timer_list containing saa7146_buffer_timeout
in the function field.

Normally the function and data fields of a timer_list
are written at the same time, shortly after the timer_list
is created—after all, __run_timers requires both fields to
be set. However, in a few places the data field is written
without any corresponding write to the function field, such
as in tlclk_interrupt:

// drivers/char/tlclk.c
static irqreturn_t tlclk_interrupt(...)

{

if (int_events & HOLDOVER_O1_MASK) {
alarm_events->pll_holdover++;
switchover_timer.expires = jiffies + msecs_to_jiffies(10);
switchover_timer.data = inb(TLCLK_REG1);
add_timer (&switchover_timer);

}

Under certain circumstances tlclk_interrupt changes the
data field of the global switchover_timer variable to a
non-pointer integer value. But switchover_timer cannot
alias a timer_list containing saa7146_buffer_timeout —
switchover_timer is a statically allocated timer_list, while
the timer manipulated by vbi_init is embedded in another
structure.

The other way saa7146_buffer_timeout might receive a
value other than vbi_q is if the function field is invoked
with an argument other than the data field. There are five

places in the kernel where the function field is invoked, and
__run_timers is the only one where the data field is passed.
The function ctnetlink_del_conntrack is representative of
the other four:

// net/ipv4/netfilter/ip_conntrack_netlink.c
static int ctnetlink_del_conntrack(...)
{

struct ip_conntrack *ct;
ct = tuplehash_to_ctrack(h);

if (del_timer (&ct->timeout))
ct->timeout.function((unsigned long)ct);

ip_conntrack_put(ct) ;

return 0O;

}

Instead of passing ct->timeout.data to ct->timeout.function,

ct itself is passed, exploiting knowledge that ct->timeout.data
== ct in this context. We know ct->timeout cannot alias
the timer from vbi_init: the two timers are embedded in
different types of structures. Thus, ct->timeout.function
cannot invoke saa7146_buffer_timeout.

3. ANALYZING POLYMORPHISM

When saa7146_buffer_timeout is called by __run_timers,
the data passed is provably generated by a previous call to
vbi_init, not any of the hundreds of other assignments to
the data field of a timer_list in the Linux kernel. The proof
relies on two facts. First, the indirect call in __run_timers
exploits a structural relationship between the function pointer
target and function argument: these are fields of the same
timer_list structure. In general, a structural relationship
is a pair of locations reachable (via zero or more field accesses
and dereferences) from a common base structure, or two lo-
cations reachable from the arguments to a common function.
Second, the possible values of the locations in a structural re-
lationship have structural correlations with one another: the
function field of a timer_list is saa7146_buffer_timeout
if and only if the data field was set by vbi_init, and simi-
larly for the hundreds of other functions that may be used
in a timer_list.

Structural relationships are related to the standard no-
tion of type polymorphism in languages with more advanced
type systems than C; commonly (but not exclusively) fields
in a structural relationship would have related polymorphic
types in statically typed functional or object-oriented lan-
guages. However, solving our problem requires more than
identifying polymorphic fields, as we must also understand
the actual contents of those fields, which means finding and
correlating the field assignments. In the example the cor-
relation is easily identified, as the structural correlation in-
volves only two fields of a single structure and both fields are
assigned in vbi_init. In more complex scenarios the struc-
tural relationship may span chains of dereferences across sev-
eral structures, and the correlated assignments to the fields
of the structural relationship may also be spread across mul-
tiple functions. It is the combination of identifying poly-
morphic data structures and the correlated side-effects to
different parts of these structures in the heap that makes
understanding data polymorphism a challenging problem.

Structural correlations are also related to standard no-
tions in points-to analysis. Consider a field a that can
take on values in set A and field b that can take on values
in set B. Context-insensitive points-to analyses are often

too inaccurate in the sense that the cross-product A x B
contains too many possibilities to be useful. By adding
some form of context we split the fields a and b into mul-
tiple abstract locations al, a2, ..., bl, b2 ...representing
smaller sets of runtime values, which will have analysis sets
Aq1,As,...,B1,Ba,... associated with them. The client of
the points-to analysis must still consider the cross-products
of values in these sets, but by adding context we hope that
the set of pairs |J; ; Ai X B; will be much smaller than the
original cross product A x B. The major difference with our
approach is that structural correlation defines the desired
output directly, without committing to a particular imple-
mentation strategy. Points-to analysis, in contrast, defines
a particular framework in which the approach to improving
precision is to refine (increase) the set of abstract locations.

No context-sensitive points-to methods have been shown
to scale to programs the size of the Linux kernel, and based
on the efforts that have tried [4], we believe it is necessary
to take a different approach. The space consumption of a
global points-to graph, particularly a context sensitive one,
is difficult to control. Thus, our method does not build a
global points-to graph. Instead, we first perform only local
analysis of each function (which is in fact much more detailed
than a points-to computation). At the interprocedural level
we trade time for space, using an escape analysis to follow
values through the program. This analysis queries the local
analysis information, but does not build a global points-to
graph, construct explicit contexts, or refine abstract loca-
tions. Because we do not build a global points-to graph or
any global structures except for the structural correlations
that are the output of the data polymorphism analysis, we
do not encounter the memory consumption problems that
appear to limit the scalability of context-sensitive points-to
analyses.

Structural relationships and correlations are sufficiently
general to tackle our polymorphism problem, the algorithm
for which we break into two phases. First, we scan all indi-
rect call sites to identify the important structural relation-
ships holding between the function pointer used to invoke
the call and the data (or other function pointers) reachable
from the arguments to the call (Section 4). Second, we take
in turn all the structural relationships identified for some
indirect call site by the first phase, and for each of these
identify all the possible structural correlations between par-
ticular functions and values which could exist for that rela-
tionship (Section 5).

Our algorithm is sound in the sense that if it identifies
a structural relationship and associated structural correla-
tions, it is guaranteed that all of the possible structural cor-
relations for that structural relationship have been discov-
ered; the algorithm has a complete view of the possible com-
binations of values that can be assigned to the fields involved
in the structural relationship. Our algorithm is conserva-
tive in that it is not guaranteed to discover every structural
relationship with non-trivial correlations, and even for the
structural relationships it identifies as important it may fail
to compute a set of structural correlations. Any field not
in a structural relationship, or in a structural relationship
that could not be successfully analyzed, is conservatively as-
sumed to be able to take on any possible value for the field,
independent of the values of other fields.

In summary, our main contributions are:

e We introduce structural relationships and structural
correlations, which characterize the desired output of
any analysis of data polymorphism without implying
a particular implementation technique.

e We present an algorithm for computing structural cor-
relations that is substantially different from conven-
tional points-to analyses and has advantages for ana-
lyzing very large systems. In particular, we combine
very precise but separate local analysis of individual
functions with demand-driven and space-efficient in-
terprocedural search algorithms.

e The core component of our search algorithm is an in-
terprocedural escape analysis that may be of indepen-
dent interest. The novel aspect is tunable precision, al-
lowing us to conduct escape analysis at different gran-
ularities and use the most precise analysis which termi-
nates with acceptable cost. Because both the cost and
precision of an escape analysis query is unpredictable,
the ability to try different strategies is very important.

e We give numerous examples of data polymorphism from
the very simple to the very involved, including exam-
ples that our system cannot handle fully automatically.
While the simple examples can be expressed in modern
languages using parametric polymorphism, the most
involved examples are not readily expressible in any
static type system known to us, and furthermore, we
are unaware of any previous literature where such cod-
ing patterns are described. These examples point out
future challenges for both static analysis and static
type systems in obtaining more expressive and auto-
mated systems for checking properties of large systems.

e We give the results of a large experiment in which we
are able to statically verify 75% of downcasts to struc-
ture types in a version of the Linux kernel, out of a
population of 28767.

Most of the components of our system have been described
previously. It is the system architecture, the way the com-
ponents are assembled, that is new. Thus, with a few ex-
ceptions for key aspects of our approach (structural relation-
ships, correlations, and some aspects of the interprocedural
escape analysis), we describe our approach at a relatively
high level; details may be found in [11].

4. STRUCTURAL RELATIONSHIPS

A trace is an access path: a series of field accesses and
pointer dereferences beginning with a global variable, local
variable, function parameter, or allocation site. For exam-
ple, x->f .g->h is a trace starting from variable x. A relative
trace (or rtrace) drops the starting variable or allocation site;
it is a pure sequence of field accesses and dereferences.

Structural relationships are recorded in two maps, one for
structural relationships on types and one for functions:

= 2(type XrtraceXrtrace)

SR_Type
SR_Func

(callsite x trace)

(callsite x trace) = 2(racextrace)

Consider a function g with an indirect call £(x) at call site
I. Let AT be the trace which the call uses to access x (in

this case a function argument, and more generally a se-
quence of field selections/dereferences from an argument).
Now (C,RFT,RT) € SR_Type(I,AT) if there is a structure
of type C such that the function pointer f is at relative
trace RFT from C and x is at relative trace RT from C. Also,
(FT,T) € SR_Func(I,AT) if the function pointer £ is reach-
able from an argument to g with trace FT and x is also
reachable from one of g’s arguments with trace T. For the
indirect call in __run_timers and the call’s first argument,
a single structural relationship is found for SR_Type:

(timer_list,.function,.data)

Computing structural relations is a straightforward intrapro-
cedural analysis. Taking a tuple (I,AT) as input, we deter-
mine the trace FT through which the indirect call is invoked,
and the trace T passed as argument AT to the indirect call
(the memory model accounts for all prior assignments and
control flow in the function invoking I [19, 12]). Occasion-
ally there may be multiple different values for FT or T, de-
pending on the path taken to reach I (an example of this,
__dentry_open, is shown in Section 5.3). In such cases we
compute the relationships separately for each possible FT/T.
There is a problem, however. While using the plain ar-
guments is sufficient for __run_timers, some calls are con-
cerned not with an argument, but a field or transitive field of
an argument (again, see Section 5.3). In general the amount
of data reachable from each argument, and thus the number
of possible structural relationships, is unbounded. To bound
the number of structural relationships, we focus on relation-
ships between function pointers and untyped data—void*
pointers and integers which could be pointers in disguise
(such as the argument to saa7146_buffer_timeout). These
relationships are the most likely to have meaningful struc-
tural correlations, as well as being the most useful to the
casting analysis. The argument traces AT we consider are:

e void* call arguments,

e voidx fields of call arguments (or fields of fields, tran-
sitively, without following dereferences),

e any trace that might be cast by a target of the indi-
rect call, as determined by a separate interprocedural
analysis to determine possible function pointer targets
and a prepass to look for casts in each function.

5. STRUCTURAL CORRELATIONS

For each structural relationship for some function call we
represent the correlations that may hold:

SC_Type (name X rtrace x rtrace) =
2(na7ne><7La'me><t7'ace) 4T
SC_Func (name X trace X trace) =

2(name XnameXxtrace) i

Each (FNPTR,FN,DT) € SC_Type(C,FT, T) is a possible corre-
lation for the (C,FT,T) structural relationship. For a value
of type C, the value assigned to trace FT may be the function
FNPTR, and the value assigned to trace T may be the value of
DT when accessed from some call to FN; the function name FN
is needed to give the context in which trace DT is interpreted.
The relation SC_Func is similar. For the timer_list rela-
tionship (timer_list,.function,.data), there is a single

correlation introduced by vbi_init:
(saa7146_buffer_timeout,vbi_init, &vv->vbi q)

There are hundreds of correlations for this relationship, but

no other uses saa7146_buffer_timeout for the function pointer.

To compute correlations for a structural relationship R,
we first compute tuples (WFN,WFT,WT), where function trace
WFT and trace WT may be set for R within function WFN. For
SC_Type, WFN includes functions that write the fields of the
relationship, and WFT and WT are the possible pairs of values
written to those fields. If only one field is written, the other
reflects the field’s initial value. For SC_Func, WFN includes
functions calling the function containing the indirect call I,
and WFT and WT are the corresponding values passed at that
call site in WFN.

The actual correlations (FNPTR,FN,DT) are computed from
the triples (WFN,WFT,WT) by converting the trace WFT to one
or more concrete function names FNPTR via any of the fol-
lowing methods:

e Use an escape analysis to determine where WFT came
from and which functions it could refer to (Section 5.1).

e Follow transitive structural relationships between WFT
and WT (Section 5.2). If WFT and WT are derived from
the same structure, or both passed into the current
function, they share a relationship whose correlations
are a superset of the possible values for WFT and WT.

o If WFN is always invoked through an indirect call, look
for structural relationships between WFT and the func-
tion pointer used to invoke WFN (Section 5.3).

Each of these approaches either fails or generates an over-
approximation of the values of WFT and WT. If all approaches
fail, we set SC_Type or SC_Func to T; we could not capture
the effect of all writes affecting the relationship. Other-
wise, we take the intersection of all the result sets to get
the tightest overapproximation we can for the correlations
on (WFN,WFT,WT).

5.1 Escaped Correlations

We have developed an escape analysis determining where
a value escaped from or where it may escape to. As men-
tioned in Section 3, we use escape analysis to avoid the un-
predictable space consumption of a global points-to graph.
The escape analysis’ most novel aspect is tunable precision,
which we discuss further below.

Our escape analysis is built upon a path-sensitive, intra-
procedural memory and alias analysis that computes all aliases
for each memory location accessed within a function body
or loop in the manner of [19, 12]. Given a pair of traces,
this per-function analysis returns the path-sensitive condi-
tion within that function under which the two traces alias.
Note that if the condition is false, the traces cannot alias.

The escape analysis is demand driven, flow insensitive and
has limited context sensitivity, but suffices for determining
the functions referred to by many values of WFT. Consider a
function trace WFN in function f. Escape_Backward(f,WFN),
the set of functions that could flow to WFN, is calculated
as follows (we do not describe Escape_Forward(,) which is
symmetric). First, £’s local information is queried to deter-
mine traces WFN is equivalent to, and in particular whether
WFN is derived from a global or local variable, an argument
of £, a field of a heap-allocated data structure, or a constant

(a concrete function name). The most interesting cases are
handled as follows:

e [f WFN aliases a function name, we return a singleton
set containing that function.

e If WFN aliases an argument x of £, we return the union
over all the following sets. Without loss of generality,
assume x is the only argument of f.

— For any direct call f (e) occurring in a function g,
we compute Escape_Backward(g,ET), where ET is
the trace for e.

— If the address of f is taken in function h, we also
compute the set of indirect call sites of £ via Es-
cape_Forward(h,FFN), where FFN is the trace of
the location to which £ is assigned. We add to the
output Escape_Backward (k,AT) for each such in-
direct call in a function k with argument trace
AT.

e [f WFN aliases a structure field, then we must compute
both forwards and backwards escape information for
that field to see what assignments to the field may
flow to WFN.

The output of the escape analysis is the set of concrete
function names that can flow to WFN. In the simplest cases,
such as in vbi_init, WFT is already a named function and
the escape analysis gives us an exact singleton set. Now
consider the function vbi_init without the write to vv-
>vbi_qg.timeout.function (i.e., the line marked (*) is re-
moved). In this case, the value of WFT is the value of the
function pointer on entry to vbi_init, which is simply * (vv-
>vbi_qg.timeout.function). To compute the correlations,
we need to know what values this function pointer can have.
There are several ways to determine which concrete func-
tions escape to this value: we can examine values assigned
to the .function field of a timer_list anywhere in the
program, values assigned to the field .timeout.function
of a saa7146_dmaqueue, or to .vbi_qg.timeout.function of
a saa7146_vv, or values passed to vbi_init through the
function argument vv->vbi_q.timeout.function. These
are ordered by increasing precision: any value assigned to
the .timeout.function field of a saa7146_dmaqueue is also
assigned to the .timeout field of a timer_list, but not vice
versa. A low level of precision may be too imprecise. How-
ever, the escape analysis cannot always determine the set of
concrete functions for a value at a higher level of precision,
because it may be too expensive to explore all the possibil-
ities at a very fine level of granularity. In practice the best
level of precision varies widely; we try several and use the
most precise result that succeeds.

In this example, escape analysis using .function finds
every function that could be assigned to any timer_list, a
uselessly imprecise overapproximation. On the other hand,
using vv->vbi_q.timeout.function follows vv everywhere
it is passed in the code, and the escape analysis fails af-
ter exceeding a resource threshold. Escaping using .time-
out.function or .vbi_q.timeout.function yields the cor-
rect result, finding the only value that is assigned directly
to this field chain is saa7146_buffer_timeout and that the
address of .timeout is not passed anywhere which will lead
to the function field being written.

5.2 Transitive Correlations

Sometimes structural relationships are dependent on one
another. Consider this code from the Linux IRQ subsystem:

// kernel/irq/manage.c

int request_irq(unsigned int irq,
irqreturn_t (xhandler) (int, void *, struct pt_regs *),
unsigned long irqflags, const char * devname, void *dev_id)

struct irqaction * action;

action = kmalloc(sizeof (struct irqaction), GFP_ATOMIC);
if (laction) return -ENOMEM;

action->handler = handler; (*)

action->flags = irqflags;

cpus_clear (action->mask) ;

action->name = devname;

action->next = NULL;

action->dev_id = dev_id; (*)

}

Type irqaction has a function pointer handler called when
a specific interrupt is received. The handler field is passed,
among other things, the void* field dev_id, so .handler and
.dev_id have a structural relationship R. Each irqaction
is created within request_irq; note the function arguments
handler and dev_id. There is thus another structural re-
lationship R’ between variables handler and dev_id, and
because of the assignments marked (*) any correlations in
R’ are also correlations of R. We detect such dependencies
between structural relationships in a manner similar to the
handling of indirect call sites (Section 4). When computing
structural correlations for the handler and dev_id fields of
irqaction, we notice the assignments to those fields in re-
quest_irq participate in R’ and add all correlations for R’
to R. Because there may be cycles in the graph of dependen-
cies between structural relationships, this process is iterated
to a fixed point (i.e., until no new transitive correlations are
discovered).

5.3 Dominating Indirect Calls

More complicated types of data polymorphism correlate
data with multiple function pointers. These function point-
ers often manage the data’s contents, and we can recover
correlations from calls to these functions. Consider this func-
tion in the saa7146 driver:

// drivers/media/common/saa7146_fops.c
static ssize_t fops_read(struct file xfile,
char __user *data, size_t count, loff_t *ppos)

{
struct saa7146_fh *fh = file->private_data;
switch (fh->type) {

}
}

The file->private_data pointer has type void*, and
thus fops_read performs a cast we are interested in checking
for type safety. What’s going on with this function?

In keeping with Unix practice, user applications in Linux
interact with many devices as if they were regular files.
Linux has a common interface for defining new files: the
file_operations structure, a table of 27 function pointers
(though not all are used by each driver or filesystem).

// include/linux/fs.h
struct file_operations {
struct module *owner;
loff_t (*1llseek) (struct filex, loff_t, int);

ssize_t (*read) (struct file*, char __user*, size_t, loff_tx*);
ssize_t (*aio_read) (...);
ssize_t (xwrite) (...);

ssize_t (*aio_write) (...);

int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);

N

Interaction with a file is primarily through the function
pointers in the f_op field pointing to the file’s file_operations.
For example, vEs_read reads out of a file:

// include/linux/fs.h
struct file {

struct dentry

*f_dentry;
struct vfsmount *f_vfsmnt;
const struct file_operations *f_op;

void *private_data;

.

// fs/read_write.c
ssize_t vfs_read(struct file *file,
char __user *buf, size_t count, loff_t *pos)

{

ret = security_file_permission (file, MAY_READ);
if (!ret) {
if (file->f_op->read)
ret = file->f_op->read(file, buf, count, pos);

¥
return ret;

}

The system call sys_read invokes vfs_read directly. To
allow vfs_read and other top-level file operations to in-
teract with saa7146 devices, the saa7146 driver creates a

file_operations structure whose read field is set to fops_read.

Note vfs_read will indirectly call fops_read.

// drivers/media/common/saa7146_fops.c
static struct file_operations video_fops =

{
.owner = THIS_MODULE,
.open = fops_open,
.release = fops_release,
.read = fops_read,
.Wwrite = fops_vwrite,
};

Now that fops_read can be invoked, why is the cast it per-
forms correct? Interestingly, video_fops is never directly
assigned to any file->f_op, and writes to the f_op field are
never directly correlated with writes to the private_data
field. A more elaborate mechanism is in use. Function
__dentry_open, which opens a file, sets the f_op field and
calls its open method.

// fs/open.c

static struct file *

__dentry_open(struct dentry *dentry, struct vfsmount *mnt,
int flags, struct file *f,
int (*open) (struct inode *, struct file *))

f->f_dentry = dentry;
f->f_vfsmnt = mnt;
f->f_op = fops_get(inode->i_fop);

if (lopen && f->f_op)
open = f->f_op->open;

if (open) {
error = open(inode, f);
if (error)
goto cleanup_all;

Returning to the video_fops used to store fops_read, we
see the corresponding open function is fops_open, which sets
the private_data field of the file to the value expected by
fops_read.

// drivers/media/common/saa7146_fops.c
static int fops_open(struct inode *inode, struct file *file)

{
struct saa7146_fh *xfh = NULL;

fh = kzalloc(sizeof (*fh) ,GFP_KERNEL) ;
if (NULL == fh) {

goto out;
}
file->private_data = fh;
fh->dev = dev;
fh->type = type;

For the polymorphic data analysis we need to correlate the
f_op->read field of a file with the private_data. We
cannot do this by looking for matched writes of f_op and
private_data, but instead by matching up the £_op->open
function and the writes it performs with the f_op->read
function.

The write we are most concerned with is in fops_open
to file->private_data. We are interested in the possible
values for file->f_op->read here, and while that value is
not written in fops_open we can get information about it
from the call stack. Now, fops_open is only called indirectly
through __dentry_open and a few similar functions. In each
such function we can prove fops_open is only called through
file->f_op->open: the code is some variant of file->f_op-
>open(inode, file). We thus know in fops_open, file-
>f_op->open == fops_open. When this equality holds, what
are the possible values for file->f_op->read? If we track
the structural relationship for type file_operations be-
tween its open and read fields, we can answer this question
with the resulting correlations.

Finding the correlations for this file_operations rela-
tionship is straightforward, as the open and read fields are
always written in synchronization with each other, almost
always in a global initializer. With fops_open in the open
field, the only value for the read field is fops_read, which is
thus correlated with the value written to private_data in
fops_open.

This dominating-caller technique is geared towards rela-
tionships involving function pointer tables with an open-type
method that fills in private data for other methods in the
table to access. The technique in whole is:

1. For a function FN, find a function pointer trace XFT
such that FN is called only when XFT is a particular
function XFNPTR. This dominance relation holds for FN
if either:

e FN is only called indirectly and XFT is the invoked
function pointer at each parent call site. In this
case XFNPTR = FN.

e Each PFN that can invoke FN is itself dominated
by calls where XFNPTR = YFT for some YFT in PFN.

Searching for dominators is k-limited to avoid unbounded

call graph exploration; using k = 5 has been sufficient.

2. Look for a structural relationship on a struct type
between XFT and WFT. Normally the type is a function
pointer table like file_operations.

3. If there is such a relationship, then for each correlation
between XFNPTR and some ZFT, the possible values for
WFT are the union over the the ZFT. Normally each ZFT
is a particular function; if not, resolve with the escape
analysis as in Section 5.1.

6. RESULTS

The version of Linux we analyzed, 2.6.17.1, contains about
4.4 million lines of code and 11976 indirect call sites. Of
these call sites, 7850 (66%) involve structural relationships—
a parameter to the call was either a void* pointer or was
a structure containing a void# field. From these call sites,
8830 structural relationships were identified, and an addi-
tional 5939 relationships were added by transitive correla-
tions (see Section 5.2), for a total of 14769 structural rela-
tionships. Of these, 9601 were between structure fields, and
5168 between the arguments to a function.

We successfully found the correlations for 10416 (71%)
relationships, including 5750 (60%) structure field relation-
ships and 4666 (90%) function argument relationships (the
remainder were marked as failed). Of the 7850 call sites
with relationships, correlations were found for at least one
relationship at 6883 (88%) sites.

Our parallel implementation of the analysis took 3 hours
and 42 minutes to run on a 50 core cluster, using 130 hours
of CPU time (the analysis was written using a logic pro-
gramming language [11], which in our experience is much
easier to develop analyses in than C, but incurs a 20x to 40x
slowdown over C). Analysis timed out on 522 functions, or
.5% of all functions analyzed; these timeouts can cause us
to unsoundly underapproximate the correlations. We exam-
ined many of these timeouts, which were generally caused
by functions where the analysis would have ultimately failed
anyway and thus did not affect the generated correlations.

The results of this analysis are crucial for our broader
analysis for proving the safety of type casts [11]. Out of a
population of 28767 downcasts, we prove the safety of 21637,
75.2% of the total. Of the proved casts, 8754 or 40% require
the polymorphic relationships identified here.

A small group of structures with polymorphic relation-
ships are responsible for most proved casts: 173 different
structures have some associated relationship used to prove
at least one cast. Of the 8754 casts proved using polymor-
phism, 7521 (86%) use relationships from a set of 26 struc-
tures used to prove 50 or more casts each, and 6000 (69%)
use relationships from a set of 10 structures used to prove
200 or more casts each. This latter set includes both the
file structure (used to prove 736 casts) and timer_list
structure (used to prove 408 casts).

Analyzing polymorphic relationships with sufficient pre-
cision for the casting analysis required 177 annotations (for
several million lines of code). These annotations are trusted:
they are assumed by the analysis and must be checked man-
ually. Annotations are needed for three broad reasons:

e General analysis imprecision leading to results too im-
precise for the casting analysis. This imprecision ac-
counts for about 75% of the annotations we needed.

e The initialization of a structure may not fit the infer-
ence techniques our analysis uses to find correlations.
The fit is often close, and we can use annotations to
adjust the inference to match the initialization.

e The structure’s polymorphism might not fit the model
of structural relationships our analysis uses. We can
sometimes fit these cases so that we can capture the
needed correlations, even if our analysis of the struc-
ture’s internals is largely incomplete.

The following subsections give examples of each category.

6.1 Analysis Overapproximation

When initialization of multiple fields of a data structure
is split across many functions, we need precise knowledge of
which fields are uninitialized, NULL, or non-NULL at vari-
ous control points to generate precise correlations. Consider
again the __dentry_open function from Section 5.3. In this
example, we are interested in structural relationships be-
tween the private_data field of a file and the read and
other fields of that file’s £_op table. The f_op is written in
__dentry_open, and private_data is written in the indirect
call to open.

Our analysis sees the f_op write in __dentry_open and
no private_data write, and so correlates all possible val-
ues of f_op->read (all file read functions in existence) with
the input value f->private_data. Simply inlining the pos-
sible targets of open cannot help; some open methods do not
set private_data, as those filesystems never use that field.
Now, __dentry_open is only called during initialization of
f, and the only possible value for f->private_data at en-
try to __dentry_open is NULL. Unfortunately, our system
misses that f->private_data is NULL due to tricky initial-
ization code. Usually __dentry_open is called through den-
try_open, which directly allocates a file with NULL contents
through get_empty_filp; this case is easy to analyze.

// fs/open.c
struct file *dentry_open(struct dentry *dentry,

struct vfsmount *mnt, int flags)
{

struct file *f;

f = get_empty_£filp();

if (f == NULL) { ... ¥

return __dentry_open(dentry, mnt, flags, f, NULL);
}

The difficult case is lookup_instantiate_filp, another caller
of __dentry_open, which passes in as the file argument nd-
>intent.open.file, a pointer to data allocated by its own
callers.

// fs/open.c

struct file *lookup_instantiate_filp(struct nameidata *nd,
struct dentry *dentry,
int (*open) (struct inode *, struct file *))

{

nd->intent.open.file = __dentry_open(dget(dentry), mntget(nd->mnt),
nd->intent.open.flags - 1, nd->intent.open.file, open);

While the nd->intent.open.file pointer is always either
NULL or points to an empty file in this function, it is allo-
cated several levels up the call chain and across potentially
multiple indirect calls. We use one annotation to disable cor-
relations between fields of the file structure within __den-
try_open.

In general, the annotations we used to fix imprecision
either disable a portion of the analysis for some function
(where doing so will not cause the correlations to be under-
approximated) or correct some intermediate analysis infor-
mation to increase the precision of the correlations.

6.2 Unhandled Initialization

Some data structures have important structural relation-
ships but the initialization is a poor fit for our inference al-
gorithm. For example, in some sound PCM layer structures
snd_pcm_ops is a function pointer table used by snd_pcm
and its children:

// include/sound/pcm.h

struct snd_pcm {
struct snd_card *card;

struct snd_pcm_str streams[2];

void *private_data;
void (*private_free) (struct snd_pcm *pcm);

};

struct snd_pcm_str {
int stream;
struct snd_pcm *pcm;
unsigned int substream_count;
unsigned int substream_opened;
struct snd_pcm_substream *substream;

};

struct snd_pcm_substream {
struct snd_pcm *pcm;
struct snd_pcm_str *pstr;
void *private_data;

struct snd_pcm_ops *ops;
struct snd_pcm_substream *next;
};

Each snd_pcm has two child snd_pcm_str structures in
its streams field; each snd_pcm_str has a list substream of
snd_pcm_substream structures that are linked through the
next field. Each object has pointers back to its parents.

There are important structural relationships between the
function pointers in the ops field of a snd_pcm_substream
and its private_data field. Writes to the ops and pri-
vate_data fields of snd_pcm_substream are not correlated in
the usual way. Instead of writing both fields together, func-
tions initializing the parent snd_pcm write to the ops field
of all the associated substreams with the snd_pcm_set_ops
helper function, but only write to the private_data of the
parent snd_pcm. An example is in snd_atiixp_pcm_new,
which is called during device probe and allocates and ini-
tializes a new snd_pcm.

// sound/core/pcm_lib.c
void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
struct snd_pcm_ops *ops)
{
struct snd_pcm_str *stream = &pcm—>streams[direction];
struct snd_pcm_substream *substream;

for (substream = stream->substream; substream != NULL;
substream = substream->next)
substream->ops = ops;

}

// sound/pci/atiixp_modem.c
static int __devinit snd_atiixp_pcm_new(struct atiixp_modem *chip)
{

struct snd_pcm *pcm;

int err;

err = snd_pcm_new(chip->card,
if (err < 0) return err;
snd_pcm_set_ops (pcm, SNDRV_PCM_STREAM_PLAYBACK,

&snd_atiixp_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,

&snd_atiixp_capture_ops);
pcm->dev_class = SNDRV_PCM_CLASS_MODEM;
pcm->private_data = chip;

., &pcm);

After initialization, the substream’s ops is set but not
its private_data. This state persists until the substream
is opened in snd_pcm_open_substream, which looks up the
substream via snd_pcm_attach_substream, which scans the
substreams in the snd_pcm, finds one that is not in use, and
sets its private_data to the private_data of the parent
snd_pcm.

// sound/core/pcm_native.c

int snd_pcm_open_substream(struct snd_pcm *pcm, int stream,
struct file *file,
struct snd_pcm_substream **rsubstream)

{
struct snd_pcm_substream *substream;
int err;
err = snd_pcm_attach_substream(pcm, stream, file, &substream);
if (err < 0) return err;
if ((err = substream->ops->open(substream)) < 0) goto error;
}

// sound/core/pcm.c

int snd_pcm_attach_substream(struct snd_pcm *pcm, int stream,
struct file *file,
struct snd_pcm_substream **rsubstream)

struct snd_pcm_str * pstr;
struct snd_pcm_substream *substream;

pstr = &pcm->streams[stream] ;
if (pstr->substream == NULL || pstr->substream_count == 0)
return -ENODEV;

for (substream = pstr->substream; substream;
substream = substream->next)
if (!SUBSTREAM_BUSY(substream)) break;
if (substream == NULL) return -EAGAIN;

substream->private_data = pcm->private_data;
substream->ffile = file;
pstr->substream_opened++;

*rsubstream = substream;

return 0;

By correlating a write to snd_pcm->private_data with
calls to snd_pcm_set_ops, a PCM driver ensures when the
substream is opened the correlation between private_data
and the ops used in snd_pcm_set_ops is introduced as a cor-
relation in the snd_pcm_substream structural relationship.
Our annotations add correlations for snd_pcm_substream
when snd_pcm->private_datais written or snd_pcm_set_ops
is called, not when the ops or private_data fields of the
snd_pcm_substrean itself are written.

6.3 Unhandled Polymor phism

The most interesting uses of polymorphism are those our
analysis cannot even express. There are not many of these,
but they are generally important. We have annotated one
such case, the Sysfs filesystem, providing a mechanism to
check the casts performed by clients of Sysfs with the usual
limitation that the annotations are trusted; we assume Sysfs
follows the annotated behavior. In this section we describe
the interface Sysfs uses to expose its polymorphism, which
we have annotated, and the internal invariants Sysfs main-
tains for this interface, which our analysis has little under-
standing of.

Sysfs provides a mechanism for userspace programs to
query and update attributes of the drivers and associated
devices by accessing files in the /sys directory. To the driver
writer, this functionality is behind a simple polymorphic in-
terface, which relates a kernel object kobj (each device used
in Sysfs has its own kernel object) with an attribute with a
name and access mode (read, read/write, etc.).

// include/linux/sysfs.h
int sysfs_create_file(struct kobject * kobj,

const struct attribute * attr);

struct attribute {

const char * name;
struct module * owner;
mode_t mode;

};

The driver uses sysfs_create_file by passing the device’s
kernel object and the attribute to associate with the device.

// drivers/block/aoe/aoeblk.c

static ssize_t aoedisk_show_state(struct gendisk * disk, char *page)

{
struct aoedev *d = disk->private_data;
return snprintf(page, PAGE_SIZE, ...);
}

static struct disk_attribute disk_attr_state = {
.attr = {.name = "state", .mode = S_IRUGO },
.show = aoedisk_show_state

};

static void aocedisk_add_sysfs(struct aoedev *d)

{
sysfs_create_file(&d->gd->kobj, &disk_attr_state.attr);
sysfs_create_file(&d->gd->kobj, &disk_attr_mac.attr);
sysfs_create_file(&d->gd->kobj, &disk_attr_netif.attr);
sysfs_create_file(&d->gd->kobj, &disk_attr_fwver.attr);

In this example, there is a correlation where the disk
parameter to aoedisk_show_state is equal to the d->gd
value as passed into a call to aoedisk_add_sysfs. We need
to know this correlation to show that the cast of disk-
>private_data performed by acedisk_add_sysfs is correct.
We use a total of 17 annotations to capture the correlations
introduced by calls to sysfs_create_file and several wrap-
pers which create Sysfs files for particular kinds of devices.

These annotations do not address the internal invariants
of Sysfs, the machinery hidden behind sysfs_create_file
and the filesystem itself which ensures acedisk_show_state
is called with the right value. The remainder of this sec-
tion describes these invariants. Calling sysfs_create_file
eventually leads to a file with the following file operations
(see Section 5.3 for a description of file_operations).

.read = sysfs_read_file,
.Write = sysfs_write_file,
.1llseek = generic_file_llseek,
.open = sysfs_open_file,
.release = sysfs_release,

.poll = sysfs_poll,

};

When a user tries to read this file, the sysfs_read_file
function is called, which invokes aoedisk_show_state on the
correct disk argument to get the state of the disk.

// fs/sysfs/file.c

static ssize_t sysfs_read_file(struct file *file, char __user xbuf,
size_t count, loff_t *ppos)

{

struct sysfs_buffer * buffer = file->private_data;

if (buffer->needs_read_fill) {
fill_read_buffer(file->f_dentry,buffer);
¥

}

static int fill_read_buffer(struct dentry * dentry,
struct sysfs_buffer * buffer)
{
struct attribute * attr = to_attr(dentry);
struct kobject * kobj = to_kobj(dentry->d_parent);
struct sysfs_ops * ops = buffer->ops;

count = ops->show(kobj,attr,buffer->page);
}

// fs/sysfs/sysfs.h
static inline struct attribute * to_attr(struct dentry * dentry)
{

struct sysfs_dirent * sd = dentry->d_fsdata;

return ((struct attribute *) sd->s_element);

static inline struct kobject * to_kobj(struct dentry * dentry)
{

struct sysfs_dirent * sd = dentry->d_fsdata;

return ((struct kobject *) sd->s_element);

}

// block/genhd.c
#define to_disk(obj) container_of (obj,struct gendisk,kobj)

static ssize_t disk_attr_show(struct kobject *kobj,
struct attribute *attr, char *page)

{

struct gendisk *disk = to_disk(kobj);

struct disk_attribute *disk_attr =

container_of (attr,struct disk_attribute,attr);

if (disk_attr->show) disk_attr->show(disk,page);

}

static struct sysfs_ops disk_sysfs_ops = {
.show = &disk_attr_show,
.store = &disk_attr_store,

};

Now the function sysfs_read_file calls the helper func-
tion £ill_read_buffer, which gets an attribute and kob-
ject from the file and performs an indirect call ops->show to
fill in the data from the attribute which will be returned by
the file read. If the attribute read is disk_attr_state.attr
(or any other attribute of a gendisk), the ops points to
disk_sysfs_ops, and ops->show calls disk_attr_show, which
backs out the kernel object pointer to the containing gendisk
(d->gd in the call to aoedisk_add_sysfs) and the attribute

pointer to the containing disk_attribute (disk_attr_state).
Finally, disk_attr_state.show points to acedisk_show_state,
completing the call chain from sysfs_read_file.

// fs/sysfs/file.c
const struct file_operations sysfs_file_operations = {

This example assumes numerous data invariants which
must hold or else the indirect calls will break. Our anal-
ysis can capture some of these invariants, but user anno-
tations are required for the rest; for more details, see [11].
More complete automatic checking for these properties at
this scale is well beyond what is currently feasible with ex-
isting techniques.

7. RELATED WORK

Our analysis can be characterized as simultaneously scal-
ing to large programs (millions of lines of code), being a ver-
ifier (i.e., proving properties, in contrast to finding bugs),
and being highly heap sensitive, meaning simply that to be
successful it requires a relatively deep understanding of the
relationships between data structures in the heap. Several
bug-finding (non-verifying) efforts have scaled to systems of
the size we consider; representative examples include [13,
19, 3]. Fewer verifiers have been demonstrated to work on
million line programs and these have focused on finite-state
properties; these systems are subject to the caveat (as is our
system) that portions of the analysis may be unsound due to
time-outs and other resource limits for a small portion of the
analysis [8, 14, 4]. We are not aware of any previous work on
verifying type casts that scales to programs of the size that
we analyze, and more generally we are not aware of any ver-
ification system that is heap sensitive on multi-million line
programs.

C and C++ are alone among widely used typed languages
today in not providing type safety guarantees. Consequently,
research has sought to ensure that C programs are type safe,
or to replace C with similarly expressive type safe alterna-
tives. Most work focuses not just on type safety, but mem-
ory safety as well (ensuring NULL or dangling pointers are
not dereferenced, buffers do not overrun, and so forth).

Siff et. al. [18] describe rules for physical subtyping in C
and examine the casts in several hundred thousand lines of
code. They find that about 85% of the downcasts involv-
ing structure types in C are between void* or char* and
a structure, rather than between different structure types.
In the Linux kernel version we analyzed we found far fewer
casts involving structure subtyping — just 459 out of 44910
casts, or 1%, and involving just 44 different supertypes. For
these casts we use the same physical subtyping rules as [18]
to determine compatibility between the structures. How-
ever, rather than just counting the number of downcasts in
a program our interest is in proving these casts correct.

Loginov et. al. [16] compute type information for C pro-
grams at runtime and check the program’s behavior against
these types to find type safety violations. Since virtually
any access in C might be type unsafe, virtually all mem-
ory accesses are instrumented by this method, leading to
an average slowdown of greater than 20 times the original
program’s runtime.

HAVOC [15] is a static analysis system for C programs
that uses function preconditions, postconditions, and loop
invariants to perform modular verification of memory safety
and other properties. HAVOC has recently been used to ver-
ify type safety for a few Windows device drivers [5]. HAVOC
provides far stronger guarantees about a program than the
casting analysis we present; we are only checking downcasts
to structure types, while HAVOC checks these as well as
downcasts to other types, use of the container_of macro
to jump to a structure’s base pointer, buffer overflows, and

all other ways type safety might be violated. However, to
completely verify 5000 lines of code, HAVOC requires 35
changes to the code, 36 trusted annotations (annotations
which, like our annotations, are not checked for correctness),
and 153 untrusted annotations (which are checked for cor-
rectness). At these rates, annotating and checking a system
the size of the Linux kernel would require several hundred
thousand lines of annotations.

CCured [17, 7] uses pointer type qualifiers in combina-
tion with runtime checks to check type and memory safety
in C with fairly low overhead. Pointers used in downcasts
are transformed into ‘fat’ WILD pointers, structures which
contain both the pointer and additional bounds and run-
time type information to perform the appropriate checks at
accesses to the pointer. The initial version of CCured [17]
would mark as WILD any pointer whose value might have
been used in a downcast or might in the future be down-
cast (according to a global flow- and context-insensitive al-
gorithm). For polymorphic structures such as file and
timer_list, this would encompass all uses of the data which
at any point were stored in their void* data fields. An im-
provement [7] allows most pointers which are downcast to
be less than fully WILD at the cost of limited runtime type
information attached for checking the downcast is safe. Af-
ter the downcast and checks are performed, the result is a
SAFE pointer which can be accessed in the future with few
additional checks.

Deputy [6] is a type system for C that uses a more lightweight
approach than CCured, inserting runtime assertions where
necessary without changing the in-memory layout of point-
ers and other structures. When dealing with downcasts from
one type to another, Deputy soundly checks the cast at
compile time provided the pointers are annotated with cor-
rect dependent types. The dependent types used by Deputy
cover the parametric polymorphism as used in many of the
Linux kernel data structures [2], but not other, rarer con-
structs such as pointers whose type depends on a program
condition. Moreover, even if suitable polymorphic types are
assigned for the various polymorphic structures in Linux, it
is not clear that the Deputy checker can deal with many of
the intricacies found in initialization of these structures; for
example, the f£_op field of a file may be freely changed so
long as its private_data is NULL (Section 6.1).

Cyclone [10] is a C-like language that ensures memory and
type safety, sharing many of the same features as CCured
and Deputy. Pointers used in arithmetic can be either fat
as in CCured, or be associated with a specific length as in
Deputy. Casts are allowed in Cyclone, but only from a sub-
type to a supertype [1]; downcasts are disallowed. Types
in Cyclone can be polymorphic [9] in a similar fashion to
Deputy, again handling many of the polymorphic structures
we have seen in Linux and removing the need for many down-
casts. Still, Cyclone requires that the type over which a
polymorphic structure is instantiated be set at the creation
point of the structure, which breaks on initializers such as
the file open example (Section 6.1).

Our approach to modeling polymorphic structures is more
indirect than the approaches used by Deputy and Cyclone,
and does not try to associate type variables with the struc-
ture declarations and concrete type instantiations at each
point the structure is used. This allows us to handle cases
such as the file open example, as we do not have to fix a
type to a file at the points where it in fact has no type.

Finally, more modern languages than C, such as C++
and Java, have richer type systems that can directly express
polymorphic interfaces a C programmer must construct by
hand. For example, timer_list could be implemented as
a C++ template structure, and file_operations could be
implemented as virtual methods in a C++ class. Whether
such languages are appropriate for a full-fledged operating
system is a divisive topic; we observe, though, that the file
open example illustrates the flexibility of C to write code
which falls outside the usual approach of a C++ or Java
program.

8. CONCLUSION

Big software systems are tremendously complex with all
their details taken together. By focusing on downcasts we
are able to peel away and characterize a small portion of this
complexity. The combination of polymorphic data struc-
tures and initialization via assignment leads to important
and sometimes complex relationships that are critical to
proving basic safety properties of large systems. Under-
standing these heap invariants is a challenging static analysis
problem, and we have shown that it can be solved automat-
ically for many, but not all, of the common idioms in the
Linux kernel. We suspect the results apply beyond Linux
and C; in particular, we expect large systems written in un-
typed scripting languages will display similar phenomena,
and we even suppose that similar implicit structural cor-
relations can be found in large systems written in strongly
typed languages such as Java, at least for properties of fields
that are not directly enforced by the strong type system.

9. REFERENCES

[1] Cyclone: User Manual.
http://cyclone.thelanguage.org/wiki/User Manual.

[2] Deputy Manual.
http://deputy.cs.berkeley.edu/manual.html.

[3] Alex Aiken, Suhabe Bugrara, Iisil Dillig, Thomas
Dillig, Peter Hawkins, and Brian Hackett. An overview
of the saturn project. In Workshop on Program
Analysis for Software Tools and Engineering, 2007.

[4] Suhabe Bugrara and Alex Aiken. Verifying the safety
of user pointer dereferences. In IEEE Symposium on
Security and Privacy, pages 325-338, 2008.

[5] Jeremy Condit, Brian Hackett, Shuvendu Lahiri, and
Shaz Qadeer. Unifying type checking and property
checking for low-level code. In Principles of
Programming Languages, 2009.

[6] Jeremy Condit, Matthew Harren, Zachary Anderson,
David Gay, and George Necula. Dependent types for
low-level programming. In Furopean Symposium on
Programming, 2007.

[7] Jeremy Condit, Matthew Harren, Scott McPeak,
George C. Necula, and Westley Weimer. CCured in
the real world. In Programming Language Design and
Implementation, 2003.

[8] Manuvir Das, Sorin Lerner, and Mark Seigle. Program
verification in polynomial time. In Conference on
Programming Language Design and Implementation,
pages 5768, 2002.

[9] Dan Grossman. Quantified types in an imperative
language. ACM Transactions on Programming
Languages and Systems, 28, 2006.

[10] Dan Grossman, Michael Hicks, Trevor Jim, and Greg
Morrisett. Cyclone: a type-safe dialect of C. In
C/C++ Users Journal, volume 23, 2005.

[11] Brian Hackett. Type Safety in the Linuxz Kernel. PhD
thesis, Stanford University, 2010.

[12] Brian Hackett and Alex Aiken. How is aliasing used in
systems software? In Foundations of Software
Engineering, 2006.

[13] Seth Hallen, Benjamin Chelf, Yichen Xie, and Dawson
Engler. A system and language for building
system-specific, static analyses. In Conference on
Programming Language Design and Implementation,
pages 69-82, 2002.

[14] Robert Johnson and David Wagner. Finding
user/kernel pointer bugs with type inference. In
USENIX Security Symposium, pages 119-134, 2004.

[15] Shuvendu Lahiri and Shaz Qadeer. Back to the future:
Revisiting precise program verification using SMT
solvers. In Principles of Programming Languages,
2008.

[16] Alexey Loginov, Suan Hsi Yong, Susan Horwitz, and
Thomas Reps. Debugging via run-time type checking.
In In Proceedings of FASE 2001: Fundamental
Approaches to Software Engineering, pages 217-232.
Springer, 2001.

[17] George C. Necula, Scott McPeak, and Westley
Weimer. CCured: Type-safe retrofitting of legacy
software. In Principles of Programming Languages,
2002.

[18] Michael Siff, Satish Chandra, Thomas Ball, Krishna
Kunchithapadam, and Thomas Reps. Coping with
type casts in C. In Foundations of Software
Engineering, 1999.

[19] Yichen Xie and Alex Aiken. Scalable error detection
using boolean satisfiability. In Principles of
Programming Languages, 2005.

