
Querypoint : Moving Backwards on Wrong Values in the
Buggy Execution

Salman Mirghasemi
École Polytechnique Fédérale

de Lausanne (EPFL),
Switzerland

salman.mirghasemi@epfl.ch

John J. Barton
IBM Research - Almaden
bartonjj@us.ibm.com

Claude Petitpierre
École Polytechnique Fédérale

de Lausanne (EPFL),
Switzerland

claude.petitpierre@epfl.ch

ABSTRACT
As developers debug, they often have to seek the origins

of wrong values they see in their debugger. This search
must be performed backwards in time since the code caus-
ing the wrong value is executed before the wrong value ap-
pears. Therefore, locating the origin of wrong values with
breakpoint- or log- based debuggers demands persistence
and significant experience.

Querypoint, is a Firefox plugin that enhances the popular
Firebug JavaScript debugger with a new, practical feature
called lastChange. lastChange automatically locates the last
point at which a variable or an object property has been
changed. Starting from a program suspended on a break-
point, the lastChange algorithm applies queries to the live
program during re-execution, recording the call stack and
limited program state each time the property value changes.
When the program halts again on the breakpoint, it shows
the call stack and program state at the last change point.
To evaluate the usability and effectiveness of Querypoint we
studied four experienced JavaScript developers applying the
tool to two test cases.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Debugging aids; D.2.6
[Programming Environments]: Integrated environments

General Terms
Algorithms, Human Factors, Languages

Keywords
Debugging, Locating Defects, Querypoint, LastChange, Break-
point, Watchpoint, Logging

1. INTRODUCTION
According to [5], developers spend about fifty percent of

their time on debugging. To fix a bug, developers typically
reproduce and monitor the buggy execution several times

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

to understand the program’s unexpected behavior. Trial-
and-error, guess-work, and analyzing complicated data make
debugging difficult and time-consuming. Thus enhanced de-
bugging operations are highly needed to save time, reduce
development costs and improve software quality.

In a common strategy for locating defects, the developer
starts from the bug symptoms and traces the execution back-
wards, moving from a point in the program execution where
a value appears to be incorrect back to the point where that
value was set. Two conventional approaches, breakpoint-
based and log-based debugging, require tedious steps to se-
lect the data to be collected, collect these data and, then
analyzing the results.

Locating the origin of wrong values becomes even harder
when developers deal with weakly-typed dynamic languages
such as JavaScript. First, due to weakly-typed nature of
these languages the search space that the developer should
consider is considerably larger than with traditional lan-
guages such as Java and C#. Second, the dynamics features
of these languages limit the value of traditional compile-time
program analysis.

Querypoint, is a Firefox plugin that enhances the popular
Firebug JavaScript debugger with a new, practical feature
called lastChange [8]. lastChange makes it possible to locate
the origin of a wrong value by making queries about the
running program. This feature allows the developer to navi-
gate through dynamic data dependency without requiring a
full trace, unlike other interfaces based on dynamic slicing.
The proposed technique builds on the existing breakpoint
approach and it does not require any special environment
to create identical, instruction by instruction, re-executions.
Querypoint also provides a mechanism to automate the bug
reproduction, and a novel user interface that summarizes the
data of the investigated execution points and the collected
results.

2. RELATED WORK
Most tools developed to enhance developers’ navigation

on a buggy execution can be classified in two main groups:
replay-based and logging-based. Replay-based approaches
capture limited data during execution and replay the buggy
execution to reach past points. In contrast, logging-based
approaches collect enough data during execution to relieve
the developer from re-executing.

Two replay-based debuggers, bdb [3] and reverse watch-
point [7], rely on deterministic executions and employ a step
counter to locate the requested point from the beginning of

execution. These tools incur two to four times runtime over-
head.

Among logging-based debuggers are omniscient debug-
gers (e.g., ODB [6], TOD [9], and WhyLine [4]) and time-
travelling debuggers (e.g., Nirvana [1]). Logging-based de-
buggers suffer from different issues. First, the recording
phase is time expensive (20-120 times) and it must be re-
peated in case of changes in the program. Second, the ex-
ecution log cannot fully replace the live execution. There
are other aspects of execution (e.g., program user interface,
file system, database tables, etc.) that are also important in
debugging and are not available to the developer in logging-
based debuggers. Third, querying collected data (e.g., to
restore the program state at a certain point) may not be
efficient enough to debug realistic programs.

Querypoint resembles the operational model of replay-
based debuggers and the query approach of logging-based
debuggers. However, contrary to other replay-based debug-
gers, which require exactly the same re-executions (deter-
ministic executions), Querypoint only requires the repro-
ducibility of the bug, so that a test case reproduces the bug
and a way to halt the execution reliably after the reproduc-
tion is available. Unlike logging-based debuggers Querypoint
selectively collects data which significantly reduces runtime
overhead incurred by logging.

3. QUERYPOINT
Let us illustrate the Querypoint functionality by a simple

example. This example demonstrates a buggy JavaScript
code in a HTML page (Figure 1). This page contains a but-
ton (line 40) that shows the value of myObject.myProperty.
When the user clicks on the button, the onClick function
(line 13) is called. This function increases the value of myOb-
ject.myProperty by one (line 15) and calls the updateBut-

ton function that updates the button’s text to the new value
(line 22). When the page is loaded for the first time, the but-
ton shows 1 as the initial value of myObject.myProperty. In
practice when the user clicks on the button, 0 appears in-
stead of 2: there is a bug.

By browsing through the code,the developer determines
that the value displayed on the button is set at line 22.
Since the displayed value is incorrect they know the bug
occurred before the program hit this line. To start debug-
ging, the developer sets a breakpoint on line 22. Once the
button is clicked, the execution is paused at line 22. Fig-
ure 2(a) shows the Firebug debugger while the execution
is paused. Firebug has several panels (e.g., HTML, CSS,
Script, DOM, etc.) each one demonstrating one aspect of
the Web page. The Script panel on the left side contains
the list of all loaded source files and regular debugging fa-
cilities such as setting breakpoints and stepping. On the
right of the script panel, the Watch panel shows the pro-
gram state that displays the scopes and the variable values.
In our case, the myObject.myProperty value at the paused
point is 0. We expected this value to be 2.

To apply the backward search strategy to locate defects,
the developer first needs to know the origin of the wrong
value. Then they muse use breakpoints, and look through
the code to find all possible places where myObject.myProp-

erty might get a new value and set a breakpoint at these
locations. However, an object and property can be accessed
and changed through different names and methods. There
is no simple way to identify these aliases or even their total

1 <html>
. . .
5 <script type=”text / j a v a s c r i p t ”>
6 myObject = {myProperty : 1} ;
7 myCondition = {value : 1} ;
. . .
13 function onCl ick (){
14 foo () ;
15 myObject . myProperty++;
16 bar () ;
17 . . .
18 updateButton () ;
19 }
20 function updateButton (){
21 var myParagraph =

document . getElementById (”myButton ”) ;
22 myButton . innerHTML = myObject . myProperty ;
23 }
24 function f oo (){
25 myCondition . value = oldValue ;
26 }
27 function bar (){
28 i f (! myCondition . va lue)
29 myObject . myProperty = 0 ;
30 }
31 </script>
. . .
40 <button id=”myButton” onc l i c k=”onCl ick ()”>
41 1
42 </button>
43 </html>

Figure 1: A Web page containing JavaScript code.
Some lines not related to our paper have been elided.

number. The developer is limited to make a good guess
and to set breakpoints on lines where the property seems
to be changed, to re-execute the program and to examine
the state looking for values that may lead to the incorrect
value observed at line 22. All this work must be repeated if
new aliases are discovered or if some information related to
the buggy result was missed while suspended on one of the
breakpoints.

In our proposal, we have added a high-level function in
the debugger, lastChange, that provides the answer without
tedious manual effort from the developer. By right clicking
on myObject.myProperty in the Watch panel, the developer
can run the lastChange command (Figure 2(a)). The debug-
ger re-executes the program and halts again at the break-
point on line 22. However, it shows a new panel, called QP,
centered on the source at line 29 (Figure 2(b)), the point
of lastChange. To the right, the TraceData panel shows the
values of properties of the program state when it passed
through line 29. These two panels resemble the Script and
Watch panels, but they show data collected by the debugger
at one execution point that is now in the past: these data
are traces or logs collected during the re-execution.

Looking at line 29, the developer concludes that some-
thing is wrong with myCondition.value which leads to the
execution of line 29. The developer then examines myCon-

dition.value and noticed that it is undefined. The next
step the developer performs is to know when this property
got this value. To do so, they run the lastChange command
on myCondition.value from this point. The debugger re-
executes the program and breaks again on line 22, analyzes
the queries and shows the developer line 25-the place old-

Value is assigned to myCondition.value. If the developer
asks for lastChange on oldValue, the debugger can notify

(a) A screen shot of the Firebug debugger while running the example code from Fig. 1. The Script panel is selected; it gives
access to all loaded source files and allows breakpoints to be set on lines. In this figure, the execution is paused at line 22
by a regular breakpoint. The Watch panel on the right shows the program state at the breakpoint. The developer can query
lastChange on myObject.myProperty by right-clicking on the value of myProperty.

(b) The result of lastChange query for myObject.myProperty. The left panel, QP, shows the source code at the point of
lastChange; The right panel, TraceData, shows the collected data at the point.

(c) The result of lastChange query for myCondition.value. To evaluate an expression (e.g., oldValue) at this point, the
developer can enter the expression in the watch box and after a re-execution the result is available. The opened list on the
top of the left panel shows the visited execution points. Clicking on each point in the list shows the corresponding code and
data.

Figure 2: The stages of locating the defect using lastChange feature.

the developer that this variable has never been assigned a
value. Now it is clear that the bug occurs because old-

Value is undefined when the execution reaches line 25 (Fig-
ure 2(c)).

The developer has examined three points of execution,
but set one explicitly. We call the latter breakpoint the
reproduction point. The second and third points precede
the reproduction point in the execution sequence. All three
points correspond to the history of the search for the defect.
They are available through the debugger’s interface. At the
top of the left panel in Figure 2(c) there is an opened list
that shows all three examined points. Moreover, the source
lines related to these points are marked with red Q icons.

Querypoint needs a test case to reproduce the execution
and conditions to correctly recognize the reproduction point.
Although both elements can be directly provided by devel-
oper, Querypoint is also able to automatically create them
from the first execution.

To replay an execution, Querypoint keeps track of break-
point and single steps the execution went through. Query-
point supports two mechanisms for automatic re-execution:
callstack-reproduction and record-replay. In callstack repro-
duction the function from the bottom frame of the call stack
is called with the same parameters. The record-replay ex-
ecution uses two phases. In the record phase, it stores the
initial page url and the events and parameters correspond-
ing to user actions. In the replay phase, it opens the same
url and simulates events as if they were user actions.

In addition to the data collected at every change event
for identifying the lastChange result, Querypoint partially
stores values in program state. There is a trade-off between
the amount of data collected at every change event and the
number of re-executions. If the developer asks for some val-
ues that have not been stored, Querypoint re-executes and
collects the requested data.

4. USER STUDY
We supplied four experienced Javascript developers with

Querypoint integrated in an extended Firebug debugger1.
Following a tutorial and a practice case, we observed them as
they applied both conventional breakpoint and lastChange
on two small programs we provided. The first program,
Shapes, calculates the area and perimeter values for a list
of shapes. The bug happens when one of the calculated
numbers is zero. The second program, Moving Circle, ran-
domly scales and moves a circle in the page. The bug hap-
pens once the circle becomes invisible after an exception oc-
curs. This case represent a reproducible non-deterministic
execution. The developers were asked to locate the defects
that caused these bugs. All four developers successfully ap-
plied lastChange to the test programs and understood how
it could help debugging. To find the defect location with
breakpoints, all four users took more steps2 and more time
(Figure 3).

5. CONCLUSION AND FUTURE WORK
Querypoint provides critical information for debugging Jav-

aScript programs: the location and state at the point where

1http://ltiwww.epfl.ch/~mirghase/lastchange-userstudy
2A step is a button push, either single stepping the debugger
or running a lastChange query.

Developers
Programs

DEV1 DEV2 DEV3 DEV4

Shapes 3 (85 s) 13 (182 s) 39 (318 s) 3 (80 s)

Moving Circle 9 (215 s) 4 (40 s) 3 (195 s) 12 (234 s)

Figure 3: The number of steps (and time in sec-
onds) required before locating a defect, for each test
subject and test program. Cells with a white back-
ground report values with conventional debugging;
Cells with a colored background use lastChange.

a questionable value was assigned. It only requires bug re-
producibility and is built on the existing breakpoint tech-
nology.

In our next iteration we plan to merge the query and
breakpoint results. Querypoint shows the results of lastChange
in a similar but different view from breakpoint debugging.
This focuses attention on value changes, but it makes study-
ing control flow more difficult.

6. REFERENCES
[1] S. Bhansali, W. Chen, S. de Jong, A. Edwards, R.

Murray, M. Drinić, D. Mihočka, J. Chau. Framework
for instruction-level tracing and analysis of program
executions. In International Conference on Virtual
Execution Environments(VEE), June, 2006.

[2] M.D. Bond, N. Nethercote, S.W. Kent, S.Z. Guyer,
and K.S. McKinley. Tracking bad apples: reporting
the origin of null and undefined value errors. In 22nd
annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and
applications(OOPSLA), October, 2007.

[3] B. Boothe. Efficient algorithms for bidirectional
debugging. In Conference on Programming Language
Design and Implementation(PLDI), June, 2000.

[4] A.J. Ko, and B.A. Myers. Debugging reinvented:
asking and answering why and why not questions
about program behavior. In 30th international
conference on Software engineering(ICSE), May, 2008.

[5] T.D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits In
28th international conference on Software
engineering(ICSE), May, 2006.

[6] B. Lewis, and M. Ducasse. Using events to debug Java
programs backwards in time. In Companion of the
18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications(OOPSLA), 2003.

[7] K. Maruyama, and T. Kazutaka. Debugging with
Reverse Watchpoint. In Proceedings of the Third
International Conference on Quality Software, 2003.

[8] S. Mirghasemi, J.J. Barton, and C. Petitpierre.
Debugging by lastChange. Technical Report.
EPFL-REPORT-164250, 2011.

[9] G. Pothier, É. Tanter, and J. Piquer. Scalable
omniscient debugging. In 22nd annual ACM
SIGPLAN conference on Object-oriented
programming, systems, languages, and
applications(OOPSLA), October, 2007.

	Introduction
	Related Work
	Querypoint
	User Study
	Conclusion and Future Work
	References

