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Recently, Static Single-Assignment Form and Sparse Evaluation Graphs have been advanced for

the efficient solution of program optimization problems. Each method is provided with an initial

set of flow graph nodes that inherently affect a problem’s solution. Other relevant nodes are

those where potentially disparate solutions must combine. Previously, these so-called @-nodes

were found by computing the iterated dominance frontiers of the initial set of nodes, a process

that could take worst-case quadratic time with respect to the input flow graph. In this article we

present an almost-linear algorithm for determining exactly the same set of ~-nodes.
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1. MOTIVATION AND BACKGROUND

Static Single-Assignment (SSA) form [Cytron et al. 1991] and the more general

Sparse Evaluation Graphs (SEG) [Choi et al. 1991] have emerged as an efficient

mechanism for solving compile-time optimization problems via data flow analy-

sis [Alpern et al. 1988; Choi et al. 1993; 1994; Cytron et al. 1986; Rosen et al.

1988; Wegman and Zadeck 1991]. Given an input data flow framework, the SEG

construction algorithm distills the flow graph into a set of relevant nodes. These

nodes are then interconnected with edges suitable for evaluating data flow solu-

tions. Similarly, SSA form identifies and appropriately interconnects those variable
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references that are relevant to solving certain data flow problems.

The SEG and SSA algorithms take the following structures as input:

Flowgraph. Graph ~f has Nf, edges &f, and root node Entry. If (X, Y) E &f,

then we write X 6 Pred(Y) and Y c SUCC(X). We assume ~f is connected.

Depth-first numbering. Let dfn(X) be the number associated with X

1< dfn(X) < lNf I

in a depth-first search of ~f. 1 We call the associated depth-first spanning tree

DFST. Similarly, we define the inverse mapping

vertez(k) = X I d~n(X) = k.

Dominator tree. Let idom(X) be the immediate dominator of flow graph node

X. We say that X dominates Y, written X ~ Y, if X appears on every path from

flow graph Entry to Y; domination is both reflexive and transitive. We say that X

strictly dominates Y, written X >> Y, if X z Y and X # Y. Each node X has a

unique immediate dominator idom(X) such that

idom(X) >> X and V W >> X, W ~idom(X).

Node idom(X) serves as the parent of X in a flow graph’s dominator tree. (An

example flow graph and its dominator tree are shown in Figure 1.)

Inn%al nodes. Na L Nf is an initial subset of those nodes that must appear in the

sparse representation. For an SEG, such nodes represent nonidentity transference

in a data flow framework. For SSA, such nodes contain definitions of variables.

The SEG and SSA algorithms essentially produce the following structures as

output :

Sparse nodes. No, which we compute as a property of each node:

~-function nodes. Nti GN., which we compute as a property of each nocle:

Previous SEG and SSA construction algorithms operate as follows:

(1) The algorithm precomputes the dominance jkontier DF(X) for each node X:

DF(X) = {z I (3(Y, Z) 6 tf)(x~l’ andx ~z)}

In other words, X dominates a predecessor of Z without strictly dominating Z.

The dominance frontiers for the flow graph in Figure 1 are shown in Figure 2.

(2) The algorithm accepts as input N. ~ Nf.

(3) The algorithm then computes the set of nodes deserving ~-functions, N@, as
the iterated dominance frontier of the initial set of nodes:

N@ = DF+(Na)

In our example in Figures 1 and 2, if N. = {D, W }, then NO = {W, X, Y, Z },

1Here, d~n(X) is assigned in order of nodes visited, starting with 1; in Aho et al. [1986], depth-first

numbers are assigned starting from I Aff I down to 1.
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Fig. 1. Flow graph and its dominator tree
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A {W, X,Y, Z}

B {X, Y,Z}

c {Y, z}

D {z}

v {w}

w {x}

x {wj Y}

Y {z}

z {}
E {}

Fig. 2. Dominance frontiers for Figure 1.

(4) Steps (2) and (3) can be repeated to create a forest of (related) sparse evaluation

graphs. In SSA form, these graphs are usually combined, with the appropriate

increase in detail and size with respect to N@.

(5) In an SEG, appropriate edges are then placed between nodes in

In SSA form, variables are appropriately renamed, such that each used is

reached by a single definition.

These two methods have one component in common, in name as well as function:

the determination of N+, where potentially disparate information combines. Con-

sider a flow graph ~f with N nodes (set Nf ) and E edges (set &f) for a program with

V variables. While computing the so-called @nodes is efficient in practice [Cytron

et al. 1991], the following observations are relevant:

(1) Constructing a single SEG (i.e., one data flow framework) by the usual algo-

rithm [Choi et al. 1991] takes O(E + N2) time.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.
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(2) Where a data flow problem can be partitioned into V disjoint frameworks [Mar-

lowe 1989], constructing the associated V SEGS takes O(EV + N2) and O(EV)

time.

(3) If we bound the number of variable references per node by some constant, then

construction of SSA form takes O(EV + N2) and Q(E + V + N) time.

In comparing (2) to (3), note that SEG provides a “solution” for each edge in

the flow graph, while SSA form provides a “solution” only at a program’s variable

references.

Our algorithm for placing @-functions avoids the the computation of dominance

frontiers. In doing so, we reduce the time bound for (1) to O(Ea(-?3)), where ao

is the slowly growing inverse-Ackermann function [Cormen et al. 1990]. The time

bound for (2) is reduced to O(V x Ea(13)). If our algorithm places @functions for

SSA form, then the time bound for (3) becomes O(V x Ea(.E)) but O(EV).

To summarize the above discussion, computation of dominance frontiers and their

use in placing @functions can take O(E + N2) time [Cytron et al. 1991], although

such behavior is neither expected in general nor even possible for programs of

certain structure. An example flow graph that exhibits the aforementioned worst-

case behavior is shown in Figure 1. The flow graph’s dominance frontiers are shown

in Figure 2. As this graph structure grows, 2 the size of dominance frontiers of nodes

along its left spine increases quadratically, while the size of the sparse data flow

graph or SSA form is certainly linear in size. It is this worst-case behavior brought

on by precomputing the dominance frontiers that we wish to avoid.

Since one reason for introducing @-functions is to eliminate potentially quadratic

behavior when solving actual data flow problems, such worst-case behavior during

SEG or SSA construction could be problematic. Clearly, avoiding such behavior

necessitates placing @-functions without computing or using dominance frontiers.

In this article we present an algorithm that computes No and N@ G Nv from the

initially specified N.. Where previous algorithms begin with a set of nodes Na and

use dominance frontiers (iteratively) to induct other nodes into Na, our algorithm

does the reverse: we visit nodes in an order that allows us to determine conditions

under which a given node must be in Ng. Using a similar approach, we can then

determine N4 c NV.

In Section 2, we discuss a simple version of our algorithm and illustrate its ap-

plication to the flow graph in Figure 1. The algorithm’s correctness is shown in

Section 3. In Section 4, we discuss how balanced path-compression can be used to

make the algorithm more efficient; it is these techniques that allow us to achieve

our almost-linear time bound. Section 5 gives some preliminary experiments, and

Section 6 suggests future work.
In related work, Johnson and Pingali [1993] describe an algorlthm to construct an

SSA-like representation that takes@ (EV) time. While their upper bound is slightly

better than ours, our approach is more general: we construct sparse evaluation

graphs for arbitrary data flow problems, while Johnson and Pingali construct def-

use structures specific to the solution of SSA-based optimization problems such as

constant propagation.

‘by repeating the ladder structure; the back edge is unnecessary and was added to illustrate our

algorithm
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As we discuss further in Section 5, 00 asymptotic bounds in this area are de-

ceptive, and one must take into account lower and expected bounds. The usual

dominance-frontier-based algorithm [Cytron et al. 1991] is biased toward the aver-

age case, in which linear behavior for constructing or consulting dominance frontiers

is expected. The algorithm we present in this article, as well as the algorithm due to

Johnson and Pingali [1993], is fl(EV), since each edge in the flow graph is examined

for each variable.

We actually present two variations of the same algorithm in this article. The first

“simple” algorithm is presented for expository reasons; the second algorithm uses

balanced path-compression to achieve our improved time bound. The experiments

presented in Section 5 compare the simple algorithm presented in Section 2 with

the usual dominance-frontier-based algorithm [Cytron et al. 1991]. In fact, the

usual algorithm is often faster, and so these experiments do not suggest blindly

switching to the asymptotically faster algorithm. However, our algorithm does

exhibit the same linear behavior as the usual algorithm. Moreover, we have not

implemented the balanced path-compression presented in Section 4 which yields our

better bound. These experiments give some evidence that our algorithm can yield

comparable performance to the usual algorithm, while avoiding asymptotically poor

eficiency.

2. ALGORITHM

To avoid computing all of the dominance frontier relation, our algorithm will use

a specific order to determine elements of the relation. If this order is followed, the

algorithm guarantees that no elements of the relation will be missed.

The algorithm splits into two cases. In the “typical” case, to determine if

Z e DF.+l (Afro) for some n, there must be an X 6 DFn (JVa) such that

(3(Y, Z) c &f)X~Y and X }2.

Thus for any such edge (Y, Z), we need only check the dominator tree between

idom(Z) and Y for nodes already determined to be in DFn (N.). We need an or-

der that guarantees that X c DF~ (N. ) is already determined. Reverse depth-first

numbering provides such an order. It turns out that djn(idom(X)) > dfn(idom(Z) ).

Our algorithm thus examines nodes whose immediate dominators have decreasing

depth-first numbers.

The second case is when X and Y are siblings in the dominator tree. No order is

determined by the “typical case,” since here both nodes have the same immediate

dominator.

We define the equidominates of a node X as those nodes with the same immediate

dominator as X:

equidom(X) = { Y \ idom(Y) = idom(~r) }.

For example, in Figure 1,

equidom(A) = {A, V, W, X, Y, Z }

More generally, the noun equtdommates refers to any such set of nodes.

Our algorithm essentially partitions equidominates into blocks of nodes that are

in each other’s iterated dominance frontiers, but without the expense of explicitly

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.
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Algorithm[l] Sparse graph node determination (simple)

NodeCount +- O

foreach (X 6 ~f) do

T(A-) + false ; O(X) t false ; Map(x) +- x

od

Cnum + O

for n = N downto 1 do

foreach ({Z \ dfn(zdom(Z)) = n}) do

if (Cnum(Z) = O) then call Vzstt(Z) fi

od

od

for n = N downto 1 do

foreach ({Z I d~n(zdom(Z)) = n}) do call F’znzsh(Z) od

od

end

Function FtndSnode(Y, P) : node

for (X = Y) repeat(X = idom(X)) do

if (T(Map(X)) or (zdom(X) = P)) then return (Map(X)) fi

od

end

Procedure IncludeNode(X)

T(4Y) +- true

end

Procedure F’mzsh(Z)

foreach ((Y, Z) c &f I Y # zdom(Z)) do

s + FzndSnode(Y, idom(Z))

if (’Y(s)) then

0(2) + true

fi

od

if (T’(Map(Z))) then

call IncludeNode(Z)

fi

end

Figure 3

computing dominance frontiers.

It is the control flow edges between equidominates that here determines the

needed order. If the equidominates are in the same strongly connected compo-

nent (S CC) of control flow edges, then any of the equidominate~ in the SCC is in

D&’+ (Afo ) iff one of the equidominates is. Our algorithm finds these SCCS and de-

termines the dominance frontier relation for a representative node, Map(X). The

membership of this node is then used to determine the membership of all nodes in

its SCC. If the equidominates are not in the same SCC, then the topological order

determined by control flow edges between their respective SCCS is the correct order

to follow.

Our algorithm uses a well-known algorithm [Aho et al. 1974] to find strongly

connected components of the dominance frontier graph (in which an edge from

ACM TransactIons on Programnnng Languages and Systems, Vol. 17, No. 3, May 1995
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Procedure VZsit(Z)

LL(Z) G Cnum(Z) G + +NodeCount

call push(Z)

foreach ((Y, Z) : &f \ Y # idorn(Z)) do

s +- FindSnode(Y, idom(Z))

if (idom(s) # zdom(Z)) then

call InctudeNode(Z)

else

if (Cnurn(s) = O) then

call Visit(s)

LL(Z) +- rnzn(LL(Z), LL(s))

else

if (( Cnurn(s) < Cnum(Z)) and OnStack(s)) then

LL(Z) +- mzn(LL(Z), Cnum(s))

ti

fi

if (T(s) and not OnStack(s)) then

call IncludeNode(Z)

fi

fi

od

if (LL(Z) = Cnum(Z)) then

repeat

Q 4- ~0~()

Nfap(Q) i-- Z

if (Q c N.) then

call IncludeNode(Q)

fi

if (T(Q)) then

call IncludeNode(Z)

fl

until (Q = Z)

fi
end

Figure 4

Y to Z implies Z c D.F(Y)). That algorithm finds the roots in the depth-first

spanning tree containing the SCCS in the order of last visit by depth-first search.

To do this, the algorithm uses auxiliary data structures Cnum(X) and LL(X) [Aho

et al. 1974]. Briefly, Cnum is a forward, depth-first number assigned by procedure

Visit (as opposed to the reverse depth-first number d~n assigned initially). LL is

used to determine if a node is a root of a SCC. “SCC” or “component” refers to

nodes associated in this manner.

We now give an overview of the algorithm. The main procedure initializes essen-

tial data structures and then visits each node not already visited (by calling the

procedure ‘VZsZt) in reverse depth-first order of immediate dominators. After all

nodes have been visited, the main procedure calls Finish to determine membership

in M+ from Nm.
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The procedure Visit forms the heart of the algorithm. Here, the input node Z

is first put on a stack (used to keep track of SCCS). Then the dominator tree

between idona(Z) and Y is searched for each control flow edge (Y, Z) for a node

X already determined to be in DF+ (A’. ) (by calling FindSnode). Depending on

the success of the search, a further call to Visit may be necessary, or we may be

able to determine directly that the node should be placed in Na (accomplished

with a call to IncludeNode). The final code in Visit simultaneously determines

the membership in N. of all nodes in the SCC (which are currently on the stack)

and pops the entire stack.

Central to this algorithm is the function FindSnode(Y, P), which ascends the

dominator tree from node Y, searching for a sparse graph node below P. Our proof

of algorithmic correctness (Section 3) relies on the nature of FindSnodeo rather

than its actual implementation: the function always returns

X I Z E DF+(X), Z ~ SUCC(Y), P> X~Y.

We present a straightforward, albeit inefficient, version of FindSnode(Y, P) in Fig-

ure 3. The correctness of our algorithm as presented in Section 3 is based on the

behavior of FindSnodeo. To obtain our almost-linear time bound, we modify our

algorithm as discussed in Section 4.

The algorithm is shown in Figures 3 and 4. We now illustrate the application of

the algorithm to the flow graph in Figure 1, assuming that N. = { B}. Although

the full proofs appear in Section 3, we mention here that

Z < DF(X) ~ dfn(idom(X)) ~ dfn(idom(Z)).

By ensuring that nodes with higher depth-first number have already been correctly

determined to be in N., the algorithm can correctly determine this property for

nodes of lower depth-first number.

The loop at ❑ begins with V (depth-first numbered 10 in Figure 1). Since no

nodes are dominated by 1~, no steps are taken by ❑; the same holds for nodes W

and D. When ❑ considers C, loop ❑ calls Visit with D. The loop in Visit at ~ is

empty, since the only predecessor of D immediately dominates D. Thus, Map(D)

is set to D in loop ~. Loop ❑ then considers in turn Z, Y, and X, each of which

dominates no node, so ❑ is empty. When ❑ considers B, Visit is called on G;

since C’s only predecessor immediately dominates C’, no action is taken by ~, and

Alap(C) is set to C. When I’tsit is next called on B, kfap(B) is set to B; also,

since B ~ N., step ❑ places B in No.

When ❑ considers E, suppose loop ❑ considers the nodes immediately dominated

by E in order A, Y, W, A“, V, and Z (although some of these will already have

been processed by recursive calls to Visit). When Visit works on A, no steps of ~

are taken, and Map(A) becomes A. When Visit works on Y, Find5’node will be

called on C and X.

—For C, FindSnode returns B; since B and Y are not equidominates, Y is placed

in No by ~.

—For X, FindSnode returns X; since X and Y are equidominates, Visit is called

recursively on A’. In this invocation, loop ~ considers nodes B and W.

—For B, FindSnode returns B, so X is placed in N..

ACM TransactIons on Programmmg Languages and Systems, Vol. 17, No. 3, May 1995
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—For W’, FindSnode returns W, so Visit is called recursively on W. In this

invocation, loop ~ considers nodes A, V, and X.

—For A, FindSnode returns A. Since that node has already been visited, and

since A is not in N., nothing happens to W because of A.

—For V, FindSnode returns V; Visit is then called recursively for V, where

Map(V) becomes V.

—For X, FindSnode returns X, which is already on stack, so nothing happens.

In particular, Map(X) is not set.

Now, Map(W) and iMap(X) are both set to W. Since X E Nr, W is placed

in No.

When loop ❑ considers W, X, and V, each has already been visited. When Visit

is called for Z, nodes D and Y are considered by ~.

—For D, FindSnode returns B, so Z is placed in No.

—For Y, FindSnode returns Y, which has already been visited.

In contrast, previous methods [Choi et al. 1991; Cytron et al. 1991] would not

only have constructed all dominance frontier sets in Figure 2, which are as ymptoti-

cally quadratic in size, but would also have iterated through the dominance frontier

sets of all nodes put on the worklist, namely {E, B, V, W, X, Y, Z }.

3. CORRECTNESS

The proofs contained in this section establish the following:

(1) The order in which nodes are considered by the algorithm presented in Section 2

suffices to identify the placement of @-nodes. This property follows from gen-

eral observations about flow graphs, dominator trees, and dominance frontiers,

which are proven in Theorems 3.5, 3.6, and 3.7; these theorems are offered sep-

arately, as they may be useful in other contexts. The node-ordering property

is itself presented as Corollary 3.8.

(2) The algorithm correctly identifies the placement of @-nodes. Relying on the

general results shown in previous theorems, Theorems 3.18, 3.19, and 3.20

prove that the algorithm presented in Section 2 computes the correct set of

@nodes. The pitons of this proof sequence are as follows:

—Lemma 3.11: The Ma,po structure correctly relates equidominates.

—Lemma 3.16: Two different nodes have the same Mapo value only if one is

in the iterated dominance frontier of the other.

—Theorem 3.18: The node representing a set of equidominates is correctly

identified as a sparse node.

—Theorem 3.19: When the algorithm terminates, @-nodes have been correctly

identified.

Theorem 3.20 is then easily established: the algorithm correctly identifies the

sparse nodes.

LEMMA 3.1. (Y, Z) E tf =+- idorn(Z) zY.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.
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PROOF. Suppose not. Then there exists a path P : Root $ Y that does not

contain idom(Z). If path P is extended by an edge (Y, Z), then we obtain a path

to Z that does not contain idom(Z). Thus, (Y, Z) @ ~f. ❑

COROLLARY 3.2.

(Y, Z) E&f and Y # idom(Z) ==+

dfn(idom(Z)) ~ dfn(idom(Y)) < dfn(Y).

COROLLARY 3.3.

(Y, Z) c&f and Y # idom(Z) ==+

idom(Z) ~ idom(Y) >> Y.

LEMMA 3.4. If X is an ancestor of idom(Z) in the depth-first spanning tree

DFST of Gf, and idom(Z) > Y, then X B Y ==+ X >> Z.

PROOF. Suppose not. Then there exists a path Root ~ idom(Z) $ Z that

excludes X. Since idom(Z) >> Y, there is a path of DFST edges from idom(Z) to

Y that excludes X. Thus, X cannot dominate Y. ❑

THEOREM 3.5. If X is an ancestor of idom(Z) m the depth-first spanning tree

DFST of Gf, then Z cannot be in the dominance frontier of X.

PROOF. Suppose Z c DF(X). Then 3(Y, Z) 6 Sf such that XZY and X > Z.

It cannot be the case that idom(Z) = Y, since if so X > Y = idom(Z) > Z, a

contradiction. Therefore, idom(Z) # Y. By Corollary 3.3, idom(Z) z idom(Y) >>

Y. By Lemma 3.4, X >> Y * X >> Z. But since X >> Y, we have X >> Z, a

contradiction. Hence Z @ DF’(X). ❑

THEOREM 3.6. Z E llF(X) ==+ dfn(X) > dfn(idom(Z)).

PROOF. Suppose dfn(X) < dfn(idom(Z)), but Z E DI’(X). In the DFST of

~f, either

(1) X is an ancestor of idom(Z). By Theorem 3.5, Z @ DI’(X), or

(2) X is to the “left of” idom(Z). Suppose there existed some node Y c 1%-eds(Z)

dominated by X. Since Y must be a descendant of X in DFST, Y is also to

the left of idom(Z), and therefore Y is to the left of Z. But Z cannot have a

predecessor to its left in DFST. Therefore Z @ DF(X).

Either case reached a contradiction, thus proving the theorem. ❑

THEOREM 3.7. Z E DF(X) ==+ idom(Z) >> X.

PROOF. Suppose not. Then either

(1) idom(Z) =X, which implies Z @ DF(X); or,

(2) idom(Z) # X and idom(Z) ~ X. Consider then the path

P : Root ~ A“

that does not contain idom(Z). If Z G DF(X), then we can extend path P to

Q: Root bX~Y~Z

ACM TransactIons on Programming Languages and Systems, Vol. 17, No. 3, May 1995
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such that X~Y and X $Z. With X>Y, we can construct Q such that edges

between X and Y are DFST edges. Since idom(Z) does not occur on path P,

idom(Z) must occur on path Q after node X and before node Z. Thus, X is a

DFST ancestor of idom(Z). By Theorem 3.5, Z < DF(X).

Either case reached a contradiction, thus proving the theorem. ❑

COROLLARY 3.8. Z G D~(X) =+- dfn(idom(X)) 2 d~n(idom(Z)),

The following lemmas formalize those properties of our algorithm that participate

in our correctness proof. We omit proofs that directly follow from inspection of our

algorithm.

LEMMA 3.9. Visit is called exactly once for each node in Flowgraph

LEMMA 3.10. During all calls to Visit, each node is pushed and popped exactly

once.

PROOF. By Lemma 3.9, Visit(Z) is invoked exactly once; on this call, Z is pushed

exactly once. We need to show that Z is popped exactly once. If Z = Map(Z),

then Z is popped by the invocation of Visit in which Z was pushed. Otherwise,

Z belongs to a strongly connected component represented by H, H # Z, in which

case Z is popped by the iteration in which H is pushed. ❑

LEMMA 3.11. Y = Map(X) =+ idom(Y) = idom(X).

PROOF. Since initially X = Map(X), the lemma holds at the start of the

algorithm. Otherwise, Map(X) is only set during the loop at step ~, when

equidominates are popped off the stack, In this case, we have idom(IMap(X) ) =

idom(X). ❑

LEMMA 3.12. At step ~, node s (referenced at step ~) has already been pushed

and popped.

PROOF. By the predicate of step ~, node s cannot be on stack at step ~.

Thus, s either has not been pushed yet, or else s has been pushed and popped. If

s has not been pushed then Crtum(s) = O, but then step ~ would have pushed s

before step ~ is reached. Therefore, s has been pushed and popped. ❑

COROLLARY 3.13. Any invocation of IncludeNode(s) must already have oc-

curred at step ~.

LEMMA 3.14. OnStack(X) and OnStack(Y) ==+ idom(X) = idom(Y).

LEMMA 3.15. At step ~, FindSnodeo returns s I s = Map(S), Z 6 DF(S).

PROOF. Follows from inspection of FindSnodeo and the definition of dominance

frontiers. •l

LEMMA 3.16. Map(X) = Map(Y) ==+ Y e DF+(X) or X = Y,

PROOF. Follows from initialization (Map(X) = X), Lemma 3.15, and the ob-

servation that Map(X) represents the strongly connected component containing

x. ❑

COROLLARY 3.17. s e N. + Map(s) G Na.
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THEOREM 3.18. As o? step ❑, T(Map(X)) e Map(X) c N..

PROOF. We consider the two implications separately.

(==+). We actually prove a stronger result: T(X) ==+ X E N.. To accommodate

the iteration of step ❑, we prove the induction hypothesis

by backward induction on n (following the progression of our algorithm), noting

that T(X) can only be set in procedure Visit(Z) when idom(Z) = idorn(X).

Base Case. Node vertex(~) is childless in its depth-first spanning tree, and so

cannot immediately dominate any node. With loop at step ❑ empty, this case is

trivially satisfied.

Inductive Step. Consider those steps that potentially set

T(X) I dfn(idom(X)) = n.

Step ~. With idom(s) # zdorn(Z), step ~ must have returned

s I T(s), s = itfap(S), Z E DF(S).

From Lemma 3.15 we obtain Z E DF+(s). From Lemma 3.11 and with idorn(s) #

idorn(Z), Corollary 3.8 implies

dfn(idorn(s)) > djn(ido7ia(Z)).

Applying IHA(k) I N ~ k ~ n + 1, we obtain

T(s) =+ S eNm.

Thus, Z E No.

Steps ~~, ~, and ~. Each of these steps determines T (X) by consulting nodes

whose immediate dominator is idom(X). Each node in the set

{X I dfn(idom(X)) = n}

gets pushed and popped exactly once (by steps ❑ and ~. We name such nodes

{ZI, Z2,..., ZL } according to the order in which they emerge from the stack: node

xl is the first such node popped; node x, is popped before node X,+l. and node XL

is the last such node popped. Accordingly, we define the predicate

L

Popped(k) = ~ OnStack(xl)

.=k+l

which is true when exactly k such nodes have been popped. \Ye nox prove the

following induction hypothesis:

IHB (n) R (Popped(n)) A T(X) =+ X s N..

Base Case. Prior to popping xl, Lemma 3.14 ensures that steps ~ and ~

cannot affect any of the z,. By Lemma 3.12, step ~ requires s to be an already

popped x,, so step ~ cannot affect any of the z,.

Inductive Step. We now prove IH~ (n).
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Step ❑ . By Lemma 3.12, s has already been pushed and popped. By Corol-

lary 3.13, and assuming ~~E(k) I 1< k < n – 1 we obtain

SEN.

Z c DF+(s)

Thus, Z 6 NO.

Step ~. By definition, Q 6 N. * Q 6 N..

Step ~. Two cases:

Q # Z. This statement cannot affect T(Q), whose membership in N. is then

covered by the other cases in this proof. From Lemma 3.16, Z 6 DF+ (Q), and so

ZENo.

Q = Z. This statement becomes tautologous.

(*). TO prove Map(Y) E No =+ T(Lfap(Y)) it is sufficient to show Y E

&fap(NO ) ==+ T(Y). We formalize iterative dominance frontiers by:

DF (N.) = Map(Na)

DT%(Na) = Map(DF(D.F-’ (Na)))

so that

~ D.P(N.) = Map(Na).

Z=cl

We now prove the following induction hypothesis:

IllC(n) = Y e D.P(Na) =+- T(Y).

Base Case. Every node in the flow graph is pushed and popped by steps ❑
and ~. At step ~, y e N. =+ T(y). At step ~, Y c Map(Na) ==+ T(Y)

where Y = Map(y).

Inductive Step. We now prove IHC (n) assuming IHC (n – 1). Consider any

Y G D.Tn(N.), n >0.

Since Y E Map(DF(D.F”-l (Na) (No))) we have

Y = Map(y) [ y c DF(X), X c DYn-l(Na).

By Lemma 3.11, idom(Y) = idom(y), so Corollary 3.8 can be extended to

y G DF(X) =+ dfn(idom(X)) > dfn(idom(Y)).

We show that Visit(y) will set T(Y) true. By lHc(n – 1), we have Y’(X) true.

Since X ~ 237”-1 (N.), the call to FindSnodeo at step ~ will return X. There

are two cases:

d~n(idom(Y)) < d~n(idom(X)). Step ❑ sets T(y) true. When y is popped at

step ~, step ~ sets T(Y) true.

d~n(idorn(Y)) = d~n(idom(X)). Two cases:

—X # Y. Step ~ sets ‘Y’(y) true. When y is popped at step ~, step ~ sets

‘Y’(Y) true.
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—X = Y. then T(X) =+ T(Y).

Thus, both implications hold. •l

THEOREM 3.19. i-lfter the call to Finis/z(Z), @(Z) - Z G No.

PROOF.

@(z) u 3(Y, z) e tf ]

Y # idom(z),

s = FimiSnode(Y, icio7ri(Z)),

sENg

by construction in Finis ho and Theorem 3.18. But this holds

UZCDF+(S), S=NO

by construction in FindSnodeo, and this holds

by definition of N+. ❑

THEOREM 3.20. After calls to Finisho, T(X) u X ● N..

PROOF. X ~ No e Map(z) E N. (by Corollary 3.17). But Map(z) E No u

T(iiKap(X)) (by Theorem 3.18). But in Finish, ‘T(Map(X)) - T(X). ❑

4. COMPLEXITY

In this section, we first show that our algorithm is O(N + E + T), where IV is

the number of nodes and E the number of edges in the input flowgraph, and T

is the total time for all calls to FindSnode. Unfortunately, T is not linear using

FindSnode as written. We then provide a faster version of our algorithm and show

that our correctness results still hold. In our faster algorithm, T is O(Ect(E)),

obtaining our desired almost-linear complexity bound.

4.1 Analysis of Initial Algorithm

THEOREM ~. 1.1. The algorithm of Figure 3 is O(N + E + T), where N w the

number of nodes and E the number of edges in the input f?owgraph, and T is the

total time for all calls to FindSnode.

PROOF. The algorithm consists of

—an initialization phase,

—a phase where Visit is called recursively once for each node, and

—a call to Finish.

We analyze the complexity of each of these phases. The initialization phase is O(N).

For each call Visit(Z), there is a constant amount of work not inside any loop, the

loop starting at step ~ over predecessor edges into Z, and the loop starting at

step ~ where the contents of the stack are popped. The constant amount of work

can be ignored in determining the bound. Consider the loop starting at step ~.

Since Visit is called only once for each node, over all calls to Visit, this loop is
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executed O(E) times. Thus over all calls to Visit, the loop will execute at most

O(E) calls to FindSnode in step ❑ , and O(E) other work. For the last loop

starting at step ~ in Visit, all nodes are pushed and popped exactly once, so this

loop is O(lV). Finally, consider the call to Finish. It consists of O(E) work plus

at most O(E) calls to FindSnode. Summing all of this work, we obtain the desired

result. •l

We now analyze the asymptotic behavior of the function FindSnode(Y, P) as

shown in Figure 3. Each invocation could require visiting each node on a dominator

tree path from Entry to Y. The cost of applying FindSnodeo to each of N flow

graph nodes is then 0(N2 ). As such, the overall asymptotic behavior of the simple

version of our algorithm is O(I3 x N).

4.2 Faster Algorithm

Using a path-compression result due to Tarjan [1979], we rewrite certain parts of

our algorithm to use the instructions:

Eval (Y). Using the links established by the Linko instruction, Evalo ascends

the dominator tree from Y, returning the node of maximum label. The label

associated initially with each node X is –d~n(X); the link of each node is initially

1.

Link (Y, idorn(Y)). Sets lznk(Y) = idorn(Y). Any Evalo search that includes

node Y now also includes the immediate dominator of Y.

Update (X, djn(X)). Changes the label associated with X to dfn(X). This in-

struction is issued when node X becomes included in set ~0.

The path-compressing version of algorithm is obtained as follows:

(1) We initialize the path-compression at steps ~ and ~.

(2) Links are inserted to extend the Ilvcdo search at steps ~ and ~.

(3) Path information is updated whenever a node X is added to the sparse graph,

at step ~.

(4) We redefine function FindSnodeo by:

Function FindSnode(Y, P) : node

return (Map(Eval(Y))) em

end

We now state and prove the required properties of the path-compressing version

of our algorithm.

Proper Use of Path-Compressing Instructions. We first show that the above in-

structions are used in a manner consistent with their definition [Tarjan 1979]: op-

erations Linko and Updateo are applied to nodes at the end of a “link-path.”

LEMMA 4.2.1. At steps ~ and ~, link(Z) = L prior to invoking Linko.

PROOF. Steps ~ and ~ initialize linlc(X) = 1 for each node X G Aff. Since

each node Z has a unique immediate dominator in idom(Z), and a unique map

representative in Map(Z), and since n is a strictly decreasing sequence at steps ~

and ~, /ink(Z) = 1 just prior to applying Lznko at steps ~ and ~. ❑
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NodeCount + 0

foreach (X E Nf) do

T(X) +- false ; @(X) + false ; Map(x) + x

od

foreach (X E ~f) do

lznk(X) + L ; Label(X) + – dfn(X)

od

Cnum + O

for n = N downto 1 do

foreach ({Z I djn(zdom(Z)) = n}) do

if (Cnum(Z) = O) then call VZsZt(Z) fi

od

foreach ({Z I dfn(tdom(Z)) = n}) do

if (Z = kfap(Z)) then

call Lmk(Z, tdom(Z))

else

call L2nk(Z, Map(Z))

fi

od

od

foreach (X ~ J/f) do

lznk(X) + L ; Label(X) + – dfn(X)

od

for n = N downto 1 do

foreach ({Z I dfn(zdom(Z)) = n}) do

call Fzntsh(Z)

od

foreach ({Z I dfn(tdom(Z)) = n}) do

if (Z = &fap(Z)) then

call L~nk(Z, tdom(Z))

else

call Lznk(Z, lvfap(Z))

fi

od

od

Procedure IncludeNode(.Y)

T(X) & true

call Update(X, dfn(X)) em

end

Fig. 5. Faster algorithm.

LEMMA 4.2.2. When Update(X, dfn(X)) is revoked at step ~, lznk(X) = L.

PROOF. The procedure lncludelVodeo is invoked only from Visito, which pro-

cesses only equidominates. Since step ~ has not yet executed for any node con-

sidered by Visito, each such node has 1 for its link. ❑

Correctness of the Faster Algorithm. We now show that the path-compressing

version produces the same output as its slower version.

ACM TransactIons on Programmmg Languages and Systems, Vol. 17, No. 3, May 1995.



Efficiently Computing @Nodes On-The-Fly . 503

~EMMA 4.2.3. As invoked durtng the course of their respective algorithms, each

implementation of FindSnode(Y, P) returns the same answers.

PROOF.

—By inspection, FindSnode(Y, P) of Figure 3 begins at node Y and considers each

ancestor X of Y, up to but excluding node P. As each node X is considered, the

function returns Map(X) if Map(X) is already included in the sparse graph. If

no Nfap(X) is already in the sparse graph, then the function returns A4ap(X),

where X is ancestor of Y just prior to P.

—We now argue that FindSnode(Y, P) at ~ simulates exactly this behavior.

First, notice that the path of links established at steps ❑ and ~ link each node

X to ~ap(X) if X # Llap(X), and otherwise link each node X to idom(X).

Thus, strongly connected nodes are linked to their representative member, while

that member is linked to its dominator. Each node X’s label begins as –d~n(X),

but can be changed by step ~ to be df n(X). There are two cases to consider:

(1) If Map(X) is in the sparse graph, for any node X between Y and P (exclud-

ing P), then

(a) there is a link path to that node, and

(b) its label has been changed to dfn(iMap(X)).

Eval(Y) returns the node of maximum label on the link path from Y, up

to but excluding node P, since P has not been linked in yet. Since any

node is depth-first numbered higher than its immediate dominator, Eval(Y)

returns some node in the strongly connected component closest to Y whose

representative node is already in the sparse graph. Applying Mapo once

again ensures that the representative node is returned.

(2) If no node on the link path is included in the sparse graph, then each

such node must be labeled by its negative depth-first number. Thus, when

Eva/(Y) returns the node of maximum label, this will be the node of min-

imum negative label, which will be some node in the strongly connected

component containing the ancestor of Y just below P. Applying Mapo once

again ensures that the representative node is returned.

Thus, the two versions of FindSnode(Y, P) compute the same results. ❑

Performance. The asymptotic complexity of the path-compressing version of our

algorithm is almost linear.

THEOREM 4.2.4. Our faster algorithm takes O(Ea(E)) time.

PROOF. There are 0(~) calls to FindSnodeo. The proof thus follows from

Theorem 4.1.1 and Tarjan [1979]. El

5. EXPERIMENTS

Although we have described flow graphs where the worst-case quadratic behavior

of the standard algorithms does occur, previous experiments [Cytron et al. 1991]

have indicated that this behavior is not expected in practice on real programs. In

this section, we present results from experiments intended to answer the following

questions:

ACM Transactions on Programming Languages and Systems, Vol 17, No. 3, May 1995.



504 .

l.o–

o.9–

0.8–

o.7–

0.6–

o.5–

o.4–

o,3–

o.2–

o.l–

Ron K. Cytron and Jeanne Ferrante

*

*

*

*

* *
**

0.0–1 *

Fig. 6. Speedup of our algorithm vs. execution time (in milliseconds) of the usual algorithm

(1) How does the performance of our algorithm compare with the performance of

the potentially quadratic algorithm [Cytron et al. 1991] on typical programs?

(2) How big must a contrived example become before our algorithm beats the

quadratic algorithm?

We performed an experiment, wherein @functions were placed (toward construc-

tion of SSA form) in 139 Fortran procedures taken from the Perfect [Berry et al.

1988] (Ocean, Spzce, QCD) benchmark suite and from the Eispack [Smith et al.

1976] and Linpack [Dongarra et al. 1979] subroutine library; these are the same

procedures that participated in the experiments reported in Cytron et al. [1991].

In Figure 6 we compare the speed of our simple (i.e., without balanced path-

compression) but asymptotically faster algorithm given in Section 2 with the speed

of the usual algorithm [Cytron et al. 1991]; these execution times were obtained

on a SparcStation 10, and they represent only the time necessary to compute the

location of #-functions.

Most of the runs show that the execution time of our algorithm is linear (with

a small constant) in the execution time of the usual algorithm, and so can be

expected also to exhibit linear behavior in practice on the same programs. Because

each of these runs took under 1 second, both algorithms are fast on this collection

of programs. We have not implemented the balanced path-compression, and so

these experiments did not reflect any improvements that might be gained by this

theoretically more efficient algorithm.

Though not represented in Figure 6, we also experimented with a series of in-

creasingly taller “ladder” graphs of the form shown in Figure 1, where worst-case

behavior is expected. Our algorithm demonstrated better performance when these
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ladder graphs had 10 or more rungs, though smaller graphs take scant execution

time anyway. Our algorithm is twice as fast as the usual algorithm for a ladder

graph of 75 rungs, taking 20 milliseconds while the usual algorithm took 40 milli-

seconds.

In summary, comparison of our simple algorithm to the usual algorithm shows

—linear performance for the same cases as the usual algorithm, although our median

test case exhibited performance degradation of a factor of 3;

—a factor-of-2 better performance for some artificially generated cases.

Thus, preliminary evidence indicates comparable expected performance using our

simple algorithm.

6. CONCLUSIONS AND FUTURE WORK

In this article we have shown how to eliminate the potentially costly step of com-

puting dominance frontiers when constructing Sparse Evaluation Graphs or SSA

form. By directly determining the conditions under which a node is a @-node, rather

than by iterating through the dominance frontiers, we obtain a worst-case almost-

linear bound for constructing SEGS and a worst-case almost-quadratic bound for

constructing SSA form. In both cases, we have eliminated the 0(N2 ) behavior

associated with computing and using dominance frontiers. We have also given pre-

liminary experimental evidence that our simple algorithm’s behavior, though slower

in many cases, is comparable in practice to the usual algorithm.

Future work will incorporate balanced path-compression into our simple algo-

rithm and will compare the results on real and artificially generated cases.

Recently, Sreedhar and Gao /1994] have developed an elegant algorithm that de-

termines #-nodes in linear time. Their algorithm uses some of the graph properties

developed in this article, but introduces a new structure (the “DJ-graph” ) that as-

sists in determining @ nodes in the “forward” manner (given node X, include nodes

in DI’(X)) of the original @-node placement algorithm [Cytron et al. 1991]. Our

algorithm instead computes whether a given node Y is in the dominance frontier

of any node X already included in the graph. The %-eedhar and Gao algorithm is

asymptotically faster and remarkably simple; however, our backward style of de-

termining ~-nodes may be more useful in some situations, as when SSA form is

updated increment ally in response to inclusion of may-alias information [C ytron

and Gershbein 1993].

Acknowledgements

We thank Dirk Grunwald and Harini Srinivasan for their suggestions with a pre-

liminary version. We are grateful to our referees, especially the one who found a

mist ake in our proofs.

REFERENCES

AHO, A , HOPCROPT, .J , AND ULLMAN, J 1974 The De.w.yn and A7UZ1YS23 of Computer Algo-

rithms. Addison- Wesley, Reading, Mass.

AHO, A , SETHI, R., AND ULLMAN, J. 1986. Comptlers: Prvnczples, Techniques, and TOOIS,

Addison-Wesley, Reading, Mass.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995



506 . Ron K. Cytron and Jeanne Ferrante

ALPERN, B., WEGMAN, M. N., AND ZADECK, F. K. 1988. Detecting equality of variables in

programs. In Conference Record of the 15th Annual ACM Symposwm on Prmc%ples of

Programmmg Languages. ACM, New York, 1-11.

BERRY, M , C~Eri, D , Koss, P , KUGK, D., Lo, S , PANG, Y , ROLOFF) R , SAMEII, A ,

CLEMENTI, E , CHIN, S , SCHNEIDER, D , Fox, G , MESSINA, P , WALKER, D , HSIUNG,

C , SGSIW’ARZNfEIER, J , LUE, K , ORSZAC, S , SEIDL, F , JOHNSON, O , STNANSON, G ,

GOODRUM, R., AND MARTIN, J 1988. The perfect club benchmarks: Effective performance

evaluation of supercomputers. Tech. Rep. 827, Center for Supercomputing Research and

Development, Univ. of Illinois, Urbana, 111.

CHOI, J -D , BURKE, M , AND CARINI, P 1993. Efficient flow-sensitive interprocedural compu-
tation of pointer-induced aliases and side effects. In Conference Record of the 20th Annual

ACM Symposmm on Prmczples of Programming Languages. ACM, New York, 232-245.

CHOI, J -D , CYTRON, R , AND FERRANTE, J 1991. Automatic construction of sparse data

flow evaluation graphs. In Conference Record of the 18th Annual ACM Symposmm on

Prmczples of Programming Languages. ACM, New York, 55-66.

CHOI, J -D , CYTRON, R , AND FERRANTE, J 1994. On the efficient engineering of ambitious

program analysis. IEEE Trans. Soflw. Eng. 20, 2, 105–114.

CORMEN, T. H , LEISERSON, C E , AND RWEST, R. L. 1990. Introduction to Algordhms. The

MIT Press, Cambridge, Mass.

CYTRON, R AND GERSHBEIN, R. 1993. Efficiently accommodating may-alias information in

SSA form. In Proceedings of the ACM Conference on Programmmg Language Deszgn and

Implementation. ACM, New York, 36-45.

CYTRON, R , FERRANTE) J., ROSEN, B K , WEGMAN, M N , AND ZADECK, F K. 1991. Eff-

iciently computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13, 4 (Ott ), 451-490.

CYTRON, R , LOWRY, A , AND ZADECK, K 1986. Code motion of control structures m hlgh-

level languages. In Conference Record of the 13th Annual ACM Symposwm on Prmctples

of Programming Languages. ACM, New York, 70–85.

DONGARRA, J. J., BUNCH, J R , MOLER, C. B., AND STEWART, G W. 1979. Lmpack Users’

Guzde. SIAM Press, Philadelphia, Pa.

JOHNSON, R. AND PINGALI, K 1993. Dependence-based program analysis. In Proceedings of

the ACM SIGPLAN Conference on Programming Language Design and Implementation.

ACM, New York, 78-89.

MARLOWE, T J 1989. Data flow analysls and incremental iteration. Ph. D. thesis, Dept. of

Computer Science, Rutgers Univ., New Brunswick, NJ.

ROSEN, B. K., WEGMAN, M. N , AND ZADECK, F K. 1988. Global value numbers and redundant

computations. In Conference Record of the 15th Annual ACM Symposzum on Prmcaples
of Programming Languages. ACM, New York, 12–27.

SMITH, B T., BOYLE, J. M., DONGARRA, J J , GARBOW, B. S., IKEBE, Y , KLEMA, V. C ,

AND MOLER, C. B. 1976. Matraz Ezgensystem Routmes-Etspack Guzde. Springer-Verlag,

Berlin.

SREEDHAR, V AND GAO, G 1994. Computing @-nodes in linear time using DJ-graphs. Tech.

Rep. ACAPS Memo 75, School of Computer Science, McGill Univ., Montreal, Quebec,

Canada.

TARJAN, R 1979. Applications of path compression on balanced trees. J. ACM 26, 4 (Ott.),

690–715.

WEGMAN, M N. AND ZADECK, F K 1991. Constant propagation with conditional branches.

ACM Trans. Program. Lang. Syst. 13, 2 (Apr ), 181-210.

Received October 1993; revised October 1994; accepted November 1994

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995


