o.)

Check for
updates

Mitchell H. Clifton

Self-Assessment Procedure XXIII: Programming Languages

This is the 23rd Self-Assessment Procedure.' The purpose of this procedure is to let its readers test their
knowledge of some of the more important features of significant programming languages. The features
of imperative languages like Fortran, Algol 60, PL./I, Pascal, Modula-2, C, and Ada considered are data
types, data structures, control structures, program units, scope of names, and parameter passing. Some
of the corresponding features of functional languages like Lisp, logic programming languages like Pro-
log, and ohject-oriented programming languages like C++ and Smalltalk, are reviewed. Finally brief con-
sideration is given to syntax and semantics, chiefly by reference to the Backus-Naur form, BNF. Whe
features of programming languages affect all aspects of programming, including the ease of writing and
maintaining programs, the reliahility of software, and the efficiency and portability of programs. Knowl-
edge of programming language concepts and constructs is of importance to software developers, pro-
grammers, and designers of programming languages and compilers. The topic of this procedure should
be of interest to any computer science student or practitioner who wishes to test his or her knowledge
and learn more about one of the most important and broad areas in the computer field. Whe language
used most often in the questions is Pascal, with Ada, Lisp, and Prolog also featured prominently. A glos-
sary is included which defines some of the terms used in the procedure. The questions are either multi-

ple-choice or short answer. Some of the multiple-choice questions allow for more than one correct answer.

COMMUNICATIONS OF THE acMm Moy 1995/ Vol 98, No. 5 89

http://crossmark.crossref.org/dialog/?doi=10.1145%2F203356.203378&domain=pdf&date_stamp=1995-05-01

Self-Assessment Procedures and How to Use Them
Self-assessment is based on the idea that a procedure can
be devised that will help a person appraise and develop
his or her knowledge about a particular topic. It is in-
tended to be an educational ('x])('l‘iml('v for a participant.
I'he questions are only the beginning of the procedure.
They are developed to help the participant think about
the concepts and decide whether to pursue the matter
further.

I'he primary motivation of self-assessment is not for an
individual to satisfy others about his or her knowledge;
rather it is for a participant to appraise and develop his or
her own knowledge. This means there are several ways to
use a self-assessment procedure. Some people will start
with the questions. Others will read the answers and refer
to the references first. These approaches and others de-

vised by the participants are all acceptable if at the end of

the procedure the participant can say, “Yes, this has been
a worthwhile experience” or I have learned something.”

We suggest the following way of using the procedure,
but as noted earlier, there are others. This not a timed
exercise; therefore, plan to work with the procedure when
vou have an hour to spare, or you will be shortchanging
yourself on this educational experience. Go through the
questions, and mark the responses you think are most
appropriate. Compare your responses with those sug-
gested by the Committee. In those cases where you differ
from the Committee, look up the references if the subject
seems pertinent to you. In those cases in which you agree
with the Committee, but feel uncomfortable with the sub-
ject matter, and the subject is significant to you, look up
the references.”

Some ACM chapters may want to devote a session to
discussing this self-assessment procedure or the concepts
involved.

The Committee hopes some participants will send com-
ments.

This SAP was refereed, approved, and submitted by the
ACM Committee on Self-Assessment, a committee of the
ACM Education Board.

Chair

Eugene H. Spattord
Department of Computer Sciences
Purdue University

West Lafayette, IN 47907-1398

'See box at end of article for a list of the previous self-assessment procedures
(SAPs). The first 13 SAPs are available from the ACM Order Department,
1-800-342-6626 (in U.S. and Canada); 1-212-626-0500 (metro NY and out-
side U.S.); +32-2-774-9602 (in Europe); acmhelp@acm_org; acm europe@@
acm.org (in Europe). Members; $22: nonmembers; $43. Order number
203840

'H.lp is not sanctioned as a test or endorsed in any way by ACM. Any per-
son using any of the questions in this procedure for the testing or certifica-
tion of anyone other than him- or herself is violating the spirit of this self-
assessment procedure and the copyright on this material

May 1995/ Vol 35 No. [cOMMUNICATIONS OF THE ACM

Members
Don M. Coleman

Howard University, Washington, DC

Laurie B. Hodges
GTRI/Electro Optics Lab, Atlanta, GA

Richard E. Newman-Wolfe
University of Florida, Gainsville, FI.

I'homas F. Reid
National Universily of Singapore, Singapore

Brian A. Rudolph
Shawnee State University, Portsmouth, OH

Carol A. Sledge
Carnegie Mellon University, Pittsburgh, PA

Eric A. Weiss
Kailua, HI

Referees

Andrew Appel, Anthony Faustini, Mark Horton, Kim N.
King, Steven Pemberton, Terrence W. Pratt, Thomas
Turba, and Joseph N. Wilson

Part I. Questions

Data Types and Structures

Programming languages have standard data types (inte-
ger, real, and character) and data structures (arrays, rec-
ords, and lists). For each data type and structure a way to
map data to storage must be provided. This section has
questions about data types and structures, their imple-
mentation, and type checking

1. Below is the declaration of a variable in Pascal.

var | : Integer;
The size of storage allocated for the variable [is deter-
mined:
a. Dynamically, by the data types of the values as-
signed to I at run-time.
b. Dynamically, by the sizes of the values assigned
to I at run-time.
c. Statically, by the allowed range of integers in the
Pascal language definition.
d. Statically, by the integer representation of the
underlying hardware.

2. Most programming languages allocate storage for
arrays sequentially and require all array elements to
be of the same type, to allow efficient calculation of
storage addresses of elements at run-time. Suppose
the Pascal array below is allocated sequentially in stor-
age, in row-major order, with 4 bytes per element,
and starting address b.

var A : array[l .. 5, | .. 10] of Real;
I'he expression to calculate the storage address, in
bytes, of element A[I, J] is:

AR (T e 200 (] e 1)

bbb + 40 *«(I — 1)+ 20 * (] = 1)
c.b+40*I1+4 %] — 44,
d. b +:20 %0 +d*]—24

3. Pascal has a data structure called a variant record, an
example of which is shown below. A common imple-
mentation of this data structure is to overlap the vari-
ant parts of the record in storage.

var Iltem : record

A :Integer;

case B : Boolean of
False::(C,;'D,:E, F : Char);

True: (G : Real)
end;
Although Pascal has many characteristics of a secure
language, variant records introduce a potential secu-
rity loophole. This example illustrates a security loop-
hole in Pascal because:
a. The variable A is not in a variant part of the rec-
ord.
b. It is unclear whether the variables C-F take the
same amount of storage as G.
¢. On many systems, it allows a real value assigned
to the variable G to be interpreted as characters.
d. On many systems, an assignment of a value to
the variable C destroys any value assigned to G.

4. Use of enumerated data types may lead to more se-
cure and readable programs and save storage. Below
are declarations of an enumerated data type and vari-
able in Pascal.

type GradeType = (A, B, G, D, E, H, I, P, W);

var Grade : GradeType;
The minimum storage space needed for the variable
Grade 1s:

a3 hies:

b. 4 bits.

c. 9 bits.

d. 9 bytes.

5. Programming languages provide coercions between
different data types. Below are declarations of two
variables in Pascal.

var | : Integer;

X : Real;

The Pascal assignment statement that shows the use
of a coercion is:

R G G

b. X125 %

o | Round (X);

d.I :=1+0rd (°07);

6. Languages such as Pascal and Ada require the vari-
able on the left hand side of an assignment statement,
and the expression on the right hand side, to be of the

same type. Two ways of determining if they are the
same type are structural equivalence and name equiva-
lence. Which of the following are reasons that lan-
guages like Ada and ISO Standard Pascal have
adopted a form of name equivalence for type check-
ing?

a. Name equivalence is more restrictive, and hence

more secure.

b. A precise definition of structural equivalence is
not possible.

c. Use of name equivalence makes the language
more convenient for the programmer.

d. Name equivalence is simpler to implement.

7. Type checking may be static (performed at translation
time) or dynamic (performed at run-time). Which of
the following are true about type checking?

a. Use of dynamic type checking, instead of static
type checking, allows faster program execution.

b. Program correctness is enhanced by a language
that requires type checking.

¢. Dynamic type checking is used more by inter-
preted languages than by compiled languages.

d. Static type checking cannot be fully imple-
mented if separate compilation of program
modules is allowed.

oo

. The run-time storage space for a Pascal program usu-
ally includes a static allocation area, a stack, and a
heap. Which of the following features of Pascal re-
quire the use of the heap?

a. Pointers and the New and Dispose procedures
for creating new data elements.

Glossary

Coercion: The automatic, or implicit, conversion of one
data type to another.

Control structure: A language construct that prescribes
the order in which expressions and statements are exe-
cuted.

Data structure: An aggregate of data objects.

Data type: A class of data objects together with a set of
operations for manipulating them.

Functional language: A language in which function ap-
plication is the basic unit of program construction.
Imperative language: A language characterized by many
computations and assignments on small items of data,
with data and control structures that are similar to a
machine architecture.

Logic programming language: A language in which pro-
grams are assertions in a logic, and computation corre-
sponds to proving or satisfying the assertions.

Overlap: To have one data structure use the same mem-
ory locations as another data structure.

Parameter passing: The transfer of arguments to a pro-
cedure or function.

Program unit: The building block of a program.

Scope of names: The range over which a name is known.
Semantics: The rules that specify the meaning of syntac-
tically valid constructs in a language.

Side effect: Any change in state beyond the simple re-
turning of a value.

Space efficiency: The effectiveness with which memory
is utilized.

Syntax: The rules that specify the form of valid con-
structs in a language.

COMMUNICATIONS OF THE acm Moy [995 Vol 3H No. b 91

b. Recursive procedures.
¢. Variant records.
d. Arrays.

Control Structures

Programming languages have mechanisms to control the
flow of execution of statements and expressions. Some
languages provide structures for concurrent or parallel

execution of program units

This section has questions

about statement-level, expression-level, and concurrent
programming control structures.

9

10.

Which of the following control statements are often
implemented using a jump table?

a. Case statements.

b. For statements.

c. Nested if statements.

d. While statements.
Below is an example of a counter-controlled loop n
Pascal:

for] := 1 to N do

Sum := Sum + Al

There are many design issues for counter-controlled
loops. Which of the following questions have been
addressed the same way in the design of counter-

controlled loops in Fortran, Algol 60, Pascal, C, and
Ada?

a. What is the scope of the loop control variable?

b. Is it valid to branch into or out of loops?

c. Is it valid to nest loops?

d. Can the loop control variable be changed inside
the loop, and if so, does the change affect loop
control?

Consider this Pascal program:
program Main;

var. A B X S dnteger;
function F(N : Integer) : Integer;
begin
B := 10;
F:=N+2
end;
begin
A =
B:=5;

X := F(A) + A * B;
Writeln (X)

end.

Pascal does not completely define the order of evalua-
tion of expressions. In the assignment statement for
X, the language does not specify whether the function
I is performed before or after the multiplication.
Usually, this order is not important and has no effect
on the results. However, if the function causes a side
effect, as the function F does, the order of evaluation is
important.

Due to this side effect, and the incomplete defini-
tion in Pascal of the order of evaluation, what are all
possible values of X that might be computed and out-
put by different Pascal systems?

May 1995 /Vol. 38, No. 5 COMMUNICATIONS OF THE ACM

12

Below is an example of an if statement in C to incre-
ment the value of the variable count by one if both
expl and exp2 are true (++ is the C increment opera-
tor and && is the boolean and operator).

If (expl && exp2)
count++;

C specities the short-circuit evaluation of expressions
involving boolean and and or operators. Which of the
following are possible advantages of the short-circuit
evaluation of the expression in this example?

a. Less machine code will be compiled.

b. The expression may execute faster, since exp2 is
evaluated only if expl is true.

c. The evaluation of expl may be used to guard
against a possible run-time error in the evalua-
tion of exp2.

d. Side effects caused by the evaluation of exp2 will
not be lost.

Most programming languages designed since Lisp
and Algol 60 have provided recursive functions and
procedures. Below is an example of a recursive func-
tion in Pascal.

function F (N : Integer) : Integer;

begin

if N > 0 then
Fiiei2i® F(N.— 1)
else
E.:=1

end;

What is the expression computed by the evaluation of
F(N), for N > = 0?

Programming languages such as Ada and PL/I pro-
vide exception handlers, to handle special run-time
events, called exceptions. Which of the following are
usually true about exceptions and exception han-
dlers?

a. Exceptions may be generated by execution of
statements provided just for that purpose.

b. Exceptions may be generated by run-time er-
rors, such as arithmetic overflow or an array sub-
script out of bounds.

c. Exception handlers are structured similar to
procedures, including a list of parameters, a set
of declarations, and a sequence of statements.

d. If an exception is generated in a block or proce-
dure, and no exception handler is defined in the
block or procedure for the exception, then the
program is terminated.

Some programming languages use a cobegin/coend
statement to initiate the concurrent execution of
statements. The example below shows the concurrent
execution of two assignment statements.

X:=2;

cobegin
X o X B
X:i=X+1
coend
When concurrently executing statements access

shared variables, indeterminate results may occur.
What are all possible final values for the variable X
when the cobegin/coend statement finishes?

16. Below is part of an Ada program to initiate the con-
current execution of two processes, called tasks in Ada.
When procedure Pl is called, task T1 is automatically
started, resulting in the concurrent execution of Pl
and T1. Assume that no input/output operations are
started by the execution of P1 and T1.

procedure P1 is

task T'1;

task body T1 is

begin

. . task T statements . .

end 1'1;
begin

. . procedure P1 statements . .
end Pl;

I'he statement that best describes the execution of this
program on a system having a single processor is:
a. A run-time error will result, since this program
must be run on a system with at least two proces-
SOTrS.

b. The program will execute faster than an equiva-
lent program that does not use tasks.

c. The program will not execute faster than an
equivalent program that does not use tasks, so
there is no reason to use tasks if the program will
only be run on a single processor system

d. Even though the program will not execute faster
than an equivalent program that does not use
tasks, the use of tasks in the program may still
represent the most natural solution to a prob-
lem.

17. Ada tasks may interact through a type of procedure
call called a rendezvous. The best description of the
type of interaction provided between Ada tasks by the
rendezvous is:

a. Communication and mutual exclusion.

b. Communication and synchronization.

c. Mutual exclusion and deadlock prevention.

d. Deadlock prevention and synchronization.

Names and Data Control

Programming languages divide programs into units (such

as procedures, packages, and modules), and control the

scope of names and data with these units. The questions in
this section concern program units, the scope of names,
and parameter passing.

18. An important point in name control is whether static
scope (also called lexical scope) or dynamic scope is used
to locate names that are not local to a block or proce-
dure. Which of the following are true about static and
dynamic scope?

a. Static scope binds names to declarations based
on the static structure of the program; dynamic
scope binds names to declarations at run-time.

b. Dynamic scope is used by languages such as C

and Pascal.
c. With dynamic scope complete type checking
cannot be performed until run-time.
d. Use of dynamic scope instead ol static scope
leads to programs that are easier to understand.
19. Below is a Pascal-like program with procedures Pl,
P2, and P3. The main program calls procedure P1, P1
calls P3, and P3 calls P2. In procedure P2 the value of
the variable 1 1s written.
program Main;
var | : Integer:
procedure P1;
var | : Integer;
procedure P2;
begin
Writeln (1)
end; {P2}
procedure P3;
var | : Integer;
begin
I:=05;
P2
end; {P3}
begin

1:=17;

begin
I:= 3;
Pl
end. {Main}
What value will be written by the program if the fol-
lowing scope rules are used to locate variable 17
I. Dynamic scope.
2. Static, or lexical, scope.
20. The Pascal-like procedure below is used to show the
effects of different parameter passing methods.
procedure Test (A, B, C : Integer);

begin
A=A+ 1;
Writeln (B, C)
end;

The procedure is called after an assignment to the
integer variable I with the statements below,
LD
Test(I, I, 2*1);
What values will be written for B and C, using the
following parameter passing methods?
I. Pass by value-result.
2. Pass by reference.
3. Pass by name.
21. The activation record for a procedure in Pascal does
not contain:
a. Values or addresses ol parameters.
b. Values of local variables.
¢. Procedure code.
d. The address of the return point.
22, Language constructs such as Modula-2 modules, Ada

COMMUNICATIONS OF THE acm Moy 1995,/ Vol 35, No. b 93

packages, and object-oriented programming classes
permit the encapsulation, or combination, of data and
its associated operations, allowing the creation of ab-
stract data types. Which of the following are benefits
of the encapsulation of data and operations?
a. Programs store data more efficiently.
b. Programs perform operations more efficiently.
¢. Programs are easier to read and understand.
d. Programs are easier to maintain.

23. Modules, packages, and classes allow data and opera-
tions to be declared to be either public or private. Sup-
pose a module is used to construct an abstract data
type for a queue. The module includes declarations
for the queue indexes and procedures to insert and
remove elements. The most appropriate declarations

for these queue indexes and procedures would be to
declare that:
a. Both indexes and procedures are private.
b. Indexes are private and procedures are public.
¢. Indexes are public and procedures are private.
d. Both indexes and procedures are public.

Functional, Logic, and Object-Oriented

Programming

The prior sections of this self-assessment have been con-

cerned with imperative, or conventional, programming

languages. In imperative languages, data and control
structures are L‘lns‘t‘l_\' related to a computer architecture.

This part is concerned with other styles of programming

and programming languages, including functional pro-

gramming and the Lisp language, logic programming
and the Prolog language, and object-oriented program-
ming.

24. Lisp has many of the characteristics of a functional or
applicative language. However, one Lisp function
that is nol representative of a purely functional lan-
guage Is:

a. CAR, the function to extract the first element of

a list.
b. COND, the conditional test function.
c. PLUS, the addition function.
d. SETQ, the assignment function.
In many versions of Lisp, including the Scheme dia-
lect, functions are first-class values and may be higher
order. Which of the following can be done with first-
class and higher order functions in Lisp?

a. Functions can be passed as arguments to func-

]
(1]

tions.
b. The value returned by a function can be a func-
tion.
c. Function arguments can be statically type
checked.
d. Functions can be stored as elements of lists.
26. Lisp introduced a number of important concepts, in-
cluding garbage collection which reclaims previously
allocated storage that is no longer in use by programs.
Which of the following are true concerning garbage
collection in Lisp systems.

94 May 1995/ Vol 38, No. h COMMUNICATIONS OF THE ACM

a. Itensures that programs will not run out of stor-
age.

b. It may be performed when free storage is ex-
hausted, or when only a certain fraction of free
storage remains to be allocated.

c. It requires negligible time.

d. It may not reclaim all unused storage, if a pro-
grammer has not deallocated storage properly.

27. Lisp has been widely used for applications in artificial
intelligence, but has been far less popular for other
applications. Which of the following concerning Lisp
are true, and have caused the language to be less pop-
ular?

a. The major data structure in Lisp, the list, is in-
flexible.

b. Lisp systems have often lagged behind other
programming language systems in providing
adequate programming environments, includ-
ing editors and debuggers.

c. Lisp interpreters have often been inefficient.

d. Lisp uses dynamic type checking, resulting in
some programming errors that are not detected
until run-time.

28. Prolog is a logic programming language in which
facts, rules, and goals can be expl‘t‘sscd. Goals are
achieved using a depth-first search strategy, proceed-
ing through the facts and rules from top to bottom
and left to right, backtracking if necessary. Below is a
Prolog program with five facts and two rules.

parent (carol, john).

parent (john,mary).

parent (mary,jim).

parent (john,sue).’

parent (david,jim).

ancestor (X,Y) :- parent (X,Y).

ancestor (X,7Z) :- parent (X,Y), ancestor (Y,Z).

The following Prolog goal is given.
ancestor (john,X).

For this goal Prolog will deduce, in this order:
a. {X = mary} and {X = sue}.
b. {X = mary}, {X = jim}, and {X = david}.
c. {X = mary}, {X = sue}, and {X = jim}.
d. {X = mary}, {X = jim}, and {X = sue}.

29. An essential part of Prolog is the matching up of two
expressions, resulting in a substitution that can make
them equal. This process is called:

a. Evaluation.
b. Mechanical theorem-proving.
c. Resolution.
d. Unification.

30. Which of the following are true concerning the
depth-first search strategy of Prolog?

a. This search strategy guarantees that infinite
loops are avoided in looking for solutions.

b. This search strategy was chosen because it is
space efficient.

¢. This search strategy relieves the programmer of

concern with the order in which facts and rules
are given.

d. This search strategy means that Prolog is not a
pure logic programming language.

31. Interest in object-oriented programming has pro-
duced a new vocabulary. Match the following terms
used in object-oriented programming with their clos-
est meaning.

Term
1. Class. a. A collection of data and operations.
2. Message. b.
3. Method. c¢. A procedure body.
4. Object. d. A procedure call.

32. In object-oriented programming languages inheri-

Meaning

A description of a set of objects.

tance is a facility for defining a new class as an exten-
sion of previously defined classes. Which of the fol-
lowing are true concerning inheritance in most
object-oriented programming languages, including
C++ and Smalltalk?
a. A class inherits variables from its superclass.
b. Variables must be explicitly declared in the class
that inherits them.
c. A class may define new methods and override
inherited methods.
d. The search for a method proceeds from a class
to its subclasses.

33. Object-oriented programming languages, including
C++ and Smalltalk, allow the definition of functions
that may be applied to different data types. The use of
a single function for different types of data is called:

a. Polymorphism.

b. Instantiation.

o

Message passing.
d. Method search.

34. Of the f()!l()wing, the most important contribution of
object-oriented programming is in providing an ef-
fective way to:

a. Produce efficient code.

b. Reuse code.

¢. Automatically generate code.
d. Verify the correctness of code.

Syntax and Semantics
This final section has questions about Backus-Naur form
(BNF) and semantics. BNF is a metalanguage used to de-
scribe the syntax of programming languages.
The following BNF grammar is used in questions 35-37.
Nonterminal symbols in the grammar are (s), (), and (w).
Terminal symbols are @, !, #, and a. The starting symbol
is (s).

(s) 2= (s) @ (v | (U

The grammar describes a simple language of expressions
with operators @, !, and #, and operand a. Let this gram-
mar also reflect the precedence and the associativity of the
operators.

35. List all sentences in the language (derived strings con-
sisting only of terminal symbols) consisting of three or
fewer symbols.

36. Give the precedence of the three operators, from
highest to lowest.

37. Tell whether the @ and ! operators are left associative
(consecutive operators of the same type are evaluated
or grouped from left to right) or right associative.

38. There are certain areas of syntax that cannot be de-
fined by a BNF grammar. Which of the following con-
structs of Pascal cannot be described by BNF?

a. Correctly nested if statements.

b. Procedure calls with the same number of param-
eters as the procedure declarations.

c. Properly balanced and matched parentheses in
arithmetic expressions.

d. Variables declared the correct number of times
inside procedures.

39. An important question about a BNF grammar for a
programming language is whether the grammar is
ambiguous. The existence of an algorithm to decide
whether a BNF grammar is ambiguous is best de-
scribed by:

a. Such an algorithm exists.

b. Such an algorithm exists, but is computauonally
intractable.

¢. Such an algorithm may exist, but has not yet
been discovered.

d. Such an algorithm cannot exist, because the
question of determining the ambiguity of a BNF
grammar is undecidable.

40. Most programming language manuals define the
semantics of languages using informal descriptions
and examples. Which of the following are reasons
that formal methods for describing semantics are not
commonly used in language manuals?

a. Formal methods for describing semantics have
not been extensively studied and are not well
developed.

b. The best known formal methods for describing
semantics, operational, denotational, and axi-
omatic methods, are usually not sufficient to
completely describe the semantics of program-
ming languages.

¢. Formal methods for describing semantics are
usually too complex to be of value to users of the
language.

d. Informal methods are usually completely satis-
factory for describing the semantics of program-
ming languages.

41. Operational semantics defines the effects of each lan-

guage construct by the actions of an abstract machine.

Which of the following are true concerning opera-

tional semantics?

a. An actual implementation of the defined lan-
guage must implement the structure of the ab-
stract machine.

b. An actual implementation of the defined lan-

COMMUNICATIONS OF THE acm May 1995 Vol 58, No. 5 95

guage must implement the effects of the abstract
machine.

¢. Operational semantics clearly distinguishes be-
tween the essence of a language concept and a
specific implementation.

d. The efficiency of the abstract machine is an im-
portant issue.

Part Il. Suggested Responses
1. d [Bratt, p. 01}
2. c¢. [Pratt, pp. 87-89]

3. c. [Ghezzi, p. 119]

4. b. [Macl.ennan, p. 184]

5. a. [Pratt, p. 56]

6. a,d. [MacLennan, p. 204]

7. b.c. [Ghezzi, pp. 34-36, 58, 237]

8. a. [Pratt, |>]).‘2r‘%i5, 138]

9. a. [Pratt, p.*§70]

10. c. [Sebesta, pp. 178-187]

11. 26. if * is evaluated before F(A), and 46, otherwise.

[Sebesta, pp. 146-147]

12. b.c. [Sebesta, pp. 154-155]

13. 2%, [Wilson, pp. 149-151]

14. a,b. [Pratt, pp. 185, 188-189]

15. 3, 5, 6. [Appleby, pp. 194-195]

16. d. [Wilson, pp. 229, 236]

17. b. [Sethi, pp. 359-360]

18. a,c. [Wilson, pp. 64-65]

19. 1) 5. 2) 7. [Sebesta, pp. 125, 130]

20. H)B=5and C=10.2)B=6and C=10.3)B =6
and C = 12. [Sebesta, pp. 264-270]

21. c. [Pratt, p. 287]

22. c.d. [Sethi, pp. 169, 173]

23. b. [Sethi, pp. 170-174]

24. d. [Wilson, p. 263]

25. ab,d. [Sethi, pp. 254, 268]

26. b. [MacLennan, pp. 432-434]

27. c,d. [Sethi, pp. 254-255]

28. c. [MacLennan, pp. 488-489, 514-515]

29. d. [Kamin, pp. 376, 402]

30. b,d. [Ghezzi, pp. 306, 311]

81. 1-b, 2-d, 3-c, 4-a. [Sethi, p. 212]

32. a,c. [Sethi, pp. 219-221, 235-236]

33. a. [Kamin, p. 343]

34. b. [Kamin, p. 273]

35. a, a(@a, ala, #a, ##a. [Sebesta, pp. 76-77]

36. # has the highest precedence, ! has lower, and @ has
the lowest precedence. [Sebesta, p. 80]

37. @ is left associative and ! is right associative. [Sebesta,
pp- 82-83]

38. b,d. [Pratt, pp. 325-326]

39. d. [Pratt, p. 342]

40. c. [Pratt, pp. 345-348]

41. b. [Ghezzi, pp. 48, 317]

Part III. References
1. Appleby, D., Programming Languages: Paradigm
tice, McGraw-Hill, New York, 1991.

and Prac-

96 May 1995/ Vol 38, No.) COMMUNICATIONS OF THE ACM

2. Ghezzi, C., and Jazayeri, M., Programming Language Con-
cepts, 2nd ed., Wiley, New York, 1987.

3. Kamin, S.N., Programming Languages: An Interpreter-Based

Approach, Addison-Wesley, Reading, Mass., 1990.

4. MacLennan, B.J., Principles of Programming Languages:
Design, Evaluation, and Implementation, 2nd ed.. Holt, Rine-
hart and Winston, New York, 1987.

. Pratt, T.W., Programming Languages: Design and Implemen-
tation, 2nd ed., Prentice-Hall, Englewood Cliffs, N.J., 1984.

6. Sebesta, R.W., Concepts of Programming Languages, Ben-

[£)3

jamin/Cummings, Redwood City, Cal., 1989.

7. Sethi, R., Programming Languages: Concepts and Constructs,
Addison-Wesley, Reading, Mass., 1989.

8. Wilson, L.B., and Clark, R.G., Comparative Programing Lan-
guages, Addison-Wesley, Reading, Mass., 1988.

Additional References

9, Gelernter, 1., and Jagannathan, S., Programming Linguis-
tics, The MIT Press, Cambridge, Mass., 1990.

10. Marcotty, M., and Ledgard, H., Programming Language
Landscape: Syntax, Semantics, and Implementation, 2nd
ed., SRA, Chicago, 1986.

11. Sammet, |.E.. Programming Languages: History and Funda-
mentals, Prentice-Hall, Englewood Cliffs, N.J., 1969.

12. Tucker, A.B., Programming Languages, 2nd ed., McGraw-
Hill, New York. 1986.

Epilogue

Now that you have reviewed this self-assessment proce-
dure and have compared your responses to those sug-
gested, you should ask yourself whether this has been a
successful educational experience. The Committee sug-
gests that you conclude that it has only if your have:

« discovered some concepts that you did not previously
know about or understand, or

« increased your understanding of those concepts that
are relevant to your work or valuable to you.

About the Author:

MITCHELL H. CLIFTON is an assistant professor of mathemat-
ics and computer science at West Georgia College. Author’s pres-
ent address: Department of Mathematics and Computer Science,
West Georgia College, Carrollton, GA 30118.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made o1 distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission

© ACM 0002-0782/95/0500 $3.50

Previous Self-Assessment Procedures

Self-Assessment Procedure | Self-Assessment Procedure Xili
Three Concept Categories within the Programming Skills Binary Search Trees and B-Trees
and Techniques Area Gopal K. Gupta
May 1976 May 1984
Self-Assessment Procedure i Self-Assessment Procedure XIV
System Organization and Control with Information Repre- Legal Issues of Computing
sentation, Handling, and Manipulation Jane P. Devlin, William A Lowell, and Anne E. Alger
May 1977 May 1985
Self-Assessment Procedure Il Self-Assessment Procedure XV
Internal Sorting File Processing
September 1977 Martin K. Solomon and Riva Wenig Bickel
Self-Assessment Procedure IV August 1986
Program Development Tools and Methods, Data Integrity, Self-Assessment Procedure XVI
and File Organization and Processing Computer Organization and Logic Design
February 1978 Glen G. Langdon, Jr.
Self-Assessment Procedure V November 1986
Database Systems Self-Assessment Procedure XVii
Peter Scheuermann and C. Robert Carlson ACM
August 1978 Eric A. Weiss
Self-Assessment Procedure VI October 1987
Queueing Network Models of Computer Systems Self-Assessment Procedure XVl
J. W. Wong and G. Scott Graham Data Communications
August 1979 John C. Munson
Self-Assessment Procedure Vil March 1988
Software Science Self-Assessment Procedure XIX
M. H. Halstead and Victor Schneider Copyright Law
August 1980 Riva W. Bickel
Self-Assessment Procedure VI April 1989
The Programming Language Ada Self-Assessment Procedure XX
Peter Wegner Operating Systems
October 1981 J. Rosenberg, A. L. Ananda, and B. Srinivasan
Self-Assessment Procedure IX February 1990
Ethics in Computing Self-Assessment Procedure XXI
Edited by Eric A. Weiss, from a book by Donn B. Parker Concurrency
March 1982 Brian A. Rudolph
Self-Assessment Procedure X May 1990
Software Project Management Self-Assessment Procedure XXl
Roger S. Gourd Ethics
December 1982 Edited by Eric A. Weiss, from a report by Donn D. Parker,
Self-Assessment Procedure X| Susan Swope, and Bruce N. Baker
One Part of Early Computing History November 1990
Eric A. Weiss
July 1983

Self-Assessment Procedure XlI
Computer Architecture
Robert I. Winner and Edward M. Carter
January 1984

COMMUNICATIONS OF THE acm Mo 1095, Vol 55, No b 91

