
Delta-oriented Architectural Variability Using MontiCore

Arne Haber
Software Engineering

RWTH Aachen University,
Germany

http://www.se-rwth.de/

Thomas Kutz
Software Engineering

RWTH Aachen University,
Germany

http://www.se-rwth.de/

Holger Rendel
Software Engineering

RWTH Aachen University,
Germany

http://www.se-rwth.de/
Bernhard Rumpe
Software Engineering

RWTH Aachen University,
Germany

http://www.se-rwth.de/

Ina Schaefer
Institute for Software Systems

Engineering
TU Braunschweig, Germany
http://www.tu-bs.de/sse

ABSTRACT
Modeling of software architectures is a fundamental part
of software development processes. Reuse of software com-
ponents and early analysis of software topologies allow the
reduction of development costs and increases software qual-
ity. Integrating variability modeling concepts into architec-
ture description languages (ADLs) is essential for the devel-
opment of diverse software systems with high demands on
software quality. In this paper, we present the integration
of delta modeling into the existing ADL MontiArc. Delta
modeling is a language-independent variability modeling ap-
proach supporting proactive, reactive and extractive prod-
uct line development. We show how ∆-MontiArc, a language
for explicit modeling of architectural variability based on
delta modeling, is implemented as domain-specific language
(DSL) using the DSL development framework MontiCore.
We also demonstrate how MontiCore’s language reuse mech-
anisms provide efficient means to derive an implementation
of ∆-MontiArc tool implementation. We evaluate ∆-Monti-
Arc by comparing it with annotative variability modeling.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Languages; D.2.2 [Software Engineering]: Design Tools
and Techniques—Computer-aided software engineering
(CASE)

Keywords
Software Architectures; Delta Modeling; DSL Development;
DSL Reuse

1. INTRODUCTION

In modern software development processes, the modeling
of the system architecture is an integral part [26]. Archi-
tectural description languages (ADL) provide modeling ele-
ments to describe system components, their ports as inter-
action points, and the communication connections between
components [25]. The structuring of the system into small
and manageable parts decreases complexity of single devel-
opment tasks and allows reuse of previously developed com-
ponents. In addition, the analysis of non-functional system
properties is possible by considering component topologies
and communication paths [9].

Modern software systems exist in many different variants
in order to adapt to changing user requirements or appli-
cation contexts, while imposing high demands on system
quality and correctness [33]. In order to develop a set of
diverse systems with the desired quality attributes, the en-
visaged system variability has to be represented explicitly on
the architectural level. Variability modeling concepts have
to support the modular representation of variability in or-
der to enable a scalable modeling of architectural variability,
while still being flexible and expressive enough to capture
differences between different system variants.

Delta modeling [4, 32, 31] is a language-independent vari-
ability modeling concept that supports the flexible modular
modeling of variability for proactive, reactive and extractive
product line development [23]. In delta modeling, a set of
systems is described by a designated core system and a set
of system deltas that specify modifications of the core prod-
uct to obtain other products. A particular system variant
is obtained by applying the modifications of a selected sub-
set of the deltas to the core product. In previous work [14],
we presented the first application of delta modeling to an
ADL and proposed a proof-of-concept language to represent
architectural variability. This language only contained ba-
sic operations to add and remove architectural elements and
modify components by changing their internal structure.

In this paper, we present ∆-MontiArc, a delta-oriented
variability modeling language explicitly designed to repre-
sent architectural variability. In addition to the basic modi-
fication operations of delta modeling that were already pre-
sented in [14], ∆-MontiArc contains designated operations
specifically tailored to model architectural variability, such
as replacing compatible components or re-wiring component
connections. In order to resolve conflicts between modifi-

[HKR+11] A. Haber, T. Kutz, H. Rendel, B. Rumpe, I. Schaefer
Delta-oriented Architectural Variability Using MontiCore
In: ECSA ‚11 5th European Conference on Software Architecture: Companion Volume, ACM New York, NY, USA,
Article No. 6, September 2011.
www.se-rwth.de/publications

cations targeting the same architectural modeling element,
e.g., the same component, an ordering constraint attached
to each delta determines which other deltas have to be or
must not be applied before the respective delta. The selec-
tion of the applicable deltas for a particular system variant
is specified separately from the deltas in order to support
configurability by external product configuration tools. We
implement ∆-MontiArc as a domain-specific language (DSL)
using the DSL framework MontiCore [12]. We extend the
existing ADL MontiArc [13] developed with MontiCore by
relying on MontiCore’s language reuse concepts. In order
to evaluate the potential for delta modeling of software ar-
chitectures, we compare ∆-MontiArc with annotative vari-
ability modeling approaches using two case studies from the
embedded system domain. The results show that the delta
models has a clearer and more understandable structure.

This paper is structured as follows: In Section 2, the ADL
MontiArc and the DSL framework MontiCore are described.
Section 3 gives an introduction to ∆-MontiArc. Its imple-
mentation with MontiCore is presented in Section 4. Prod-
uct generation from ∆-MontiArc-models is explained in Sec-
tion 5. Section 6 describes case studies. Related work is
discussed in Section 7. Section 8 summarizes the paper.

2. THE ARCHITECTURAL BASIC
LANGUAGE

The delta-oriented variability modeling approach for soft-
ware architectures presented in this paper is based on the
existing architectural description language MontiArc [13]
which is developed using DSL-framework MontiCore [12].
We chose MontiArc because it provides all interesting con-
cepts an ADL needs. MontiArc and MontiCore are intro-
duced in the following.

2.1 MontiArc
Architectural description languages (ADLs) are modeling

languages that support design and development of (software)
systems. Therefore, they offer modeling elements like com-
ponents, interfaces, and connectors, that allow a high-level
description of a system [25]. Based on this abstract model
that contains the most important system parts, their rela-
tion, and interaction, reasoning about structural, as well as
non-functional, properties is possible in an early develop-
ment stage [9]. MontiArc [13] is a textual ADL tailored to
distributed information-flow architectures and their message-
based asynchronous communication. Following taxonomy
for ADLs presented in [25], MontiArc components are units
of computation or storage. As components are only accessed
and connected by their defined interfaces, their interior im-
plementation is encapsulated.

As an example, we present the logical architecture of a
multicopter control system. These helicopters with four or
more rotors are mostly unmanned and may be extended with
certain sensors and optics to improve their flight-behavior
and functionality. Figure 1 contains the definition of com-
ponent FlightController. Its interface description is
given by incoming and outgoing ports that have a type (e.g.
SteeringCmd) and a name (e.g. engine1). The com-
ponent realization is given by an inner decomposition to
subcomponents. These are component instances of a cer-
tain type (e.g. GyroEval) and a name (e.g. gEval). In
MontiArc naming of subcomponents and ports is optional,

as long as a used type is unique in a component defini-
tion. If no name is explicitly given, a subcomponent, re-
spectively a port, is accessible by its type’s name. Sub-
components and the outer interface are connected by ports
that capture a unidirectional communication. The compo-
nent depicted in Figure 1 receives several signals. Data type
SteeringCmd encapsulates the typical steering commands
nick, roll, yaw and throttle. The SteeringMode is a flag
which defines whether accelerometer or heading-hold flight
mode is used. In accelerometer flight mode, the sticks of
the transmitter control the angle of the multicopter whereas
in heading hold mode the angular velocity is controlled.
Furthermore, the FlightController component receives
signals from the gyroscope and the accelerometer sensors.
These signals are converted to float arrays by the subcom-
ponents gEval and AccEval. The signals SteeringCmd,
SteeringMode, and the converted arrays are processed by
a SteeringCmdProcessor that calculates the power for
each rotor engine. This output is post-processed by an out-
putProcessor that transforms the values into signals un-
derstandable by the rotor engine hardware.

Listing 1 contains the textual representation of the exam-
ple depicted graphically in Figure 1 in MontiArc. A compo-
nent definition starts with the keyword component followed
by its type name (l. 1). A components body contains arbi-
trary many architectural elements: ports that describe com-
ponent interfaces, subcomponents as instantiation of other
component definitions, inner components as private com-
ponent definitions, and connectors to capture communica-
tion. The interface of a component is defined using keyword
port followed by incoming (ll. 5–8) and outgoing (ll. 9–
12) ports. A port always has a type (e.g. SteeringCmd
l. 5) and an optional name. Subcomponents are instanti-
ated using the keyword component followed by a compo-
nent type and an optional name (ll. 14–17). Some compo-
nents need parameters to be instantiated. For example com-
ponent SteeringCmdProcessor (l. 14) is instantiated as
subcomponent scp using parameter value 4. This way in-
ternal algorithms are optimized to handle four rotors. Con-
nectors between subcomponents and the outer interface or
other subcomponents are inserted automatically using the
keyword autoconnect (l. 2). Parameterized with param-
eter port connections between ports with the same name
and a compatible type are automatically derived. An al-
ternative parameter is type that creates connections based
on the port types only. Additionally, connections may be
created manually, if preferred or required.

2.2 Implementation of MontiArc
Language design does not only comprise the definition of

a language itself, but also the associated tool support. The
DSL-framework MontiCore [12] supports the definition and
generation of all relevant language processing artifacts for a
specific language that is specified by a grammar similar to
EBNF. Generated artifacts are among others the abstract
and concrete syntax of a language, a parser, a lexer, and a
set of runtime components. Additionally, support for cre-
ation of symboltables and automated checking of context
conditions is provided. MontiCore allows defining language
processing workflows which transform input artifacts into
output artifacts based on an abstract syntax representation.
Thus, domain-specific languages and the accompanying tool
support can be developed in an efficient way.

FlightController

SteeringCmd
Processor(4)
scp

Output
Processor
op

SteeringCmd

SteeringMode Integer[]

Integer

GyroEval
gEvalGyroSensorStat

AccEval
AccSensorStat

Float[]

Float[]

gyro
Value

power
Output

acc
Value

gyro
Value

acc
Value

power
Output

Integer

Integer

Integer

MontiArc

engine4 engine4

engine3 engine3

engine2 engine2

engine1engine1

Figure 1: MontiArc architecture of a quad-copter control system

1 component FlightController {
2 autoconnect port;
3

4 port
5 in SteeringCmd,
6 in SteeringMode,
7 in GyroSensorStat,
8 in AccSensorStat,
9 out Integer engine1,

10 out Integer engine2,
11 out Integer engine3,
12 out Integer engine4;
13

14 component SteeringCmdProcessor(4) scp;
15 component OutputProcessor op;
16 component GyroEval gEval;
17 component AccEval;
18 }

Listing 1: Component FlightController

MontiCore additionally offers means for language exten-
sion and reuse by inheritance and embedding. Both con-
cepts simplify the implementation of architectural variability
in MontiArc. Language inheritance means that an existing
grammar for a particular language can be extended and re-
fined by defining new grammar rules or redefining existing
rules. Inheritance is also used for extending generated ab-
stract syntax representation which is implemented by Java
classes. Thus, existing language processing workflows which
use these Java classes do not need to be rewritten. The con-
cept of language embedding allows defining a grammar with
gaps which can be filled later with other domain-specific
languages. For example, a grammar can be defined with a
gap for a constraint language where boolean logic or OCL
can be embedded in a further step. MontiCore does not
only facilitate the combination of abstract syntax by means
of language embeddings, but allows also to reuse the other
parts of a language implementation, e.g. symboltables and
context conditions.

The ADL MontiArc described above is developed using
MontiCore. The tool support provided for MontiArc con-

tains artifacts such as a symboltable, a context condition
checker, or a code generator. These tools process the ab-
stract syntax of MontiArc models. Therefore, they may be
reused in extensions of MontiArc as well. The MontiArc
ADL can be extended by using the interface ArcElement as
an extension point on the grammar level. By implementing
this interface in a sub-grammar, new architectural elements
may be added to component definitions. Existing tools may
be reused. For this purpose, sub-language tools only have to
process new elements defined by the sub-language. Original
MontiArc elements are handled by the existing MonitArc
tool implementation.

3. VARIABILITY IN ARCHITECTURAL
DESCRIPTIONS

∆-MontiArc represents the variability of software archi-
tectures based on delta modeling, a language-independent
variability modeling approach. While in [14] only the con-
ceptual feasibility of this idea was demonstrated, in this sec-
tion, we present a refined language which comprises linguis-
tic constructs specifically tailored for representing architec-
tural variability. The variability of a software architecture
in ∆-MontiArc is represented by a specific core architecture
that is described by a set of core models in MontiArc. The
core architecture is a complete architecture description of
one product. Additionally, in ∆-MontiArc, a set of delta
models can be specified. Each delta model contains modifi-
cations of MontiArc models to obtain architectures for fur-
ther products. In order to generate the architecture descrip-
tion (given by a MontiArc model) for a particular product,
a subset of the delta models is determined, and the con-
tained modifications are applied to the core models. In the
following, we present the different modification operations
that can be specified in delta models, define how architec-
tures for particular products can be derived and illustrate
the approach using the multicopter example.

Modification operations.
∆-MontiArc provides a number of statements for modi-

Statement Affected elements

modify component components

add / remove
ports, components,
parameters

connect / disconnect connectors

rename
ports, components,
parameters

replace component components

expand autoconnect autoconnect

introduce autoconnect autoconnect

remove unreachables
ports, components,
connectors

Table 1: Overview of Modification Operations

fication of a architectural models defined in MontiArc [13].
An overview of modification operations is given in Table 1.
The modification of an architectural component is specified
using the keywords modify component followed by a list
of modification operations in curly brackets. By using the
add operation, ports, subcomponents, configuration param-
eters, and autoconnect statements can be added to a compo-
nent. The inverse remove operation allows to remove these
kinds of elements. Ports are connected with each other us-
ing the connect operator. In order to remove a connector,
the disconnect statement can be used analogously.

These basic modification operations are sufficient for defin-
ing all possible modifications of MontiArc architecture mod-
els. However, some modifications are difficult to describe
when using only add, remove, connect, and disconnect
operations. For example, renaming a port does not only re-
quire to remove the old port and to add the new one, but
it also requires to update all connectors that used the old
port name. This results in a number of modification opera-
tions which can be error-prone, if it has to be done manually.
For this reason, we define further modification operations to
alleviate the modeling of architectural variability.

The rename operator allows renaming ports, subcompo-
nents, and configuration parameters such that also all af-
fected elements are updated. This means, that after renam-
ing a port p in component c, also all connectors which use
p as source or target are updated with the new port name.
To achieve that, all core models have to be examined, since
p can not only be used in the connectors of c, but also in the
connectors of components where c is used as a subcompo-
nent. Similarly, renaming a subcomponent sc of component
c causes an update of all connectors in c which use a port
of sc in their source or target. When renaming a configu-
ration parameter cp in component c, also the configurations
of subcomponents which use cp as a variable are updated.

The replace operator can be used to substitute a sub-
component sc1 of component c with another subcomponent
sc2, if the interfaces of sc1 and sc2 are compatible. Using
this operator does not only save the corresponding remove
and add statements but also the re-wiring of all connectors
that used the replaced subcomponent. The interfaces of sc1

and sc2 are compatible, if first the number of incoming ports
is the same and there is a mapping between the two sets of
incoming ports such that for each incoming port p in sc1

there is an incoming port p′ in sc2 which is of the same type
or of a supertype of p. Second, the number of outgoing ports
in sc2 is at least the number of outgoing ports in sc1 and
the outgoing ports of sc2 are of the same or of a subtype of
the outgoing ports in sc1.

As mentioned in Section 2.1, some components need to
be parametrized when instantiated as subcomponents. This
configuration can be adjusted with the modify component
statement followed by an arbitrary number of parameter as-
signments in parentheses. In this way new values can be
assigned to existing configuration parameters which are ex-
plicitly mentioned to improve readability.

The autoconnect statement in MontiArc automatically
connects compatible ports depending on the used auto-
connect configuration. Ports are connected automatically
based on their types (autoconnect type) or their names
(autoconnect port). This statement can also be used in
a delta model to overwrite the configuration of the core com-
ponent. Disabling automatic connections can be achieved
with the autoconnect off statement. In addition, in ∆-
MontiArc advanced statements are defined for handling the
autoconnect concept. The expand autoconnect opera-
tion makes all implicitly defined connectors explicit. These
connectors can then be removed in subsequent deltas by the
disconnect statement. The expand autoconnect op-
eration also disables the autoconnect configuration for the
currently modified component. Hence implicit connectors do
not exist anymore, but the modeled system is not affected
directly. The introduce autoconnect statement works
in the opposite way. All connectors which can be recreated
automatically are removed, and the corresponding auto-
connect configuration is set. This way previously uncon-
nected ports with the same name are connected as well.

The operator remove unreachables removes all ports
and subcomponents which do not contribute to the output
of the currently modified component. In doing so, in a first
phase all subcomponents which do not contain any outgo-
ing connectors are removed together with all their incoming
connectors. Since this step can result in new subcomponents
without outgoing connectors, it is recursively repeated for all
affected components. In a second phase, all ports which are
no more used by a connector are removed.

The operators expand autoconnect, introduce au-
toconnect and remove unreachables can be used ei-
ther globally or locally. When defined globally (i.e., outside
of a concrete component), the modifications are applied to
all architectural core models, whereas a local definition only
affects the currently modified component.

Product configuration.
Compared to the previous version of ∆-MontiArc [14],

the delta models in the language presented in this paper are
independent of product features specified in feature models.
In detail, this means that the application condition as a
logical expression over features is no longer defined within
the delta model. This makes the modifications specified in
the delta models more reusable, e.g., for a different product
line for the same application domain.

However, ∆-MontiArc allows the definition of a logi-
cal expression over delta models associated with each delta

1 deltaconfig DeltaWolf {
2 PressureSensor,
3 HeightHold,
4 HexoCopter,
5 RemoveHHFlightMode
6 }

Listing 2: Product configuration with four delta
models

1 delta HexoCopter {
2

3 modify component OutputProcessor {
4 add port out Integer engine5;
5 add port out Integer engine6;
6 }
7

8 modify component FlightController {
9 modify component scp(engineCount=6);

10 add port out Integer engine5;
11 add port out Integer engine6;
12 }
13

14 modify component SteeringCmdProcessor {
15 rename component quadPowerCalc
16 as hexaPowerCalc;
17 }
18 }

Listing 3: Delta for six propeller engines

model in order to specify constraints for the order of delta
model application. These constraints are necessary to re-
solve conflicts between deltas affecting the same architec-
tural elements. For example, redefining a parameter in the
configuration of a subcomponent is only valid, if the respec-
tive parameter exists. If the corresponding modification for
adding this parameter is defined in another delta, the re-
spective delta has to be applied before the current one and,
therefore, has to be included in the order constraint (see
Section 5 for more details on the used validation checks).

The order constraint is defined after the keyword after
and specifies which deltas have to be and which ones must
not be applied before the current delta. In this expression,
delta model names are used as boolean values. If a delta
model is applied, it is represented by the value true, oth-
erwise by false. Specifying not only a partial order, but a
logical expression allows for a more precise definition of the
application order. For instance, the requirement of at least
or exactly one delta from a set of deltas can be expressed.
Creating a delta that depends on prior deltas requires knowl-
edge about its predecessors, e.g., for modifying elements that
have been introduced by a previous delta. However, this may
be supported by tools that automatically check the consis-
tency of the newly added delta.

A product configuration is described by explicitly speci-
fying delta models that have to be applied to generate the
product. In the current version of the language, a prod-
uct configuration is independent of product features. How-
ever, an integration of our approach into a feature-based
development process using tools, like FeatureIDE [21] or
pure::variants [30], is possible and prototypically realized for
the former. A feature is associated with one ore more deltas
that realize this feature. For a particular feature selection, a
product configuration containing the set of associated deltas
is derived and then used to generate a concrete product.

1 delta HeightHold
2 after PressureSensor && !HexoCopter {
3

4 modify component SteeringCmdProcessor {
5 add port in Boolean heightHoldFlag;
6 add port in Integer heightValue;
7 add component HeightComparator hc;
8 add component HeightAdaptor ha;
9 connect quadPowerCalc.powerOutput ->

10 ha.curPowerCalc;
11 connect ha.newPowerOutput -> powerOutput;
12 }
13

14 modify component FlightController {
15 add port in Boolean heightHoldFlag;
16 }
17 }

Listing 4: Delta for height hold flight support mode

Example.
The following example illustrates the use of ∆-MontiArc.

In this example, the architectural component FlightCon-
troller and its subcomponents, as described in Section 2,
are used as core models. The multicopter software architec-
ture is modified with ∆-MontiArc in order to (a) operate
with six instead of four rotor engines, (b) provide a flight
support mode which holds the height of the multicopter and
(c) remove the heading hold flight mode. To achieve these
three transformations, the four delta models listed in the
product configuration in Listing 2 are used. The resulting
architectural modifications are illustrated in Figure 2.

The HexoCopter delta extends the software architecture
with the support of six instead of four propeller engines
(see Listing 3). The connections between the new outgo-
ing ports of the output processor and the ones of the flight
controller are not defined explicitly. They are automati-
cally created due to the autoconnect port statement in
the FlightController core definition. Furthermore, the
configuration of the subcomponent scp in the flight con-
troller needs to be adjusted by setting configuration param-
eter engineCount to six (l. 9). Line 15 demonstrates the
use of the rename operator.

The HeightHold delta adds the ports, subcomponents
and connectors to provide the architecture for the desired
flight support mode (see Listing 4). If this flight support
mode is enabled, the height hold flag is set to true. The new
subcomponents HeightComparator and HeightAdaptor
in the component SteeringCmdProcessor calculate the
difference between the desired and the actual height of the
multicopter and adjust the calculated power for the rotor en-
gines accordingly. Since this delta model requires the pres-
sure sensor to be available, it can only be applied after the
PressureSensor delta which is specified in the order con-
straint (l. 2). The PressureSensor delta adds an incom-
ing port to the FlightController and a new subcompo-

1 delta PressureSensor {
2 modify component FlightController {
3 add port in PressureSensorStat;
4 add component PressureEval pEval;
5 }
6 }

Listing 5: Delta for adding a pressure sensor

1 delta RemoveHHFlightMode {
2

3 expand autoconnect;
4

5 modify component FlightController {
6 disconnect steeringMode ->
7 scp.steeringMode;
8 }
9

10 modify component SteeringCmdProcessor {
11 disconnect steeringMode ->
12 quadPowerCalc.steeringMode;
13 }
14

15 remove unreachables;
16 introduce autoconnect port;
17 }

Listing 6: Delta for removing the heading hold flight
mode

nent (PressureEval) (Listing 5). Since the HexoCopter
delta renames the subcomponent quadPowerCalc, it has to
be applied after the HeightHold delta to ensure the validity
of the connect statement in line 9. This order constraint is
expressed by negating the application of the HexoCopter
delta (Listing 4, l. 2).

Listing 6 shows the RemoveHHFlightMode delta which
removes the heading hold flight mode. Since only one flight
mode (accelerometer mode) remains, the input for setting
a flight mode can be removed as well. There are basically
two ways for removing unused connectors and ports. As in
this scenario all connectors to be removed are only implicitly
modeled with the autoconnect statement, it is sufficient
to remove only the ports which are not used anymore. The
second way is demonstrated by the delta model in Listing 6.
The expand autoconnect operation results in all connec-
tors being represented explicitly (l. 3). The undesired con-
nectors can then be removed with the disconnect operator
(l. 6f, 11f). Thereby, several ports are no longer used and
can be removed by the remove unreachables operator
(l. 15). The introduce autoconnect port statement
removes the connectors unnecessarily created by the expand
autoconnect statement and reestablishes the autocon-
nect concept (l. 16).

4. IMPLEMENTATION OF
∆-MontiArc

The language ∆-MontiArc is implemented with the Mon-
tiCore framework [12]. One benefit of MontiCore is the pos-
sibility to reuse already defined languages and their tools
via inheritance and embedding. ∆-MontiArc uses both
concepts in order to extend MontiArc. Listing 7 shows a
simplified partial grammar definition of ∆-MontiArc to il-
lustrate language reuse.

∆-MontiArc inherits from the MontiArc language which
is specified by the extends keyword, similar to program-
ming languages such as Java (l. 1). Thus, grammar pro-
ductions defined in MontiArc can also be used in ∆-Monti-
Arc’s grammar definition. This is exemplified by the Add-
ArcElementStatement production which uses the Arc-
Element production of MontiArc. In the same way, the def-
inition of several productions in the ∆-MontiArc grammar
is simplified. Embedding an already defined language is real-

1 grammar DeltaMontiArc extends MontiArc {
2

3 external Constraint;
4

5 MADeltaModel =
6 "delta" Name ("after" Constraint)?
7 deltaBody:MADeltaBody;
8 //...
9 AddArcElementStatement implements Statement =

10 "add" ArcElement;
11 //...
12 }

Listing 7: Example for reusing languages via
inheritance and embedding

ized by the keyword external (l. 3). The defined gaps can
be used in any production, as it is the case in line 6. Here,
a language for logical expressions can be integrated which
is used for defining the application order constraints. The
concrete language that is employed to fill the Constraint
gap can be defined elsewhere.

A further benefit of using MontiCore is the possibility to
generate a parser which processes an input model expressed
in the defined language and creates an abstract syntax tree
(AST). The AST can be modified by further language pro-
cessing workflows defined in MontiCore. When processing
an input model, the language processing workflows can be
invoked in any desired order. ∆-MontiArc reuses the pars-
ing workflow of MontiCore. The workflow for product gener-
ation from a given product configuration is defined manually
and explained in more detail in the following section.

5. PRODUCT GENERATION
The product generation workflow of ∆-MontiArc works

on three different kinds of models: MontiArc core models,
delta models and product configurations. The product con-
figuration defines a set of delta models which have to be
applied to the core models to generate a particular product
model. The generation workflow uses the ∆-MontiArc im-
plementation to parse the delta models and the MontiArc
implementation for loading the core models. The generation
workflow consists of the following four steps:

1. Load MontiArc core models from core folders and store
their ASTs and symbol tables.

2. Load the delta models which are listed in the product
configuration and compute the application order.

3. Process the delta models one by one in the computed
order by modifying the core/intermediate ASTs and
symbol tables entries.

4. Pretty print the resulting ASTs.

In the first step, all MontiArc models stored in the defined
core folders are loaded, i.e., the models are parsed, their
symbol tables are built up and the default set of MontiArc’s
context conditions is checked [13]. The resulting AST and
the infrastructure for accessing the symbol tables is stored
for each core model.

In the second step, the product configuration is parsed and
the listed delta models are loaded. Afterwards, the applica-
tion order of these delta models is determined by evaluating

FlightController

SteeringCmd
Processor(6)
scp

Output
Processor
op

SteeringCmd

SteeringMode

GyroEval
gEval

AccEval

Boolean

PressureEval
pEval

MontiArc

PressureSensor
HeightHold
HexoCopter
RemoveHHMode

height
HoldFlag

Integer

height
HoldFlag

power
Output

power
Output

Float[]

Float[]

Pressure
SensorStat

height
Value

height
Value

acc
Value

gyro
Value

gyro
Value

acc
Value

Integer[]

engine1

engine2 engine2

engine3 engine3

engine1

engine4 engine4

engine5 engine5

Integer

Integer

Integer

Integer

Integer

Integer

GyroSensorStat

AccSensorStat

engine6 engine6

Figure 2: Flight controller after application of deltas

the application order constraints (specified with the after
keyword). An application order constraint is a logical ex-
pression over deltas and defines which deltas have to be or
must not be applied before the current delta. An already ap-
plied delta is represented by the boolean value true, a not
yet applied delta is represented as false. The application
order can then be calculated by using a SAT-solver.

As an example, Figure 3 shows the resulting tree for a
product configuration containing the four delta models A,
B, C and D. Delta A has no defined constraint for the

Figure 3: Tree structure for application order cal-
culation

application order. B can only be applied if D has not been
applied before. C can be applied if either A or B have
been applied before, but not both. D can be applied after
B or C, but not after A. The figure shows the complete
tree. One resulting complete linear order for this example is
B → C → D → A.

In the third step of the product generation workflow, the
delta models are applied in the computed linear order. For
each delta model, every modification operation is processed
in specified order using a visitor [8] which traverses the delta
model AST. For some delta modification operations, their
applicability needs to be checked before execution. The ap-
plicability checks comprise the following conditions:

• A component c can only be modified, if c exists.

• An architectural element ae must not be added to com-
ponent c, if c already contains ae.

• An architectural element ae must not be removed from
component c, if c does not contain ae.

• A port p must not be removed from component c, if c
contains a connector with p as its source or target.

• A subcomponent sc must not be removed from com-
ponent c, if c contains a connector that has a port of
sc as its source or target.

• An architectural element aeold must not be renamed
to aenew in component c, if c does not contain aeold or
c already contains an element of the same kind with
name aenew.

• A parameter cp must not be redefined in the configu-
ration of a subcomponent sc, if sc does not contain a
configuration parameter cp.

• A subcomponent sc1 must not be replaced by a sub-
component sc2 if both components have incompatible
interfaces (see Section 3 for the definition of compati-
ble interfaces).

If the currently executed delta modification operation is
applicable, the AST of the modified MontiArc component is
adjusted together with the corresponding symbol table en-
tries. After the application of a delta model, the modified
or newly created architectural elements are checked against
a set of MontiArc context conditions. This set of context
conditions comprises all checks that can be done locally on
the affected elements, e.g., after adding a port the naming
convention that each port name should start with a lower
case letter is checked. However, not every MontiArc context
condition can be checked here, since the resulting architec-
tural model is not required to be valid after the application
of a single delta model.

In the last step of the product generation workflow, the
modified ASTs of all newly obtained core models are trans-
formed back into MontiArc models. This is realized by using
MontiArc’s pretty printer which is implemented as a visitor
that traverses the AST and prints the corresponding Mon-
tiArc statement for each node.

6. CASE STUDY
In order to evaluate the potential of delta-oriented vari-

ability modeling for software architectures in ∆-MontiArc,
we compared it in two case studies with annotative vari-
ability modeling approaches [37]. In annotative variability
modeling, a model is constructed that contains all elements
that are present in any possible variant. Hence, these mod-
els are often also called 150%-models [11]. Model elements
are annotated with product features and removed from the
model for a product if the feature is not selected.

As first case study, we used the multicopter example pre-
sented in Section 3. For the second case study, we mod-
eled an architecture for an anti-lock braking system (ABS)
with several variants. The core architecture is used in cars
and calculates individual braking pressures for four wheels
by monitoring these wheels. In case of a (nearly) block-
ing wheel, indicated by the corresponding wheel sensor, the
braking pressure for this wheel is reduced. A second variant
of the ABS is an implementation for a motorcycle. This vari-
ant only has two wheels, but a separate brake for the rear
wheel. The third variant is used in trucks with six wheels
and includes two additional sensors for the wheels and two
additional actuators to adjust the braking pressures. A trac-
tion control is supported by a fourth variant of the ABS.
This variant evaluates the position of the acceleration pedal
and calculates braking pressures for the wheels without trac-
tion. A fifth variant includes an electronic stability control
(ESP). For the ESP, sensors measure the lateral accelera-
tion, and specific braking pressures are calculated to avoid
critical situations.

For comparing annotative and delta-oriented variability
modeling, we used MontiArc as underlying ADL. For delta
modeling, we used ∆-MontiArc. The 150%-model archi-
tecture is realized by annotating the MontiArc elements to
express their usage in specific variants. An example anno-
tation is displayed in Listing 8 where subcomponent scp
is configured with the value 6 in variant HexoCopter, and
otherwise with 4. In ∆-MontiArc, this is expressed by only

1 <<variant = "HexoCopter">>
2 component SteeringCmdProcessor(6) scp;
3 <<variant = "!HexoCopter">>
4 component SteeringCmdProcessor(4) scp;

Listing 8: Example for an annotated MontiArc-
element

MultiCopter ABS
∆-MA 150% ∆-MA 150%

LOC 104 97 127 146
Files 13 9 9 5
max. LOC 15 29 27 101
avg. LOC 8 10.78 14.11 29.2
rel. VC 42.31% 21.65% 62.20% 36.30%

Table 2: Case study results

one modify component statement (see Listing 3,l. 9).
In order to evaluate both approaches with respect to their

usability, we compared the size of the models by measuring
the absolute lines of code (LOC) and the number of files
(# Files). Both values correlate to size and complexity of a
model, which is easier to comprehend if both values are low.
Typically, a component is modeled in its own file. When
using delta modeling, additionally each delta is also defined
in its own file. As models are developed by human develop-
ers, the size of the model, in terms of LOC per file, should
not exceed a certain limit to facilitate the understanding of
the models. Thus, we measure the maximum lines of code
(max. LOC) and the average lines of code (avg. LOC)
per file which indicates understandability as smaller models
are easier to read. Additionally, we measured the relative
amount of variability-related code contained in the models.
For the 150%-model, we divided the number of annotated
elements by the total number of elements. For delta model-
ing, we divided the number of LOC in delta models by the
total number of LOC.

The results of the evaluation are summarized in Table 2.
It can be seen that the absolute number of LOC is nearly
the same for both modeling approaches. However, the max-
imum and average number of LOC per file is higher for the
150%-approach. This means that in the annotative variabil-
ity modeling approach the single files comprising parts of the
model are larger since the variability referring to all possi-
ble variants has to be represented in every file together with
the non-variable architectural elements. In contrast, delta
modeling allows the separation of the model into a number
of smaller files, reducing model complexity and increasing
modularity and understandability. The relative variability-
related code is nearly twice as large in the delta model-
ing approach than in the 150%-model. A deeper inspec-
tion of these results reveals that a complete delta is counted
as variability-related code although only small portions are
modification operations while larger portions refer to ex-
isting component definitions, introduce new architectural
elements or define the ordering constraints. The effect of
saving LOC by expressing variability using statements such
as remove unreachables does not have consequences for
the LOC contained in delta models in the considered case
examples. Nevertheless, the separation of variability-related
code in deltas allows identifying architectural elements con-
tained in different variants more easily. Regarding the over-

all result of the evaluation, the ∆-MontiArc approach seems
to have a better scalability, in particular for larger models,
than the 150%-model approach.

7. RELATED APPROACHES
Other approaches to represent architectural variability can

be classified in two main directions [37]: annotative (or neg-
ative) and compositional (or positive) modeling approaches.
Annotative approaches consider one model (that is usually
non-hierarchical) representing all products of the product
line. Variant annotations, e.g., using UML stereotypes [38,
10] or presence conditions [5], define which parts of the
model have to be removed to derive a concrete product
model. The orthogonal variability model (OVM) [29] repre-
sents variability in a model that is separated from the arti-
fact model. The variability modeling language (VML) [24]
specializes the ideas of OVM for architectural models.

Compositional approaches associate model fragments with
product features that are composed for a particular feature
configuration. In [18, 37, 27], models are constructed by
aspect-oriented composition. Feature-oriented model-driven
development (FOMDD) [34] combines feature-oriented pro-
gramming (FOP) with model-driven engineering. In [7],
model fragments are merged in order to provide the vari-
ability model of a product line. Apel et al. [1] apply model
superposition to compose model fragments. Plastic partial
components [28] represent architectural variability by ex-
tending partially defined components with variation points
and associated variants. Variants can be cross- or non-cross-
cutting architectural concerns that are composed with the
common component architecture by weaving mechanisms.
In the Koala component model [35, 36], the variability of a
component is described hierarchically by the variability of its
subcomponents. The selection between different subcompo-
nent variants is realized by variation points, called switches,
that are designated components. For each variation point,
a particular component variant can be selected. In [15], we
extended MontiArc by hierarchical variability modeling con-
cepts similar to the Koala approach.

Apart from positive and negative variability representa-
tions, model transformations are used for capturing product
variability. The common variability language (CVF) [17]
represents the variability of a base model by rules describ-
ing how modeling elements of the base model have to be
substituted in order to obtain a particular product model.
In [20], graph transformation rules capture the variability of
a single kernel model comprising all commonality. In [19],
architectural variability is represented by change sets con-
taining additions and removals of components and compo-
nent connections that are applied to a base line architecture.
Delta modeling [4, 32] that is applied to represent variability
in ∆-MontiArc can also be classified as a transformational
approach. In contrast to the above mentioned variability
modeling approaches, ∆-MontiArc facilitates proactive, re-
active, and extractive product line development [23] via flex-
ible modification operations that are specified in delta mod-
els, while still allowing modular variability representations.

Other textual ADLs, similar to MontiArc, that could be
extended with variability modeling concepts are Acme [9] or
xADL [6]. An extension of Acme can be achieved using its
property mechanism. A variation point may be embedded
in a property and modeled by a plain string. This approach,
however, is error prone, as these strings have to be inter-

preted manually. Syntax highlighting or further modeling
support for variation points cannot be provided by Acme.
xADL can be extended by defining new XML schemes. As
human readability of XML files is poor, xADL does not
match our extensibility requirements, too. As pointed out
in this paper, MontiArc relying on the language extension
mechanisms of MontiCore is the ideal candidate for the lan-
guage extensions that have to be made for ∆-MontiArc.

Apart from MontiCore [12], several meta-case tools ex-
ist that allow the development of domain-specific (model-
ing) languages. ASF+SDF [2] is a meta-environment for
language development that offers support for transforma-
tions, code generation, and source code analysis. It allows a
modular definition of syntax, but does not reflect these con-
cepts at the tooling level. Another framework is the Gram-
mar Deployment Kit (GDK) [22] that supports development
of grammars and language processing tools. However, con-
cepts for language extensions, such as inheritance, are not
supported. If meta-modeling techniques, like EMF [3] are
used for domain-specific language development, two differ-
ent descriptions for abstract and concrete syntax have to be
developed and kept in line. Using MontiCore, concrete as
well as abstract syntax is generated out of a single grammar.
This way possible inconsistency and redundancy problems
are avoided.

8. CONCLUSION
∆-MontiArc as presented in this paper is an extension of a

previous proof-of-concept version [14] with specific modifica-
tion operations to support delta-oriented architectural vari-
ability modeling. We have shown an efficient and fast lan-
guage development process for this variability modeling lan-
guage that reuses language-defining artifacts as well as the
language processing infrastructure of the underlying ADL
based on the DSL framework MontiCore. ∆-MontiArc is
compared with annotative variability modeling approaches
to show that delta models are less complex and easier to
understand.

For future work, we are planning to carry out larger case
studies in order to evaluate the scalability of ∆-MontiArc.
Furthermore, we plan to develop a delta extension of
AJava [16], an architectural programming language that it-
self is an extension of MontiArc. In this way, the efficient
development of product lines of distributed systems can be
supported by a seamless delta-oriented development process
from architecture to implementation is feasible.

9. REFERENCES
[1] S. Apel, F. Janda, S. Trujillo, and C. Kästner. Model

Superimposition in Software Product Lines. In
International Conference on Model Transformation
(ICMT), 2009.

[2] M. Brand, J. Heering, A. Deursen, H. de Jong,
M. Jonge, T. Kuipers, P. Klint, L. Moonen, P. Olivier,
J. Scheerder, J. Vinju, E. Visser, and J. Visser. The
ASF+SDF Meta-Environment: a Component-Based
Language Development Environment. In Proceedings
of Compiler Construction (CC) 2001, number 2102 in
LNCS. Springer, 2001.

[3] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and
T. J. Grose. Eclipse Modeling Framework.
Addison-Wesley, 2003.

[4] D. Clarke, M. Helvensteijn, and I. Schaefer. Abstract
Delta Modeling. In GPCE. Springer, 2010.

[5] K. Czarnecki and M. Antkiewicz. Mapping Features to
Models: A Template Approach Based on
Superimposed Variants. In GPCE, 2005.

[6] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. A
Highly-Extensible, XML-Based Architecture
Description Language. In Proceedings of the Working
IEEE/IFIP Conference on Software Architectures
(WICSA 2001), 2001.

[7] D. Dhungana, T. Neumayer, P. Grünbacher, and
R. Rabiser. Supporting Evolution in Model-Based
Product Line Engineering. In SPLC, 2008.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional, 1995.

[9] D. Garlan, R. T. Monroe, and D. Wile. Acme: An
architecture description interchange language. In
Proceedings of CASCON’97, 1997.

[10] H. Gomaa. Designing Software Product Lines with
UML. Addison Wesley, 2004.

[11] H. Grönniger, J. Hartmann, H. Krahn, S. Kriebel,
L. Rothhardt, and B. Rumpe. Modelling Automotive
Function Nets with Views for Features, Variants, and
Modes. In Proceedings of ERTS ’08, 2008.

[12] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and
S. Völkel. MontiCore: a Framework for the
Development of Textual Domain Specific Languages.
In 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, May
10-18, 2008, Companion Volume, 2008.

[13] A. Haber, T. Kutz, J. O. Ringert, and B. Rumpe.
MontiArc 1.1.3 - Architectural Modeling Of
Interactive Distributed Systems. Technical report,
RWTH Aachen University, 2011. (to appear).

[14] A. Haber, H. Rendel, B. Rumpe, and I. Schaefer.
Delta Modeling for Software Architectures. In
MBEES, 2011.

[15] A. Haber, H. Rendel, B. Rumpe, I. Schaefer, and
F. van der Linden. Hierarchical variability modeling
for software architectures. In Software Product Line
Conference (SPLC 2011), 2011. (to appear).

[16] A. Haber, J. O. Ringert, and B. Rumpe. Towards
Architectural Programming of Embedded Systems. In
Tagungsband des Dagstuhl-Workshop MBEES VI,
Munich, Germany, 2010. fortiss GmbH.

[17] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. Olsen,
and A. Svendsen. Adding Standardized Variability to
Domain Specific Languages. In SPLC, 2008.

[18] F. Heidenreich and C. Wende. Bridging the Gap
Between Features and Models. In Aspect-Oriented
Product Line Engineering (AOPLE’07), 2007.

[19] S. A. Hendrickson and A. van der Hoek. Modeling
Product Line Architectures through Change Sets and
Relationships. In ICSE, 2007.

[20] P. K. Jayaraman, J. Whittle, A. M. Elkhodary, and
H. Gomaa. Model Composition in Product Lines and
Feature Interaction Detection Using Critical Pair
Analysis. In MoDELS, 2007.

[21] C. Kastner, T. Thum, G. Saake, J. Feigenspan,

T. Leich, F. Wielgorz, and S. Apel. FeatureIDE: A
Tool Framework for Feature-Oriented Software
Development. In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, pages
611–614, Washington, DC, USA, 2009. IEEE
Computer Society.

[22] J. Kort, R. Lämmel, and C. Verhoef. The Grammar
Deployment Kit. In Electronic Notes in Theoretical
Computer Science, volume 65. Elsevier Science
Publishers, 2002.

[23] C. Krueger. Eliminating the Adoption Barrier. IEEE
Software, 19(4):29–31, 2002.

[24] N. Loughran, P. Sánchez, A. Garcia, and L. Fuentes.
Language Support for Managing Variability in
Architectural Models. In Software Composition,
volume 4954 of Lecture Notes in Computer Science.
2008.

[25] N. Medvidovic and R. Taylor. A Classification and
Comparison Framework for Software Architecture
Description Languages. IEEE Transactions on
Software Engineering, 2000.

[26] N. Medvidovic and R. Taylor. Software architecture:
foundations, theory, and practice. In Proceedings of
the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 2, ICSE ’10, pages
471–472, New York, NY, USA, 2010. ACM.

[27] N. Noda and T. Kishi. Aspect-Oriented Modeling for
Variability Management. In SPLC, 2008.

[28] J. Pérez, J. Dı́az, C. C. Soria, and J. Garbajosa.
Plastic Partial Components: A solution to support
variability in architectural components. In
WICSA/ECSA, 2009.

[29] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering. Springer Verlag, 2005.

[30] pure::variants website
http://www.pure-systems.com/ .

[31] I. Schaefer. Variability Modelling for Model-Driven
Development of Software Product Lines. In VaMoS,
2010.

[32] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and
N. Tanzarella. Delta-oriented Programming of
Software Product Lines. In SPLC. Springer, 2010.

[33] I. Schaefer and R. Hähnle. Formal methods in
software product line engineering. IEEE Computer,
44(2):82–85, Feb. 2011.

[34] S.Trujillo, D. Batory, and O. Dı́az. Feature Oriented
Model Driven Development: A Case Study for
Portlets. In ICSE, 2007.

[35] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The Koala Component Model for Consumer
Electronics Software. IEEE Computer, March 2000.

[36] R. C. van Ommering. Software Reuse in Product
Populations. IEEE Trans. Software Eng., 31(7), 2005.

[37] M. Völter and I. Groher. Product Line
Implementation using Aspect-Oriented and
Model-Driven Software Development. In SPLC, 2007.

[38] T. Ziadi, L. Hélouët, and J.-M. Jézéquel. Towards a
UML Profile for Software Product Lines. In Workshop
on Product Familiy Engineering (PFE), 2003.

