
Tool Support for UML-Based Specification and Verification
of Role-Based Access Control Properties

Lionel Montrieux Michel Wermelinger Yijun Yu
Centre for Research in Computing & Computing Department

The Open University, Milton Keynes, UK
L.M.C.Montrieux@open.ac.uk M.A.Wermelinger@open.ac.uk Y.Yu@open.ac.uk

ABSTRACT
It has been argued that security perspectives, of which ac-
cess control is one, should be taken into account as early
as possible in the software development process. Towards
that goal, we present in this paper a tool supporting our
modelling approach to specify and verify access control in
accordance to the NIST standard Role-Based Access Con-
trol (RBAC). RBAC is centred on mapping users to their
roles in an organisation, to make access control permissions
easier to set and maintain.
Our modelling approach uses only standard UML mecha-

nisms, like metamodels and OCL constraints, and improves
on existing approaches in various ways: designers don’t have
to learn new languages or adopt new tools or methodolo-
gies; user-role and role-permission assignments can be spec-
ified separately to be reused across models; access control is
specified over class and activity diagrams, including ‘anti-
scenarios’; access control is automatically verified. The tool
is built on top of an existing modelling IDE and allows for
automatic verification of models according to our RBAC
modelling approach, while providing users with the ability
to easily identify and correct errors in the model when they
are detected.

Categories and Subject Descriptors: D.2.2 [Software
Engineering]: Design Tools and Techniques — Computer-
Aided Software Engineering

General Terms: Security, Verification.

Keywords: Security, UML, RBAC, model, verification, OCL,
Model-Driven Engineering.

1. INTRODUCTION
Security is a growing concern in the software engineering

community [8]. As software systems are increasingly con-
nected and handle more and more sensitive data, making
sure that access is restricted to only those who are autho-
rised becomes a crucial concern. Giving users access to too
much data or processes will increase the risk of misuse, while

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

not giving users the permissions they actually need will pre-
vent them from getting their work done.

Too often is security dealt with at the end of a software de-
velopment project, leading to ill-designed systems with poor
protection of data and other assets. As Fernandez-Medina
et al. point out [4], security would greatly benefit from be-
ing taken into account as early as possible in the software
development process, for example as part of a Model-Driven
Engineering process. This would make it easier to: keep
track of security requirements and to make sure that the
security measures that have been selected actually enforce
those requirements; handle change and its impact on secu-
rity; communicate the security measures to the stakeholders
who do not have a computer science background and are not
able or not willing to read code.

This paper presents tool support for modelling RBAC con-
figurations and properties on several UML diagrams, and for
verifying that the model actually does enforce those access
control properties. The tool is a part of a modelling IDE,
allowing users to use it in a familiar environment, together
with their usual modelling activities.

The paper is organised as follows: we present background
and related work in Section 2, then introduce the tool and
the approach it supports in Section 3. We discuss future
work in Section 4 and conclude in Section 5.

2. BACKGROUND
In this section, we present the RBAC standard, as well as

existing Model-Driven Security approaches.

2.1 RBAC
RBAC is an access control model that has been standard-

ised by the NIST [9]. The main idea behind RBAC is to
map users to roles and roles to permissions, instead of map-
ping users to permissions directly. Roles are supposed to
match the users’ actual roles in an organisation. Since roles,
and not users, are assigned permissions, it makes access con-
trol configuration easier to maintain within an organisation:
when a new person joins, the administrator only has to as-
sign her to the roles she needs to get her work done. If
that person’s responsibilities within the organisation change
later, then it’s just a matter of adding and/or removing
roles. If a role’s responsibilities change, then changing the
role’s permissions accordingly will be reflected in what all
the users assigned to that role can and cannot do.

The RBAC standard is divided in four different levels,
each level adding new functionalities on top of the previ-
ous one. Level 0 defines user-role assignments as well as

Level Features

0 users, roles, permissions
1 role hierarchies
2 constraints (Separation of Duty)
3 review

Table 1: RBAC features for each level

role-permission assignments. Each user can be assigned any
number of roles, and each role can be assigned any num-
ber of permissions. Level 1 adds role hierarchies: these are
partial orders in which roles can inherit other roles’ per-
missions. Level 1a, also called General Hierarchical RBAC,
supports arbitrary partial orders, while level 1b, also called
Limited Hierarchical RBAC, comes with limited partial or-
ders. The limitation depends on the vendor’s choice. Next,
level 2 adds Separation of Duty (SoD) constraints: to pre-
vent conflicts of interest, it is possible to forbid a user to be
granted two roles at the same time. This enforcement can
be done either at the user-role assignment level, using static
constraints, or within a session, using dynamic constraints.
Finally, level 3 adds a permission-role assignment review re-
quirement: it must be possible to review which roles are
assigned to a specific permission, and which permissions are
assigned to a specific role. Table 2.1 summarises each level’s
requirements.

2.2 Model-Driven Engineering
Model-Driven Engineering (MDE) is the software engi-

neering approach that is built around the principle that ev-
erything is a model. Models are defined according to a meta-
model, but the growing number of metamodels led to an-
other higher level to describe metamodels: meta-metamodels
[3]. Several organisations and companies propose platforms
to support MDE. One of them, arguably the most widely
used, is the OMG’s Model-Driven Architecture approach
[10], which includes UML (Unified Modeling Language) mod-
els, OCL (Object Constraint Language) constraints and MOF
(Meta-Object Facility) metamodels and meta-metamodels.
In the security world, Fernandez-Medina et al. point out

that “current approaches which take security into consider-
ation from the early stages of software development do not
take advantage of Model-Driven Development”[4], but it is a
direction that is being developed, including by Basin et al.
[2], who define Model-Driven Security (MDS) as a specialisa-
tion of MDE, where “a designer builds a system model along
with security requirements, and automatically generates from
this a complete, configured security infrastructure”.

2.3 Modelling RBAC properties on UML
Several approaches exist for modelling RBAC properties

on UML. UMLsec [6] uses UML’s extension mechanisms to
express security properties. It is not limited to access con-
trol, but its support of RBAC is limited, as it does not sup-
port all the levels of the standard. RBAC properties can
be defined on activity diagrams only. Tool support exists to
verify models against the RBAC properties.
Another approach, SecureUML [7], uses class diagrams in-

stead of activity diagrams to express access control configu-
rations and properties. Classes are used to model users and
roles, and association classes give permissions. SecureUML
can also generate EJB code enforcing the RBAC properties.

Finally, authUML [1] allows one to define RBAC prop-
erties on use case diagrams, which are usually used early
in the development cycle. authUML modelling is done in
three consecutive steps: first, defining and processing access
control requirements, by transforming the requirements into
predicates; second, ensuring consistency, completeness and
conflict-free accesses of Use Cases; third, ensuring consis-
tency, completeness and conflict-free accesses for operations.
We are not aware of any tool support for authUML.

3. OUR APPROACH
Our approach differs from the other ones in that it al-

lows one to model RBAC configurations and properties on
several UML diagrams. We use the standard UML exten-
sion mechanisms to provide extra annotation capabilities to
existing UML diagrams: class diagrams, activity diagrams,
and access control diagrams, that are a custom version of
class diagrams to model users, roles, permissions, and their
assignments.

It is also different from other approaches by including anti-
scenarios: while other approaches focus only on verifying
that a specific user has access to a specific resource, we also
allow one to model anti-scenarios, where a specific user must
not have access to a specific resource.

3.1 RBAC profile
The access control configuration can be seen on the ac-

cess control diagram: users, roles and permissions are repre-
sented using stereotyped classes. Associations between users
and roles and between roles and permissions are the assign-
ments. The entire RBAC standard is supported: role hi-
erarchies can be represented using class generalisation, and
SoD constraints can be expressed using OCL constraints.

The class diagram allows one to stereotype operations
whose access should be restricted. These stereotypes must
come with at least one association to a permission in the
access control diagram. The set of associations represents
the permissions needed to perform the operation.

Finally, the activity diagram is the place where the access
control properties are defined: stereotyped partitions repre-
sent users, and those stereotypes must come with an associ-
ation with a user in the access control diagram. Stereotyped
partitions also come with associations to roles: these are the
roles that the user represented by the partition has activated
before the activity starts. This set of roles must necessarily
be a subset of the roles assigned to the user. Then, actions in
the diagram can also be stereotyped. An action that a user
needs to be able to perform is stereotyped with «granted»,
while an anti-scenario, i.e. an action that a user can never
be able to perform is stereotyped with «forbidden». Both
these stereotypes come with associations to operations in
the class diagram, that describe the operations involved in
the action. Actions can also be stereotyped with «acti-
vateRoles» (resp. «deactivateRoles») to express that a
set of roles is activated (resp. deactivated) before the ac-
tion starts, and deactivated (resp. re-activated) right after
it finishes.

Figure 1 is a sample model annotated using our approach.
It represents a system allowing professors and teaching assis-
tants to fill a database with students’ marks. The students
are only able to read their marks. There is a hierarchy rela-
tionship between professors and teaching assistants so that
users assigned with the Professor role inherit from the per-

missions assigned to the Teaching Assistant role. The model
is made of one access control diagram, one class diagram and
one activity diagram. In the activity diagram, the user Doe
starts the activity with no role activated, and activates the
Student role to perform an action. This is to demonstrate
the possibility to activate roles for a specific action. Associ-
ations between stereotypes are normally not visible on the
diagrams, but we have represented them as notes for the
reader’s convenience.

3.2 Consistency
Because we use several types of diagrams, it is essential

to ensure that they do not contradict each other. To en-
force consistency between diagrams, we have defined a set
of 20 OCL constraints. For example, one of them makes
sure that an action stereotyped with «granted» is not also
stereotyped with «forbidden»: it would not make sense to
have an action that a user must at the same time always be
able to perform and never be able to perform.
SoD constraints can be added by the user to the profile.

While static SoD ensures that the same user can not be
assigned both of two roles, dynamic SoD only enforces that
these two roles can not be activated in the same time. Static
SoD is verified on the access control diagram, by checking
the user-role assignments while taking role hierarchies into
account. Dynamic SoD is verified on activity diagrams, by
making sure that the two conflicting roles are not activated
in the same time on a single action.

3.3 Verification
The verification of RBAC properties is done using two

similar OCL contraints: one for actions stereotyped with
«granted», and another one for actions stereotyped with
«forbidden». In both cases, we compute two sets: the set
Permneeded of permissions required for the action to be per-
formed, and the set Permactivated of permissions that the
user has activated when s/he tries to perform the action. For
actions stereotyped with «granted», the verification suc-
ceedes if the user has activated at least all the permissions
required, i.e. if Permneeded ⊆ Permactivated. For actions
stereotyped with «forbidden», the verifications suceeds if
the user has not activated all the required permissions, i.e.
if Permneeded 6⊆ Permactivated.

3.4 Implementation
Our approach has been implemented as a UML profile for

IBM Rational Software Architect [5]. The profile, together
with a few sample models, are available online1.
During the modelling process, the model will go through

stages where it violates one or several constraints. Live eval-
uation, i.e. evaluation of the constraints every time a change
is performed to the model, is therefore not suitable for this
approach, as it would trigger a lot of unnecessary errors.
The OCL constraints are therefore verified in batch mode.
The tool then issues errors and warning that indicate which
OCL constraint has been violated and where, both in the
console and in the diagram, as one can see in Figure 2. The
verification of the example in Figure 1 takes about 3 seconds
on a computer with a 2.53GHz Intel i5 M 460 CPU and 4GB
of RAM, using Rational Software Architect version 8.0.1
Our RBAC profile can simply be added to an existing

modelling project, and it is possible to use it immediately.

1http://computing-research.open.ac.uk/rbac

Figure 1: A sample model of a students’ mark sys-
tem

Figure 2: Screenshot of the tool showing errors in the model

The OCL validation command will then verify the annotated
model against the RBAC properties specified on the activity
diagrams. If errors are found, they are reported both on the
graphical representation of the model and in an error mes-
sage. The combination of both notifications makes it easy to
identify where a problem lies, and what constraint the model
violates. The tool stays out of the way of the user, allowing
her to proceed with her modelling activities, especially those
not directly related to access control concerns.

4. FUTURE WORK
Future releases of the software will extend the metamodel

and support model evolution.
The extension of our approach’s metamodel will allow us

to support more UML diagrams, such as sequence diagrams.
Each type of diagram provides a different view on the soft-
ware, and it is important to be able to represent access con-
trol in each of the views in which it makes sense to do so.
Software evolution is the other direction we will follow to

improve our tool, both for step-by-step evolution and for
software merging. After a sequence of changes, only the
OCL rules whose evaluation may have been impacted should
be re-checked. Repair actions will then be suggested when
a model is found insecure, in order to fix it.
Merge situations typically arise when two organisations

become one. They will eventually have to merge their ac-
cess control configurations and properties. We will provide
support to help users during the merge operations, by de-
tecting potential conflicts as well as similar elements that
might be merged, and by providing repair actions to make
the resulting model satisfy the merged properties.

5. CONCLUSION
We presented a UML profile for Rational Software Ar-

chitect that allows one to model RBAC configurations and
properties on a UML model, using three different types of
diagrams. The profile contains OCL constraints that en-
sure that the RBAC-related annotations are consistent, and

will raise both textual and visual errors when they are vi-
olated. OCL constraints can also be used to enforce static
and dynamic SoD constraints. The verification of the RBAC
properties expressed on activity diagrams is performed with
two OCL constraints that make use of the annotations in
the three supported types of diagrams to make sure that
the annotated model does enforce the properties expressed.
Although the profile has been developed for use with Ratio-
nal Software Architect, the fact that we only use standard
technologies makes it easy to port to other modelling IDEs
that support modelling of UML models, extensions of the
UML metamodel, and verification of OCL constraints.

6. REFERENCES
[1] K. Alghathbar and D. Wijesekera. authUML: a three-phased

framework to analyze access control specifications in use cases.
In Proceedings of the 2003 ACM workshop on Formal
methods in security engineering, FMSE ’03, pages 77–86,
2003.

[2] D. A. Basin, J. Doser, and T. Lodderstedt. Model driven
security for process-oriented systems. In SACMAT, pages
100–109. ACM, 2003.

[3] J. Bézivin, F. Jouault, and D. Touzet. Principles, Standards
and Tools for Model Engineering. In ICECCS, pages 28–29.
IEEE Computer Society, 2005.

[4] E. Fernández-Medina, J. Jürjens, J. Trujillo, and S. Jajodia.
Model-Driven Development for secure information systems.
Information & Software Technology, 51(5):809–814, 2009.

[5] IBM. Rational Software Architect 8.1, 2010.

[6] J. Jürjens. Secure Systems Development with UML.
Springer-Verlag, 2005.

[7] T. Lodderstedt, D. A. Basin, and J. Doser. SecureUML: A
UML-Based Modeling Language for Model-Driven Security. In
Proceedings of the 5th International Conference on The
Unified Modeling Language, UML ’02, pages 426–441, 2002.

[8] J. Münther. On the Security of Security Software: Invited
Position Paper. Electr. Notes Theor. Comput. Sci., 142:5–10,
2006.

[9] R. S. Sandhu, D. F. Ferraiolo, and D. R. Kuhn. The NIST
model for role-based access control: towards a unified
standard. In ACM Workshop on Role-Based Access Control,
pages 47–63, 2000.

[10] R. Soley and the OMG staff. Model Driven Architecture. white
paper, November 2000.
http://www.omg.org/cgi-bin/doc?omg/00-11-05 (Last accessed
14 June 2010).

