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Abstract

Computational problems that involve dynamic data, such as physics sim-
ulations and program development environments, have been an important
subject of study in programming languages. Recent advances in self-adjusting
computation made progress towards achieving efficient incremental compu-
tation by providing algorithmic language abstractions to express computa-
tions that respond automatically to dynamic changes in their inputs. Self-
adjusting programs have been shown to be efficient for a broad range of prob-
lems via an explicit programming style, where the programmer uses specific
primitives to identify, create and operate on data that can change over time.

This dissertation presents implicit self-adjusting computation, a type di-
rected technique for translating purely functional programs into self-adjusting
programs. In this implicit approach, the programmer annotates the (top-
level) input types of the programs to be translated. Type inference finds
all other types, and a type-directed translation rewrites the source program
into an explicitly self-adjusting target program. The type system is related to
information-flow type systems and enjoys decidable type inference via con-
straint solving. We prove that the translation outputs well-typed self-adjusting
programs and preserves the source program’s input-output behavior, guar-
anteeing that translated programs respond correctly to all changes to their
data. Using a cost semantics, we also prove that the translation preserves the
asymptotic complexity of the source program.

As a second contribution, we present two techniques to facilitate the pro-
cessing of large and dynamic data in self-adjusting computation. First, we
present a type system for precise dependency tracking that minimizes the
time and space for storing dependency metadata. The type system improves
the scalability of self-adjusting computation by eliminating an important as-
sumption of prior work that can lead to recording spurious dependencies.
We present a type-directed translation algorithm that generates correct self-
adjusting programs without relying on this assumption. Second, we show a
probabilistic-chunking technique to further decrease space usage by control-
ling the fundamental space-time tradeoff in self-adjusting computation.

We implement implicit self-adjusting computation as an extension to Stan-
dard ML with compiler and runtime support. Using the compiler, we are able
to incrementalize an interesting set of applications, including standard list
and matrix benchmarks, ray tracer, PageRank, sparse graph connectivity, and
social circle counts. Our experiments show that our compiler incremental-
izes existing code with only trivial amounts of annotation, and the resulting
programs bring asymptotic improvements to large datasets from real-world
applications, leading to orders of magnitude speedups in practice.
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Chapter 1

Introduction

1.1 Thesis

Dynamic changes are pervasive in computational problems: physics simulations often
involve moving objects; robots interact with dynamic environments; compilers must re-
spond to slight modifications in their input programs. Such dynamic changes are often
small, or incremental, and result in only slightly different output, so computations can
often respond to them asymptotically faster than performing a complete re-computation.
Such asymptotic improvements can lead to massive speedup in practice but traditionally
require careful algorithm design and analysis (Chiang and Tamassia [1992; Guibas 2004;
Demetrescu et al.2005), which can be challenging even for seemingly simple problems.

Motivated by this problem, researchers have developed language-based techniques
that enable computations to respond to dynamic data changes automatically and effi-
ciently (see Ramalingam and Reps (1993) for a survey). This line of research, tradi-
tionally known as incremental computation, aims to reduce dynamic problems to static
(conventional or batch) problems by developing compilers that automatically generate
code for dynamic responses. This is challenging, because the compiler-generated code
aims to handle changes asymptotically faster than the source code. Early proposals (De-
mers et al. 1981; Pugh and Teitelbaum 11989; Field and Teitelbaum 11990) were limited
to certain classes of applications (e.g., attribute grammars), allowed limited forms of
data changes, and/or yielded suboptimal efficiency. Some of these approaches, however,
had the important advantage of being implicit: they required little or no change to the
program code to support dynamic change—conventional programs could be compiled to
executables that respond automatically to dynamic changes.

Recent work based on self-adjusting computation made progress towards achieving
efficient incremental computation by providing algorithmic language abstractions to ex-
press computations that respond automatically to changes to their data (Acar|2005; Acar
et al. 2006¢, 2009a). Self-adjusting computation can deliver asymptotically efficient up-
dates in a reasonably broad range of problem domains, including dynamic trees (Acar
et al. 2004, 2005), kinetic motion simulation (Acar et al. 2006d, [2008b), dynamic com-
putational geometry (Acar et al/l2007a,2010b, 2011); Tirkoglu2012; Acar et al.2013b),
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machine learning (Acar et al.2007¢,2008¢, [2009b; [Stimer et al.|2011; |Siimer2012), and
big-data systems (Bhatotia et al.2011a,b, 2014; Bhatotia 2015; Bhatotia et al/l2015).

Existing self-adjusting computation techniques, however, require the programmer to
program explicitly by using a certain set of primitives (Acar 2005; |Acar et al. 2006c;
Ley-Wild et al. 2008; Acar et al/[2009a). Specifically the programmer must manually
distinguish stable data, which remains the same, from changeable data, which can change
over time, and operate on changeable data via a special set of primitives.

This dissertation builds upon the preceding foundations to present techniques for
implicit self-adjusting computation that allow conventional programs to be translated
automatically into efficient self-adjusting programs.

Thesis Statement. Implicit self-adjusting computation improves the experi-
ence of designing and implementing incremental programs. Combining type
theory, language design and empirical work, implicit self-adjusting computa-
tion provides a model of computation that is general-purpose, transparent,
sound and efficient.

We substantiate this claim with the following work.

Type systems. We show that an information-flow type system (Denning and Denning
1977; [Pottier and Simonet 2003; [Sabelfeld and Myers [2003) enables self-adjusting com-
putation via tracking data dependencies (of sensitive data and changeable data, respec-
tively) as well as dependencies between expressions and data. Specifically, we show that
a type system that encodes the changeability of data and expressions in self-adjusting
computation as secrecy of information suffices to statically enforce the invariants needed
by self-adjusting computation. The type system uses polymorphism to capture stable and
changeable uses of the same data or expression. We present a constraint-based formu-
lation of our type system where the constraints are a strict subset of those needed by
traditional information-flow systems. Consequently, as with traditional information flow,
our type system admits an HM(X) inference algorithm (Odersky et al. [1999) that can
infer all type annotations from top-level type specifications on the input of a program.
We also define a refinement to the type system that allows changeable data to be
nested inside stable data. The refined type system eliminates the spurious redundancies
caused by the modal type system, enabling precise dependency tracking of self-adjusting
programs, which significantly reduces the runtime overhead both in time and space.

Translation. We show that based on types, we can translate conventional purely func-
tional programs into self-adjusting programs. Types provide crucial information that
enables transformation. First, we present a set of compositional, non-deterministic trans-
lation rules. Guided by the types, these rules identify the set of all changeable expres-
sions that operate on changeable data and rewrite them into the self-adjusting target
language. We then present a deterministic translation algorithm that applies the com-
positional rules judiciously, considering the type and context (enclosing expressions) of
each translated subexpression, to generate a well-typed self-adjusting target program.
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Taken together, the type system, its inference algorithm, and the translation algorithm
enable translating purely functional source programs to self-adjusting target programs
using top-level type annotations on the input type of the source program. These top-
level type annotations simply mark what part of the input data is subject to change. Type
inference assigns types to the rest of the program and the translation algorithm translates
the program into self-adjusting target code.

Type inference Evaluation

Level ML e mest in k steps H
T}‘Ipe- ype Observati¢nal
Directed
Soundness | Equivalen¢e
Translation
Evaluation H
AFL e’

in O(k) steps w

Figure 1.1: Visualizing the translation between the source language Level ML and the
target language AFL, and related properties.

Theoretical results. Figure [I.1] illustrates how source programs written in Level ML,
a purely functional subset of ML with level types, can be translated to self-adjusting pro-
grams in the target language AFL, a language for self-adjusting computation with explicit
primitives (Acar et al.2006d). We prove three critical properties of the approach.
* Type soundness. On source code of a given type, the translation algorithm pro-
duces well-typed self-adjusting code of a corresponding target type (Theorem|[6.4.1],
Theorem .

* Observational equivalence. The translated self-adjusting program, when evalu-
ated, produces the same value as the source program (Theorem [6.5.4).

* Asymptotic complexity. The time to evaluate the translated program is asymptot-
ically the same as the time to evaluate the source program (Theorem [6.6.9).

Type soundness and observational equivalence together imply a critical consistency
property: that self-adjusting programs respond correctly to changing data (via the consis-
tency of the target self-adjusting language (Acar et al.'2006¢)). The third property shows
that the translated program takes asymptotically as long to evaluate (from scratch) as the
corresponding source program. The time for incremental updates via change propaga-
tion is usually asymptotically more efficient than running from scratch. We also present
experimental evidence that the target programs respond to dynamic changes efficiently.

Compiler and runtime design. We have implemented our approach as an extension of
Standard ML with the HaMLet and MLton compiler (HaMLet; MLton). The implementa-
tion takes SML code annotated with level types at the top-level, conducts type inference
that assigns level types to the rest of the programs, and generates self-adjusting code
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by inserting the self-adjusting primitives via type-directed, local rewrites. Such local
rewrites, however, can lead to globally suboptimal code by inserting redundant calls
to self-adjusting primitives. We therefore formulate a global rewriting system for elim-
inating such redundant code, and prove that the rewriting rules are terminating and
confluent.

We implement the runtime system for self-adjusting primitives directly in SML. To
facilitate the processing of large and dynamic data in self-adjusting computation, we
add an important facility to the runtime library—the ability to control the granularity of
dependency tracking by selectively tracking dependencies—that offers a powerful mech-
anism to control the space-time tradeoff fundamental to self-adjusting computation. By
tracking dependencies at the level of (large) blocks of data, rather than individual data
items, the programmer can further reduce space consumption. To avoid disproportion-
ately degrading the update performance, we present a probabilistic chunking scheme.
This technique divides the data into blocks in a probabilistic way, ensuring that small
changes affect a small number of blocks.

Applications. We evaluate our implementation by considering a wide range of bench-
marks including various primitives on lists, sorting functions, vector operations, matrix
operations, ray tracer, PageRank, sparse graph connectivity, and approximate social cir-
cle counting. For each of these, we only need to insert some keywords into the program
to specify the desired behavior. Specifically, most benchmarks require trivial decorations,
often amounting to inserting type qualifiers in one or two lines of code. No changes to
the structure of the types, or any part of the code itself, are necessary. Our techniques
for controlling the space-time tradeoff for list data structures can reduce memory con-
sumption effectively while only proportionally slowing down updates. The executables
generated by the compilers respond automatically and significantly faster (e.g., several
orders of magnitude or more) to both small and aggregate changes while moderately
increasing memory usage compared to the familiar batch model of computation.

1.2 Chapter outline

In Chapter 2, we motivate the need for an implicit style for self-adjusting computation.
We consider previous language proposals for self-adjusting computation and the need
for compilation support. We give a high-level description of implicit self-adjusting com-
putation, including its level types and translation. Finally, we describe two techniques
for scaling self-adjusting computation to large and dynamic data: precise dependency
tracking and probabilistic chunking scheme.

In Chapter 3, we present level types for self-adjusting computation, and how it relates
to information flow. For precise dependency tracking, we introduce labeled level types
that can identify precisely which part of the data is changeable via labels.

In Chapter 4, we present our surface language that extends A-calculus with level
types, its static and dynamic semantics, and the constraint based type inference. We
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present the semantics for both level types and labeled level types, specifying the type
systems track the dependencies of the surface language.

In Chapter 5, we present two self-adjusting target languages: the monadic language
as the target language for level types; and the imperative language as the target lan-
guage for labeled level types that enable precise dependency tracking. We present their
perspective static and dynamic semantics.

In Chapter 6, we give a type-directed translation from source language to target lan-
guage for both the monadic language and the imperative language. We proved the trans-
lation soundness and the cost preservation of translation.

In Chapter 7, we discuss our Standard ML compiler as an implementation of im-
plicit self-adjusting computation, including the design for syntax extension, type infer-
ence, translation, optimization, runtime library, and memoization. Finally, we present
probabilistic chunking scheme as a library extension for controlling the granularity of
self-adjusting computation.

In Chapter 8, we present experimental evaluation of our compiler with wide range of
benchmarks, including list primitives, vector primitives, sorting, ray tracer, MapReduce,
PageRank, sparse graph connectivity, and approximate social circle counting.

In Chapter 9, we conclude with related and future work.



Chapter 2

Overview

We present an informal overview of our approach via examples in an extension of SML
with features for implicit self-adjusting computation. We start with a brief description
of our target language, explicit self-adjusting computation, as laid out in previous work.
After this description, we outline our proposed approach.

2.1 Explicit self-adjusting computation

2.1.1 Core language

The key concept behind explicit approaches is the notion of a modifiable (reference),
which stores changeable values that can change over time (Acar et al.[2006¢). The pro-
grammer operates on modifiables with mod, read, and write constructs to create, read
from, and write into modifiables. The run-time system of a self-adjusting language uses
these constructs to represent the execution as a (directed, acyclic) dependency graph,
enabling efficient change propagation when the data changes in small amounts. There is
a modal type system that enforces an important correctness property: any computation
that depends on a modifiable itself must be written in a modifiable.

As an example, consider a trivial program that computes x* + y:

squareplus: int * int — int
fun squareplus (x, y) =
let x2 = x * x in
let r = x2 + y in
r

To make this program self-adjusting with respect to changes in y, while leaving x un-
changing or stable, we assign y the type int mod (of modifiables containing integers)
and read the contents of the modifiable. The body of the read is a changeable expression
ending with a write. This function has a changeable arrow type
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squareplus_SC: int * int mod <~ int
fun squareplus_SC (x, y) =
let x2 = x * x in
read y as y’ in
let r = x2 + y’ in
write (r)

The read operation delimits the code that can directly inspect the changeable value y,
and the changeable arrow type ensures an important consistency property: ?-functions

can only be called within the context of a changeable expression. If we change the value
of y, change propagation can update the result, re-executing only the read and its body;,
and thus reusing the computation of the square x2.

Note that the result type of squareplus_SCis int, not int mod; squareplus_SC does
not itself create a modifiable, it just writes to the modifiable created by the caller of the
function in the context of a (dynamically) enclosing mod expression.

Now suppose we wish to make x changeable while leaving y stable. We can read x and
place x2 into a modifiable (because we can only read within the context of a changeable
expression), and immediately read back x2 and finish by writing the sum/fl

squareplus_CS: int mod * int < int
fun squareplus_CS (x, y) =
let x2 = mod (read x as x’ in write(x’ * x’)) in
read x2 as x2’ in
let r = x2° + y in
write (r)

As this example shows, rewriting even a trivial program can require modifications to
the code, and different choices about what is or is not changeable lead to different code.
Moreover, if we need squareplus_SC and squareplus_CS—for instance, if we want to
pass squareplus to various higher-order functions—we must write, and maintain, both
versions. If we conservatively treat all data as modifiable, we would only need to write
one version of each function, but this would introduce unacceptably high overhead. It
is also possible to take the other extreme and treat all data as stable, but this would
yield a non-self-adjusting program. Our approach treats data as modifiable only where
necessary.

2.1.2 Meta language

The run-time system of a self-adjusting language also supplies meta operations: change
for inspecting and changing the values stored in modifiables and propagate for perform-

IThis is not the only way to express the computation. For instance, one could bind x> * x’ to x2’ and
do the addition within the body of read x. The code shown here is the same as the code produced by our
translation, and has the property that the scope of each read is as small as possible, which leads to more
efficient updates during change propagation.



ing change propagation. The change function is similar to the write construct: it assigns
a new value to the modifiable to a new value. The propagate function runs the change-
propagation algorithm, which updates a computation based on the changes made since
the last execution or the last change propagation. The meta operations can only be used
at the top level—the run-time system guarantees correct behavior only if meta operations
are not used inside the core self-adjusting program. Interested readers can refer to Acar
et al. (2006a) for a more detailed discussion of the meta operations, and the change
propagation algorithms used in self-adjusting computation.

As an example, consider calling the squareplus_SC function in a Standard ML imple-
mentation of self-adjusting runtime:

let
val x = 1
val y = mod 2
val z = mod (squareplus_SC (x, y))

val () = change (y, 3)
val () = propagate (O
in () end

When calling the squareplus_SC function, z will be a modifiable containing 3. The
change function updates modifiable y to be 3. The propagate function triggers reeval-
uation of the plus operation (while the square computation is reused), and stores the
result 4 into modifiable z.

Implicit self-adjusting computation, described below, is an alternative approach for
writing the self-adjusting computation itself; the interface to the meta operations remains
the same.

2.2 Implicit self-adjusting computation

To make self-adjusting computation implicit, we use type information to insert reads,
writes, and mods automatically. The user annotates the input type, as well as the cor-
responding data declarations, of the program; we infer types for all expressions, and
use this information to guide a translation algorithm. The translation algorithm returns
well-typed self-adjusting target programs. The translation requires no expression-level
annotations. For the example function squareplus above, we can automatically derive
squareplus_SC and squareplus CS from just the type of the function (expressed in a
slightly different form, as we discuss next).

2.2.1 Level types

To uniformly describe source functions (more generally, expressions) that differ only
in their “changeability”, we need a more general type system than that of the target
language. This type system refines types with levels S (stable) and C (changeable). The
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type int’ is an integer whose level is &; for example, to get squaresum_CS we can annotate
squaresum’s argument with the type int® x int®.

Level types are an important connection between information-flow types (Denning
and Denning [1977; Pottier and Simonet 2003) and those needed for our translation:
high-security secret data (level H) behaves like changeable data (level C), and low-
security public data (level L) behaves like stable data (level S). In information flow, data
that depends on secret data must be secret; in self-adjusting computation, data that de-
pends on changeable data must be changeable. Building on this connection, we develop
a type system with several features and mechanisms similar to information flow. Among
these is level polymorphism; our type system assigns level-polymorphic types to expres-
sions that accommodate various “changeabilities”. (As with ML’s polymorphism over
types, our level polymorphism is prenex.) Another similarity is evident in our constraint-
based type inference system, where the constraints are a strict subset of those in Pottier
and Simonet (2003). As a corollary, our system admits a constraint-based type inference
algorithm (Odersky et al.[1999).

2.2.2 Translation

The main purpose of our type system is to support translation. Given a source expression
and its type, translation inserts the appropriate mod, read, and write primitives and
restructures the code to produce an expression that is well-typed in the target language.

The implicitly self-adjusting source language is polymorphic over levels. The type
system of the target language, which is explicitly self-adjusting, is also polymorphic but
explicitly so: polymorphic values are given as lists of values (within a select construct),
with each value in the list being the translation of the source value at specific levels.
Moreover, polymorphic values are explicitly instantiated by a syntactic construct in the
target language; in the source language, instantiation is implicit.

Our translation generates code that is well-typed, has the same input-output behav-
ior as the source program, and is, at worst, a constant factor slower than the source pro-
gram. Since the source and target languages differ, proving these properties is nontrivial;
in fact, the proofs critically guided our formulation of the type system and translation al-
gorithm.

A more detailed example: mapPair. To illustrate how our translation works, consider
a function mapPair that takes two integer lists and increments the elements in both lists.
This function can be written by applying the standard higher-order map over lists. Fig-
ure shows the purely functional code in an ML-like language for an implementation
of mapPair, with a datatype « list, an increment function inc, and a polymorphic map
function. Type signatures give the types of functions.

To obtain a self-adjusting mapPair, we first decide how we wish to allow the input
to change. Suppose that we want to allow insertion and deletion of elements in the
first list, but we expect the length of the second list to remain constant, with only its
elements changing. We can express this with the versions of the list type with different

9



datatype « list = nil | cons of & * « list

inc : int — int
fun inc (x) = x+1
map : (¢ — B) — « list — B list
fun map f 1 =
case 1 of
nil = nil
| cons(h,t) = cons(f h, map f t)

mapPair : (int list * int list) — (int list * int list)
fun mapPair (11,12) = (map inc 11, map inc 12)

Figure 2.1: Function mapPair in ML.

datatype « 1list® = nil | cons of « * (o 1list®)

mapPair : ((int® 1ist®) * (int® 1ist®))
- ((int® 1list®) * (int® 1ist®))

(+ inc, map, mapPair same as in Figure 2.1. »*)

Figure 2.2: Function mapPair in Level ML, with level types.
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changeability:
* « 1ist® for lists of o with changeable tails;

* « 1ist® for lists of « with stable tails.

Then a list of integers allowing insertion and deletion has type int® 1ist®, and one
with unchanging length has type int® 1ist. Now we can write the type annotation
on mapPair shown in Figure Given only that annotation, type inference can find
appropriate types for inc and map and our translation algorithm generates self-adjusting
code from these annotations. Note that to obtain a self-adjusting program, we only had
to provide types for the function. We call this language with level types Level ML.

Target code for mapPair. Translating the code in Figure[2.2] produces the self-adjusting
target code in Figure Note that inc and map have level-polymorphic types. In
map inc 11 we increment stable integers, and in map inc 12 we increment changeable
integers, so the type inferred for inc must be generic: V6. int® Ty int®. Our translation

produces two implementations of inc, one per instantiation (6=S and $=C): inc_S and
inc_C (in Figure [2.3). Since we want to use inc with the higher-order function map,
we need to generate a “selector” function that takes an instantiation and picks out the
appropriate implementation:

inc : VO. int?® ? int?®
val inc = select {06=S = inc_S
| 6=C = inc_C}

In mapPair itself, we pass a level instantiation to the selector: inc[d=S]. (This instan-
tiation is known statically, so it could be replaced with inc_S at compile time.) The types
of inc_S and inc_C are produced by a type-level translation that, very roughly, replaces
changeable types with mod types (Section [6.1]).

Observe how the single annotation on mapPair led to duplication of the two functions
it uses. While inc_S is the same as the original inc, the changeable version inc_C adds
a read and a write. Note also that the two generated versions of map are both different
from the original.

The interplay of type inference and translation. Given user annotations on the input,
type inference finds a satisfying type assignment, which then guides our translation al-
gorithm to produce self-adjusting code. In many cases, multiple type assignments could
satisfy the annotations; for example, subsumption allows any stable type to be promoted
to a changeable type. Translation yields target code that satisfies the crucial type sound-
ness, operational equivalence, and complexity properties under any satisfying assign-
ment. But some type assignments are preferable, especially when one considers constant
factors. Choosing C levels whenever possible is always a viable strategy, but treating all
data as changeable results in more overhead. As in information flow, where we want to
consider data secret only when absolutely necessary, inference yields principal typings
that are minimally changeable, always preferring S over C.
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datatype « list_S = nil | cons of o * « list_S
datatype « list_C = nil | cons of o * (x list_C) mod

inc_S : int - int (* ‘inc’ specialized for stable data *)
fun® inc_S (x) = x+1

inc_C : int mod 2 int  (*Inc specialized for changeable data *)

fun® inc_C (x) = read x as x’ in write (x’+1)

inc : Vo. int?® ? int?®
val inc = select {6=S = inc_S
| 6=C = inc_C}

map_SC : («x < 3) = (¢ list_C) mod = (B list_C) mod

fun® map_SC £ 1 =  (* ‘map’ for stable heads, changeable tails +)
mod (read 1 as x in
case x of
nil = write nil
| cons(h,t) = write (cons(f h, map_SC f t)))

map_CS : («x e D) < (x 1ist_S) < ((p mod) 1list_S)

fun® map CS £ 1 =  (* ‘map’ for changeable heads, stable tails *)
case 1 of
nil = nil
| cons(h,t) = let val h’ = mod (f h)
in cons(h’, map_CS f t)

map : VO, d7. (x 3 3) - X 1list®T < B 1list®T
H
val map = select {6;;=S, 6=C = map_SC
| 64=C, 6t=S = map_CS}
mapPair : ((int 1ist_C) mod * (int mod) list_S)
< ((int 1list_C) mod * (int mod) list_S)

fun® mapPair (11, 12) = (map[6y=S,5r=C] inc[6=S] 11,
map[dy=C, d1=S] inc[6=C] 12)

Figure 2.3: Translated mapPair with mod types and explicit level polymorphism.
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fun partition f 1 : (& list® * o 1ist®) =
case 1 of
nil = (nil, nil)
| h::t =
let val (a,b) = partition f t
in if f h then (h::a, b)
else (a, h::b)
end

Figure 2.4: The list partition function in Level ML.

A combinatorial explosion? A type scheme quantifying over n level variables has up
to 2™ instances. However, our experience suggests that n is usually small: level variables
tend to recur in types, as in the type of inc above. Even if n turns out to be large for
some practical applications, the number of used instantiations will surely be much less
than 2", suggesting that generating instances lazily would suffice.

2.3 Scaling to large and dynamic data

Recent advances in the ability to collect, store, and process large amounts of information,
often represented in the form of graphs, have led to a plethora of research on “big data”.
In addition to being large, such datasets are diverse, arising in many domains ranging
from scientific applications to social networks, and dynamic, meaning they change grad-
ually over time. Self-adjusting computation provides a natural abstraction for enabling
programs to respond efficiently to dynamic data provided that the space usage remains
relatively small. In this section, we provide the overview of two techniques for scal-
ing self-adjusting computation to process large and dynamic data: precise dependency
tracking and probabilistic chunking scheme. The first technique reduces time and space
usage by improving the precision of dependency tracking that self-adjusting computation
relies on. The second technique enables programmers to control the space-time tradeoff
fundamental to self-adjusting computation.

2.3.1 Precise dependency tracking

Implicit self-adjusting computation relies on a modal type system to guarantee proper-
ties important to the correctness of change propagation—all changeables are initialized
and all their dependencies are tracked. This type system can be conservative and can
generate self-adjusting programs that contain redundant dependencies. Using a simple
list-partitioning function, we outline the limitations of the type system, and describe how
we resolve them to improve the time and space usage of self-adjusting computation.
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fun partition f 1 : (a list mod * o list mod) mod =
read 1 as 1’ in
case 1’ of
nil = write (mod (write nil),
mod (write nil))
| h::t =
let val pair = mod (partition f t)
in if £ h then read pair as (a,b) in
write (mod (write h::a), b)
else read pair as (a,b) in
write (a, mod (write h::b))
end

Figure 2.5: The self-adjusting list partition function

List Partition in Level ML. Figure [2.4] shows SML code for a list-partition function
partition f 1, which applies f to each element x of 1, from left to right, and returns a
pair (pos, neg) where pos is the list of elements for which f evaluated to true, and neg is
the list of those for which f x evaluated to false. The elements of pos and neg retain the
same relative order from 1. Ignoring the annotation C, this is the same function from the
SML basis library, which takes ©®(n) time for a list of size n.

Self-Adjusting List Partition. With the type annotation on the first line in Figure 2.4]
the compiler derives a self-adjusting version of list partition in Figure 2.5l Given the self-
adjusting function, we can run it in much the same way as running the batch version.
After a complete first run, we can change any or all of the changeable data and update the
output by performing change propagation. As an example, consider inserting an element
into the input list and performing change propagation. This will trigger the execution of
computation on the newly inserted elements without recomputing the whole list. It is
straightforward to show that change propagation takes ©(1) time for a single insertion.

To ensure the correctness, the type system conservatively disallows changeable data
to be nested inside changeable data. For example, in list partition, the type system forces
the return type to be changeable, i.e., the type (x list mod * « list mod) mod.
This type is conservative; the outer modifiable (mod) is unnecessary as any observable
change can be performed without it. By requiring the outer modifiable, the type system
causes redundant dependencies to be recorded. In this simple example, this can nearly
double the space usage while also degrading performance (likely as much as an order of
magnitude).

We can circumvent this problem by using unsafe, imperative operations. For our
running example, partition can be rewritten as shown in Figure 2.6] in a destination
passing style. The code takes an input list and two destinations, which are recorded
separately. Without restrictions of the modal type system, it can return (x list mod *
« list mod), as desired.
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fun partition f 1 (1.00,1_01) : (x list mod * « list mod) =
let val () = read 1 as 1’ in
case 1’ of
nil = (write (1_00,nil);
write (1_01,nil))
| h::t =
let val (a,b) = let
val (1_00,1_01) = (mod nil, mod nil)
in partition f t (1_.00,1_01)
end
in if £ h then (write (1_00, h::a);
read b as b’ in write (1_01, b’))
else (read a as a’ in write (1_00, a’);
write (1_01, h::b))
end
in (1_00,1_01) end

Figure 2.6: The self-adjusting list partition function with destination passing.

A major problem with this approach, however, is correctness: a simple mistake in us-
ing the imperative constructs can lead to errors in change propagation that are extremely
difficult to identify. We therefore would like to derive the efficient, imperative version
automatically from its purely functional version. There are three main challenges to such
translation.

1. The source language has to identify which data is written to which part of the
aggregate data types.

2. All changeable data should be placed into modifiables and all their dependencies
should be tracked.

3. The target language must verify that self-adjusting constructs are used correctly to
ensure correctness of change propagation.

To address the first challenge, we enrich an information-flow type to check depen-
dencies among different components of the changeable pairs. We introduce labels p into
the changeable level annotations, denoted as C,. The label serves as an identifier for
modifiables. For each function of type t; — T,, we give labels for the return type t,. The
information flow type system then infers the dependencies for each label in the function
body. These labels decide which data goes into which modifiable in the translated code.

To address the second challenge, the translation algorithm takes the inferred labels
from the source program, and conducts a type directed translation to generate self-
adjusting programs in destination passing style. Specifically, the labels in the function
return type are translated into destinations (modifiables) in the target language, and
expressions that have labeled level types are translated into explicit write into their cor-
responding modifiables. Finally, we wrap the destinations into the appropriate type and
return the value.
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As an example, consider how we derive the imperative self-adjusting program for
list partition, starting from the purely functional implementation in Figure First,
we mark the return type of the partition function as (o 1ist®? x ¢ 1ist®1)S, which
indicates the return has two destinations 1oy and ly7, and the translated function will take,
besides the original arguments f and 1, two modifiables 1oy and ly; as arguments. Then an
information flow type system infers that the expression (h::a,b) on line 6 of Figure 2.4]
has type (o 1ist®ox 1ist®1)S, Using these label information, the compiler generates a
target expression write (1_00,h::a); write (1_01,b). Finally, the translated function
returns the destination as a pair (1_00,1_01). Figure shows the translated code for
list partition using our translation.

To address the third challenge, we design a new type system for the imperative tar-
get language. The type system distinguishes the modifiable as fresh modifiables and
finalized modifiables. The typing rules enforce that all modifiables are finalized before
reading, and the function fills in all the destinations, no matter which control branch
the program is taken. We further prove that following the translation rules, we generate
target programs that are of the appropriate type, and are type safe.

2.3.2 Probabilistic chunking scheme

An important facility in processing large and dynamic data in self-adjusting computation
is the ability to control the space-time tradeoff by controlling the granularity of depen-
dency tracking. By tracking dependencies at the level of (large) blocks of data, rather
than individual data items, the programmer can further reduce space consumption. In
principle, there is a straightforward way: simply treat blocks of data as a changeable
unit instead of treating each unit as a changeable. However, it turns out to be difficult to
make this work because doing so can disproportionately degrade performance.

At a very high level, self-adjusting computation may be seen as a technique for es-
tablishing a trade-off between space and time. By storing the dependency metadata, the
technique enables responding to small changes to data significantly faster by identifying
and recomputing only the parts of the computation affected by the changes. It is natural
to wonder whether it would be possible to control this trade-off so that, for example, a
1/B-th fraction (for some B) of the dependency metadata is stored at the expense of an
increased update time, hopefully by no more than a factor of B.

fun bpar L =
case L
of NIL = (NIL, NIL)
| BLOCK(b, t) =
let val (p, q) = bpar t
val (p’, q’) = partition b
in (mkCons(p’, p), mkCons(q’, q)) end

Figure 2.7: List partition using a block sequence abstraction.
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To see how we might solve this problem, consider the following simple idea: partition
the data into equal-sized blocks and treat each of these blocks as a unit of changeable
computation at which dependencies are tracked. This intuitive idea is indeed simple and
natural to implement. For instance, the list partition routine can be adapted with little
changes to use a block list abstraction, as shown in Figure 2.7

But there is a fundamental problem: fixed-size chunking is highly sensitive to small
changes to the input. As a simple example, consider inserting or deleting a single element
to a list of blocks. Such a change will cascade to all blocks in the list, preventing much
of the prior computation from being reused. It may seem that restricting ourselves to
in-place changes would resolve this issue but this is not the case because such changes
do not compose. Consider, for example, the output to the filter function, which takes
an input list and outputs only elements for which a certain predicate evaluates to true.
Modifying an input element in-place may drop or add an element to the output list,
which can create a ripple effect to all the blocks. The main challenge in these examples
lies in making sure the blocks remain stable under changes.

We solve these problems by eliminating the intrinsic dependency between block bound-
aries and the data itself. More precisely, we propose a probabilistic chunking scheme that
decides block boundaries using a (random) hash function independently of the structure
of the data rather than deterministically. Using this technique, we are able to reduce
size of the dependency metadata by a factor B in expectation by chunking the data into
blocks of expected size B while taking only about a factor of B hit in the update time.

We also provide a block sequence abstraction to help programmers write code that uti-
lizes blocks. Block sequences can be embedded inside other data structures or nested to
form more advanced data structures, for example, as a data structure for sparse graphs.
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Chapter 3
Level Types

This chapter is based on work on the theoretical formulation of implicit self-adjusting
computation (Chen et al. 2011, 2014b), and a type system extension for precise depen-
dency tracking (Chen et al.2014a).

3.1 From information flow types to SAC

Self-adjusting computation separates the computation and data into two parts: stable
and changeable. Changeable data refers to data that can change over time; all non-
changeable data is stable. Similarly, changeable expressions refers to expressions that
operate (via elimination forms) on changeable data; all non-changeable expressions are
stable. Evaluation of changeable expressions (that is, changeable computations) can
change as the data that they operate on changes: changes in data cause changes in
control flow. These distinctions are critical to effective self-adjustment: previous work
on explicit self-adjusting computation (Acar [2005; |Acar et al. 2006c¢; Ley-Wild et al.
2008; Acar et alli20094) shows that it suffices to track and remember changeable data
and evaluations of changeable expressions because stable data and evaluations of stable
expressions remain invariant over time. This previous work developed languages that
enable the programmer to separate stable and changeable data, and type systems that
enforce correct usage of these constructs.

In this section, we describe the self-adjusting computation types that we infer for
purely functional programs. A key insight behind our approach is that in information-
flow type systems, secret (high-security) data is infectious: any data that depends on
secret data itself must be secret. This corresponds to self-adjusting computation: data
that depends on changeable data must itself be changeable. In addition, self-adjusting
computation requires expressions that inspect changeable data—elimination forms—to
be changeable. To encode this invariant, we extend function types with a mode, which
is either stable or changeable; only changeable functions can inspect changeable data.
This additional structure preserves the spirit of information flow-based type systems,
and, moreover, supports constraint-based type inference in a similar style.

The starting point for our formulation is [Pottier and Simonet (2003). Types in Level
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Levels d,e :=S|C|«
Types ta=int’ | (1 x0) | (1+1)° | (1 - T,)°

Constraints C,D ::= true | false | 3x.C | CAD |
ax=BlalPlodT
Type schemes o ::= 71 |V&[D].t

Figure 3.1: Levels, constraints, types, and type schemes in Level ML.

ML (Figure [3.1) include two (security) levels, stable and changeable. We generally follow
their approach and notation. The two key differences are that (1) since Level ML is
purely functional, we need no “program counter” level “pc”; (2) we need a mode ¢ on
function types.

Levels. The levels S (stable) and C (changeable) have a total order:

S<S c<C s<cC

To support polymorphism and enable type inference, we allow level variables «, 3 to
appear in types.

Types. Types consist of integers tagged with their level, product and sums with an
associated level, and arrow (function) types. Function types (t; — T,)% carry two level
annotations ¢ and 6. The mode ¢ is the level of the computation encapsulated by the
function. This mode determines how a function can manipulate changeable values: a
function in stable mode cannot directly manipulate changeable values; it can only pass
them around. By contrast, a changeable-mode function can directly manipulate change-
able values. The outer level § is the level of the function itself, as a value. We say that a
type is ground if it contains no level variables.

In practice, types in source programs can omit levels, which will be derived through
type inference. For example, if the user writes int, the system will add a level variable &
and do type inference with int®.

Subtyping. Figure [3.2] shows the subtyping relation T <: 1/, which is standard except
for the levels. It requires that the outer level of the subtype is smaller than the outer
level of the supertype and that the modes match in the case of functions: a stable-
mode function is never a subtype or supertype of a changeable-mode function. (It would
be sound to make stable-mode functions subtypes of changeable-mode functions, but
changeable mode functions are more expensive; silent coercion would make performance
less predictable.)

In [Pottier and Simonet (2003), product types are low-security (stable) because pairing adds no ex-
tra information. In our setting, changeable products give more control over the granularity of change
propagation.
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5 <& <t <t §<L8¥

(sublInt) (subProd)

int® <: int" (1 x T2)° <: (7] Tg)"”

T < T T, < T <o

5 ; AN (subSum)
(T1+ 1) < (17 +715)
e=¢' §<8  T<m T, < T
3 p T (subArrow)
(2w <(n 7 1)
Figure 3.2: Subtyping.
5 <
Y (<-Int)
d <int
5 <8 5 <& § <8
57 («-Prod) 57 (S-Arrow) 5 (<-Sum)
6 < (T X 1) d<(t 2 ) & < (1 + 1)
Figure 3.3: Lower bound of a type.
int® 0.5. (11 7 ©)°0S. (1, x 1)’ 0.S. (1+1)° O.S.
int° 0.C. (1 71)"0.C. (1, x1)¢0.C. (1,+1)¢0.C.
int” = int® (ty +T2)5‘ = (my +Tz)62
(11 x 1) = (11 x 1) (0 2 )™ = (1 w)®
Figure 3.4: Outer-stable and outer-changeable types, and equality up to outer levels.
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For simplicity, our type system will support only a weaker form of subtyping where
only the outer levels can differ. In practice, the more powerful subtyping system could
be used; see the discussion of let-expressions in Section

Levels and types. We rely on several relations between levels and types to ascertain
various invariants. A type T is higher than 8, written & < T, if the outer level of the type
is at least 5. Figure defines this relation. We distinguish between outer-stable and
outer-changeable types (Figure[3.4). We write t O.S. if the outer level of T is S. Similarly,
we write T O.C. if the outer level of T is C. Finally, two types t; and T, are equal up to
their outer levels, written Ty = T, if T; = 1, or they differ only in their outer levels.

Constraints. To perform type inference, we extend levels with level variables « and
B, and use a constraint solver to find solutions for the variables. Our constraints C,
D include level-variable comparisons < and level-type comparisons § <1 T, which type
inference composes into conjunctions of satisfiability predicates 3&.C.

The subtyping and lower bound relations defined in Figures 3.2] and consider
closed types only. For type inference, we can extend these with a constraint to allow
non-closed types.

A (ground) assignment, written ¢, substitutes concrete levels S and C for level vari-
ables. An assignment ¢ satisfies a constraint C, written ¢ F C, if and only if C holds true
after the substitution of variables to ground types as specified by ¢. We say that C entails
D, written C I- D, if and only if every assignment ¢ that satisfies C also satisfies D. We
write ¢(«) for the solution (instantiation) of « in ¢, and [¢]t for the usual substitution

operation on types. For example, if ¢ (o) = S then [¢] (int* + int®)” = (int® + intC)S.

Type schemes. A type scheme o is a type with universally quantified level variables:
o = V&[D].t. We say that the variables & are bound by o. The type scheme is bounded
by the constraint D, which specifies the conditions that must hold on the variables. As
usual, we consider type schemes equivalent under capture-avoiding renaming of their
bound variables. Ground types can be written as type schemes, e.g. int® as V{[true]. int".

3.2 Labeled level types

In this section, we derive a type system for self-adjusting computation that can identify
precisely which part of the data, down to individual attributes of a record or tuple, is
changeable. In particular, we extend the surface type system from section 3.1 to track
fine-grained dependencies in the surface language.

To track dependency precisely, we distinguish different changeable data further by
giving them unique labels. Our types include a lattice of (security) levels: stable and
changeable with labels.
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Levels d:=8S|C,| o

Types ti=int | (1 xn) | (6+0)° | (1 — ©)°
Constraints C,D ::=true | false | a = | x < B |
S<T|p1=p2

Figure 3.5: Labeled levels, types and constraints

——<——— (#intS) - - (#intC) (#sumS)
int® |, 0;0 int® |, {int};{l,} (1 +12)° L, 0;0
T D; L T DL’
S — (#funS) 1 doo S 2 l‘? - (#prods)
(1 2 12)° Lo 0;0 (tix12)” [, DUDLUL
(#prodC) (#sumQC)

(71 + 1) Lo (T + 1)k {1}
(#funC)

(t1 % T2)%° Lo {(T1 x T) k(L)

(1 = )% Lo {1 — )} {L)
Figure 3.6: Labeling changeable types

Levels. Levels S (stable) and C, (changeable) have a partial order:

S<§ C, <C, S<C, Cyp < Cop

Stable levels are lower than changeable; changeable levels with different labels are gen-
erally incomparable. Here, labels are used to distinguish different changeable data in the
program. We also assume that labels with prefix 1 are lower than labels with prefix 0.
This allows changeable data to flow into their corresponding destinations (labeled with
prefix 0). We will discuss the subsumption in Section [4.2.2]

Types. Types consist of integers tagged with their levels, products, sums and arrow
(function) types with an associated level, as shown in Figure 3.5l The label p associated
with each changeable level denotes fine-grained dependencies among changeables: two
changeables with the same label have a dependency between them.

Labels. Labels are identifiers for changeable data. To facilitate translation into a desti-
nation passing style, we use particular binary-encoded labels that identify each label with
its destination. This binary encoding works in concert with the relation T |, D; £, in Fig-
ure[3.6] which recursively determines the labels with respect to a prefix p, where the type
of the destinations and the destination names are stored in D and L, respectively. For sta-
ble product, rule (#prodS), we label it based on the structure of the product. Specifically,
we append 0 if the changeable level is on the left part of a product, and we append 1 if the
changeable level is on the right part of a product. For changeable level types, we require
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o < 5 S04 041
57 (<-Prod) < (<-InnerProd)
0 < (11 X 1) 0 < (11 X 1)

Figure 3.7: Lower bound of a product type with labels

[int’] = & H(n —|—Tz)5]] =35
[[(’ﬁ XTz)éﬂ =3 H(T‘ - Tz)é]] =3

Figure 3.8: Outer level of types

that the outer level label is p. The relation does not restrict the inner labels. For stable
level integers, sums and arrows, we do not look into the type structure, the inner change-

able types can be labeled arbitrarily. As an example, T = <int(C°0 X (intc”‘ + intg)cm)

is a valid label for t |, D; L. The type for the destinations are D = {int, (int(c‘” + intS)},
and the destination names are £ = {1y, lo1}.

Levels and types. We need to extend the higher than relation for product type to ac-
commodate the extension of labels. Specifically, for products with outer stable levels, we
check if each component is higher than 6. Figure [3.7] defines this relation.

We define an outer-level operation [t] that derives the outer level of a type in Fig-

ure [3.8]
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Chapter 4

Source Language

This chapter is based on work on the theoretical formulation of implicit self-adjusting
computation (Chen et al. 2011, [2014b), and a type system extension for precise depen-
dency tracking (Chen et alll2014a).

4.1 Syntax

Figure [4.1] shows the syntax for our source language Level ML, a purely functional lan-
guage with integers (as base types), products, and sums. The expressions consist of
values (integers, pairs, tagged values, recursive functions), projections, case expressions,
function applications, and let bindings. For convenience, we consider only expressions
in A-normal form, which names intermediate results. A-normal form simplifies some
technical issues, while maintaining expressiveness.

4.2 Static semantics

4.2.1 Constraint-based type system
Consider the types defined by the grammar
Ti=int|u x|+t —0

We augment this type system with features that allow us to directly translate Level ML
programs into self-adjusting programs in AFL. This constraint-based type system has the

Values v = nl|x|(vi,vy) |inlv|inrv | fun f(x) =e

Expressions e ::= v |®(x1,x2) | fst x | snd x |
case x of {x; = e;, x2 = ey} |
apply(xi,x;) |letx = e;ine;

Figure 4.1: Abstract syntax of the source language Level ML.
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CTE. et Under constraint C and source typing
! £ environment I, source expression e has type t

M(x) =V&D]l.t CIF3.[B/&D

T s (8t = — (SVar)
C:T . n:int CAIB/ED;T e x: B/t
CTkeviim Cl'kevo i Cl'kev:it
S (SPair) - S (SSumlLeft)
CT ke (viyva) : (11 X 1) CTkeinlv: (11 + 1)
C;RXIThf:(T]?Tz)Sf_SGITz ClFe<m,
S (SFun)
GTllke (funf(x) =¢): (11 2 T)
C:Thgxp:int’  ClIF & =6,
C:Thgxp:int? ClH& <e @:intxint—int
(SPrim)

CThe ®(x1,x2) : intél

CiTheer:1 Chx:t'"keey:t
C:Thsx: (11 x 1) Cwsge( ClFt' <: 1" ClFt/ ="

SFst SLetE
CT ke fstx: T 9 CilFteletx=ejiner: T (SLetE)

CAD;TFgv 1 C;hx:V&D].t"F.ep:t
ANFV(C,T) =0 CFt' < 1" Clk1' =
- : (SLetV)
CAJa.D;TH. letx=viine;: T

Glisxi:(t o ©)°  Cle' =¢
C:T b Xy ¢ Ty ClFo<n
C;T k. apply(x1,x2) : T2

(SApp)

C;FI—SX:(T1—I—TZ)6 Clhxi:tmibeer:t
CkH&<c¢ ClFé«T Chxy:tabFeex:t

CiTt.casexof{x;=e,xo=>e):T

(SCase)

Figure 4.2: Typing rules for Level ML.
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level-decorated types, constraints, and type schemes in Figure [3.1] and described in Sec-
tion After discussing the rules themselves, we will look at type inference (Sec-
tion 4.3)).

Typing takes place in the context of a constraint formula C and a typing environment
I' that maps variables to type schemes: T ::= - | [} x : 0. The typing judgment C;T' . e: T
has a constraint C and typing environment I', and infers type T for expression e in mode ¢.
Beyond the usual typing concerns, there are three important aspects of the typing rules:
the determination of modes and levels, level polymorphism, and constraints. To help
separate concerns, we discuss constraints later in the section—at this time, the reader
can ignore the constraints in the rules and read C;T'+. e:tasTH. e:1,read CIF 6 <13
as 0 <1 1,, and so on.

The mode of each typing judgment affects the types that can be used “directly” by the
expression being typed. Specifically, the mode discipline prevents the elimination forms
from being applied to changeable values in the stable mode. This is a key principle of
the type system.

Typing rules for values. No computation happens in values, so they can be typed
in either mode. The typing rules for variables (SVar), integers (SInt), pairs (SPair), and
sums (SSumlLeft) are otherwise standard (we omit the symmetric rule typing inr v). Rule
(SVar) instantiates a variable’s polymorphic type. For clarity, we also make explicit the
renaming of the quantified type variables & to some fresh 3 (which will be instantiated
later by constraint solving).

To type a function (SFun), we type the body in the mode ¢ specified by the function
type (11 - T,)°, and require the result type 7, to be higher than the mode, ¢ <7,. That is,

a changeable-mode function must have a changeable return type. This captures the idea
that a changeable-mode function is a computation that depends on changeable data, and
thus its result must accommodate changes to that data. (We could instead do this check
in rule (SApp), where functions are applied, but then we would have functions that are
well-typed but can never be applied.)

Typing primitive operators. Rule (SPrim) allows primitive operators ¢ to be applied
to two stable integers, returning a stable integer, or to two changeable integers, returning
a changeable integer. Allowing a mix of stable and changeable arguments in this rule
would be sound, but is already handled by outer-level subsumption (discussed below).

Typing let-expressions. As is common in Damas-Milner-style systems, when typing
let we can generalize variables in types (in our system, level variables) to yield a poly-
morphic value only when the bound expression is a value. This value restriction is not
essential because Level ML is pure, but its presence facilitates support for side effects in
extensions of the language (such as the extension of full Standard ML supported by our
implementation).
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* (SLetE): In the first let-rule (SLetE), the expression bound may be a non-value, so
we do not generalize and simply type the body in the same mode as the whole let,
assuming that the bound expression has the specified type in any mode 'l

* Subsumption on outer levels: We allow subsumption only when the subtype and
supertype are equal up to their outer levels, e.g. from a bound expression e; of
subtype int® to an assumption x : int®. This simplifies the translation, with no loss
of expressiveness: to handle “deep” subsumption, such as

(int® - int")® <: (int® - int")"

we can insert coercions (essentially, eta-expanded identity functions) into the source

program before typing it with these rules. This technique of eta-expanding terms

to eliminate the need for nontrivial subsumption goes back to (at least) Barendregt
et al. (1983), and could easily be automated.

* (SLetV): In the second let-rule (SLetV), when the expression bound is a value, we
type the let expression in mode ¢ by typing the body in the same mode ¢, assuming
that the value bound is typed in the stable mode (the mode is ignored in the rules
typing values). As in (SLetE), we allow subsumption on the bound value only
when the types are equal up to their outer level. Because we are binding a value,
we generalize its type by quantifying over the type’s free level variables.

Typing elimination forms. Function application, & (discussed above), fst, and case
are the forms that eliminate values of changeable type.

Rule (SApp) types applications. Two additional constraints are needed, beyond the
one enforced in (SFun) (that changeable-mode functions have changeable result types:
£ <1Ty):

* The mode ¢’ of the function being called must match the current mode ¢ (the
caller’'s mode): ¢’ = ¢.

To see why, first consider the case where we are in stable mode and try to apply a
changeable-mode function (¢ = S and ¢’ = C). Changeable data can be directly
inspected only in changeable mode; since changeable-mode functions can directly
inspect changeable data, the call would allow us to inspect changeable data from
stable mode, breaking the property that stable data depends only on stable data.

Now consider the case where we are in changeable mode, and try to call a stable-
mode function (¢ = C and ¢’ = S). This call would not directly violate the same
property; we forbid it to simplify translation to a target language that distinguishes
stable and changeable modes. Since the rules (SLetV) and (SLetE) can switch from
changeable mode to stable mode, we lose no expressive power.

* The outer level of the result of the function, T,, must be higher than , the function’s
level: & < T,.

In the target language, bound expressions must be stable-mode, but the translation puts changeable
bound expressions inside a mod, yielding a stable-mode bound expression.
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The situation we disallow is when & = C and T, is outer-stable, that is, when the
called function has a type like (T — int°)C. Here, the result type int is stable

and therefore must not depend on changeable data. But the type (1, — int®)C is

changeable: a change in program input could cause it to be entirely replaced by
another function, which could of course return a different result!

(Assuming “deep” subsumption, we lose no expressive power: we can coerce a
function of type (T — int®) to type (T - int®)C, which satisfies the constraint.)

Note that neither of these constraints could be enforced via (SFun). The first depends
on the current (caller’s) mode, so it must be checked at the call site. The second depends
on the outer level 5, which might have been originally declared as S, but can rise to C
via subsumption.

The rule (SCase) types a case expression, in either mode ¢, by typing each branch in ¢.
The mode ¢ must be higher than the level § of the scrutinee to ensure that a changeable
sum type is not inspected at the stable mode. Furthermore, the level of the result T must
also be higher than &: if the scrutinee changes, we may take the other branch, requiring
a changeable result.

Rule (SFst) enforces a condition, similar to (SCase), that we can project out of a
changeable tuple of type (t; x T,)° only in changeable mode. We omit the symmetric
rule for snd.

Our premises on variables, such as the scrutinee of (SCase), are stable-mode (+-g), but
this was an arbitrary decision; since (SVar) is the only rule that can derive such premises,
their mode is irrelevant.

4.2.2 Extending types with precise dependency tracking

In this section, we extend the constraint-based type system to accommodate the fine-
grained level-decorated types and constraints (Figure 3.5) as was described in Sec-
tion [3.2] Figure [4.3]shows the extended type system with precise dependency tracking.

The typing judgment C;P;T I e : T has a constraint C, a label set P (storing used label
names) and typing environment I', and infers type T for expression e. Most of the typing
rules remain the same, there are two major differences: (1) The source typing judgment
no longer has a mode; (2) Our generalization has a label set P in the typing rules to make
sure the labels inside a function are unique. Our generalization of changeable levels with
labels does not affect inferring level polymorphic types. To simplify the presentation, we
assume the source language presented here is level monomorphic.

The typing rules for variables (SVar), integers (SInt), pairs (SPair), sums (SSum),
primitive operations (SPrim), and projections (SFst) are standard. (We omit the sym-
metric rules for inr v and snd x.) To type a function (SSFun) and (SCFun), we type the
body specified by the function type (t; — T;)°. The changeable types in the return type
will translate to destinations when translating in the target language. To facilitate the
translation, we need to fix the destination labels in the return type via 1, |y D; L, where
we assume destination labels all have prefix 0. We also assume that non-destination la-
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CPlFe:t Under constraint C, label set P and source typing environment T,
1) . source expression e has type t

MNx)=r
5 (SInt) ———— (Svar)
C;P;T'Fn:int CPI'Ex:t
CP;TEv it CPiTEv i1 CGPl'EFv:m
S (SPair) - S (SSum)
CP;TE (viyv2) 1 (11 X 12) C;P;THinlv: (11 + 12)
C:P:TEx: (1 x1)
(SFst)

C;P;THfstx:m

COLx:t,f: (11 2 w)ke:n [tu] =S Clk1, [oD; L
C;P:TE (funf(x)=e): (1 — 1)°

(SSFun)

C{lphLx:t,f: (M —>T2)S|_€ZT2 [[T]]]ZC]D Clkr oD L
C:P;TH (funf(x) =¢e): (11 = 1)°

(SCFun)

C;P;T I x; : int™
C;P;THx,:int? Cl-6;, =58, @:intx int— int

T (SPrim)
C,P;T E &(xq1,x2) @ int™
CGP;THe 1 Clht' <"
CGPhx:t"Fe:t Clkt' =1 [v"] =S
- (SSLet)
CiPi;THletx =ejine;: T
C:P:Tke : 1 Clkt’' < 1" [v"] =C,
C;PU{pkx:t"Fey:t Clkt' 21" ClFpgP
(SCLet)

C;Pi;THletx =ejine;: T

CGPlExi:(n—2n) GPTEx:tm ClFédn

SA;
C;P;T F apply(xi, x2) : 12 (S4ep)
CGP:TEx: (114+1) CP;Lxy:mbe:t
ClFHé«T CPLxa:tabkex: T
(SCase)

C;P;THcasexof {x; = e, x> e}:T

Figure 4.3: Typing rules for level-monomorphic source language with precise depen-
dency tracking
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bels, e.g. labels for changeable input, have prefix 1. To ensure unique labeling in the
function scope, we insert the non-destination label 1p into the label set P in (SCFun).

In Section[4.2.7], we require that a changeable-mode function must have a changeable
return type. Since our type system eliminates the notion of function mode, we do not
have this restriction. This allows us to express more flexible functions, such as returning
a stable product with changeable components. This was not possible in the previous
type system because a changeable-mode function would require the whole product to be
changeable, a root cause for redundant dependencies when translating into self-adjusting
programs.

We allow subsumption only at let binding (SSLet) and (SCLet), e.g. from a bound
expression e; of subtype int® to an assumption x : int. Note that when binding an
expression into a variable with a changeable level, the label p must be either unique or
one of the labels from the destination. The subtype allows changeable labels with prefix
1 to be “promoted” as labels with prefix 0. This restriction makes sure the input data can
flow to destinations, and the information flow type system tracks dependency correctly.
To distinguish destinations for modifiables created in the let bindings, we assume the
labels have prefix 1.

4.3 Constraints and type inference

Both type systems in Section and Section are constraint-based type systems.
Many of the rules simply pass around the constraint C. An implementation of rules
with constraint-based premises, such as (SFun), implicitly adds those premises to the
constraint, so that C =... /A (¢ < ;). Rule (SLetV) generalizes level variables instead of
type variables, with the “occurs check” & NFV(C,T") = (.

Standard techniques in the tradition of Damas and Milner (1982) can infer types for
Level ML. In particular, our rules and constraints fall within the HM(X) framework (Oder-
sky et al.[1999), permitting inference of principal types via constraint solving. As always,
we cannot infer the types of polymorphically recursive functions.

Using a constraint solver that, given the choice between assigning S or C to some level
variable, prefers S, inference finds principal typings that are minimally changeable. Thus,
data and computations will only be made changeable—and incur tracking overhead—
where necessary to satisfy the programmer’s annotation. This corresponds to preferring
a lower security level in information flow (Pottier and Simonet 2003). Interestingly,
while preferring higher security in information flow is not useful, a constraint solver that
prefers C over S yields a maximally changeable program, allowing completely automatic
(though high-overhead) self-adjusting computation.

Our formulation of the constraint-based rules follows a standard presentation style (Oder-
sky et al. 11999). That style, while relatively concise, obscures how constraints are ma-
nipulated in practice: It is tempting to read the typing rules in Figure 4.2] as taking in a
constraint C as input. But in an actual constraint-based typechecker, C cannot be input,
because C is not known until the program has been traversed! In practice, C should be
thought of as both input and output: at the start of typechecking, C is empty (equiva-
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e |l v| Source expression e evaluates to v

er v e v
(SEvValue) v 2 v (SEvPair)
viv (er,e2) 4 (vi,v2)
er d v
e v e v @ Vi,V :\}/ e Vi,V
# (SEvSumlLeft) 2 v ( D 2), (SEvPrimop) M (SEvFst)
inle || inl v dler,ex) v fste || v
er v vi/xles v el inlv vi/x1ler v
14w [-1/ le; J vy (SEvLet) U 1 vi/xiler 4 (SEvCaseLef)
letx =¢eine, | v, caseeof {x; = e, x;=> e} v

e; | funf(x) =e e2 v [(fun f(x) = e)/fl[v2/x]e || v
apply(e,e;) | v

(SEvApply)

Figure 4.4: Dynamic semantics of source Level ML programs.

lently, is true); as the typechecker traverses the program, C is extended with additional
constraints. For example, the premise C I & < ¢ in (SFst) really corresponds to adding
d < ¢ to the “current” C, not to checking 6 < ¢ under a known constraint.

An alternative would be to use a judgment with both an input constraint and an
output constraint. For a typing of the entire program, the input constraint would be true
(at the beginning of typechecking) and the output constraint would correspond to the
“final” C in the current formulation. Such a formulation would be closer to an algorithm,
but would require explicitly threading the constraint through the rules. Moreover, our
meta-theoretical development would become more complicated; in the meta-theory, we
care about the result of type inference, not internal details of the algorithm.

4.4 Dynamic semantics

The call-by-value semantics of source programs is defined by a big-step judgment e | v,
read “e evaluates to value v”. Our rules in Figure 4.4] are standard; we write [v/x]e for
capture-avoiding substitution of v for the variable x in e. To simplify the presentation,
we omit the symmetric rules (SEvSumRight), (SEvSnd) and (SEvCaseRight).
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Chapter 5
Target Language

This chapter is based on work on the theoretical formulation of implicit self-adjusting
computation (Chen et al. 2011, [2014b), and a type system extension for precise depen-
dency tracking (Chen et alll2014a).

5.1 Monadic language

5.1.1 Static semantics

The target language AFL (Figure [5.1)) is a self-adjusting language with modifiables. In
addition to integers, products, and sums, the target type system makes a modal dis-
tinction between ordinary types (e.g. int) and modifiable types (e.g. int mod). It also
distinguishes stable-mode and changeable-mode functions.

Level polymorphism is supported through an explicit select construct and an explicit
polymorphic instantiation. In Section [6] we describe how polymorphic source expres-
sions become selects in AFL. The type schemes used in the target are identical to those
in the source language; o = I&[D]. T quantifies over source types t (from Figure[3.1]), not
target types T. We cannot quantify over target types here, because no single type scheme
over target types can represent exactly the set of types corresponding to the instances of
a source type scheme. For example, the source type scheme V|true]. int* corresponds to
int if « is instantiated with S, and to int mod if « is instantiated with C, but the set of
types {int, (int mod)} does not correspond to the instances of any type scheme.

The values w of the language are integers, variables, polymorphic variable instanti-
ation x[& = 8], locations ¢ (which appear only at runtime), pairs, tagged values, stable
and changeable functions, and the select construct, which acts as a function and case
expression on levels: if x is bound to select {(«x =S) = e; | («x = C) = e} then x[x = S]
yields e;. The symbol x stands for a bare variable x or an instantiation x[& = 5].

We distinguish stable expressions eS from changeable expressions eC. Stable expres-
sions create purely functional values; apply” applies a stable-mode function. The mod
construct evaluates a changeable expression and writes the output value to a modifiable,
yielding a location, which is a stable expression. Changeable expressions are computa-
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Levels d,e :=S|C

Types To=int|zmod [T X [ +T T 25
Type schemes o = NMa&D].t
Typing environments = |Lx:0|0x:T
Variables x = x| x[& =73
Values w = nl|x|l|(w;,wy)|inlw|inrw |
fun® f(x) = 5 | fun® f(x) = eC | select {(& = &;) = e},
Expressions e = e5|eC
Stable expressions eS := w|d(eS,eS) |fsteS | snd e |
apply’(eS, e5) | let x = S in €S |
case e of {x; = €5, x; = €5} |
mod e€
Changeable expressions eC ::= apply® (¢S, eS) | let x=e¢S in eC |

case €5 of {x; = eC, x; = eC}|
read e as y in eC | write(eS)

Figure 5.1: Types and expressions in the target language AFL.

tions that end in a write of a pure value. Changeable-mode application apply" applies a
changeable-mode function.

The let construct is either stable or changeable according to its body. When the body
is a changeable expression, let enables a changeable computation to evaluate a stable
expression and bind its result to a variable. The case expression is likewise stable or
changeable, according to its case arms. The read expression binds the contents of a
modifiable x to a variable y and evaluates the body of the read.

The typing rules in Figure follow the structure of the expressions. Rule (TSelect)
checks that each monomorphized expression e; within a select has type ||[5/&]t||, where
[5/&]7 is a source-level polymorphic type with the levels & substituted for the variables
®&, and ||—|| translates source types to target types (see Section [6.1). Rule (TPVar) is
a standard rule for variables of monomorphic type, but rule (TVar) gives the instanti-
ation x[& = 8], of a variable x of polymorphic type, the type ||[5/&)t|—matching the
monomorphic expression from the select to which x is bound.

5.1.2 Dynamic semantics

For the source language, our big-step evaluation rules (Figure [4.4) are standard. In
the target language AFL, our rules (Figure [5.3) model the evaluation of a first run of
the program: modifiables are created, written to (once), and read from (any number
of times), but never updated to reflect changes to the program input. Again, we omit
symmetric rules such as (SEvSumRight).

According to the grammar in Figure x[@ = 8] is a value. It might seem that
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) ) Under store typing A and target typing environment T,
NANTH.w:o
—1 target value w has type scheme o

for all &; such that & = &; IF D
/\,F I_S € : ||[61/&]T||

— (TSelect)
NA;T Fg select {8; = e}, : TI&X[D]. T

AT et Under store typing A and target typing environment T,
! £ " —| target expression e® has target type T

All) =z
= (TLoo) — (TI®
NANThHs T AT Fs nint
Nx)=r1 I'x) =TI&[D
(TPVar) — = > (TVar)
AThsx:T AT g x[a = 8] : ||[6/&]T||
AThs el T AThseS: T, ALx:o,fi(n P o)hee:D (TFun)
TPai z un
AT ks (e5,e5) i1y x T, (TPair) AT s fun” f(x) =e: (1; 2 1)
AT s €8ty AThseS: 1y x 1,
- (TSumlLeft) (TFst)
AT FginleS: 1, + 1, AT s fst e :
AT g e} :int
AT HseS:int & :int x int — int
. (TPrim)
AT s @(ef, e5) : int
AThsel: o ATx:obce T
- ; (TLet)
AT letx=eline;: T
AT hg el () 2 1)) AThseS: T
TA
AT F apply®(e7, €5) : T (Happ)
AOxi it Feer:t
AT s ety + 1, ATxp T Fe et AT HceC:
(TCase) (TMod)
AT caseeSof {(x; = e, x> e} T A;T s mod e : T mod
ATHseS:t A;T ks e} : 1, mod ATx Ty e e

T
(TRead)

(TWrite)

A;T ¢ write(eS) : 1 A;T k¢ read ef as x in e¥ : T,

Figure 5.2: Typing rules of the target language AFL.
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Figure 5.3: Dynamic semantics for first runs of AFL programs.
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Types T = unit|int|Tmod |0t |1 X1,
L+nlhy 35

Dest. Types D ::= {1}, - ,T,.}

Labels L o= {lL,- L}

Variables x =yl L

Typing Env. T = -|I[x:t

Values v = n|x|{](v,v) |inlv |inrv |
fun® f(x) = e

Expressions e ::= v|®(x1,x2) | fst x| snd x |

apply”(x1,x;) |let x = e; in e, |
case x of {x; = ey, x2 = ey} |
mod v | read x as y in e | write(x;, x;)

Figure 5.4: Types and expressions in the imperative target language

evaluation (Figure [5.3) could replace the variable x by a select expression, yielding

select {...}[a = 8], which does not evaluate to itself. However, x[& = 6] is not closed,
and we only evaluate closed target expressions.

5.2 Imperative language

5.2.1 Static semantics

To facilitate labels from the source language (Section 4.2.2), the target language (Fig-
ure [5.4) has to be an imperative self-adjusting language with modifiables. In addition
to integers, units, products, sums, the target type system makes a distinction between
fresh modifiable types [J int (modifiables that are freshly allocated) and finalized modifi-
able types int mod (modifiables that are written after the allocation). The function type

T, 3 T, contains an ordered set of destination types D, indicating the type of the des-

tinations of the function. Compared with the previous monadic self-adjusting language,
a function with an empty set D means a stable-mode function, and a non-empty set D
means a changeable-mode function.

The variables consist of labels 1; and ordinary variables y, which are drawn from dif-
ferent syntactically categories. The label variable 1; is used as bindings for destinations.

The values of the language consist of integers, variables, locations { (which appear
only at runtime), pairs, tagged values, and functions. Each function fun® f(x) = e takes
an ordered label set £, which contains a set of destination modifiables 1; that should be
filled in before the function returns. An empty £ indicates the function returns all stable
values, and therefore takes no destination.

The expression apply”(xi,x,) applies a function while supplying a set of destination
modifiables £. The mod v construct creates a new fresh modifiable [J T with an initial
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value v. The read expression binds the contents of a modifiable x to a variable y and
evaluates the body of the read. The write constructor imperatively updates a modifiable
x; with value x,. The write operator can update both modifiables in destination labels £
and modifiables created by mod.

The typing rules in Figure follow the structure of the expressions. Rules (TLoc),
(TInt), (TVar), (TPair), (TSum), (TFst), (TPrim) are standard. Given an initial value x
of type T, rule (TAlloc) creates a fresh modifiable of type J . Note that the type system
guarantees that this initial value x will never be read. The reason for providing the
an initial value is to determine the type of the modifiable, and making the type system
sound. Rule (TWrite) writes a value x; of type T into a modifiable x;, when x; is a fresh
modifiable of type [J 1, and produces a new typing environment substituting the type of
x; into an finalized modifiable type T mod. Note that Rule (TWrite) only allows writing
into a fresh modifiable, thus guarantees that each modifiable can be written only once.
Intuitively, mod and write separates the process of creating a value in a purely functional
language into two steps: the creation of location and initialization. This separation is
critical for writing programs in destination passing style. Rule (TRead) enforces that the
programmer can only read a modifiable when it has been already written, that is the type
of the modifiable should be T mod.

Rule (TLet) takes the produced new typing environment from the let binding, and
uses it to check e,. This allows the type system to keep track of the effects of write in
the let binding. To ensure the correct usage of self-adjusting constructs, rule (TCase)
enforces a conservative restriction that both the result type and the produced typing
environment for each branch should be the same. This means that each branch should
write to the same set of modifiables. If a modifiable x is finalized in one branch, the
other branch should also finalize the same modifiable.

Rule (TFun) defines the typing requirement for a function: (1) the destination types
D are fresh modifiables, and the argument type should not contains fresh modifiable. In-
tuitively, the function arguments are partitions into two parts: destinations and ordinary
arguments; (2) the body of the function e has to finalize all the destination modifiables
presented in £. This requirement can be achieved by either explicitly write’ing into
modifiables in £, or by passing these modifiables into another function that takes the
responsibility to write an actual value to them. Although all the modifiables in £ should
be finalized, other modifiables created inside the function body may be fresh, as long as
there is no read of those modifiables in the function body.

Rule (TApp) applies a function with fresh modifiables £. The type of these modifiables
should be the same as the destination types D as presented in the function type. The
typing rule produces a new typing environment that guarantees that all the supplied
destination modifiables are finalized after the function application.

5.2.2 Dynamic semantics

The dynamic semantics of our target language matches that of Acar et al. (Acar et al.
2008a) after two syntactical changes: fun® f(x) = e is represented as fun f(x) = AL.e,
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Figure 5.5: Typing rules of the imperative target language
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and apply” (x1, x,) is represented as (x; x;) L.
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Chapter 6

Translation

This chapter is based on work on the theoretical formulation of implicit self-adjusting
computation (Chen et al. 2011, 2014b), and a type system extension for precise depen-
dency tracking (Chen et al.2014a).

We specify the translation from Level ML to the target language AFL by a set of a rules.
Because AFL is a modal language that distinguishes stable and changeable expressions,
with a corresponding type system (Section [5.1]), the translation is also modal: the trans-
lation in the stable mode — produces a stable AFL expression e®, and the translation in

the changeable mode — produces a changeable expression e®.

It is not enough to generate AFL expressions of the right syntactic form; they must
also have the right type. To achieve this, the rules are type-directed: we translate a
source expression e at type 1. But we are transforming expressions from one language
to another, where each language has its own type system; translating some e : T cannot
produce some e’ : T, but some e’ : T' where 1’ is a target type that corresponds to T.
To express this vital property, we need to translate types, as well as expressions. We
developed the translation of expressions and types together (along with the proof that
the property holds); the translation of types was instrumental in getting the translation
of expressions right. To understand how to translate expressions, it is helpful to first
understand how we translate types.

6.1 Translating types

Figurel6.1ldefines the translation of types via two mutually recursive functions from Level
ML types to AFL types. The first function, ||7||, tells us what type the target expression
eS should have when we translate e in the stable mode, e : T < eS. We also use it to

translate the types in the environment I'. The second function, ||t||”*, makes sense in
two related situations: translating the type T of an expression e in the changeable mode
(e: T < €©) and translating the codomain of changeable functions.

In the stable mode, values of stable type can be used and created directly, so the
“stable” translation ||int®|| of a stable integer is just int. In contrast, a changeable in-
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teger cannot be inspected or directly created in stable mode, but must be placed into a
modifiable: ||int“|| = int mod. The remaining parts of the definition follow this pattern:
the target type is wrapped with mod if and only if the outer level of the source type
is C. When we translate a changeable-mode function type (with C below the arrow),
its codomain is translated “output-changeable™ [|(t) = )% = ||| = ||T2]|”€. The
reason is that a changeable-mode function can only be applied in the changeable mode;
the function result is not placed into a modifiable until we return to the stable mode, so
putting a mod on the codomain would not match the dynamic semantics of AFL.

The second function |||~ defines the type of a changeable expression e that writes
to a modifiable containing T, yielding a changeable target expression e®. The source type
has an outer C, so when the value is written, it will be placed into a modifiable and have
mod type. But inside the evaluation of eC, there is no outer mod on the type Thus
the translation || ||~ ignores the outer level (using the function |— °, which replaces an
outer level C with S), and never returns a type of the form (- -- mod). However, since the
value being returned may contain subexpressions that will be placed into modifiables, we
use ||—|| for the inner types. For instance, ||(t; + 12)°||”C = ||T1]| + || T2 ]|-

These functions are defined on closed types—types with no free level variables. Be-
fore applying one of these functions to a type found by the constraint typing rules, we
always need to apply the satisfying assignment ¢ to the type, so for convenience we write
||t||4 for ||[d]T||, and so on.

Because the translation only makes sense for closed types, type schemes V&[D]. T
cannot be translated before instantiation. Consider the type V«/[true]. int®, and the trans-
lations of its instantiations:

|lint®|| = int
||lint®|| = int mod

No single type scheme over target types can represent exactly the set of types {int, int mod}.
The translation ||T'||, therefore, translates only monomorphic types T; type schemes are
left alone until instantiation. Once instantiated, the type scheme is an ordinary closed
source type, and can be translated by rule (Var) in Figure

6.2 Translating expressions

We define the translation of expressions as a set of type-directed rules. Given (1) a
derivation of C;T" . e : T in the constraint-based typing system and (2) a satisfying
assignment ¢ for C, it is always possible to produce a correctly typed stable target ex-
pression e® and a correctly typed changeable target expression eC (see Theorem
below). The environment I in the translation rules is a source typing environment, but
must have no free level variables. Given an environment I" from the constraint typing,

In this respect, mod behaves like a monadic or computational type constructor, like the O modality of
lax logic (Pfenning and Davies|2001); inside a computation-level (changeable) expression, the result type
is T, but outside of the computation/monad, the result has type Or.
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Under closed source typing environment T,
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Under source typing T,
renaming the “head” x in e to x’ : T yields expression e’

FFX]ZT
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(LPrimop1)
IM'E®(x1,x2) ~ (x1 > x]: TF ®(x],%2)) P
FFXZZT (LPri 2
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t
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NeEx:71
(LApply)

' apply(xi, x2) ~ (x; > x": T+ apply(x’, x2))

N'Ex:T

' case x of {x; = ey, x; = e}
~ (x> x": Ttk case x' of {x; = e;, x; = €;})

(LCase)

Figure 6.3: Renaming the variable to be read (elimination forms).

we apply the satisfying assignment ¢ to eliminate its free level variables before using it
for the translation: [¢]I". With the environment closed, we need not refer to C.

Many of the rules in Figure are purely syntax-directed and are similar to the
constraint-based rules. One exception is the (Var) rule, which needs the source type to
know how to instantiate the level variables in the type scheme. For example, given the

polymorphic x : Valtrue]. (int* — int*)S, we need the type from C;T" . x : (int" z

int(c)S SO we can instantiate « in the translated term x[oc = C].

Our rules are nondeterministic, avoiding the need to “decorate” them with context-
sensitive details. Our algorithm in Section[6.3|resolves the nondeterminism through type
information.

Stable rules. The rules (Int), (Var), (Pair), (Fun), (SumLeft), (Fst) and (Prim) can
only translate in the stable mode. To translate to a changeable expression, use a rule
that shifts to changeable mode.

Shifting to changeable mode. Given a translation of e in the stable mode to some
eS, the rules (Write) and (ReadWrite) at the bottom of Figure translate e in the
changeable mode, producing an eC. If the expression’s type T is outer stable (say, int®),
the (Write) rule simply binds it to a variable and then writes that variable. If T is outer
changeable (say, int®) it will be in a modifiable at runtime, so we read it into v’ and then
write it. (The let-bindings merely satisfy the requirements of A-normal form.)

44



Shifting to stable mode. To generate a stable expression eS based on a changeable
expression eC, we have the (Lift) and (Mod) rules. These rules require the source type T
to be outer changeable: in (Lift), the premise ‘T‘S = 1’ requires that |T’S is defined, and
it is defined only for outer changeable t; in (Mod), the requirement is explicit: - T O.C.

(Mod) is the simpler of the two: if e translates to eC at type T, then e translates to the
stable expression mod eC at type T. In (Lift), the expression is translated not at the given
type T but at its stabilized ‘T S, capturing the “shallow subsumption” in the constraint
typing rules (SLetE) and (SLetV): a bound expression of type t§ can be translated at type
T5 to €S, and then “promoted” to type t§ by placing it inside a mod.

Reading from changeable data. To use an expression of changeable type in a context
where a stable value is needed—such as passing some x : int® to a function expecting
int®—the (Read) rule generates a target expression that reads the value out of x : int"
into a variable x’ : int°. The variable-renaming judgment ' - e ~» (x > x’ : T - ¢)
takes the expression e, finds a variable x about to be used, and yields an expression e’
with that occurrence replaced by x’. For example, I' - case x of ... ~ (x > x' : T F
case x’ of ...). This judgment is derivable only for apply, case, fst, and &, because these
are the elimination forms for outer-changeable data. For ¢(x;, x;), we need to read both
variables, so we have one rule for each. The rules are given in Figure

Monomorphization. A polymorphic source expression has no directly corresponding
target expression: the map function from Section [2] corresponds to the two functions
map_SC and map_CS. Given a polymorphic source value v : V&[D]. 7/, the (LetV) rule trans-
lates v once for each instantiation &; that satisfies the constraint D (each §; such that
& = &; IF D). That is, we translate the value at source type [6:/ &|T’. This yields a se-
quence of source expressions ey, ..., e, for the n possible instances. For example, given
Valtrue]. T/, we translate the value at type [S/a]1’ yielding e; and at type [C/x]T’ yielding
e;. Finally, the rule produces a select expression, which acts as a function that takes the
desired instance &; and returns the appropriate e;.

Since (LetV) generates one function for each satisfying 8, it can create up to 2"
instances for n variables. However, dead-code elimination can remove functions that
are not used. Moreover, the functions that are used would have been handwritten in an
explicit setting, so while the code size is exponential in the worst case, the saved effort
is as well.

6.3 Algorithm

The system of translation rules in Figure [6.2] is not deterministic. In fact, if the wrong
choices are made it can produce painfully inefficient code. Suppose we have 2 : int®, and
want to translate it to a stable target expression. Choosing rule (Int) yields the target
expression 2. But we could use (Int), then (ReadWrite)—which generates an e with a
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function trans (e, ¢) = case (e, ¢) of

(n, S) = Int

(x, S) = Var

((vi,v2), S) = Pair(trans(vi, S), trans(vz, S))
(fun f(x) =e¢’: (11 77 12)°, S) = Fun(trans(e’, &)

e’

| (inl v, S) = SumLeft(trans(v, S))
| (fst(x: (T XTz)B, e) = case (5, €) of
| (S,S) = Fst(trans(x, S))
| (S,C) = if 17 O.S. then Write(trans(e, S))
else ReadWrite(trans(e, S)))
| (C,C) = Read(LFst, trans(fst(x':(1T1x12)°), C), trans(x, S))

| (@®(x; :int%,x2 :int®), S) = Prim(trans(x;, S), trans(xz, S))
| (&(x;:int® xz :int®), C) = Write(trans(e, S))

| (®(x; :int% x5 :int®), S) = Mod(trans(e, C))

| (B(x1 :intc,xz :intc), C) = Read(LPrimopi,

Read (LPrimop2,
Write(trans(d(x7,x5), S)),
trans(xz,S)),
trans(x;,S))
| (et x:1" =e1:7' in ez, €) =
LetE(if T O.S. then trans(e;, S)
else (if t/ =1” then Mod(trans(e;, C))
else Lift(trans(e;, C))),
trans(ez, €))
| (let x:V&D].t" =vi:1' in ez, &) =
let variants = all &; such that & =&; I+ D in
let £ = AS. if [§/&lt” O.S. then trans(vi, S)
else (if T/ = [g/&]T” then Mod(trans(vi, C))
else Lift(trans(vy, C))) in
LetV(map f variants, trans(ez, €))

| (apply(x1: (11 77 12)°,%2), &) = case (¢/, &, &) of
| (S,S,S) = App(trans(x;, S), trans(xz, S))
| (C,S,C) = App(trans(x;, S), trans(xz, S))
| (S,S,C) = if T2 O.S. then Write(trans(e, S))
else ReadWrite(trans(e, S))
| (¢/,C,C) = Read(LApply, trams(apply(x':(T1 7 12)°,x2), ©),
trans(xi, S))
| (C,S,S) = Mod(trans(e, C))
| (¢/,C,S) = Mod(trans(e, C))

| (casex:Tof{x1=er, x2a=ez}, ¢) =
if T O.S. then
Case(trans(x, S), trans(e;, &), trans(ez, €))
else Read(LCase, trans(case x’: ‘T{S of (x1=er1, x2=e3}, C),
trans(x,S))

| (x:t, C) = if T O.S. then Write(trans(e, S))
else ReadWrite(trans(e, S))

| (fun f(x)=¢', C) | Gnlv, C) | (n,C) | ((vi,v2),C) = Write(trans(e,S))

Figure 6.4: Translation algorithm.
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let, a read and a write—then (Mod), which wraps that €€ in a mod. Clearly, we should
have stopped with (Int).

To resolve this nondeterminism in the rules would complicate them further. Instead,
we give the algorithm in Figure [6.4, which examines the source expression e and, using
type information, applies the rules necessary to produce an expression of mode «¢.

6.4 Translation type soundness

Given a constraint-based source typing derivation and assignment ¢ for some term e, it
is possible to translate e to (1) a stable eS and (2) a changeable e®, with appropriate
target types:
Theorem 6.4.1 (Translation Type Soundness).
If C;T k. e: tand ¢ is a satisfying assignment for C then
(1) there exists € such that [§IT" e : [plT — € and +||T'[|y s € : ||T]|¢ and,
if e is a value, then eS is a value;
(2) there exists e© such that [IT" e : [p]T <= eC and +||T'[|p Fc €& : [icd e

The proof (Appendix [A.1I)) is by induction on the height of the given derivation of
GT k. e : 7. If the concluding rule was (SLetE), we use a substitution property
(Lemma [A.1.2) for each &; to get a monomorphic constraint typing derivation; that
derivation is not larger than the input derivation, so we can apply the induction hy-
pothesis to get a translated e/. The proof constructs the same translation derivations as
the algorithm in Figure [6.4] (in fact, we extracted the algorithm from the proof).

When applying the theorem “from the outside”, it suffices to get an expression of
the same mode as the the typing derivation: given C;T" ks e : T, use part (1) to get eS;
given C;I" k¢ e : T, use part (2) to get e®. However, inside the proof, we need both
parts (1) and (2). For example, in the (SLetE) case of the proof, we apply the induction
hypothesis to the typing derivation for the let-bound subexpression; in one subcase, the
subexpression ey is typed in stable mode, but we need a changeable-mode translation of
€.

6.5 Translation soundness

Having shown that the translated programs have appropriate types, we now prove that
running a translated program gives the same result as running the source program.

Theorem states that if evaluating the translated program e’ (in an initially-
empty store) yields a (target-language) value w under a new store p’, then the source
program e evaluates to v where v corresponds to [p’]w (the result of substituting values
in the store p’ for locations appearing in w).

We define this correspondence via a back-translation [e’] which, given some e’ which
resulted from translating e, essentially yields e. The modifier “essentially” is necessary
because, to facilitate the proof of translation soundness, the result of back-translation
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is not literally e—it may add some let expressions. The result of back-translation is,
however, equivalent to e: if [e’] || v then e | v.

Concretely, the back-translation removes all the constructs related to the store: write(x)
becomes x; read expressions are replaced with lets; mod expressions are replaced with
their bodies. The back-translation also removes level superscripts: apply® becomes
apply, etc. Finally, the back-translation drops instantiations of polymorphic variables,
replacing x[& = 8] with x, and replaces select expressions with the back-translation of
a branch. (The translation guarantees that all branches of a select will have semanti-
cally equivalent back-translations, a property we call select-uniformity.) We give the full
definition in Figure

x] = x
[e[& = 5] [e]
[apply*(ei,e;)] = apply([ei], [e.])
[fun® f(x) = €] fun f(x) = [e]
[select {(i=5;) = elk] = lei]

[mode] = [e]
[write(e)] = [e]
[read e; asyine;] = lety = [e;] in [e;]
n] = n
[(er,e)] = (led], [ea])
[fste] = fst[e]

[snd e] = snd [e]
[inle] = inl [e]
[inr e] = inr [e]
[case e of {x; = e, x2 = e;}]] = case [e] of {x; = [e1], x2 = [e:l}
[[@(61,62)]] — @([61]])[[62]])
[letx =e;ine] = letx = [e] in [e;]

Figure 6.5: Back-translation, used for correspondence between target and source dy-
namic semantics

The details of soundness depend on a simple notion of source equivalence (source
terms are equivalent if they either evaluate to the same value, or diverge), and on an
ordinary substitution [p]e on target terms.
Definition 6.5.1. Source expressions ej, e, are equivalent, e; ~ e, iff both evaluate to
the same value, or both diverge: if there exists v; such that e; | v; then e, || v, and if
there exists v, such that e, |} v, then e; | v,.
Definition 6.5.2. Given a store p, which maps locations { to target terms p({), and a
target term e, the store substitution operation [ple, for all £ € dom(p), replaces each
occurrence of { in e with [p](p({)).

For example, [{; — 1,4 — (£, 2)](4,8) = (1, (1,2)).
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Theorem 6.5.3 (Evaluation Soundness).

Ifptel (p' Fw)where FLV(e) C dom(p) and [ple is select-uniform
then [[ple] | [[p'Iw].

Theorem 6.5.4 (Translation Soundness).
If-Fe:t—oeand-Fe' |l (p'Fw)thenel [[p' W]

Acar et al. (2006d) proved that given a well-typed AFL program, change propagation
updates the output consistently with an initial run. Using Theorems|6.4.1]and [6.5.4} this
implies that change propagation is consistent with an initial run of the source program.

6.6 Cost of translated code

Our last main result extends Theorem showing that the size W(D) of the deriva-
tion of the target-language evaluation- - e’ || (p - w) is asymptotically the same as
the size W(D’) of the derivation of the source-language evaluatior@, [e’l U [lplwl. To
prove Theorem [6.6.9] the extended version of Theorem we need a few defini-
tions and intermediate results. The proof hinges on classifying keywords added by the
translation, such as write, as “dirty”: a dirty keyword leads to applications of the dirty
rule (TEvWrite) in the evaluation derivation; such applications have no equivalent in the
source-language evaluation.

We then define the “head cost” HC of terms and derivations, which counts the num-
ber of dirty rules applied near the root of the term, or the root of the derivation, without
passing through clean parts of the term or derivation. Just counting all the dirty key-
words in a term would not rule out a 3-reduction duplicating a particularly dirty part of
the term. By defining head cost and proving that the translation generates terms with
bounded head cost—including for all subterms—we ensure that no part of the term is
too dirty; consequently, substituting a subterm during evaluation yields terms that are
not too dirty.

The omitted proofs can be found in Appendix [A.3]

To extend the evaluation soundness result above (Theorem with a guarantee
that the evaluation derivation D is not too large—within a constant factor of the source
evaluation derivation D’—we need several definitions:

Definition 6.6.1. The weight W(D) of a derivation D is the number of rule applications
(that is, the number of horizontal lines) in D.

Next, we define the “head cost” of a derivation. This measures the overhead intro-
duced by translation, in the part of the derivation that is near its conclusion (the root
of the derivation tree). To measure the overhead, we count the number of “dirty” rules
applied near the root.

2As we mentioned in Section [6.5] the back-translation [e’] is not exactly the same as the source pro-
gram e: it may be let-expanded. We are, therefore, relying on the property that let-expansion preserves
asymptotic complexity (since the resulting evaluation will be larger by, at worst, a constant factor). Since
we assume source programs are in A-normal form, however, we already need that property.
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Definition 6.6.2. Rules (TEvValue), (TEvPair), (TEvSumlLeft), (TEvPrimop), (TEvCase),
(TEvFst), and (TEvApply) are clean. Rule (TEvLet) is clean, since each let in the tar-
get expression becomes a let in the back-translation. The rules (TEvWrite), (TEvMod),
(TEvRead) and (TEvSelect) are dirty.
Definition 6.6.3. The head cost HC(D) of a derivation D is the number of dirty rule
applications reachable from the root of D without passing through any clean rule appli-
cations.
Definition 6.6.4. The head cost HC(e) of a term e is defined in Figure [6.6l
Definition 6.6.5. A term e is shallowly k-bounded if HC(e) < k.

A term e is deeply k-bounded if every subterm of e (including e itself) is shallowly
k-bounded.

Similarly, a derivation D is shallowly k-bounded if HC(D) < k, and deeply k-bounded
if all its subderivations are shallowly k-bounded.

HC(x[&
HC((select {&; = &; = e;},)[d = 5]
HC(select {c; = 5 = ek

1

+ max;(HC(e;))

OO OO OO OCOOo —= —= O

)
HC(inl e
)

HC(case eof {x; = e, xo = e}
HC(let x = e7 in e,
HC(mod e®) = 1+ HC(e®)
HC(write(e)) = 1+ HC(e)
1+ HC(ey) + HC(ef) if (for y not free in e3, e4):
e? has the form apply*(y, e3)
or case y of {x; = ez, x; = ey}
HC(read e; asy in e%) = or let r = ®(e3,y) in write(r)
or read e) as y; in
let r = ®(y,y,) in write(r)
undefined otherwise

o

Figure 6.6: Definition of the “head cost” HC(e) of a target expression e.

Theorem 6.6.6. If trans (e,e) = e’ then e’ is deeply 1-bounded.

Theorem 6.6.7 (Cost Result). Given D : p e’ || (p’ - w) where for every subderivation
D* :pi Fe* |} (p5 Fw*) of D (including D), HC(D*) < k, then the number of dirty rule
applications in D is at most %W(D).

50



int’|| = int
||int”|

I =il = il 5, el (e DiL)
v nfl = limll e
lm+fl = linl+ e
el = I« I mod ([x)=c,)
I = - Iells = 1l
Izl = P x: Qe 7l = 1y

Figure 6.7: Translations || || of labeled types and typing environments

The extended soundness result, Theorem[6.6.9]below, will follow from Theorem|[6.6.8]
which generalizes Theorem [6.5.3] and Theorem [6.6.7] The parts that differ from the un-
costed result (Theorem [6.5.3]) are shaded.

Theorem 6.6.8 (Costed Evaluation Soundness).
IfD:pk el (p' = w) where FLV(e) C dom(p) and [ple is select-uniform and [ple is
deeply k-bounded
then D' :: [[ple] | [lp'Iwl
and [p’]w is deeply k-bounded
and for every subderivation D* :: p; - e* | (p3 - w*) of D (including D),
HC(D*) < HC(e*) <k,
and the number of clean rule applications in D equals W(D’).
Theorem 6.6.9. If trans (e,¢) =e’and D' :: - F e’ || (p'+w), then D : [e'] || v where
W(D’) = 0(W(D)).

6.7 Translation for destination passing style

This section gives an overview of the translation from the source language with pre-
cise dependency tracking (Section[4.2.2)) to the imperative target self-adjusting language
(Section[5.2]). To ensure type safety, we translate types and expressions together using a
type-directed translation.

Translating types. Figure defines the translation of types from the source lan-
guage’s types into the target types. We also use it to translate the types in the typing
environment I'. We define ||t|| as the translation of types from the source language into
the target types. We also use it for translating the types in the typing environment I'.
For integers, sums, and products with stable levels, we simply erase the level notation S,
and apply the function recursively into the type structure. For arrow types, we need to
derive the destination types. In the source typing, we fix the destination type labels by
T, 1o D; L, where D stores the source type for the destinations. Therefore, the destination
types for the target arrow function will be || D]|.
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For source types with changeable levels, the target type will be modifiables. Since the
source language is purely functional, the final result will always be a finalized modifiable
7 mod. Here, we define a stabilization function MS for changeable source types, which
changes the outer level of T from changeable into stable. Formally, we define the function
as,

’T‘S =1/, where [1] =C,,[t] =Sand Tt = 1’

Then, the target type for a changeable level source type t will be || MS mod||.

Translating expressions. We define the translation of expressions as a set of type-
directed rules. Given (1) a derivation of C;P;I" - e : T in the constraint-based typ-
ing system and (2) a satisfying assignment ¢ for C, it is always possible to produce a
correctly-typed target expression e; (see Theorem below). The environment I" in
the translation rules is a source-typing environment and must have no free level vari-
ables. Given an environment I' from the constraint typing, we apply the satisfying as-
signment ¢ to eliminate its free level variables before using it in the translation [}]T.
With the environment closed, we need not refer to C.

Figure shows the translation rules for destination passing style. Most rules are
the same as the discussed in Section Here we highlight the rules that are different
from the previous sections.

Direct rules. The rules (Int), (Var), (Pair), (Sum), (Fst) and (Prim) follows the struc-
ture of the expression, and directly translate the expressions.

Changeable rules. The rules (Lift), (Mod), and (Write) translate expressions with
outer level changeable C,. Given a translation of e to some pure expression e’, rule
(Write) translates e into an imperative write expression that writes e’ into modifiable 1,.

For expressions with non-destination changeable levels, that is the label p has a 1
as the prefix, we need to create a modifiable first. Rules (Lift) and (Mod) achieves this
goal. In (Mod), if e translates to e’ at type T, then e translates to the mod expression at
type t. To get an initial value for the modifiable, we define a function T/, that takes a
source type T and returns any value v of that type. Note that the initial value is only a
placeholder, and will never be read, so the choice of the value is not important. In (Lift),
the expression is translated not at the given type T but at its stabilized }T S, capturing the
“shallow subsumption” in the constraint typing rules (SCLet).

Reading from changeable data. The (Read) rule generates a target expression that
reads the value out of x : int" into a variable x’ : int°. The variable-renaming judgment
N e~ (x> x': 1k e') is shown in Figure [6.3] extended with one more rule for
variables.

NEx:T
FEx~ (x>x 1)

(Lvar)
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Under closed source typing environment I,

I'e:1— e'|source expression e is translated at type T

to target expression e’

(Int) M =7 ey

n B

MN-n:int° < n FThx:Tox 0
Fl—v1:T1<—>v1’ rl_\)zl’fz‘—)\)é

S — (Pair)
ME(viyva) t (11 X 12)7 = (vy,v;)

Nx:m,f: (1 = 1)Fe:t)~ e T, lo D, L

Mfunf(x) =e: (1, — 1)° < fun” f(x) = ¢’

TFv:t <V rl—x:(’ﬁXTz)S‘%&
. S . / um (FSt)
Ninlv: (1 +712)° — inlv MN-fstx:t — fstx

Fl—x1:intg%>ﬂ Fl—xz:intS<—>xz

- — (Prim)
I+ @(X],Xz) : ll'lt5 — @(ﬁ,)ﬂ)

FrExii(m—=n)f=x Thrxmox TlDL
re apply(xi,x2) : T
/ TIGD .
— let {l; = mod (t{,)}\c, in apply”(x1,x2)

(App)

Lx):TiEe T e
MEx:(m+m) < x Nxy:Toke:t— e
' casexof{x;=e,x;=>e}:T
— case x of {x; = e;, x; = e}}

(Case)

ke :t < e Nx:t'Fe:t—e

: : (Let)
lN-letx=ejine;: T letx =ejin e

Ne:t— e’ ] = Cy, Ty =v

Mod
N-e:t—letl;, =modvine’ (Mod)

Me:t'— e [t] = Cy, ’T‘SZT/ Ty =

v
Lift
N-e:t<—letl;, =modvine’ (Lift

le:t— ¢ I<] =C,

Writ
FFe:t— let () = write(l,,e/) in 1,

Nbe~(x>x:t'ke) ] =cC,

Ex’:}T"SI—e’:T%e’/ rl—X:T/‘—)X(R o
ea

'-e:T— read x as x" in e”

Figure 6.8: Translation for destination passing style
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Under closed source typing environment T,
' e: T~ e[ function body e is translated at type T
to target expression e’ with destination returns.

T'Evyity ~ v MEvy T~V . FFe:t—e
5 7 (Rpair) ~ (RTrans)
F'E (viyva) o (11 X 12)7 ~ (vi,Vv3) lFe:T~e
Lxy:Ti et~ e ] =C
yX1: T e T e  (Rcase) =C, (RMod)
I'-casex of {x; = e, X, = e} : T~ e M-e:t~1,

Fher:t < e
L / L . I s /
ke :T 5 € Lx:T' Fe:t~ret e; #letx'=e;in e

. T (RLet)
N-letx =ejine;: T~ letx =e; in

let _=¢)inret

Figure 6.9: Deriving destination return

Function and application rules. Since the self-adjusting primitives are imperative, an
expression with outer changeable levels will be translated into a target expression that
returns unit. To recover the type of the function return for the target language, we need
to wrap the destinations, so that the function returns the correct type. Figure [6.9] shows
the rules for translating the function body and wrapping the destinations. For a tuple
expression (RPair), the translation returns the destination for each component. For a
case expression (RCase), it is enough to return destinations from one of the branches
since the source typing rule (SCase) guarantees that both branches will write to the
same destinations. When the expression has a outer changeable level C,, rule (RMod)
returns its modifiable variable 1,. For let bindings, rule (RLet) translates all the bindings
in the usual way and derive destinations for the expressions in the tail position. For
all other expressions, the translation simply switches to the ordinary translation rules

in Figure[6.2] For example, expression (1,x) : (int® x int™ )S will be translated to (1, Lyr)
by applying rules (RProd) (RTrans) (Int) (RMod).

When applying functions apply(x;, x,), rule (App) first creates a set of fresh modifi-
able destinations using mod , then supply both the destination set £ and argument x; to
function x;. Note that although the destination names 1; may overlap with the current
function destination names, these variables are only locally scoped, the application of the
function will return a new value, which contains the supplied destinations £, but they
are never mentioned outside of the function application.

The translation rules are guided only by local information—the structure of types
and terms. This locality is key to simplifying the algorithm and the implementation but
it often generates code with redundant operations. For example, the translation rules can
generate expressions like read x as x’ in write(l,, x’), which is equivalent to x. We can
easily apply rewriting rules to get rid of these redundant operations after the translation.
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Translation correctness. Given a constraint-based source typing derivation and as-
signment ¢ for some term e, there are translations from e to (1) a target expression e
and (2) a destination return expression e,, with appropriate target types:
Theorem 6.7.1. If C;P;T F e : 1, and & is a satisfying assignment for C, then

(1) there exists e, and I'’ such that [p]T e : [p]T — e, and ||T||p F e || Tl AT,

(2) there exists e, and '’ such that [P]T F e : [d]T ~~ ey, and +||T||p F e 2 ||T||le AT
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Chapter 7

Compiler Design and Implementation

This chapter is based on work on the empirical evaluation of implicit self-adjusting com-
putation (Chen et al. 2012), and a runtime extension for granularity control for self-
adjusting computation (Chen et al.|2014a).

To support type-directed, automatic incrementalization, we extended Standard ML
with a single keyword $C, a type qualifier, and extended the compiler for Standard ML to
generate self-adjusting executables. This extension to SML does not restrict the language
in any way, allowing all its features to be used freely, including the module language.
In this chapter, we describe the structure of our system, and discuss some of its key
components in more detail.

7.1 Structure of the compiler

The overall structure of the compiler is in Figure The front-end of the compiler is im-
plemented as a source-to-source translation based on HaMLet (HaMLet). The front-end
takes the annotated ML program, performs type inference to track the dependency, and
generates self-adjusting programs based on the type information. The code generation
for the front-end follows a deterministic translation algorithm extracted from the proof
of the type soundness theorem (Figure [6.4), thus guaranteeing the correctness of our
implementation.

The back-end of the compiler extends MLton (MLton) to compile and optimize the
generated self-adjusting programs together with a self-adjusting run-time library. This
library implements the self-adjusting primitive (Mod, Read, Write) used by the translated
code. When executed, the library constructs a dependency graph during the initial run.
The library also provides facilities for changing the input and invoking change propaga-
tion to reflect changes to the output.
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Translate:

SML HaMLet: Elaborate: use type information
source | (lex, parse) infer level types to insert self-adjusting

primitives
Optimize:
MLton front-end:
@\ remove

Jundant @« monomorphization,
self-adjusting fedundan

. dead-code elim.
operations

self-adjusting
source

run-time library

MLton codegen] Self-adjusting
(unmodified) executable

Figure 7.1: The structure of our compiler: |new phases| | modified phases |,

unmodified phases|, @

level := . | $s | $C
ty := tyvar
| tycon level
| tyl — level ty2
| { label : ty, ... } level
|
|

tyl * ty2 x ... * tyk # level
( ty )

datbind := tycon = level conbind

Figure 7.2: Syntax extension for Standard ML

7.2 Front end

The front end of the compiler is implemented based on HaMLet 1.3.1. One nice feature
about HaMLet is that it is a direct and faithful implementation of Standard ML. Type
inference is performed directly on the abstract syntax tree (AST). This simplicity makes
type system extension relatively easy to implement than other ML systems.

7.2.1 Syntax

We extended Standard ML'’s lexer and parser to handle types with $C annotations, pro-
ducing abstract syntax in which types include level information. The concrete extension
of the syntax is shown in Figure For function types, record types and product types,
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we extend the types with level annotations $C or $S, indicating whether the types contain
changeable values or not. When declaring datatypes, each type constructor is annotated
with a level. For example, we can define a list with changeable tails as,

datatype « list = $C
Nil | Cons of o * « list $C

The $C annotation on the second line specifies that the tail of the list is changeable,
and the $C annotation on the first line indicates that the whole list is changeable, and it
will be put into a modifiable when translated into self-adjusting programs.

7.2.2 Type inference

We use a two-phase approach in the type inference. The first phase conducts the original
ML type inference, ignoring all the level annotations; and the second phase infers levels
based on the result of the first phase.

There are several changes we need to make to the original type inference algorithm

in order to make the two-phase approach work.

* Storing type information. To correctly infer levels in the second phase, we need
to remember the type information for every AST node. However, HaMLet uses
environment to record type information during type inference. This means that
when an AST node is out of scope, the type information for that AST node is also
lost. So the first change we made is to keep type information for every AST, by
attaching a property list for each AST node. We also need to store the def-use
information, as in the second phase, for polymorphic types, we need to instantiate
concrete types from their definitions. This is achieved by adding a property list in
the value binding environment (VE) and the type constructor environment (TE).

* Node sharing. Certain AST nodes in HaMLet are shared in the abstract syntax
tree. Sharing is fine when the type inference is traversing the syntax tree only
once. For the level inference to perform correctly, we need to deep copy certain
AST nodes. There are two kinds of sharing in HaMLet. First, the type inference
uses an imperative unification algorithm. This means some of the type information
is shared among different AST nodes. This can generate incorrect result in the
second phase of the type inference. That is, when we assign a level to a shared type
node, we are actually assigning one level to multiple places, which is not desired.
To solve this problem, after the first phase of type inference, we perform a deep
copy for every type; Second, in the rewriting of derived forms, some AST nodes
are getting reused. Due to polymorphism, these shared nodes may have different
level types. So we need to copy the property list after rewriting of derived forms.
Third, type nodes are shared for the same type variable. This is fine, because when
instantiating types, we do need the type nodes to share, when they corresponds to
the same type variable.

* Generalization. HaMLet generalizes type variables in the binding environment
(closures). When a type gets generalized in the environment, the type stored in the
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AST node is still the original one. This becomes a problem especially for recursive
functions, as we may lose some of the typing constraints. The current approach to
solve this problem is to simply elaborate the value binding again after the type gets
generalized to make sure the new type information is updated in AST node.

The second phase of the type inference follows the constraint-based typing rules in
Figure The constraints C are collected during the type checking. At the start of
the type checking, C is empty (equivalently, is true); as the typechecker traverses the
program, C is extended with additional constraints. For example, the premise C I 6 < ¢
in (SFst) really corresponds to adding & < ¢ to the “current” C, not to checking 6 < ¢
under a known constraint. At the end of the type checking, the constraints C are feed
into a constraint solver that inferences principal typings that are “minimally” changeable,
that is given the choice between assigning S or C to some level variables, the solver will
prefer S. Thus, data and computations will only be made changeable—and incur tracking
overhead—where necessary to satisfy the programmer’s annotation.

7.2.3 Self-adjusting translation

Our translation algorithm extends the algorithm in Section to support full SML, in-
cluding (recursive) data types and imperative references. The translation algorithm takes
SML code and transforms it into SML code containing self-adjusting computation primi-
tives, whose implementations will be supplied by the run-time system. The self-adjusting
primitives include mod, read, and write functions for creating, reading from, and writ-
ing to modifiable references. At a high level, the translation rules inspect the code locally,
insert reads where changeable data is used (according to type information), and ensure
that each read takes place within the dynamic scope of a call to mod. To ensure this and
other correctness properties, the rules distinguish stable and changeable modes.

FFXZT‘?X,

G - (Ref)
M (refx): (tref”) — mod (write(x'))

et reft < x, Nx;:t'kFe:t— e
S C
> (Deref)

Nletx; = !xzine:fc?readxzasm ine

Fl—x1:T’ref(C?>x1
FExpit <= x; F-e:t—e

. . . . (Assign)
M'-let = (x;:=x;) in e : T — impwrite x; = x; in e’ 8

Figure 7.3: Translation rules for mutable references

Figure shows the translation rules for mutable references, which we translate to
modifiables. The translation judgment I' - e : T <> e’ is read “in environment I" and
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read (mod (let r=e¢; in write(r)))
asx'ine, — letx'=e;ine, (1)
read (mod e) as x’ in write(x’) — e (2)
mod (read e as x’ in write(x')) — e 3)

Figure 7.4: Optimization rules

mode ¢, source expression e at type T translates to e’”. In stable mode S, the translation
produces stable code that cannot inspect changeable data or directly use changeable
code; in changeable mode C, the translation produces changeable code that can appear
within the body of a read and can manipulate references. For translation of imperative
references, we add another primitive impwrite that updates the value of a modifiable
directly.

Stable functions may be called with either stable or changeable arguments. For ex-
ample, the program might use the built-in SML + function on changeable integers. Our
translation algorithm handles such polymorphic usage by inserting coercions, which read
changeable arguments and create a modifiable from the result.

7.3 Back end

The back end of the compiler is implemented based on MLton. It takes the SML code gen-
erated from the front end, conducts various optimizations, and links the code with a self-
adjusting run-time library to generate a self-adjusting executable. MLton’s whole pro-
gram compilation strategy makes optimization relatively easy to implement, producing
efficient self-adjusting programs. Besides, MLton’s support for equality testing, includ-
ing polymorphic equality and pointer equality, is critical for building the self-adjusting
runtime.

7.3.1 Optimization

Our translation algorithm follows a system of inductive rules, which are guided only by
local information—the structure of types and terms. This locality is key to simplifying
the algorithm and the implementation but it often generates code with redundant op-
erations. For example, translating fst x, where x : <int$c X T2>$S, in changeable mode
generates the term read (mod (let r = fst x in write(r))) as x’ in write(x’), which is re-
dundant: it creates a temporary modifiable for the first projection of x and immediately
reads its contents. A more efficient translation, let x’ = fst x in write(x’), avoids the
temporary modifiable.

Such redundancies turn out to be common, because of the local nature of the trans-
lation algorithm. We therefore developed a post-translation optimization phase to elim-
inate redundant operations. Figure [/.4] illustrates the rules that drive the optimization
phase. Each rule eliminates three operations: reading from a modifiable, writing to a
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modifiable, and creating a modifiable. As we show in Section [8.1.7] this optimization
phase reduces the execution time for self-adjusting programs by up to 60%.

* Eliminating write-create-read. The left-hand side of rewrite rule (1) evaluates an
expression e; into a new modifiable, then immediately reads the contents of the
modifiable into x’. The right-hand side evaluates e; and binds the result to x” with
no extra modifiable.

* Eliminating create-read-write. The left-hand side of (2) evaluates e (which, since
it is the body of a mod, must end in a write), creates a modifiable, reads the
just-written value into x’, and writes it again. The right-hand side just evaluates e.

* Eliminating read-write-create. Rule (3) is similar to rule (2): the left-hand side
reads some modifiable e into a variable x’, and immediately writes x’ back to a new
modifiable; the right-hand side only evaluates e.

These rules are shrinking reduction rules guaranteed to make the program smaller (Ap-
pel and Jim1997). The rules are also terminating and confluent. Termination is imme-
diate, because in each rule, the right-hand side is smaller than the left-hand side: rule
(1) replaces one let with another and drops a read, a mod and a write. In rules (2)
and (3), the right-hand side is a proper subterm of the left-hand side. Confluence (the
property that all choices of rewrite sequences eventually yield x-equivalent terms) is not
immediate, but is straightforward:

Theorem 7.3.1. Rules (1)—(3) are locally confluent.

Proof

First, the left-hand sides of rules (1) and (2) may overlap exactly: either rule can be
applied to read (mod (let r = e; in write(r))) as x’ in write(x’), but the right-hand
sides of (1) and (2) are let x’ = e; in write(x’) and let r = e; in write(r), which are
a-equivalent. Rules (2) and (3) may overlap critically, but in all cases yield «x-equivalent
terms. One case (the other is similar) is:

read (mod (read e; as x; in x})) as x) in write(x})

2 . .
2, read e; as x4 in write(x})

read (mod (read e; as x; in x3)) as x} in write(x;)

&) read e3 as x; in write(x;)

Otherwise, redexes overlap only when an entire left-hand side is a subterm of the e in
another left-hand side (possibly of the same rule). Such non-critical overlap cases follow
as in Baader and Nipkow (1998, pp. 137-138). [

Since the rules are terminating and locally confluent, by Newman’s lemma (Newman
1942), they are globally confluent. Thus, we can safely apply them in any order, to
arbitrary subterms, until no rules apply. In practice, it suffices to traverse the program
only once: if we traverse it in preorder, we apply rules near the leaves of the tree first.
That means the subterms of the left-hand sides have already been rewritten, so the right-
hand sides will contain no more candidate subterms.
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signature COMBINATORS = sig
eqtype « modref

type « cc
(* Core *)
val mod : « cc — o modref
val write : (x * @« — bool) — a — o cc
val read : 3 modref * (} — o cc) — « cc
(* Meta ~)
val change : (x * & — bool) — « modref — o — unit
val deref : « modref — «
val propagate : unit — unit
end

Figure 7.5: Signatures for AFL runtime library

We apply our optimization on MLton’s SXML intermediate language, a monomorphic
subset of SML in A-normal form. Before SXML, MLton has conducted various code trans-
formations to simplify the program, including elaboration, defunctorization, lineariza-
tion (conversion to A-normal form), dead code elimination, and monomorphization, etc.
We mark the self-adjusting primitives as special keywords, so that self-adjusting primi-
tives becomes intact during these code transformations, and we can apply optimization
rules in SXML as a phase of optimization.

7.4 Runtime environment

As described above, we compile the translated user program together with a self-adjusting
run-time library. This library implements the self-adjusting primitives (Mod, Read, Write)
used by the translated code. When executed, the library constructs a dependency graph
during the complete run. The library also provides facilities for changing the input and
invoking change propagation to reflect changes to the output.

7.4.1 Library interface

We implement the target language AFL presented in Section [5.1] as combinator library.
Figure[Z.5lshows the interface to the library. The COMBINATORS module defines modifiable
references and changeable computations. Every execution of a changeable computation
of type « cc starts with the creation of a fresh modifiable of type « modref. The mod-
ifiable is written at the end of the computation. For the duration of the execution, the
reference never becomes explicit. Instead, it is carried “behind the scenes” in a way that
is strongly reminiscent of a monadic computation. Any non-trivial changeable computa-
tion reads one or more other modifiables and performs calculations based on the values
read. Values of type « cc representing changeable computations are constructed using
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write, read. The mod function executes a given computation on a freshly generated
modifiable before returning that modifiable as its result. The write function creates a
trivial computation which merely writes the given value into the underlying modifiable.
To avoid unnecessary propagation, old and new values are compared for equality at the
time of write using the equality function provided. The read combinator takes an ex-
isting modifiable reference together with a receiver for the value read. The result of
the read combinator is a computation that encompasses the process of reading from the
modifiable, a calculation that is based on the resulting value, and a continuation repre-
sented by another changeable computation. Calculation and continuation are given by
body and result of the receiver.

The library also supplies meta operations for inspecting and changing the values
stored in modifiables and performing change propagation. The change function is similar
to write function. It changes the underlying value of the modifiable to a new value—this
is implemented as a side effect. The propagate function runs the change-propagation al-
gorithm. Change propagation updates a computation based on the changes issued since
the last execution or the last change propagation. The meta operations should only be
used at the top level—the library guarantees correct behavior only in the cases that meta
operations are not used inside the program. Our compiler generates programs using the
core operations, such as mod, read, and write. The programmer has to write the meta
operations at the top level to specify how the changes are made to the data.

7.4.2 Memoization

Change propagation detects changes to data so that the computations that process those
data can be re-executed. But re-executing the entire remainder of a changeable computa-
tion starting at an affected read can be very inefficient as significant portions of it might
not truly depend on the changed value. We use memoization of computations to detect
such situations dynamically: when a function is called with the exact same arguments
as during the previous execution, then the part of the computation corresponding to this
function call can be re-used. However, since a memoized computation might contain
read operations that are affected by pending changes, one must propagate these changes
into the result of a successful memo lookup.

val mkLift : (x * ¢ — bool) — (index list * o) —
(x mod — B) — fB

In the library, we provide function mkLift to handle adaptive memoization, i.e., mem-
oization based on partially matching function arguments. With ordinary memoization,
a memo table lookup for a function call will fail whenever there is no precise match for
the entire argument list. The idea behind adaptive memoization is to distinguish be-
tween strict and non-strict arguments and base memoization on strict arguments only.
By storing computations (as opposed to mere return values) in the memo table, a suc-
cessful lookup can then be adjusted to any changes in non-strict arguments using the
change-propagation machinery. Since change propagation relies on read operations on
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modifiables, the memoized function has to access its non-strict arguments via such mod-
ifiables. The memo table, indexed by just the strict part of the original argument list,
remembers the modifiables set aside for non-strict arguments as well as the memoized
computation.

Given the strict part of the argument list, a lift operation maps a function of type
« mod — [ to afunction of type « — (3 where « is the type of the non-strict argument.
Our mkLift combinators create lift operations for ordinary and changeable computations
from appropriately chosen equality predicates for the types involved. The strict part of
the argument list is represented by an index list, assuming a one-to-one mapping between
values and indices.

When its memo table lookup fails, a lifted function creates fresh modifiables contain-
ing its non-strict arguments, executes its body, and stores both the computation and the
modifiables into the memo table. Computations are memoized by recording their re-
turn value and a representation of their dynamic dependence graph. A successful memo
lookup finds modifiables and a computation. The lifted function then writes its current
non-strict arguments into their respective modifiables, and lets change propagation ad-
just the computation to the resulting changes.

To support adaptive memoization at the source language, we extend the language
with mfun and mfn keywords to represent memoized functions in the following syntax.

mfun f [strict_args] args = e

Semantically, mfun f [strict_args] args = eisequivalenttofun f args = e, with
the additional feature that the function will return the memoized result when the argu-
ments strict_args match the memo table. Our compiler translates mfun function into
the following code,

fun f args =

let

val 1ift = mkLift (MLton.eq)

fun f_memo args =

1lift (strict_args, args \ strict_args) (fn margs = e’)

in

f_memo args
end

where e’ is derived by

Nf) =(t = T’)S Varg; € args \ strictags, [(argi) = I|B:]| = ||i|| mod

r) fmemo : (T _5) T/)S) margi : Bi - [fmemo/f> m(ngi/aTgi]e : T/ ? 6/

It is the responsibility of the programmer to ensure that all memoized functions spec-
ify the strict and non-strict variables accurately. The classification of a variable as strict
or non-strict does not affect correctness but just performance.
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7.5 Probabilistic chunking

Given the self-adjusting runtime library, we can write various data structures that can
respond to data changes efficiently. But the dependency metadata the runtime maintains
can be very large, preventing scaling to large datasets. In this section, we show how to
reduce the size of dependency metadata by controlling the granularity of dependency
tracking, crucially in a way that does not affect performance disproportionately.

The basic idea is to track dependencies at the granularity of a block of items. This
idea is straightforward to implement: simply place blocks of data into modifiables (e.g.,
store an array of integers as a block instead of just one number). As such, if any data in
a block changes, the computation that depends on that block must be rerun. While this
saves space, the key question for performance is therefore: how to chunk data into blocks
without disproportionately affecting the update time?

Original list:

3[4 e 7 {7 {910 )-[11|-{12]-[13 |-[14|-{15 ][ 16|
4-way fixed chunking:
1]3]4]5—]6|7]7|9F—]10[11]12|13}—|14]15]16] - |

4-way fixed chunking after inserting 2:
1]2]3]4F—|5]6|7|7F—]9]|10]11]12}—[13]14]15]16]

Figure 7.6: Fixed-size chunking with block size B = 4.

For fast updates, our chunking strategy must ensure that a small change to the in-
put remains small and local, without affecting many other blocks. The simple strategy
of chunking into fixed-size blocks does not work. To see why, consider the example
in Figure where a list containing numbers 1 through 16, missing 2, is chunked into
equal-sized blocks of 4. The trouble begins when we insert 2 into the list between 1 and 3.
With fixed-size chunking, all the blocks will change because the insertion shifts the posi-
tion of all block boundaries by one. As a result, when tracking dependencies at the level
of blocks, we cannot reuse any prior computations and will essentially recompute the
result anew.

We propose a probabilistic chunking scheme (PCS), which decouples locations of block
boundaries from the data contents and absolute positions in the list while allowing users
to control the block size probabilistically. Using randomization, we are able to prevent
small (even adversarial) changes from spreading to the rest of the computation. Similar
probabilistic chunking schemes have been proposed in other work but differently, they
aim at discovering similarities across pieces of data (see, e.g., (Muthitacharoen et al.
2001); Tangwongsan et all2010) and the references therein) rather than creating inde-
pendence between the data and how it is chunked as we do here.
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PCS takes a target block size B and determines block boundaries by hashing the
location or the unique identifier of each data item and declaring it a block boundary
if the hash is divisible by B. Figure [7.7] illustrates how this works. Consider, again, a
list holding numbers from 1 to 16, missing 2, with their location identifiers (a, b, ...)
shown next to them. PCS chunks this into blocks of expected size B = 4 by applying a
random hash function to each item. For this example, the hash values are given in a
table in the figure; hash values divisible by 4 are marked with a circle. PCS declares
block boundaries where the hash value is 0 mod B = 4, thereby selecting 1 in 4 elements
to be on the boundary. This means finishing the blocks at 4, 9, and 11, as shown.

Original list:

-3 -[4 -5 -6 -7 -7 -9 )-[10)~{11 |12 ]~{13 [-{14]-{15 || 16|

UID a b c d e f g h 1 ) k l m n o
Hash 35 1 (4) 7 9 3 211@22 5 19 23 29
4-way probabilistic chunking:
(1[3]4}—{5]6|7|7]9}—|10[11}—]12]13]|14]15]16]
4-way probabilistic chunking after inserting 2:
[[2[3]4}—[5[6]7]7[5]—[T0[i1}—[12[13]1a] 5] 58]
Figure 7.7: Probabilistic chunking with block size B = 4. Each data cell in the original list

(top) has a unique identifier (location). The hash values of these identifiers are shown
in the table, with values divisible by B = 4 marked with a circle.

To understand what happens when the input changes, consider inserting 2 (with a
unique location identifier p) between 1 and 3. When the hash value of p is not divisible
by B, it is not on the boundary. This is the common case as there is only a 1/B-th
probability that a random hash value is divisible by B. As a result, only the block [1, 3,4],
where 2 is added, is affected. If, however, 2 happened to be a boundary element, we
would only have two new blocks (inserting 2 splits an existing block into two). Either
way, the rest of the list remains unaffected, enabling computation that depended on
other blocks to be reused. Deletion is symmetric.

This scheme has good block stability because adding or deleting an element does
not change the block structure unless it is at the chunk boundary, which happens rather
infrequently (with probability 1/B). Besides block stability, PCS has other desirable prop-
erties: to further analyze this, we make a standard assumption that the hash values are
independent. Hence, each element can be seen as flipping an independent coin with bias
p = 1/B. Using standard results in probability theory, we have the following theorem:
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Theorem 7.5.1. Let B be a target block size. On a sequence of n elements, the probabilistic
chunking scheme (PCS) yields expected n/B blocks, each with size ©(B) in expectation.

Furthermore, the target block size B can be set for each sequence, allowing program-
mers to tune the tradeoffs between time and space.

Understanding performance implications. Because the basic changeable unit is now
a block, any change to a block—no matter how small or large—will cause the compu-
tation that depends on that block to rerun, increasing the amount of recomputation in
return for space reduction. How does this affect the update time performance?

We pick list partition and merge sort as examples to study the effects of PCS and
the block sequence abstraction. In concert with our intuition, we show that using a
target block size B will cost ©(B) more work in expectation. Like before, the update
performance of an algorithm can be understood by analyzing the static algorithm’s trace
stability—how much the trace changes as a result of an update. The trace model remains
unchanged except that the trace only remembers blocks of elements instead of individual
elements.

List partitioning. We analyze the algorithm in Figure which implements the list
partition routine using the block list abstraction. We consider the case of inserting a new
element; deletion is symmetric. To analyze the stability, we focus on the trace difference
on partition (the static partition code); other trace differences can be charged to them,
increasing the total cost by at most a constant factor. Because a single insertion can affect
at most two input blocks (the worst case is when it splits an existing block), the trace
difference due to partition is ©(1). Therefore, the trace difference is bounded by a con-
stant, which translates to ©(B) expected time because each static function takes expected
O(B) time and the priority queue size is constant. We have the following theorem:
Theorem 7.5.2. The sequence operation partition is ©(1)-stable with respect to a single
insertion/deletion. Thus, an update costs expected ©(B) time.

Merge sort. We sketch an analysis for merge sort (msort). We consider inserting a new
element; again, deletion is symmetric. The crux of a stable msort is a stable merge rou-
tine: as long as the split is reasonably balanced and the merge is O(1)-stable per level,
the recursion tree’s depth is ®(logn) and the overall trace difference is ©(logn). We
therefore focus our discussion on merge: Whereas a traditional merge performs compar-
isons on the elements itself, a block merge algorithm builds on a static routine, which
we call smerge(a, b) that takes two sorted (ordinary) list (a and b) and produces a
combined sorted list, as well as the remainders from one of the input lists. The dominant
cost in merge’s trace difference comes from smerge.

In general, merge is unstable: an element may be compared against a large number
of elements. In merge sort, however, we can keep this number small: when splitting a
sequence, we flip an unbiased coin for each element (e.g., using a hash function on the
box id) to decide which sublist it goes into. By an argument similar to that of Acar (Acar
2005), we know that an element is compared against at most 2 blocks in expectation.
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signature BLOCK_SEQUENCE =
sig
datatype « bseq = NIL
| BLOCK of (x * & bseq mod)
type o block = o Box.t list
type x t = « block bseq mod
val mkCons : « block * x t — ' t
end

Figure 7.8: Blocked sequence signature.

As a result, the trace difference due to smerge is ©(1)—and the trace difference for a
single merge is ©(1) (assuming the random split we use in our msort). This means the
propagation queue is ©(1) in expectation throughout. Hence, msort is ®(logn)-stable
overall. Because each smerge costs expected ©(B) time, we have the following theorem:
Theorem 7.5.3. On input of size n, the merge sort algorithm is ©(log n)-stable with respect
to a single insertion/deletion. Thus, an update costs expected O(B logn) time.

To conclude, by chunking a dataset into size-B blocks, probabilistic chunking reduces
the dependency metadata by a factor of B in expectation. Furthermore, by keeping
changes small and local, probabilistic chunking ensures maximum reuse of existing com-
putations. Change propagation works analogously to the non-block version, except that
if a block changes, work on the whole block must be redone, thus often increasing the
update time by B folds.

Working with block sequences. The block sequence abstraction is similar to the list
abstraction in Standard ML, except that each unit of a sequence is a block, which is
internally represented as a boxed (ordinary) list. There is a function mkCons that takes
an (ordinary) list of elements and inserts them into a block sequence, ensuring that they
are chunked according to PCS.

To satisfy correctness guarantees, deep equality test is needed to perform memo-
ization on block sequences. Since testing blocks for equality takes linear time, we can
optimize for the common case: create a “fingerprint” of the block using a hash function
and compare the blocks when the fingerprints match.

There are a number of common patterns that help with programming in this abstrac-
tion, which essentially alternates between stable and changeable computations. First,
within a stable computation block, memory allocation should be made deterministic to
avoid unnecessary recomputation

Figure[7.8 shows the signature for blocked sequence abstraction. Similar to the mod-
ifiable list data structure, the tail of the block sequence is a modifiable, which allows us
to insert and delete the sequence at the block level. A block is an ordinary list with each
elements boxed with a unique id. The function mkCons takes a block and inserts it into a
block sequence, ensuring that each block ends with hash value 0 with probability 1/B.
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Programming in this interface requires some care to derive efficient results. We need
to determinize the memory allocation within the stable block computation. Otherwise,
the change can propagate to the rest of the block sequence even if the result is the same.
We discover two ways that are effective for solving this problem: 1) programming in
destination-passing style preallocates the modifiables, making the program more stable;
2) When memoizing the self-adjusting block sequence computation, we need to use the
deep equality test for the stable block, instead of pointer equality. The deep equality takes
©(B) time in expectation Note that we can decide different block sizes for different
input sizes to adjust the time and space trade-off. As long as the hash function stays the
same for each function, we can derive efficient update time.

!An alternative way is to memoize at the level of each element in the block, but then the memo table
will dominate the space, thus ruined the whole purpose of blocking.
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Chapter 8

Empirical Evaluation

This chapter is based on work on the empirical evaluation of implicit self-adjusting com-
putation (Chen et al. [2012), and a language extension for computing with large and
dynamic data in self-adjusting computation (Chen et al/[2014a).

We performed extensive empirical evaluation on a range of benchmarks, including
standard benchmarks from prior work, as well as new, more involved benchmarks on
social network graphs. All our experiments were performed on a 2GHz Intel Xeon with
1 TB memory running Linux. Our implementation is single-threaded and therefore uses
only one core. The code was compiled with MLton version 20100608 with flags to mea-
sure maximum live memory usage.

8.1 Experiments with automatic incrementalization

8.1.1 Benchmarks

We implemented a number of benchmarks in our language, including standard self-
adjusting-computation benchmarks from previous work (Ley-Wild et al.[2008; Acar et al.
2009a), additional benchmarks on vectors and matrices, and a ray tracer. Our com-
piler makes it relatively straightforward to derive self-adjusting versions of programs.
Specifically, we simply wrote the standard code for our benchmarks and changed the
type declarations to allow for changes to the input data. For the ray tracer, we used an
unmodified SML implementation of a sphere ray tracer (King|1998).

Our benchmarks include some standard list primitives (map, filter, split), quick-
sort, and mergesort (gsort, msort). These include simple iteration (map, filter, split),
accumulator passing (gsort), and divide-and-conquer algorithms (gsort, msort). All
of these list benchmarks operate on integers: map applies f(i) = 1+3 + i+5 + i+7 to
each element; filter keeps the elements when f(i) is even; split partitions its in-
put; gsort and msort implement sorting algorithms. Similarly, our vector benchmarks
include vec-reduce, vec-mult (dot product), mat-vec-mult (matrix-vector multiplica-
tion), mat-add, transpose (matrix transpose), mat-mult, and block-mat-mult (matrix
multiplication on matrices that use a simple blocked representation).
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The vector and matrix benchmarks implement the corresponding vector or matrix
algorithm with double-precision (64-bit) floating point numbers; when multiplying two
doubles, we normalize the result by their sum to prevent overflows when operating on
large matrices. For our matrix benchmarks, we consider two different representations
of matrices: the standard representation where the elements are laid out in memory
in row-major order, and the blocked representation where elements are blocked into
small submatrices. Our final benchmark is an off-the-shelf ray tracer that supports point
and directional lights, sphere and plane objects, and diffuse, specular, transparent, and
reflective surface properties.

To support flexible changes to the input data, our list benchmarks permit insertion
and deletion of any element from the input; this requires simply specifying the “tail”
of the lists as changeable. Our vector and matrix benchmarks permit changing any el-
ement of the input; this requires simply specifying the vector and matrix elements as
changeable. Our blocked matrix benchmark permits changing any block (and thus any
element) of the input. Our ray tracer permits changing the surface properties of objects
in the image; thus, for a fixed input scene (lights and objects) and output image size, we
can render multiple images via change propagation.

The type annotations needed to enable these changes in our self-adjusting versions of
the benchmarks were trivial. Each benchmark, including the ray tracer, required changes
to no more than a few lines of code—in fact, never more than two lines.

For each benchmark, we evaluate a conventional implementation and four self-adjusting
versions. Three of these are hand-coded versions from previous work, “CPS” (Ley-Wild
et al. 2008), “CEAL” (Hammer et al.2011) and “AFL” (Acar et al)20094). We use these
benchmarks exactly as published, except for setting the test parameters and input data
consistently to enable comparison. The last set, labeled “Type-Directed”, consists of the
self-adjusting programs generated by our compiler. Our list benchmarks use the same
memoization strategy as the “AFL” versions of the list benchmarks; the rest of the bench-
marks do not need memoization.

8.1.2 Experimental setup

For our measurements, we generate all inputs and all data changes uniformly randomly
and sample over all possible changes. More specifically, the inputs to our integer bench-
marks are random permutations of integers from 1 to n, where n is the input size. The
inputs to our floating-point benchmarks are randomly generated floating-point numbers
via the SML library. To increase the coverage of our evaluation, for each measurement,
we average over four different input instances, as well as all input changes over each of
these inputs.

For each benchmark we measure the complete running time of the conventional and
the self-adjusting versions. All reported times are in seconds or milliseconds, averaged
over four independent runs. Timings exclude creation of the initial input; in change-
propagation timings, we also exclude the initial, pre-processing run (construction of the
test data plus the complete run). To measure efficiency in responding to small data
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changes, we compute the propagation time for responding to an incremental change.
The nature of the change depends on the benchmarks. For list benchmarks, we report
the average time to insert or delete an element from the input list (average over all
elements). For vector and matrix benchmarks, we report the average time to change
an element of the vector or matrix by replacing it with a randomly generated element
(averaged over all positions in the vector or one position per row in the matrix). For the
ray tracer, we consider a range of changes which we describe later when discussing the
ray tracer in detail.

Correctness. To verify that our compiler generates self-adjusting executables that can
respond to changes to their data correctly, we used three approaches: type checking,
manual inspection, and extensive testing. Our compiler generates self-adjusting code to
a text file, which we then type-check and compile along with a stand-alone self-adjusting-
computation library, which we have separately implemented. SML’s type system verifies
that the translated code satisfies certain invariants. Since we can inspect the translated
code manually, we can also spot-check the code, which is not a foolproof method but
increases confidence. We have used this facility extensively when implementing the
compiler.

Additionally, we have developed a testing framework, which makes a massive num-
ber of randomly generated changes to the input data, and checks that the executable
responds correctly to each such change by comparing its output with that of a “veri-
fier” (reference implementation) that computes the given output using a straightforward,
non-incremental algorithm. Using this framework, we have verified the correctness of all
the self-adjusting executables generated by our compiler.

8.1.3 Timings summary

Table shows a summary of the timings that we collected for our benchmarks at fixed
input sizes (written in parentheses after the benchmark’s name). All times are reported
in seconds. The first column (“Conv. Run”) shows the run time of the conventional
(reference) implementation with an input of specified size. The conventional version
cannot self-adjust, but does not incur the overhead of trace construction as self-adjusting
versions do. The second column (“Self-Adj. Run”) shows the run time of the self-adjusting
version with an input of specified size. Such a self-adjusting run constructs a trace as
it executes, which can then be used to respond automatically to incremental changes
to data via change propagation. The third column (“Self-Adj. Avg. Prop.”) shows the
average time for a change propagation after a small change to the input (as described in
Section [8.1.1], the specific nature of the changes depend on the application).

The last two columns of the table, “Overhead” and “Speedup”, report the ratio of
the self-adjusting run to the conventional run, and the ratio of the conventional run
to change propagation. The overhead is the slowdown that a self-adjusting run incurs
compared to a run of the conventional program. The speedup measures the speedup that
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Application Conv. |Self-Adj.| Self-Adj.  |Overhead|Speedup
(Input size) Run (s)| Run (s) |Avg. Prop. (s)
map(10°) | 0.05 0.83 1.1x10°° 16.7 | 4.6x10%
filter(106) | 0.04| 1.25| 1.4x10° 27.7 | 3.2x10¢
split(105) | 0.14| 1.63| 3.2x10° 11.6 | 4.4%x10
msort(10°) | 0.30 5.83| 3.5x10* 19.5| 850.92
gsort(10°) | 0.05 340 4.9x10% 64.2 | 108.17
vec-reduce(10°) | 0.05| 0.26| 4.4x10° 5.5|1.1x10*
vec-mult(10°) | 0.18| 1.10| 6.7x107° 5.912.8x10%
mat-vec-mult(10%) | 0.17| 0.81| 1.4x107 4.611.3x10%
mat-add(10°) | 0.10 0.36| 4.9x107 3.712.0x10°
transpose(10*) | 2.14| 2.15| 5.1x107% 1.0 4.2x107
mat-mult(400) | 10.65| 90.22| 5.8x1073 8.5[1.8x103
block-mat-mult(103) | 7.03 8.38| 4.6x107 1.2]1.5x10°

Table 8.1: Summary of benchmark timings.

change propagation delivers compared to re-computing with the conventional version.
An analysis of the data shows that the overheads are higher for simple benchmarks such
as list operations (which are dominated by memory accesses), but significantly lower
for other benchmarks. The overheads for gsort are traditionally high, commensurate
with the previous work. In all benchmarks, we observe massive speedups, thanks to the
asymptotic improvements delivered by change propagation. In the common case, the
overhead is incurred only once: after a self-adjusting run, we can change the input data
incrementally and use change propagation, with massive speedups.

8.1.4 Merge sort

Although it is not apparent from the summary in Table [8.1] our experiments show that
for all our benchmarks, the overheads of self-adjusting versions are constant and do not
depend on the input size, whereas speedups, being asymptotically significant, increase
with the input size. To illustrate this property, we examine our merge sort benchmark. In
Appendix B, we show the corresponding data for six more representative benchmarks.
The plot on the left in Figure shows the time (in seconds) for the complete run
of self-adjusting merge sort compared to the conventional version, for a range of in-
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Figure 8.1: Time for complete run; time and speedup for change propagation for msort
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Figure 8.2: Time for complete run; time, speedup and memory for change propagation
for blocked matrix multiply

put sizes (x axis). The figure suggests that, in both the conventional and self-adjusting
versions, the complete-run time grows almost linearly, and they exhibit the same asymp-
totic complexity, O(nlogn). The plot in the middle of Figure shows the time—in
milliseconds—for change propagation after inserting/deleting one element for each in-
put size (x axis). As can be seen, the time taken by change propagation grows sublinearly
as the input size increases. This is consistent with the O(logn) bound that we can show
analytically. The plot on the right in Figure shows the speedups for different in-
put sizes (x axis): the time for a run of the conventional algorithm divided by the time
for change propagation. The plots show that speedups increase linearly with the input
size, consistent with the theoretical bound. To obtain this asymptotic improvement, we
only insert one keyword in the code and use our compiler to generate the self-adjusting
version.

8.1.5 Matrix multiplication

Our type-based approach gives the programmer great flexibility in specifying changeable
elements in different granularity. The difference in the data representation can lead to
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dramatically different time and space performance. For example, mat-mult performs
matrix multiplication using the standard matrix representation where each element of
the matrix is changeable, while block-mat-mult considers the blocked representation
where elements are blocked into groups of 20 x 20 submatrices. As we can see from
Table [8.1] although the blocked version has a smaller speedup, as changing one element
requires recomputing the whole submatrix, it has much less overhead compared to the
standard representation. To further explore this trade-off, Figure shows the time and
space of blocked matrix multiplication with block sizes from 20 x 20 to 50 x 50.

Run time. In Figure[8.2] the leftmost plot shows the time for the complete run of self-
adjusting blocked-matrix multiply with different block sizes, as well as the conventional
version. The figure suggests that all benchmarks exhibit the same asymptotic complexity,
O(n?). We also observe that as the block size increases, the overhead becomes smaller.
This is because we treat each block as a single modifiable, reducing the number of mod-
ifiables tracked at run time. The second plot in Figure shows the time for change
propagation after changing a block for each input size (x axis) with different block sizes.
The time taken by change propagation grows almost linearly as the input size increases,
which is consistent with the O(nlogn) bound that we can compute analytically. Chang-
ing any part of a block requires recomputing the whole block, so propagation is faster
with smaller block sizes. The third plot in Figure shows speedups for different input
sizes. Speedups increase asymptotically with input size, consistent with the theoreti-
cal bound of O(n?/logn). Smaller blocks have higher speedups. For example, for a
1000 x 1000 matrix, the 20 x 20 block enables 1200x speedup, while the 50 x 50 block
has 280x speedup.

Space. The rightmost plot in Figure shows the memory used by change propaga-
tion with different block sizes (the complete run never uses more memory than change
propagation). As with all other approaches to self-adjusting computation, our approach
exploits a trade-off between memory (space) and time (we compare the space usage of
other approaches in Section [8.1.8). We store computation traces in memory and use
them to respond to incremental data changes, resulting in an increase in memory usage
and a decrease in response time. Typically, self-adjusting programs use asymptotically as
much memory as the run-time of the computation. The plot shows results consistent with
the theoretical bound of O(n?). Although a smaller block size leads to larger speedups, it
requires more memory, because the total number of modifiables created is proportional
to the number of blocks in the matrix.

As can be seen from the plot, memory consumption can be high. However, it can
be reduced by programmer control over dependencies, which self-adjusting computation
provides (Acar et all2009a; Hammer et al/2011): The programmer can specify larger
chunks of data, instead of single units, as changeable. Our approach further simplifies
such control by requiring only the types to be changed. As a concrete example, our
matrix-multiplication benchmark with 50 x 50 blocks consumes about 300 MB as we
change each element of the input matrix and update the output. This is about 10 times
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Surface |Image Diff.| Conv. |Self-Adj.| Self-Adj. |Overhead|Speedup

Changed| (% pixels) |Run (s)| Run (s) Avg. Prop. (s
AP 57.22% | 4.07 6.32 3.04 1.55 1.34
AM 57.22% | 1.91 5.75 8.48 3.02| 0.22
BP 843% | 2.37| 4.87 0.55 2.05| 4.29
BM 8.43% | 244 4.42 1.00 1.81 2.44
CP 9.20% | 2.43 3.97 0.59 1.64 | 4.09
cM 920% | 2.16 3.86 1.12 1.79 1.92
DP 1.85% | 2.44 3.83 0.12 1.57 | 20.21
DM 1.85% | 2.19 3.85 0.20 1.76 | 10.74
EP 11.64% | 4.10 6.28 1.27 153 | 3.22
EM 11.74% | 2.79 5.83 1.87 2.09 1.49
FP 19.47% | 2.85 5.78 1.57 2.03 1.82
™M 19.47% | 2.83 3.92 2.97 138 0.95
GP 27.37% | 2.85 3.92 2.58 1.38 1.11
GM 27.47% | 2.82 5.36 4.64 1.90| 0.61

Table 8.2: Summary of ray tracer timings.

the space needed to store the two input matrices and the result matrix, but enables a
280x speedup when re-computing the output.

8.1.6 Ray tracer

Many applications are suitable for incremental computation, because making a small
change to their input on average causes small changes to their output. But some applica-
tions are not. Arguably, incremental computation techniques should be avoided or used
cautiously in such applications. To evaluate the effectiveness of our approach in such
limiting cases, we considered ray tracing, where a small change to the input can require
a large fraction of the output image to be updated. In our experiments, we rendered an
input scene of 3 light sources and 19 objects with an output image size of 512 x 512 and
then repeatedly changed the surface properties of a single surface (which may be shared
by multiple objects in the scene). We considered three kinds of changes: a change to the
color of a surface, a change from a diffuse (non-reflective) surface to a mirrored surface,
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Figure 8.3: Two images produced by our ray tracer. To produce the right-hand image, we
change the surfaces of the four green balls from diffused surfaces to mirrored surfaces.
Change propagation yields about a 2x speedup over re-computing the output.

and a change from a mirrored to diffuse surface. We measured the time for a complete
run of both the conventional and the self-adjusting versions, and the average propaga-
tion time for a single toggle of a surface property. For each change to the input, we also
measured the change in the output image as a fraction of pixels. Figure [8.3]illustrates an
example.

Table shows the timings for various kinds of changes. The first column shows the
percentage of pixels changed in the output. Each pair of rows corresponds to changing
the surface properties of a set of objects (sets labeled A through G) to diffuse (non-
reflective) and mirror surfaces in that order, as indicated by superscripts -° and -M re-
spectively. Our measurements show that even when a large fraction of the output image
must change, our approach can perform better than recomputing from scratch. We also
observe that since mirrors reflect light, making a surface mirrored often requires per-
forming more work during change propagation than making the surface diffuse. Indeed,
we observe that the speedups obtained for mirror changes are consistently about half of
the speedups for diffuse changes.

8.1.7 Compiler optimizations

In Section [7.3.T]we described some key optimizations that eliminate redundancies in the
code. To measure the effectiveness of these optimizations, we measured the running
time for our benchmarks compiled with and without these optimizations. Since the
optimizations always eliminate redundant calls, we expected them to improve efficiency
consistently, and also quite significantly. As can be seen in Figure by comparing the
bars labeled “Unopt.” (green) and “Type-Directed” (black), our experiments indeed show
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that the optimizations can improve the time of the complete run and the time and space
for change propagation by as much as 60%. The complete run never uses more space
than change propagation does. We will discuss the rest of Figure in Section

8.1.8 Comparison to previous work

We compare our results with previous work: the combinator library (AFL) in SML (Acar
et al. 2009a), the continuation-passing style (CPS) approach in SML (Ley-Wild et al.
2008), and the C-based CEAL system (Hammer et al. |2011), which is a carefully en-
gineered and highly optimized system that can be competitive with hand-crafted algo-
rithms (Demetrescu et al. [2004). Figure [8.4] shows this comparison for the common
benchmarks with fixed input sizes of 1 million keys for list operations and 100,000 keys
for sorting, with results normalized to “Type-Directed” (= 1.0).

The comparison shows that, for both time and space, our approach is within a factor
of two of AFL, a carefully engineered hand-written library. The principal reason for
AFL’s performance is its multiple interfaces to the self-adjusting primitives, which the
programmer selects by hand. For example, AFL provides an unsafe interface that the
quicksort benchmark uses to speed up the partition, creating half as many modifiables
as with the standard interface. Our compiler does not directly support these low-level
primitives, so we cannot perform the same optimizations. In AFL, programmers need
to restructure programs in monadic style, explicitly constructing the dependency graph.
This process is similar to doing type inference and translation by hand. Our approach
makes self-adjusting programs much easier to write, yet their performance is competitive
with carefully-engineered self-adjusting programs.

Compared to CPS, our approach is approximately twice as fast, even though the CPS
approach requires widespread changes to the program code and ours does not. The pri-
mary reason for the performance gap is likely that the CPS-based transformation relies
on coarse approximations of true dependencies (based on continuations); our compiler
identifies dependencies more precisely by using a type-directed translation. Additionally,
we compared our ray tracer with one based on CPS, where our approach (“Type-Dir.”) is
approximately twice as fast as CPS (Table [8.3]). Our approach often uses slightly more
space than the CPS based approach, probably because of redundancies in the automati-
cally generated code that can be eliminated manually in the CPS approach.

Compared to CEAL (Hammer et al. 2011), our approach is usually faster but occa-
sionally slightly slower. We find this very interesting because the CEAL benchmarks use
hand-written, potentially unsound optimizations, such as selective destination-passing
and sharing of trace nodes (Hammer et al. 2011, Sections 7.2 and 8.1), that can result
in incorrectly updated output. We also compared our approach to sound versions of
CEAL benchmarks, which were a factor of two slower than the unsound versions. We use
up to five times as much space; given that our approach uses space consistent with the
other ML based approach (“CPS”), this is probably because of differences between ML, a
functional, garbage-collected language, and C. When compared to sound versions of the
CEAL benchmarks, which is arguably the more fair comparison, CEAL’s space advantage
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Surface|lmage Diff.|Type-Dir.| CPS |Speedup|Type-Dir.| CPS |Speedup
Changed (% pixels) | Run (s) |Run (s)|vs. CPS| Prop (s) |Prop (s)|vs. CPS

AP 57.22% 6.32| 5.88| 0.93 3.04| 4.36 1.43
AM 57.22% 5.75| 7.35 1.28 8.48 | 13.86 1.64
BP 8.43% 4.87 | 8.06 1.66 0.55 1.01 1.82
BM 8.43% 442 7.75 1.75 1.00 1.80 1.80
cP 9.20% 3.97 797 2.01 0.59 1.15 1.93
cM 9.20% 3.86| 7.63 1.98 112 1.93 1.72
DP 1.85% 3.83| 7.95| 207 0.12 0.21 1.75
DM 1.85% 3.85| 7.57 1.97 0.20| 0.28 1.39
EP 11.64% 6.28| 5.88| 0.94 1.27 | 252 1.98
EM 11.74% 5.83 | 12.41 2.13 1.87 | 3.44 1.84
FP 19.47% 578 | 11.96 | 2.07 1.57 | 3.00 1.91
™M 19.47% 3.92| 944 241 297 | 541 1.82
GP 27.37% 3.92| 9.64| 246 258 | 4.69 1.82
GM 27.47% 5.36| 11.02| 2.06 4.64 | 8.60 1.85

Table 8.3: Comparison of ray tracer with CPS

decreases by a factor of two.

To summarize, even though our approach accepts conventional code with only a few
type annotations, the generated programs perform better than most hand-written code
in two programming languages, and are competitive with hand-written code in AFL.
Memory usage is comparable to other ML-based approaches.

8.1.9 Effect of garbage collection

In our evaluation thus far, we did not include garbage-collection times because they are
very sensitive to garbage collection parameters, which can be specified during run time.
For example, our compiler allows us to specify a heap size when executing a program. If
this heap size is sufficiently large to accommodate the live data of our benchmarks, then
the timings show that essentially no time is spent in garbage collection. When we do not
specify a heap size, memory is managed automatically, taking care not to over-expand
the heap unnecessarily, by keeping the heap size close to the size of the live data. With
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Figure 8.5: Propagation time for vec-reduce including GC time.

this setting, our timings show that garbage collection behaves differently in the complete
run and change propagation. The time can vary from negligible to moderate during
complete runs of self-adjusting executables. For example, in blocked matrix multiplica-
tion, garbage collection times are less than 10%, but in vector multiplication, garbage
collection takes nearly half of the total running time. Previous work on self-adjusting
computation shows similar tradeoffs (Hammer and Acar [2008; Acar et all2009a). Dur-
ing change propagation, however, we observe that garbage-collection times are relatively
small even when not using a fixed heap. Figure shows the garbage collection time
for vector reduce, which is close to the worst-case typical behavior that we obtain in our
benchmarks. In some applications such as ray-tracing and blocked matrix multiplication,
garbage collection times are negligible.

8.2 Experiments with large and dynamic data

8.2.1 Benchmarks and measurements

To evaluate the effectiveness of our approach for large and dynamic data, we implement
a variety of domain-specific languages and algorithms.

* ablocked list abstract data type that uses our probabilistic chunking algorithm (Sec-
tion[7.5),
* a sparse matrix abstract data type,

* an implementation of the MapReduce framework (Dean and Ghemawat |2008) that
uses the blocked lists,

* several list operations and the merge sort algorithm,

* more sophisticated algorithms on graphs, which use the sparse-matrix data type to
represent graphs, where a row of the matrix represents a vertex in the compressed
sparse row format, including only the nonzero entries.
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In our graph benchmarks, we control the space-time trade-off by treating a block of
100 nonzero elements as a single changeable unit. For the graphs used, this block size
is quite natural, as it corresponds roughly to the average degree of a node (the degree
ranges between 20 and 200 depending on the graph).

For each benchmark, we implemented a batch version—an optimized implementation
that operates on unchanging inputs—and a self-adjusting version by using techniques pro-
posed in this paper. We compare these versions by considering a mix of synthetic and
real-world data, and by considering different forms of changes ranging from small unit
changes (e.g., insertion/deletion of one item) to aggregate changes consisting of many
unit changes (e.g., insertion/deletion of 1000 items). We describe specific datasets em-
ployed and changes performed in the description of each experiment.

8.2.2 Block lists and sorting

Using our block list representation, we implemented batch and self-adjusting versions of
several standard list primitives such as map, partition, and reduce as well as the merge
sort algorithm msort. In the evaluation, all benchmarks operate on integers: map applies
f(i) = i+2 to each element; partition partitions its input based on the parity of each
element; reduce computes the sum of the list modular 100; and msort implements merge
sort.

Table 8.4l reports our measurements at fixed input sizes 10”. For each benchmark, we
consider three different versions: (1) a batch version (written with the -batch suffix);
(2) a self-adjusting version without the chunking scheme (the first row below batch); (3)
the self-adjusting version with different block sizes (B = 3,10, ...). We report the block
size used (B); the time to run from scratch (denoted by “Run”) in seconds; the average
time for a change propagation after one insertion/deletion from the input list (denoted
by “Prop.”) in milliseconds. Note that for batch versions, the propagation time (i.e., a
rerun) is the same as a complete from-scratch run. We calculate the speedup as the ratio
of the time for a run from-scratch to average propagation, i.e., the performance improve-
ment obtained by the self-adjusting version with respect to the batch version of the same
benchmark. “Memory” column shows the maximum memory footprint. The experiments
show that as the block size increases, both the self-adjusting (from-scratch) run time
and memory decreases, confirming that larger blocks generate fewer dependencies. As
block size increases, time for change propagation does also, but in proportion with the
block size. (From B = 3 to B = 10, propagation time decreases, because the benefit for
processing more elements per block exceeds the overhead for accessing the blocks).

In terms of memory usage, the version without block lists (B = 1) requires 15—
100x more memory than the batch version. Block lists significantly reduce the memory
footprint. For example, with block size B = 100, the benchmarks require at most 7x
more memory than the batch version, while still providing 4000-10000x speedup. In
our experiments, we confirm that probabilistic chunking (Section [Z.5) is essential for
performance—when using fixed-size chunking, merge sort does not yield noticeable im-
provements.
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Benchmark B Run (s) Prop.(ms) Speedup Memory
map-batch 1 0.497 497 1 344M
1 11.21 0.001 497000 7G

3 16.86 0.012 41416 10G

m 10 5.726 0.009 55222 3G

ap 100 1.796 0.048 10354 1479M
1000  1.370 0.635 783  1192M

10000  1.347 9.498 52  1168M
partition-batch 1 0.557 557 1 344M
1 10.42 0.015 37133 8G

3 20.06 0.033 16878 14G

it 10  6.736 0.028 19892 3G
partition 100 1.920 0.049 11367 1508M
1000 1.420 0.823 677 1159M

10000 1.417 11.71 47  1124M

reduce-batch 1 0.330 330 1 344M
1 9.529 0.064 5156 5G

3 13.39 0.129 2558 6G

. 10 4.230 0.085 3882 1317M
reduce 100 0.990 0.083 3976  592M
1000  0.627 0.075 4400  420M

10000  0.593 0.244 1352 327M

msort-batch 1 12.82 12820 1 1.3G
1 6764 0.956 13410 121G

3 725.0 1.479 8668 157G

. 10  204.4 1.012 12668 44G

msor 100 52.00 3.033 4227 10G
1000  43.80 22.36 573 9G

10000  35.35 119.7 107 8G

Table 8.4: Blocked lists and sorting: time and space with varying block sizes on fixed

input sizes of 107.
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Figure 8.6: Run time (seconds) of incremental word count.

8.2.3 Word count

A standard microbenchmark for big-data applications is word count, which maintains the
frequency of each word in a document. Using our MapReduce library (run with block size
1,000), we implemented a batch version and a self-adjusting version of this benchmark,
which can update the frequencies as the document changes over time.

We use this benchmark to illustrate, in isolation, the impact of our precise depen-
dency tracking mechanism. To this end, we implemented two versions of word count:
one using prior art (Chen et al/l2012) (which contains redundant dependencies) and the
other using the techniques presented in this paper. We use a publicly available Wikipedia
datasef and simulate evolution of the document by dividing it into blocks and incremen-
tally adding these blocks to the existing text; the whole text has about 120, 000 words.

Figure shows the time to insert 1,000 words at a time into the existing corpus,
where the horizontal axis shows the corpus size at the time of insertion. Note that the
two curves differ only in whether the new precise dependency tracking is used. Overall,
both incremental versions appear to have a logarithmic trend because in this case, both
the shuffle and reduce phases require ©(logn) time for a single-entry update, where n
is the number of input words. Importantly, with precise dependency tracking (PDT), the
update time is around 6x faster than without. In terms of memory consumption, PDT is
2.4x more space efficient. Compared to a batch run, PDT is ~ 100x faster for a corpus
of size 100K words or larger (since we change 1000 words/update, this is essentially
optimal).

8.2.4 Incremental PageRank

Another important big data benchmark is the PageRank algorithm, which computes the
page rank of a vertex (site) in a graph (network). This algorithm can be implemented in
several ways. For example, a domain specific language such as MapReduce can be (and
often is) used even though it is known that for this algorithm, the shuffle step required

!wikipedia dataset: http://wiki.dbpedia.org/
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Benchmark  Source Input Size Prop. (s) Speedup Memory

PR-Batch Orkut 3 x 10° vertices 7 1 3G
PageRank 1 x 108 edges 0.021 333 36G
PR-Batch LiveJournal-1 4 x 10° vertices 18 1 5G
PageRank 3 x 107 edges 0.023 783 61G
PR-Batch Twitter-1 3 x 107 vertices 137 1 50G
PageRank 7 x 10% edges 0.254 539 495G
Conn-Batch LiveJournal-2 1 x 10° vertices 105 1 4G
Connectivity 8 x 10° edges 0.531 198 140G
SC-Batch Twitter-2 1 x 10° vertices 8 1 2G
Social Circle 2 x 10° edges 0.079 101 34G

Table 8.5: Incremental sparse graphs: time and space.

by MapReduce is not needed. We implemented the PageRank algorithm in two ways:
once using our MapReduce library and once using a direct implementation, which takes
advantage of the expressive power of our framework. Both implementations use the
same block size of 100 for the underlying block-list data type. The second implementation
is an iterative algorithm, which performs sparse matrix-vector multiplication at each step,
until convergence.

In both implementations, we use floating-point numbers to represent PageRank val-
ues. Due to the imprecision in equality check for floating point numbers, we set three
parameters to control the precision of our computation: 1) the iteration convergence
threshold con,; 2) the equality threshold for page rank values eq,, i.e. if a page rank
value does not change for more than eq,, we will not recompute the value; 3) the equal-
ity threshold for verifying the correctness of the result verify,. For all our experiments,
we set con, = 1 x 107°, and eq, = 1 x 1078, For each change, we also perform a
batch run to ensure the correctness of the result. All our experiments guarantee that
verify, <1 X 107°.

Our experiments with PageRank show that MapReduce based implementation does
not scale for incremental computation, because it requires massive amounts of memory,
consuming 80GB of memory even for a small downsampled Twitter graph with 3 x 103
vertices and 10* edges. After careful profiling, we found that this is due to the shuffle
step performed by MapReduce, which is not needed for the PageRank algorithm. This is
an example where a domain-specific approach such as MapReduce is too restrictive for
an efficient implementation.

Our second implementation, which uses the expressive power of functional program-
ming, performs well. Compared to the MapReduce-based version, it requires 0.88GB
memory on the same graph, nearly 100-fold less, and the update time is 50x faster on
averageg We are thus able to use the second implementation on relatively large graphs.

2This performance gap increases with the input size, so this is quite a conservative number.
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Figure 8.7: Incremental PageRank: 100 trials (x-axis) of deleting 1,000 edges

Table shows a summary of our findings. For these experiments, we divide the edges
into groups of 1,000 edges starting with the first vertex and consider each of them in
turn: for each group, we measure the time to complete the following steps: 1) delete all
the edges from the group, 2) update the result, 3) reintroduce the edges, and 4) update
the result. Since the average degree per vertex is approximately 100, each aggregate
change affects approximately 10 vertices, which can then propagate to other vertices.
(Since the vertices are ordered arbitrarily, this aggregate change can be viewed as insert-
ing/deleting 10 arbitrarily chosen vertices).

Our PageRank implementation delivers significant speedups at the cost of approxi-
mately 10x more memory with different graphs including the datasets orkutl, LiveJour-
nall and Twitter grap}ﬁ. For example on the Twitter datasets (labeled Twitter-1) with
30M vertices and 700M edges, our PageRank implementation reaches an average speedup
of more than 500x compared to the batch version, at the cost of 10x more memory. De-
tailed measurements for the first 100 groups, as shown in Figure [8.7, show that for most
trials, speedups usually approximate 4 orders of magnitude.

8.2.5 Incremental graph connectivity

Connectivity, which indicates the existence of a path between two vertices, is a central
graph problem with many applications. Our incremental graph connectivity benchmark
computes a label {(v) € Z, for every node v of an undirected graph such that two nodes
u and v have the same label (i.e. {(u) = {(v)) if and only if u and v are connected. We
use a randomized version of Kang et al.’s algorithm (Kang et all2011b) that starts with
random initial labels for improved incremental efficiency. The algorithm is iterative;
in each iteration the label of each vertex is replaced with the minimum of its labels
and those of its neighbors. We evaluate the efficiency of the algorithm under dynamic

30rkut dataset: http://snap.stanford.edu/data/com-0rkut.html

“LiveJournal dataset:
http://snap.stanford.edu/data/com-LiveJournal.html

>Twitter dataset:http://an.kaist.ac.kr/traces/WWW2010.html
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Figure 8.8: Incremental graph connectivity: 100 trials (x-axis) of deleting a vertex
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Figure 8.9: Incremental social-circle size: 100 trials (x-axis) of deleting 20 edges

changes by for each vertex, deleting that vertex, updating the result, and reintroducing
the vertex. We test the benchmark on an undirected graph from LiveJournal with 1M
nodes and 8M edges. Our findings for 100 randomly selected vertices are shown in
Figure[8.8} cumulative (average) measurements are shown in Table Since deleting a
vertex can cause widespread changes in connectivity, affecting many vertices, we expect
this benchmark to be significantly more expensive than PageRank. Indeed, each change
is more expensive than in PageRank but we still obtain speedups of as much as 200x.

8.2.6 Incremental social circles

An important quantity in social networks is the size of the circle of influence of a member
of the network. Using advances in streaming algorithms, our final benchmark estimates
for each vertex v, the number of vertices reachable from v within 2 hops (i.e., how many
friends and friends of friends a person has). Our implementation is similar to Kang
et al.’s (Kang et al/l2011a), which maintains for each node 10 Flajolet-Martin sketches
(each a 32-bit word). The technique can be naturally extended to compute the number of
nodes reachable from a starting point within k hops (k > 2). To evaluate this benchmark,
we use a down-sampled Twitter graph (Twitter-2) with 100K nodes and 2M edges. The
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experiment divides the edges into groups of 20 edges and considers each of these groups
in turn: for each group, we measure the time to complete the following steps: delete
the edges from the group, update social-circle sizes, reintroduce the edges, and update
the social-circle sizes. The findings for 100 groups are shown in Figure [8.9; cumulative
(average) measurements are shown in Table in the last row. Our incremental version
is approximately 100x faster than batch for most trials.
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Chapter 9

Conclusion

In this chapter, we discuss related work and directions for future work.

9.1 Related Work

The problem of enabling computation to respond efficiently to changes has been stud-
ied extensively. We briefly examine related techniques for incremental computation in
algorithms, programming languages and systems. Detailed background can be found
in several excellent surveys (Chiang and Tamassia 11992; Ramalingam and Reps 1993;
Agarwal et al.|2002; Demetrescu et al/l2005).

9.1.1 Dynamic algorithms and data structures

Research in the algorithms community focuses primarily on devising dynamic algorithms
or dynamic data structures for individual problems. There have been hundreds of papers
with several excellent surveys reviewing the work (e.g., (Ramalingam and Reps 1993;
Demetrescu et al.[2005). Dynamic algorithms enable computing a desired property while
allowing modifications to the input (e.g., inserting/deleting elements).

These algorithms are often carefully designed to exploit problem-specific structures
and are therefore highly efficient. But they can be quite complex and difficult to design,
analyze, and implement even for problems that are simple in the batch model where no
changes to data are allowed. While dynamic algorithms can, in principle, be used with
large datasets, space consumption is a major problem (Demetrescu et al.|[2004). Riedy
et al. (2012) present techniques for implementing certain dynamic graphs algorithms for
large graphs.

9.1.2 Language-based incremental computation

Motivated by the difficulty in designing and implementing ad hoc dynamic algorithms,
the programming languages community works on developing language-based solutions
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to incremental computation. Here we briefly review the domain-specific approaches to
incremental computation.

Data dependence graph. Earlier work on incremental computation, which took place
in the '80s and ’'90s, was primarily based on dependence graphs and memoization.
Dependence graphs record the dependencies between data in a computation and use
a change-propagation algorithm to update the computation when the input is modi-
fied (Demers et al. 1981; Hoover 11987). Dependence graphs have been effective in
applications such as syntax-directed computations, but are not general-purpose because
change propagation cannot update the dependence structure.

Memoization. Memoization, also called function caching (Pugh and Teitelbaum 1989;
Abadi et alll1996; Heydon et al.2000), is a technique that can improve efficiency of any
purely functional program, when executions of a program with similar inputs involve
similar function calls. The idea dates back to the late 1950s (Bellman 11957; McCarthy
1963; Michie 11968), and was first used for incremental computation by Pugh and Teit-
elbaum (1989) and then by many others (e.g. /Abadi et al. (1996)). Due to its strict
reliance on argument equivalence, sometimes a small data modifications can prevent
memoization-based reuse in general incremental computations. Self-adjusting computa-
tion overcomes these restrictions by using a form of memoization that allows reuse of
computations that themselves can be incrementally updated.

Partial evaluation. Another approach to incremental computation is partial evalua-
tion (Field and Teitelbaum [1990; |Sundaresh and Hudak |1991). Similar to implicit self-
adjusting computation, the input is statically partitioned into a fixed portion known at
compile time, and a dynamic portion. The partial evaluator will specialize the program
with the fixed input, so this part of the input can never change in the runtime. In con-
trast, in self-adjusting computation, the stable input, although it cannot be changed via
change propagation, can still take different values for different initial runs. Although
partial evaluation speeds up responses when the dynamic input is modified, the lack
of runtime dependency tracking means that the update time may not be as efficient as
self-adjusting computation.

Attribute grammars. Attribute grammars can be viewed as a simple declarative func-
tional language, where programs specify sets of attributes that relate data items whose
interdependencies are defined by a tree structure (e.g., the context-sensitive attributes,
such as typing information, that decorate an abstract syntax tree). These attributes can
be evaluated incrementally. When the attributed tree is changed, the system can some-
times update the affected attributes in optimal time (Reps1982a,b; Reps and Teitelbaum
1989; [Efremidis et all1993). The definition of optimality is input-sensitive: it is based
on counting of the minimum number of attributes that must be updated after a tree edit
occurs; in general this is not known until such an incremental reevaluation is completed.
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In this sense, the change propagation algorithm used in these systems is similar to that
of self-adjusting computation, but in a less general setting.

Invariant checking. DITTO (Shankar and Bodik 2007) offers support for incremental
invariants-checking in Java. By customizing the computation graph data structures for
invariant checking programs, they implemented a fully automatic incremental invariant
checker that can speed up invariant checks by an order of magnitude, without program-
mer annotations. But it only supports a purely-functional subset of Java. DITTO also
places further restrictions on the programs (e.g., functions cannot return arbitrary val-
ues) and is unsound in general.

Static differentiation. Static differentiation transforms programs to derive a second
program that can handle input changes explicitly. The derived program takes the origi-
nal input and a “delta” input that specifies how the original input is going to change, and
produces the output change. The program derivation is performed statically. Compared
to self-adjusting computation, the static approach does not have the extra time and space
overhead. But being static in nature, they are not general-purpose approaches: it cannot
handle programs with general recursions (Cai et al/2014); Differential dataflow (Mc-
Sherry et al. |2013; |Abadi et al. [2015) only supports data flow programs with nested
iterations. Also, they cannot take advantage of memoization, which is a purely dynamic
approach.

9.1.3 Self-adjusting computation

Recent work based on self-adjusting computation has made progress towards achieving
general-purpose efficient incremental computation by providing algorithmic language
abstractions to express computations that respond automatically to changes to their data
(Acar 12005; Acar et al.2006¢, 2009a). Variants of self-adjusting computation has been
implemented as an ML library (Acar 2005; Acar et all2006¢, 2009a), as a language ex-
tension to ML (Ley-Wild et al. 12008; Ley-Wild 2010), and as a language extension to
C (Hammer et al. 2009, 2011; Hammer 2012), with similar systems also implemented
in Haskell (Carlsson |2002), Java (Shankar and Bodik 2007), and OCaml (Hammer et al.
2014; JaneStreet 2015). Self-adjusting computation can deliver asymptotically efficient
updates in a reasonably broad range of problem domains, including dynamic trees (Acar
et al. 2004, 2005), kinetic motion simulation (Acar et al.[2006d, 2008b), dynamic com-
putational geometry (Acar et al/i2007a,2010b, 2011); Tiirkoglu|2012; |Acar et al.2013h),
machine learning (Acar et al.2007¢,2008¢, [2009b; Stimer et al.[2011; |Siimer2012), and
big-data systems (Bhatotia et al. 2011a,b, 2014; Bhatotia 2015; Bhatotia et al. 2015).
Here we briefly review the main techniques.

The foundations. Self-adjusting computation generalizes the data dependence graphs
of earlier techniques (see above) by introducing dynamic dependency graphs (DDGs) (Acar
et al. 12002, |2006¢). Dynamic dependency graphs and the change propagation algorithm
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offer a general-purpose technique that enables any purely functional program to respond
to changing data. In terms of effectiveness, Acar et all (2003) showed that there is a dual-
ity between change propagation and memoization, and developed a form of memoization
that allows reuse of computations that themselves can be incrementally updated (Acar
et al. 2006b, 2007b, 20094, 20134a). Acar et al. (20084d) extended the semantics, the lan-
guage constructs, and the algorithms to include imperative programs, by using persistent
data structures (Driscoll et al.[1989) to represent the dynamic dependency graphs. Acar
et al. (2002) implemented a library for self-adjusting computation using monadic types
in Standard ML. Soon afterward, [Carlsson (2002) showed how to adapt this program-
ming model for Haskell, by exploiting certain Haskell features such as monads and type
class.

Traceable data structures. To achieve automatic and correct updates in response to
changing data, self-adjusting computation techniques trace dependencies at the level of
changeable data. |Acar et al. (2010a) extended self-adjusting computation to support
dependency tracking at the level of traceable data types, instead of changeable data. A
traceable data structure can be used in a self-adjusting program much like its ordinary,
non-traceable version. Since they enable tracking dependencies at the granularity of data
structural operations, rather than all changeable data, traceable data types can lead to
significant improvements in efficiency. Perhaps more importantly, traceable data struc-
tures enable the algorithm designer and the programmer to incorporate domain-specific
knowledge into a self-adjusting program in a composable fashion, thereby making it
possible for the approach to inter-operate with “hand-crafted” dynamic/incremental al-
gorithms.

DeltaML. In contrast to |Acar et al. (2006c), who use a library of modal self-adjusting
primitives, [Ley-Wild et al. (2008) give a more programmer-friendly approach where a
compiler does the work to translate certain self-adjusting parts of a lightly annotated
SML program into a self-adjusting program in continuation-passing style (CPS). This
approach dramatically simplifies writing self-adjusting code by enabling the compiler to
identify dependencies between code and data (Ley-Wild 2010). Hence, a programmer
can more directly see the conventional semantics of the program, without having to be
explicit about the higher-order plumbing required in the library-based approach. Though
much easier to use than earlier approaches, the programmer must still be explicit about
what is incrementally modifiable. In a follow-up work, Ley-Wild et al. (2009) gave a cost-
semantics for this new source language and proved that the cost semantics predicts the
asymptotic efficiency of dynamic updates. Ley-Wild et al. (2012) extends self-adjusting
computation to non-monotonic reuses of subcomputations, and provided a new change
propagation algorithm that realizes the semantics of trace reordering, which incurs a
logarithmic overhead.

CEAL. Hammer et all (2009) extends self-adjusting computation to work in low-level
languages such as C, where higher-order functions and garbage collection are not avail-
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able. Hammer et al. (2009) consider a low-level, self-adjusting language and design
a normalization algorithm that transforms the code into closures in C to simulate the
use of higher-order functions in functional languages. Hammer and Acar (2008) de-
velop a technique that integrates garbage collection with change propagation, making it
possible to find and reclaim memory that becomes inaccessible during propagation. An
interesting property of this garbage collection algorithm is that it does not have to trace
memory to identify inaccessible blocks, but instead takes advantage of the invariants of
self-adjusting computation and change propagation to discover them directly. Hammer
et al. (2011) implemented these techniques in CEAL, a language that extends that C lan-
guage for self-adjusting computation, and formalized the semantics of CEAL (Hammer
2012).

Adapton. Hammer et al. (2014) developed Adapton, a technique for demand-driven
self-adjusting computation in OCaml, where updates may be delayed until they are de-
manded. The technique presents a demand-driven semantics to incremental computa-
tion, tracking changes in a hierarchical fashion in an acyclic dependency graph. They also
formalizes an explicit separation between inner, incremental computations and outer ob-
servers. This combination ensures programs only recompute computations as demanded
by observers, and allows inner computations to be reused more liberally. The formula-
tion enables change propagation for non-monotonic changes, such as sharing, switching
and swapping.

Parallelism. Another line of research realized an interesting duality between incremen-
tal and parallel computation—both benefit from identifying independent computations—
and proposed techniques for parallel self-adjusting computation. Some work considered
techniques for performing efficient parallel updates in the context of a lambda calcu-
lus extended with fork-join style parallelism (Hammer et al. 2007), as well as POSIX
thread-based parallel incremental computation (Bhatotia et al.[2015). Follow-up work
considered the technique in the context of a more sophisticated problem showing both
theoretical and empirical results of its effectiveness (Acar et al/[2011). Burckhardt et al.
(2011) consider a more powerful language based on concurrent-revisions, provide tech-
niques for parallel change propagation for programs written in this language, and per-
form an experimental evaluation. Their evaluation shows relatively broad effectiveness
in a challenging set of benchmarks.

9.1.4 Type systems and semantics

Information flow. Information flows have been developed to check security properties.
Detailed background can be found in the survey of [Sabelfeld and Mvers (2003). Denning
and Denning (1977) introduce the concept of tainted values as lattices, and describe a
static analysis on a simple imperative language. Heintze and Riecke (1998) developed
a type system with security annotations in lambda calculus to ensure non-interference
property (Goguen and Meseguer 1982). Myers (1999) created JFlow, an extension to
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Java that allows programmers to annotate values and uses a type system with both static
and dynamic enforcement. It does not guarantee noninterference. [Pottier and Simonet
(2003) present a type system that guarantees noninterference for an ML-like language.
Abadi et al. (1999) discover an important connection between secure information
flow and three types of program analysis techniques: program slicing, binding-time
analysis and call tracking, under the central notion of dependency. Motivated by this
discovery, implicit self-adjusting computation uses information flow type system to infer
program dependency from input type annotations. Another similar information flow ap-
plication is EnerJ (Sampson et al/l2011), which uses information flow to isolate parts of
the program that must be precise from those that can be approximated so that a program
functions correctly even as quality of service degrades via lightweight type annotations.

Monadic translation. Coco (Swamy et al. 2011) transforms constructions such as ef-
fects from impure style (as in ML) to an explicit monadic style (as in Haskell). In other
words, it translates effects in lightweight style into effects in a heavyweight style. But it
does not support implicit self-adjusting computation: uses of effects, though lightweight
compared to monadic style, must be explicit in the source program. Even such rela-
tively lightweight constructs are pervasive in explicit self-adjusting computations and,
compared to implicit self-adjusting computation, very tedious to program with.

Constraint-based type inference. Our type system uses many ideas from Pottier and
Simonet (2003), including a form of constraint-based type inference (Odersky et al.
1999), and is also broadly similar to other systems that use subtyping constraints (Si-
monet |[2003; [Foster et al/|2006).

Cost semantics. To prove that our translation yields efficient self-adjusting target pro-
grams, we use a simple cost semantics. The idea of instrumenting evaluations with
cost information goes back to the early ’90s (Sands 11990). Cost semantics is partic-
ularly important in lazy (Sands 1990; |[Sansom and Peyton Jones [1995)) and parallel
languages (Spoonhower et al. 2008) where it is especially difficult to relate execution
time to the source code, as well as in self-adjusting computation (Ley-Wild et al.2009;
Cicek et al/l2015).

9.1.5 Functional reactive programming

Elliott and Hudak (1997) introduced functional reactive programming (FRP), which pro-
vides powerful primitives for operating on continuously changing values, called behav-
iors, and values that change at certain points in time, called discrete events. The approach
proposed by Elliott and Hudak, which is known as classical FRP, turned out to be difficult
to realize in practice, because it allows expressing computations that depend on future
values and because its implementations were prone to so-called time and space leaks.
Since its publication, the classical FRP paper started a lively line of research, leading to
much work that continues to this day. Due to space limitations, we are able to discuss a
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relatively small subset of this work. The interested reader can find more details on the
FRP literature in recent papers on this topic (Krishnaswami et al.|2012; Czaplicki and
Chong 2013; Jeffrey 2013).

Real-time FRP (Wan et al.'2001) proposed techniques for eliminating time and space
leaks by introducing signals as a uniform representation of behaviours and events and by
presenting a restricted language for operating on signals. By further restricting behaviors
to change only at events (Wan et al. 2002), event-driven FRP offered a way to reduce
redundant recomputation by requiring updates only when an event takes place. The re-
strictions, however, led to a loss of expressiveness, which subsequent work on arrowized
FRP tried to recover (Liu and Hudak 2007; [Liu et al.12009). The work on arrowized FRP
shows that much of the expressiveness of classical FRP may be regained while avoiding
time and space leaks and while also preserving causality.

Citing difficulties in using arrow combinators and the relatively complex semantics
model, other authors pursued research in at least two separate directions. Some re-
search gave up the idea of trying to match the classical FRP semantics. Some work
(e.g. |Cooper and Krishnamurthi (2006); ICzaplicki and Chong (2013)) considered only
discretely changing values, called signals, and restricts the use of signals to ensure effi-
cient implementation. Other work developed semantics for classical FRP that guarantees
causality (Krishnaswami and Benton 2011; Jeffrey 2012; Krishnaswami et al.|2012).

Even though functional reactive programming may be viewed as naturally amenable
to incremental computation—it should be possible to incorporate time-varying values
into a computation by performing an incremental update—most existing research does
not employ incremental computation techniques, focusing instead on taming the time
and space consumption of the “one-shot”, re-computation-based approach. Some recent
work took steps in the direction of connecting functional programming and incremental
computation (Donham 2010; Demetrescu et all[2011). Recent work of Demetrescu et
al.provides the programmer with techniques for writing incremental update functions
in (imperative) reactive programs (Demetrescu et all2011). Another work is Donham’s
Froc (Donham 2010Q), which provides support for FRP based on a data-driven implemen-
tation using self-adjusting computation.

9.1.6 Systems

There are several systems for big data computations such as MapReduce (Dean and Ghe-
mawat 2008), Dryad (Isard et al.'2007), Pregel (Malewicz et al.|[2010), GraphLab (Low
et al. 2012), and Dremel (Melnik et al.2011)). While these systems allow for computing
with large datasets, they are primarily aimed at supporting the batch model of compu-
tation, where data does not change, and consider domain-specific languages such as flat
data-parallel algorithms and certain graph algorithms.

Bhatotia et al.applies the principles of self-adjusting computation to the big data set-
ting but only in the context of domain-specific languages, including incremental MapRe-
duce programs (Bhatotia et al. 2011a,b), incremental sliding windows analytics (Bha-
totia et al. [2014) and POSIX thread-based parallel incremental computation (Bhatotia
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et al.2015).

Data flow systems like MapReduce and Dryad have been extended with support for
incremental computation. MapReduce Online (Condie et al.[2010) can react efficiently
to additional input records. Nectar (Gunda et al.[201Q) caches the intermediate results
of DryadLINQ programs and generates programs that can re-use results from this cache.
Naiad (Murray et all2013) enables incremental computation on dynamic datasets in
programs written with a specific set of data-flow primitives. In Naiad, dynamic updates
cannot alter the dependency structure of the computation. Naiad is thus closely related
to earlier work on incremental computation with static dependency graphs (Demers et al.
1981); Yellin and Strom[1991). Percolator (Peng and Dabek [2010Q) is Google’s proprietary
system that enables a more general programming model but requires programming in an
event-based model with call-backs (notifications), a very low level of abstraction. While
domain specific, these systems can all run in parallel and on multiple machines. The
work that we presented here assumes sequential computation.

9.2 Future work

Implicit monadic programming. The type-directed translation technique (Chapter 4—
6) essentially translates purely functional programs with changeable (C) notations into
an explicit monadic style. This approach can be applied to other monadic constructs
besides self-adjusting computation, such as approximate computation, probabilistic pro-
gramming, and numerical computation. The information-flow type system ensures that
the effectful/imprecise computations do not flow into the critical control path in the
program. With the corresponding monadic runtime library, we can achieve the same
correctness/efficiency guarantee as the monadic language, while still being able to pro-
gram in a direct and purely functional style. Using a more powerful type system, such as
a quantitative information-flow type system or dependent type, we can even infer per-
formance or error bounds for the corresponding computation. It is also interesting to
explore the language abstractions and compilation strategies for mixed use of monads,
e.g. incremental approximate computation.

Memoization. The AFL target language uses a 1ift primitive for memoization that
conflates keyed allocation and adaptive memoization. A better linguistic support is to
separate the primitive into two different constructs (Ley-Wild et all2008). The choices
of which computation to memoize and when a computation matches the previous re-
sult can significantly affect the efficiency of change propagation. The matching process
is done via pointer equality for non-primitive data. One major problem is that pointer
identity is fragile and non-deterministic. During change propagation, the address of a
reference may change coincidentally, leading to missed opportunities for memoization
match. These spurious changes can cascade, causing subsequent computations built on
top of it to also change their identities. To give programmers better control over memo-
ization, we need to build high-level language abstracts for memoization, and provide bet-
ter support for debugging and profiling of self-adjusting programs. There has been some
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research that provides names as an abstract identity for the memoization matching pro-
cess (Hammer et al.2015). We are also building tools similar to QuickCheck (Claessen
and Hughes |2000) to detect performance bugs in self-adjusting programs.

Parallel self-adjusting computation. In principle our approach can also be paral-
lelized, especially because purely functional programming is naturally amenable to paral-
lelism. The block sequence abstraction (Section [Z.5) not only provides a way to coarsen
the granularity of dependency, but also suggests how we can parallelize the computa-
tion. As each block sequence is independent, we can easily fork the computation of each
block into different machines, and have a master server that keeps track of dependencies
for each block. Such a parallelization would require parallelizing the underlying self-
adjusting computation techniques. There has been some research on this problem, but
existing solutions work in certain domains and/or use a sub-optimal algorithms for par-
allel change propagation (Hammer et al. 2007; Bhatotia et al.|2011b; Burckhardt et al.
2011).
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Appendix A

Proofs

A.1 Proof of translation type soundness

First, we need a few simple lemmas.
Lemma A.1.1 (Translation of Outer Levels).

(¢t O.C. ifand only if ||t|ly = ||7||3* mod;
[plT O.S. ifand only if ||7|le = ||7||5".

Proof
Case analysis on [¢]t, using the definitions of — 0.S., — 0.C., ||—|| and ||—[|;°. O

Lemma A.1.2 (Substitution). Suppose ¢ is a satisfying assignment for C, and ¢(x) = 5,
where & C FV(C).

1. If D derives C;T" b, e : T, then there exists D’ deriving C; [5/&]F Fe e: [5/&]1, where
D’ has the same height as D.

2. IfCIF 8 <, then C IF [§/&]8 < [§/&]T.

3. IfCIF 1/ <: 1", then C I [5/&)t’ <: [5/&)t".

4. IfCI- 1 = 1", then C I [5/&)t = [5/&]T".

Proof
By induction on the given derivation. O

Lemma A.1.3. Given v’ <: v" and v’ = 1"
(1) Ift” O.S. then v/ =1".
(2) If t" O.C. then either v = 1" or v/ = ‘T”|S.

Proof
By induction on the derivation of T/ <: t”.

* Case (sublnt): 1’ =int® and v/ = int®”, where &’ < &".
(1) Ift” O.S. then 6” =S. So v/ = 1".
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(2) If t” O.C. then 6” = C. If 8’ = S then |T”|S = int® = int® = 1/; if 8’ = C then
v = int® = int® = 7',
* Case (subProd):

(1) By definition of =, v/ = 1”.
(2) t” O.C. is impossible.
* Case (subSum):

(1) If t” 0.S. then " = (1 4 t)°. By inversion on (subSum), v’ = (1} + 7})°. By
definition of =, t; = 1 and 15 = tJ. Therefore v/ = t".

(2) Ift” O.C. thent” = (7] + t/)°. By inversion on (subSum), ©/ = (t7 + Tﬁ)él. By
definition of =, t{ = t{ and ) = 5. If 8’ = S then |T”]S = (1} +1})°, which
is equal to . If 8’ = C then t” = (1} + )" = (7} + 1))° = (7} + Tﬁ)él =1,

* Case (subArrow): Similar to the (subSum) case. O

Theorem (Translation Type Soundness).

If C;T k. e: tand ¢ is a satisfying assignment for C then

(1) there exists e such that []T' e : [plT — e® and +||T|¢ s €5 : || T||4
and if e is a value, then €S is a value;

(2) there exists e© such that [IT e : [plT = eC and +||T||y Fc © : || T|[5%

Proof
By induction on the height of the derivation of C;T" . e : 7.

We present the proof in a line-by-line style, with the justification for each step on the
right. Since we need to show that four different judgments are derivable (translation in
the S mode, typing in the S mode, translation in the C mode, and typing in the C mode),
and often arrive at some of them early, we indicate them with “==".

“Part (1)” and “Part (2)” refer to the two parts of the conclusion: (1) “there exists
eS ...” and (2) “there exists e* ...”. In some cases, it is convenient to prove these
simultaneously, so we sometimes annotate the “ss” symbol to clarify which part is being
proved:

(e |7l Fs (fun® f(x) =¢’) : ||7|ly By (TFun)

This information can also be read off from the turnstile: g means part (1), and F¢
means part (2).

(SInt)
CTr.n:int
~—

T

* Case

Part (1): Let eS be n.
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[T - n : int® —n By (Int)
w [T F e: [¢](int®) — e® and e°isavalue Byn = e and def. of substitution

5T Fs n:int By (TInt)
5IT)le Fs €52 ]|int®||y By int = ||int®|| = ||[p]int®|| = ||int®||, and n = €S
w 5|ITllg s €5 :]illy By T=int’

Part (2): Let e€ be let r = n in write(r).

[pITH n: int® —mn Above
[pIT + n:int® < let r = n in write(r) By (Write)
w [T F e: [¢](int®) < eC n = e; def. of subst.; eC = ...
5 ||F||¢ |_S n:int By (TInt)
5T l|g, 7 :int g 7 int By (TVar)
5T ||g, 7 : int F¢ write(r) : int By (TWrite)
5Tl Fc let r =n in write(r) : int By (TLet)
5T llg Fc e :int By def. of eC
ST g Fe e ||intS||g(C By int = ||int§“||g(C
= I g Fe e ||T||$(C Byt = int®

Nx)=VvaD]l.t, CI-3B.[B/&D

* Case _ (SVar)
CAD;T . x: B/t
Part (1): Let eS be x[& = ).
I'(x) = V&[D]. 1y Premise
([dIN) (x) = [p](V&I[D]. 19) = Va&l[p]D]. [plTy By def. of substitution
[IMF x: 8/ ([PTo) 5 x[& = 8] By (Var)
[pIT = x 2 [PI[E/&]To < x[& =& § closed and & N dom(¢) = 0
[PIT + x : [bI[5/BI([R/&]To) — x[a = 5] Intermediate subst.
[IT = x : [$)([B/dTo) = x[ot = 3] b(B) =3
——
= [QIT' - e:[plt — e and e®isavalue Bye=x;1= [B/&]To; €S = x[a=0]
(JIT]l) (x) = T&[[$]D]. [d]To By def. of |—||, and def. of subst.
5PNl s x(6 = 8] : |8/ (1¢)To) || By (TVar)
ST e Fs €S ||[d3][6/&]10|| aNdom(p) =10 o
ST e Fs €8 || IB/&Tol| Intermed. subst., ¢(f3) = 9, def. of || —||
5 S [[Tll Fs e Il © = [B/d]to

-

Part (2), subcase (a) where [¢p]T O.S.: Let €€ be let r = x[x = 8] in write(r).
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-

[T x 2 [T 2 x[& = 8] Above

—

[pIT - x: [d]T < let r = x[&X = 0] in write(r) By (Write)

ww [QIT - e [dplt < e By e = x and def. of eC
5PNy s Xl =8 < ||y Above
STy T2 Ml lly s 7 ||T|I¢ By (TVar)
STy 7= lllly Fo write(r) : [[<]ly By (TWrite)
T g Fe letr =x[& = 8] in write(r ) :||T|lp By (TLet)
F [¢p]T O.S. Subcase (a) assumption
ITlle = IITlls" By Lemma AT
= ST g Fe e : lllg© By above equality

Part (2), subcase (b) where [p]T O.C.: Let eC = letr = eS in read r as r’ in write(r’).
[PITF x: [T < €5 Above

[¢]T O.C. Subcase (b) assumption
o [OITF x: [T < eC By (ReadWrite)
ST e Fs €5 2 |T]le Above
]t O.C. Subcase (b) assumption
STl 72 [17lle" mod, v« || Tflg s v IITII” By (TPVar)
ST gy T2 [Tl mod, v/« || t]|;© Fc write(r) : || T||3© By (TWrite)
ST gy T2 Il mod g v || t][© By (TVar)

5T gy 72 | 7]l mod ¢ read r as v’ in write(r') By (TRead)
lItllp = |ITll;© mod By LemmalA.T.T]
5Tl Fs €8 1 || T][¢" mod By above eqn.

= 5T ey X" < 1Tl Fe €€ [Tllg® By (TLet)

C;FI_E\MIT] C;F|—£v2:12

. (SPair)
Case C;T ke (viy,va) : (11 x To)°
—_—— ———

e T

= Part (1), stable mode translation:
CTlke vitm Subderivation
(I vi:[dlTy w1 Byih.
ST lo s va s flmille !

CTkevoim Subderivation
[T vy :[plT2 > v2 Byih.
ST Fs va s lTalle g

102



vi,v2) 1 ([dlT x [PIT2)° = (vi,v2) By (Pair)

[p]T" = y
= [T e: [dl((h x 1)°) — e and e is a value By def. of subst.
Y and €5 = (v1,v;)
STl Fs (viyva) s llmlle > [Tl By (TPair)
e 5 [Pllp Fs €8 : |t x ) lg By def. of |||
—_—

T

» Part (2), changeable mode translation: Let eC be let r = €S in write(r).

[PITF e: [dlt — €8 Above
(11 x 12)° O.S. By definition of O.S.
H—/

T

w [PITF e: [T < let r = e° in write(r) By (Write)

ST Ne Fs €8 2l Tlle Above
ST gy 7 Tl Fs 7 ||T||q> By (TPVar)
ST ey T2 I tlle o write(r ||T||¢ By (TWrite)
Itlle = ||T|| By Lemma A, T.1]
ST gy 72 [Tl Fe write(r ||T|| By above equality
= 51T e Fe eC 2] TllgC By (TLet)

Ghx:t,f:(m 2 ) ke :n

. SF
Case | C.Tr, funf(x)=¢:(m o m)

H—/ H_/

€ T

(a) Suppose [d]e = S.
CGhx:m,f:(t 2 )k e :m Subderivation
[DINx:m,f: (1 2 ©)°)F e :[dplt, = ¢ Byih and [ple =S

SINx T, f(n 2 ©)%ly Fs et llTalle

[T - e [plt - fun” f(x) = ¢’ By (Fun) and ([p]1 - [¢]T)° = [dlt

Let €S be fun® f(x) = ¢’.

(D [PpITF e: [d)]'t_"—) S and eSis a value
ST s x I lle, £ ol Tille 3 ||Tz||q> Fs e’ ||t2llp By def. of || ||
N7l Fs (Fun® £(x ): ):lltlle 3 llT2lle By (TFun)

(1)!%’ ||F||¢ |_§ fllIl f( ) : || T —£> Tz ||¢ Bydef Of||—||¢
—_———

T

Q)= [T+ e: [plT < let r = e° in write(r) By (Write)
Let eC be let r = €° in write(r).

eS
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Ty 2 M ello s s flello

By (TPVar)

ST gy 72 || Tl Fe write(r) @ ||T|l¢ By (TWrite)

(2=

(b) Suppose [p]e = C.

1Tl Fe e©:[llg®

By (TLet) and Lemma [A.1.1]

[DI(Gx:T,f: (2 1)) e :[dlt, — ¢ Byih. and [ple =C

SIGx T (2 )5 le Fe el Tl
By (Fun) and ([p]T1 2 [¢]T2)° =[]t

[GIT + e : [plT — fun® f(x) = e’

Let S be fun® f(x) = e’.

"

(D [T+ e: [P]T < eS and eS is a value

TNy x : lwilloy f e flille 2

(2)=

@ 5||T|lo Fe let T = e in write(r) : || ||

It2llg® Fe €' ITallg® By def. of [|—|ly

(e - ||T|g Fs (Fun® f(x) =€) : || T]ls
[PITH e:[d]T < let r = €S in write(r) Analogous to (a)

By (TFun)

"

Cltev:m
" Case | CTnly:(mim) o
T
Part (1):
CTkevim Subderivation
[IT = v:lblt < v By i.h.

SITle Fs v flTlle
w [(PITE e:[d]T < inl v
Let S = inlv.
STl Fs inl v : ||y | + |Igz||¢
s 5 |[Tllp Fs inlw - || (7 +12)" g
~ Y——

eS T

"

By (SumlLeft)

By (TSumlLeft)
By (TSumlLeft)

Part (2): Similar to (SPair), using (t; + TZ)S 0.S.

CiThex: (T x T2)6

ClEd<ce

* Case CTk, fstx:T
-~

(4

(SFst)

» Suppose [d]d =S.
Part (1):
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C:Th: x: (1 x1)° Subderivation
DI E x: (Id)1 x [dlw)” 2 x Byih.
ST Fs x 2 f[Trlle < [[T2le "

[T E e:[dplt < fstx By (Fst)
Let e = fstx.
== 5|[Tlly Fs fstx Tl By (TFst)

Part (2): Similar to (SVar):

— If 1y O.S,, let eC be let r = fst x in write(r) and apply rule (Write).
— If t; O.C., let e be let r = fst x in read r as r’ in write(r’) and apply rule
(ReadWrite).

» Suppose [$]6 = C. We have the premise C I § < ¢, so [p]e = C; we only need
to show part (2).
Part (2):

— If 1y O.S., let e€ be read x as x’ in let r = fst x’ in write(r) and apply rule
(Read) with (LFst).

roljmll ks vl || By (TPVar)

r:||ty|| Fc write(r) : ||Ty|| By (TWrite)

||t Fe write(r) : ||t |°¢ T O.S.
||F||, |l x |2 Fs fstx: ||| By (TPVar) then (TFst)
[T x" = Il < ||| I—@ let r = fst x/ in write(r) : ||1;||”¢ By (TLet)
TN s x 2 [ (t1 x ©)°| By i.h.
ITI s x = (It f] < ||Tz|| ) mod By def. of || ||
IT|| Fc read x as x’ in let v = fst x’ in write(r) : || t;||"® By (TRead)

— If ; O.C,, then ||ty|| = 7y mod for some 1.

Let €€ be read x as x’ in let r = fst x’ in read r as r’ in write(r’) and
apply rule (Read) with (LFst).

, /11 ¢ write(r ’) T By (TPVar), (TWrite)
, 7' 1] e write(r') : ||t ||°C 7 0.C.

..,T:1; mod ¢ 7 : 1y mod By (TPVar)

..,7:7; mod F¢ read r as v’ in write(r) : ||11||°® By (TRead)

The remaining steps are similar to the t; O.S. subcase immediately above.

ClFt' < 1"
. case| CTFeen:™ GChx:it'bee:t  Chosd
t

~~
[
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(a) Subcase for [¢p]T” O.C.

CTkeer:t Subderivation
[IT e : [Pl o €€ By i.h.
ST Fe eC sl |IgC ’
ClF o< 1" Premise
[d]T" < [Pp]T” By Lemma [A.1.2]
Cl v/ =1" Premise
[d]T" = [Pp]T” By Lemma[A.1.2
[p]T” O.C. Subcase (a) assumption

[b]T" = []T” or [p]T = ‘[cl)]’r”‘g By Lemma [A.1.3] (2)

Now we have the same judgment no matter which equation Lemma [A.T.3] gave us.
ST e e s |l |Ig¢ Above
5[IT]lp Fs mod €€ : [|T[|;© mod By (TMod)

+|IT]|¢ Fs mod e® : || ‘T”|S||$‘C mod

or ;||T"||p Fs mod e® : ||T”||;“ mod ~ By’ =1"or ‘T”|S =1

5]IT]lg Fs mod €€ : ||t”|[;© mod By def. of |—|S or copying

[p]Tt” O.C. Subcase (a) assumption
IT”ll;€ = lIT"|lp mod By Lemma [A.T.7]
5T le Fs mod €€ : || t”||¢ By above equation

eS
(b) Subcase for [¢p]t” O.S.
Cilke et Subderivation
[pIT = er:[dplt" — €5 Byih
STl s e® [Tl !

[p]T” O.S. Subcase (b) assumption
[d]Tt” = [¢p]T’ By LemmalA.T.3 (1)
ST e Fs €Sl T|e By above equation

For both subcases, we have:

Chx:t'F.ep:7 Subderivation
[PIGx : [d]T" F ey : [dlT < e5 By ih. and def. of subst.
(P [ e | P = | S By i.h. and def. of ||—||
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(D= [T e: [blt - letx = €S in e5 By (LetE)
(D= |7l s letx = eSin e : || T]|o By (TLet)

CIx:t'k. ex:71
[dINx : [dlT" F er: [T o ef
STy x 17" 1lo Fe e : [ITlls”

Subderivation
By i.h. and def. of subst.

By i.h. and def. of ||— ||

()= [T e:lplt — letx = eSin e By (LetE)
(2)s= ST e Fe let x = €S in eF : ||T||$(C By (TLet)

* Case

Chx:V&[Dl.t"F,e;:t Clht' < t”
«NFV(C,TMN =0 CAD;Ttgv: 7

ClFt' =+"

CAJaD;TH, letx=viine;: T

(SLetV)

€

~"

For all &; such that & = & IF D:

* (a) Suppose [¢] [6: /&lt” O.S., that is, this ith monomorphic instance is outer-
stable, and will not need a mod in the target.

CAD;TFgv:T
XNFV(C,T) =10
CAD; [8:/dT bg vy : [5:/aT
[PI([8:/&IT) = vy« [d)([5:/&T) = v

& not freein I
[PIT = vy 2 [PI([8:/a]T") — wi
ST e Fs vi 2 || [8/ &t ||

Let e; be Vi
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Subderivation
Premise
By Lemma[A.1.2]
By i.h., using the lemma’s
guarantee about derivation height
Above disjointness
By above line

By i.h. and def. of substitution



Cl-
CIF

-;||F||¢ s

Tl Fs i

ST e Fs i
ST o Fs €

) ||

»Ilrllq» ms i
STl Fs e

1T gy {ye = 1118¢/&T” flghe Fs v
End of subcase (a)

* (b) Suppose

1118/ ||

1182/ &)" g

Premise
Premise

By Lemma[A.1.2]
Subcase (a) assumption

By Lemma[A. 1.3/ (1)

Above
By & NFV(C,T) =0

and appropriateness of ¢ w.r.t. C
Property of substitution

By [$]T" = [d]t”

and e; =v;

Above and e; = v;
Definition of ||—||,

By & Udom(¢) =0
By [$p]T' = [dlt”

J([5:/&)T")|| By 6tUdom() = 0
Definition of ||—||

By (TPVar)

[P] 5 /&lt” O.C., that is, this ith monomorphic instance is outer-

changeable, and therefore needs a mod in the target.

CAD;TFsvi:T
&NFV(C,T) =0
51/ &)’

[b) (18:/&T

CAD;

[6:/&IT Fg vy
[D)([8:/&IT) vy :

/

STl Fe ef < |I18y/@ |1,

[b][5:/ T’
[b)[5:/ T = |[d)[
If [§)(8;/&T" = |[$[6:/& | then:

_;/&]T//

<: [P]I8:/&]T

S
or ...=

Subderivation
Premise
By Lemma
— ef Byih, using the lemma’s
guarantee about derivation height
By i.h. and def. of ||—||;©
" By Lemma
[$][6;/&)t” By Lemma 2)

[BIT - vy = [P[6:/ &)t < ef By | [¢)[5:/&t"|” = [d)[5:/&lT’
[DIT - vy : [b][6:/&]T” — mod el By (Lift)

Otherwise, [$][5;/&T" = [d][6:/&t".
[BIT = vy = [P[S:/&]T" < ef [b1[51/&1T” = [][6:/ &)
[GIT = vy : [P][8:/&)T" < mod e By (Mod)
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Now, through either (Lift) or (Mod), we have obtained the same judgment.
Let e; be mod e;C.
STl Fs e ||[6 ’||(,,‘C mod By (TMod)

STl s e 1] 081 T"l ;¢ mod By [[p)[5/&)t"|” = [9]18:/&r
ST e Fs e: (1118 ”||E;(C ) mod By definition of ||— || C (¢-shuffling)
ST g s e : [[18:/ &It By Lemma[A.1.T]

End of subcase (b)

This ends the “for all §;” above. We now have translation judgments for each
instance, and target typings for each e; and associated variable y;.

Chx:VaDl.1t't: ex: 1 Subderivation
[PILx : VX[D]. ™" F e;: [d]T < e§ By i.h. and def. of substitution
[I6x: VADL. 1" F e : [dlt — et 7
ST gy x : TI&[D]. [d]T” Fs €5 || T]le By i.h. and def. of ||—||4
STl x  TIGIDL. [)T" Fe ef : [loflgS

et e> be let x = selec ::>ei.ine,an et e5 be let x = selec ::>ei.ine.
Let €5 be let lect {5 eil 2, and let ef be let lect {5 eil ¢

= [dITF e [dlt < €f By (LetV)
= [T e:[dlt = ef By (LetV)
ST e Fs en : N|18/60T" |l By extending I
5T e Fs select {6: = E}i :TTX[D]. [p]T” By (TSelect)
511 llgy x : TTGIDL |77l s € < Il Above
= ST e Fs €5 : [l Tlle By (TLet)
= 51T e Fe ef :[lTllgC Analogous to above
,_H Cl-e' =¢
R C;rl_SX1I(T1 ?)T) CTksx:m ClFé«T
Case (SApp)
G T . apply(x1,x2) : T
—_—

We distinguish four subcases “S-S”, “C-S”, “C-C”, “S-C” according to [d]¢’ and [P]d
respectively.
= Subcase “S-S” for [ple’ =S, [p]6 = S.
Part (1):
CTFs %1 Subderivation

ST e Fs x2: T lle g

C:TFsx;: (T — 1)° Subderivation

e/
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[PITF xp: [dlTe < X1 By i.h.

STl Fs xa II(Tl 7 D lle "
STl Fs xa: ([([] @]e/ [d> 7)®|| By defs. of |||, and substitution
ST Fs x| ([T 2 15| Subcase S-S assumption
STl s xa = llmlle 3 ||T||¢ By def. of |||
Let ¢S = apply’ ( (x1,%2).
e [GIT+ e [blt — apply’(x1,x2) By (App)
= 5ITllo s apply” (x1,%2) :ll7lly By (TApp)
Part (2):

(a) Suppose [¢p]T O.S.

= [(PITF e:[dplT < letr = e° in write(r) By (Write)
5Pl Il e 72 ||T||¢ By (TPVar)
51T gy ¢ el e write(r) : Il By (TWrite)
5T llg Fe let v = €S in write(r) : ||T]|4 By (TLet)
[p]T O.S. Subcase (a) assumption
= 51Tl Fe let r = €S in write(r) : ||T|[;¢ By Lemma[A.1.7]

(b) Suppose [¢]T O.C.

= (PITE e: [cb]T?letr:eS inread r as v’ in
write(r’) By (ReadWrite)
STy T ITlle s el wlle By (TPVar)
[p]T O.C. Subcase (b) assumption
||F||¢,r Itlle Fs T: ||T||¢C mod By Lemma [A.T.1]
TNy s I Tllgy v s Iellg s 77 IITII By (TPVar)
ST oy 72 I tllgy v 2 (Il Fe write(r IITlquC By (TWrite)
51T gy 72 ITllg Fs read r as v/ in write(r') : ||t||;© By (TRead)
= IT e Fe let r = €8 1nreadrasr in
write(r’) : ||t]|;° By (TLet)

* Subcase “C-S” where [¢p]e’ = C and [$p]d = S.
Part (2):

[PIT F x1 : [d]Ts <X From subcase S-S above
[PIT F x; : [d]Ty X2 From subcase S-S above

Let eC = apply(C (x1,%2).
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= [PITE e [plt — apply” (x1, x2) By (App)
STl Fs xa s it °1p° By i.h.
STl Fs xa: [[(dlm 2, [dlT) )#12]]=C " By def. of ||—||5®
ST le Fs xa s [ ([blm = [9)T)°]7¢ By subcase C-S assumption
APl e xus Nlnll = 111 TII*C By def. of |||
Tl Fs xa:lmille 2 NlTlls® By def. of |||l and ||—||;"
ST Fs X2t It ]le From subcase S-S above
s= 5 ||Tllo Fe e© o fltlly® By (TApp)
Part (1):
[¢]T O.C. By [¢dle’ = C and barring (T} v Té)é where T O.S.
[PITF e:[d]T < eC Above
ww [PITE e:[d]T < mod eC€ By (Mod)
STl e e el Above
5T lg s mod e€ : ||7||;© mod By (TMod)
[p]T O.C. Above
w |7 Fs mod e : ||t By Lemma[A.1.1]
» Subcase “C-C” where [¢p]e’ = C and [¢]é = C:
Part (2):
(Nx': (1 — ©°)(x)) = Valtruel. (1, - ©)° By def. of '
C Ik J&.true By def. of I
CGhx':(tu o O ksx': (1 o 1° By (SVar)
PINX': ([0t [OIT° - x': (101 3 (07 < X' By (Va)
[bINx": ([Pl = [T = Xzt [lT = x2 By extending I'
[PINx": ([plt = [$I7)° - apply(x', x2) : [$plT < apply®(x’,x;) By (App)
[pINx" - | ([P = [d)]T)C}S Fe:dplt o apply(c(x’,g) By defs. of subst., —‘S

[GIT = e~ (x> x": ([Pl = [$]7)° F apply(x’,x2)) By (LApply)

([pl11 = [dI71)° O.C. By def. of O.C.
C;Thg xq:1¢ Subderivation
[DINF xi: ([T 2 [IT)° — x1 By i.h.

STl s xa s (ltille 2 [Illy®) mod 4

w [PITE e:[d]T < read x; as x’ in apply(c(x’,g) By (Read)
Let e€ be read x; as x' in apply” (x/, X2).

ST X" NlTlle 2 lItlle® Fs X" lllle 2 lItlly By (TPVar)

ST ey %" < 1Tl ? ITlls® Fs x2: lITillo By extending I

ST les X llle = 1ITllsS e apply” (x',x2) : [|l[g€ By (TApp)
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STl Fs xa = (lmlle 2 || t]|;%) mod Above
& ||Tlly -c read x; as x' in apply” (x',x2) : [|7[l;® By (TRead) ~(**)

Part (1):
ClF d«r Premise
(G e (bt et Above
5PNy e e s ]Il Above (+*)
i |||y Fs mod e : |||y By reasoning in subcase C-S for Part (1);

note that [¢p]t O.C.
» Subcase “S-C” where [¢p]e’ =S and [¢]d = C:

Part (2):
[PIT x" @ ([d]T 5 [d]T)S - apply(x/, x2) : [p]T < eéc Above with x’ for x;
[DILX: |[blt|” - [x'/xile : [l < €§ By defs. of |—|", subst.
[DIT = x1 2 ([l 2 [DI1)° - x By i.h.
= [$IT - e : [d]T — read x; as x’ in eS By (Read)
Let e =read x; as x’ in ef.
51T e Fe ez [lTllg® Above with x’ for x;
51Tl %" s llTille 3 1Tl Fe eg = llTlls® By extending I
3Tl Fs x1 2 (Imille 3 lITlly®) mod By ih.
= 5]IT]lg Fc read x; as x” in ef : ||T||;© By (TRead)

Part (1): Similar to Part (1) of subcase C-C.

C:T kg xq : int”
C;T ks x, : int®
ClkH& =6 F @ :int x int — int
CT e ®(x1,x2) : int”
If [p]d7 = [$]d, = S then:
Part (1):
C:T kg x; : int™ Subderivation
[pITF % :int® — x; Byih.
51Tl s x 2 [lint Iy
5T le Fs % - int By [$]6; =S and def. of ||—||

* Case

(SPrim)

[PITE x5 int> T X2 Similar to above
51T lg Fs x2 - int Similar to above
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[GIT - e:int® — @(x1, %) By (Prim)
e [OITF e: [¢](int™) < ®(x1,x2) By [¢)& =S
Let e5 = ®(x1,x2).
F & :int — int Premise
5Tl Fs @(x1,%2) : int By (TPrim)
= [Tl Fs @(x1,%2) lint" ||, By [$]8; =S and def. of ||—||

Part (2): Similar to (SPair), where the outer level is stable (T = int” = int%).

If [$]61 = [$]d, = C then:
Part (2):

[GIF ypidnt®, yyiint® b @ (yr,y,) 1 int” = @(yr,y2) By (Var), (Var), (Prim)
[GIF,... F ®(yr,ys) : int” — letr = B(y;,y,) in write(r) By (Write)
[IT, yriint® - &(y;,ys) : int© < read x; asy; in By (LPrimop2)
let r = ®&(y;,y,) in write(r)  then (Read)
w [0 ©(yr1,y2): int® < read x; asy; inread x, asy, in By (LPrimop1)
let r = ®(y1,y2) in write(r) then (Read)

51T |9, yr:int, yz:int, mint ¢ write(r) : int By (TVar) then (TWrite)
1T g, yr:int, yziint s ®(ys,y2) :int By (TVar) and (TVar), then (TPrim)

51T g, yriint, yoiint ¢ (let v = &(ys, y2) in write(r)) : int By (TLet)
5T ]lgy yr:int ¢ (read x, as y, inlet r = ... in write(r)) : int By (TRead)

_ read x; asy; inread x, asy, in _,
STl e let T — (y;, ) in write(r) Mt BY (TRead)

= [Ty Fe ” ¢ ||int” ||3€ By def. of | —||~ and [¢]8; = C

Part (1): As the immediately preceding Part (2), but then using rule (Mod).

Chxi:mibFeer:t ClHé6<c¢
CiTtsx: (t+1m)° GChx:mbee:t Clhdar

* Case
Cl'.casexof {x; = e, x;=>e}:T

(SCase)

€

(a) Suppose [d]d6 = S.
CiThg x: (11 +1)° Subderivation
(@I x: ([l + [Plr2)” » x Byih.
SITle s x T lle + llT2lle !
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Chxi:mibeer:t Subderivation
[I5x1 : (bl F e [dlT = el Byih.
STy %1 2 [ Tille s et (I Tlle g
[I5x [l b e [dlT o ef

ST gy 1 T lle Fo ef < lITllp® !
Ciix:mbe e2: 71 Subderivation
[I5x2 : [dlTa - ex: [blT — € Byih.
STy x2 2 lle2lle Fs €5 [l Tlle !
[I5x2: [dlTa b ex: [blT — ef
ST ey x2 2 IT2lle Fe e = I Tllp® !

(De [@ITE e:[dplT > case x of {x; = €}, x, = e;} By (Case)
(D= ||T||p Fs case x of {x; = €7, x2 = &5} : || Tllo By (TCase)

(2 [PITF e:[dplT = casex of {x; = et ) x; = ef} By (Case)
(2)= - ||T|g Fc case x of {x; = €f , x; = e} : || 7]|;© By (TCase)

(b) Suppose [¢]6 = C.

[PIN X" : ([T + [dT)° F  [x//xle: [plT < eS Above but with x’ for the first x
ST les %" ltille + T2l Fe e ITlly” !

[dIT + case x of {x; = €1, x; = e3}
~ (x> x" 1 (19l + [b)T2)”
case x' of {x; = e;, x, = e;}) By (LCase)

([l + [plT2)¢ O.C. By def. of O.C.
(BT - x: ([dlry + b)) < x By ih.
SITle Fe x 2 11T+ 1) [l !
5T Fs x = (lItrlle + [ T2[lp) mod By def. of || —||¢
(e [OITE e:[dlT < read x as X' in el By (Read)
Let eC = read x as x’ in €.
2= 5|IT|lg Fc e© 2 ]lT]lg" By (TRead)
ClFdéd«r Premise
[p]T O.C. By [$]d = C and def. of O.C.

D= [PITF e: [Pt < mod eC By (Mod)
5]IT]lp Fs mod €€ : ||7]|;® mod By (TMod)
I t|l mod = ||t|ly By LemmalATTl
(D= +||T|¢ Fs mod e€ : ||T||4 By above equation O
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A.2 Proof of translation soundness

In this proof, we use the store substitution operation [p]e, which replaces locations { with
mods of locations’ contents (Definition [6.5.2]).

Lemma A.2.1 (Stores Are Monotonic). If p; F e || (p, - v) then there exists p’ such that
P2 =p1,pP"-

Proof
By induction on the given derivation. All cases are straightforward. [

Lemma A.2.2 (Commuting). If e; and e are target expressions, then [le;/x]e] = [[e:] / x] [e].

Proof
By induction on e, using the definitions of back-translation and substitution. O

Lemma A.2.3. For all closed target values w, the back-translation [w] is a (source) value.

Proof
By induction on w. O

Lemma A.2.4. The following equivalences hold:
(i) (letx =epinx) ~ e, if ey ~ €}

(i) (letx’ =x; in apply(x’,x;)) ~ apply(xi,x2)

(iii) (letx’ =x;in &(x',x2)) ~ S(x1,%2)

(iv) (letx’ =x; in &(x1,x")) ~ Bx1,%2)

(v) (letx’ =xinfstx’) ~ fstx

(vi) (letx’ =xin case x’' of {x; = e;, x;, = e;}) ~ casexof {x; = e, x; = ey}
Proof
Straightforward, using inversion on the given source evaluation derivation, and applying
the appropriate evaluation rules. O

Lemma A.2.5. IfT'-e:1 < e’ then [e'] ~e.

Proof
By induction on the given derivation.

For (Apply), and other rules for constructs at which substitution happens during eval-
uation, we use Lemma

The other interesting cases are those in which e cannot be exactly [e’]: (Read),
(Write), and (ReadWrite).

For (Write), [e’] = [let r = €S in write(r)] = let r = [e°] in [write(r)] = let r =
[eS] in r, but we only have [eS] ~ e’ (by i.h.), so we use Lemma [A.2.4] (i).

Rule (ReadWrite) creates two lets, so we use the lemma twice.

For (Read), we use Lemma [A.2.4] If the rule from Figure used to derive the
first premise was (LApply), we use part (ii) of the lemma; if (LPrimop1), part (iii); if
(LPrimop2), part (iv); if (LFst), part (v); if (LCase), part (vi). O
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Roughly, we want to show that, if a target expression e’ evaluates to some target value
w, that the back-translation [e’], a source expression, evaluates to the back-translation of
w (after replacing locations { in w with their corresponding values). This does not hold
in general: the back-translation of select uses only the first arm, under the assumption
that all the arms are “essentially” the same. That is, the back-translation assumes the
arms differ only in their use of modifiables, and in how they instantiate polymorphic
variables. Fortunately, this condition does hold for all target expressions produced by
our translation. We call this condition select-uniformity.

Definition A.2.6 (Select Uniformity). A target expression e’ is select-uniform if and only

=

if, for all subexpressions of e’ of the form select {(&=87) = e1,y..., (&=d,) = e,}, all the
arms have equivalent back-translations:

[e:] ~ [ead ~ ... ~ [enl

Lemma A.2.7. If - e: 1 <> e’ then e’ is select-uniform.

Proof
By induction on the given derivation. All cases are completely straightforward, except
the case for (LetV), where we use Lemmal[A.2.5l O

Theorem (Evaluation Soundness).
IfpFel (p'Fw)where FLV(e) C dom(p) and [p]e is select-uniform
then [[ple] | [[p'Iw].

Proof

By induction on the given derivation. Wherever we apply the induction hypothesis, it is
easy to show the condition of select-uniformity; in what follows, we omit this reasoning.

* Case (TEvValue)
pEwl (pFw)

Stores only contain values, so [p]w is a value. By Lemma [A.2.3] [[p]w] is some
source value v. By (SEvValue), [[p]w] | [[p]w], which was to be shown.

pFe | (pr+ fun® f(x) = eo)
pr el (p2 Fw,)
p2 I [(fun® f(x) = eo)/fllwz/x]eo | (p" Fw

p - apply‘(er,e;) | (p' Fw)

* Case

(TEvApply)
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P Fe l (p1  fun® f(X) = eo) Subd.

[Tples] U [lpi](fun® f(x) = eo)] By i.h.
[iplei] I [fun® f(x) = [pi]eo] By definition of [—]
[[ple;] I fun f(x) = [[pileo] By definition of [—]
[lples] I fun f(x) = [lp'leol Monotonicity
p1 e b (p2 Fwy) Subd.
[lp1le2] I [lp2lwal By i.h.
[[ple2] U [p'Iwal FLV(e;) € dom(p) and monotonicity

P2 = [(fun® f(x) = eo)/fllwy/xleo I (p' - w) Subd.
[[p2l[(fun® f(x) = ey)/fllwa/x]eo] | [[p/lw] By i.h.
[[p/][(fun® f(x) = ey)/flw,/x]eo] | [[p'lw] Monotonicity

[(fun f(x) = [[p"leo])/f] [[[p"Iw21/x] [[p"leo] | [[p" W] Properties of substitution, [—], [—]

« apply([lpleil, [[ple2]) 4 [lp’Iwl By (SEvApply)

* Cases (TEvPair), (TEvSumLeft), (TEvPrimop), (TEvFst), (TEvCaseLeft): By
similar reasoning as in the (TEvApply) case, but simpler.

* Case TEvLet: By similar reasoning to the (TEvApply) case, but slightly simpler.

pHeC U (pyHw)
* Case | o mod eC | ((pf, ¢ — w)F0)
~———

p/

(TEvMod)

pkeCl (pyFw) Subd.
[[pleCT { MlpglwI By i.h.
[[p]eCT 4 [lpg, £ — Wil By def. of [—]
[lplel { [lp1¢] o' = phl = w
[mod ([ple®)] | [[p']¢] By def. of []
= [[p](mod e©)] |} [[p]¢] By def. of []

- - - [pi(€)/x"1eC I (p”
e case | PHe (k8 piklpi(0)/xTe" I (p"Fw) (TEvRead)

phreade;asx’ine® | (p' Fw)
pked(prH-¢  Subd.
[[pleil I [lps]€] By i.h.
pr | p]( )/x'1e 4 (p" Fw) Subd.
p1llp1(€) /x'1eC] | [lp’lw] By i.h.

1]€/X [p1]e€] | [[p’lw] By def. of subst.

p1]€/x eC]] U Mlp'lw]l By FLV(e®) C dom(p) and Lemma[A.2.1]

([lps1el /x"1 [[ple€] | [lp'lw] By LemmalA.2.2]
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let x" = [[ple;] in [[p]e€] | [lplw] By (SEvLet)
[read [ple; as x" in [p]le€] | [[p’]lw] By def. of [—]
ww [[p](read e; as x"in eC)] | [[p’lw] By def. of subst.

e C pl_eO‘U’(/}_ ) YWrite
e p - write(ey) | (p' Fw) (TEvivrite)
pHeol (p' Fw) Subd.
[lpleo] 4 [[[ "Tw] By i.h.
[write([pley)] | [[plw] By def. of [—]
= [[plwrite(eo)] | [[p’lw] By def. of subst.

- € ! Fw
* Case o Yo ) _ (TEvSelect)

ok (select{...,(&=0) = ey,...N[&=105] | (p'Fw)
pe { (p'-w)  Subd
[lple:] I [lp'Tw] By i.h.
[[plei] ~ [[ples] By select-uniformity
[ples] I [[p/Ilwl By def. of ~
[ple] | [[p’lw] By def. of [—] -

[
= [
Theorem (Translation Soundness).

If-Fe:t—e and-Fe' |l (p'Fw)thenel [[p' W]

Proof
By Lemma [A.2.7] e’ is select-uniform. The empty store - is trivially select-uniform. By
Theorem[6.5.3] [[-]e’] | [[p’]w]. Since the empty store acts as an identity substitution,

[e'] I Tlp"Tw]

By Lemmal[A.2.5] [e’] ~ e; by Definition [6.5.1] e || [[p/Iw]. O

A.3 Proof of costed soundness
Theorem [6.6.6] If trans (e,e) = e’ then e’ is deeply 1-bounded.

Proof
By lexicographic induction on e and e, with S considered smaller than C.

* If e € {n,x, (v1,v2),fun...,inl v} then:

= If ¢ = S then trans uses one of its first 5 cases, and the result follows by
induction. (HC(e’) = 0 except for (Var) where HC(e’) = 1 is possible.)
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= If ¢ = C then, for n/(vy,v;)/fun/inl v, trans uses its last case and applies
(Write). A let has head cost 0 (the let appears in the back-translation), so
HC(e') = 0; however, the head cost of the write subterm is 1, so the term is
deeply 1-bounded.
For x, trans uses either (Write) or (ReadWrite); in both cases, e’ is deeply
1-bounded.

* If e has the form let x = e; in e,, then HC(e’) = 0; by induction, e; and e; are
deeply 1-bounded, so e’ is deeply 1-bounded.

¢ if e has the form &(x;,x;), then: For the stable case, e’ is a & so HC(e') = 0.
For the changeable case, trans applies (Var), (Var), (Prim), (Write), (Read) with
(LPrimop2), and (Read) with (LPrimop1), producing

e’ =read x; as y; in read x, as y, in let r = ®(y;,y,) in write(r)

so (assuming HC(x;),HC(x;) < 1) we have HC(e') = 0 and all inner head costs
bounded by 1.
* If e is an apply, then:
- Case (S, S, S): Here €’ is an apply®, so HC(e') = 0.
» Case (C, S, C): Here e’ is an apply", so HC(e') = 0.
» Case (S, S, C): Either (Write) or (ReadWrite), after switching to S mode,

meaning one of the (—, —, S) cases—which each generate a subterm whose
HC is 0. For (Write), the write subterm of e’ has head cost 1, and likewise for
(ReadWrite).

The rules (LApply) and (LCase) guarantee that the read has the correct form
for HC(e') to be defined.
= Case (e/, C, C): Applies (Read) after devolving to (e, S, C) which returns a
term with HC(e’) < 1 (zero if ¢’ = C, and 1 if ¢’ = S). Applying (Read) yields
a term whose HC is 0, and which is deeply 1-bounded.
Note that HC(e') is defined for the same reason as in the (S, S, C) subcase.
= Case (C, S, S): Devolves to the (C, S, C) case, yielding a subterm with HC of
0; the algorithm then uses (Mod), yielding HC(e’) =1+ 0 =1.
= Case (€, C, S): Devolves to the (¢’, C, C) case, where HC = 0, then applies
(Mod), yielding HC(e') < 1.
(Note: We do not use the induction hypothesis as we “devolve”; we are merely
reasoning by cases.)
* If e = fst x where x : (17 X Tz)é, then:

* Case (S, S): We use (Fst), yielding HC(e’) = 0.

= Case (S, C): If t;y O.S. then HC(e’) = 0 (Write). If T; O.C. then we use
(ReadWrite), which has HC of 0.

* Case (C, C): We use (Read) with (LFst) and go to the (S, C) case with a new
variable x’. The HC for the (S, C) case is 0. Using (Read) in this case also has
head cost 0.
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* If e is a case on a variable x : T, then:

= If T is outer stable, the proof is straightforward.
» If T is outer changeable, the algorithm applies rule (Read), recursing with

X ’T‘S, which will apply rule (Case). A case has HC of 0, so (Read) produces
e’ where HC(e’) = 0 and e’ is deeply 1-bounded. [

In the following proofs, we assume that in any target evaluation p e’ || (p’ F w),
the target expression e’ is closed (that is, it has no free program variables x, though of
course it may contain store locations { € dom(p)).

Theorem [6.6.7] (Cost Result). Given D :p ke’ || (p’' Fw)
where for every subderivation D* :: pi - e* || (p5 - w*) of D (including D), HC(D*) <k,

then the number of dirty rule applications in D is at most %W(D).

Proof

By the definition of HC(D), if D is deeply k-bounded, there is no contiguous region of D

consisting only of dirty rule applications that is larger than k; since the only rule with no

premises is TEvValue, and TEvValue is clean, at least one of every k + 1 rule applications

is clean. W(D) simply counts the total number of rule applications, so D contains at
W(D)

least 55 clean rule applications, so no more than %W(D) of D’s rule applications are

dirty. 0

Theorem (Costed Stable Evaluation).

IfD:ptel (p'Fw)where FV(e) C dom(p) and [ple is select-uniform

and [p]e is deeply k-bounded

then D' :: [[ple] | [lp'Iwl

and [p’lw is deeply k-bounded

and for every subderivation D* :: p; - e* || (p5 - w*) of D (including D),
HC(D*) < HC(e*) <k,

and the number of clean rule applications in D equals W(D’).

Proof
The differences from Theorem require additional reasoning:

* The 7 cases for the “clean” rules (TEvValue), (TEvPair), (TEvSumlLeft), (TEvPri-
mop), (TEvFst), (TEvCaseLeft), and (TEvApply) are straightforward: the induction
hypothesis shows that the HC condition holds for proper subderivations of D, and
HC(D) = 0 by definition of HC(—), which is certainly not greater than HC(e*). Fi-
nally, each one of these cases generates a single application of an SEv* rule, which
together with the i.h. satisfies the last condition (that the number of clean rule
applications in D equals W(D’).

For (TEvCaseLeft) and (TEvApply), observe that we are substituting closed values;
for all closed values w* we have HC(w*) = 0, and by i.h. the w* we substitute are
deeply k-bounded, so the result of substitution is deeply k-bounded. (The target

=

expression x[& = 8] is not closed, so we need not consider it here.)
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Note that this reasoning holds for (TEvValue) even when w is a select: (TEvValue)
is a clean rule so HC(D) = 0.

* (TEvWrite): We have D :: p | write(e}) |} (p’ - w) with subderivation D, :: p |-
ey I .... Byih., HC(D,) < HC(write(e})). Therefore HC(D,) + 1 < HC(e}). By the
definitions of HC we have HC(D) = HC(D,) + 1 and HC(write(e})) = 1+ HC(e}),
so our inequality becomes HC(D) < HC(write(e})), which was to be shown. Lastly,
the - - - = W(D’) condition from the i.h. is exactly what we need, because the D’ is
the same and (TEvWrite) is not clean.

* (TEvMod): Similar to the (TEvWrite) case.

* (TEvLet): According to our definition, HC(D) = 0, and we proceed as with the
first 7 cases. Every (TEvLet) in D corresponds to a (SEvLet) in D’, even if the let
was created by translation: the theorem concerns the reverse translation [[p]e], not
the original source program (which probably has fewer lets). (We already assume
implicitly that let-expansion preserves asymptotic complexity, because we assume
that source programs are in A-normal form, and our goal is to prove an asymptotic
equivalence in Theorem [6.6.9])

* (TEvRead): For HC(read...) to be defined, the variable bound is used exactly
once and contributes to the HC of the term accordingly, justifying the equation

HC([p1(¢)/x"]e®) = HC(e®) + HC(p:(¢))

* (TEvSelect):

(L) 1+ HC(D;y) <1+ HC(ey) +1 each side

(R) 1+ HC(e;) <HC((select{...})[...]) By def. of HC(e;); property of max.
1+ HC(Dy) <HC(e’) By (L), (R), transitivity, e’ = (select{...})[...]

= HC(D) <HC(e') By def. of HC(D)

The HC(e*) < k part of the conclusion is easily shown: in each case, it must be
shown for each premise and for the conclusion; the induction hypothesis shows it for the
premises, and since we know that [p]e’ is deeply k-bounded, HC(e’) < k (applying [p]
cannot decrease head cost).

Showing that the value w is deeply k-bounded is quite easy. For (TEvValue) it follows
from the assumption that e’ = w is bounded. For any rule whose conclusion has the same
w as one of its premises—(TEvLet), (TEvCaseLeft), (TEvApply), (TEvWrite), (TEvRead),
(TEvSelect)—it is immediate by the i.h. In (TEvPair), w; and w, are bounded by i.h.,
so (wy,w;) is too. The value returned by (TEvSumlLeft) and (TEvFst) is a subterm of a
value in a premise, which is by i.h. deeply k-bounded, so the subterm is too. (TEvMod)
returns £ where { — w, and w is deeply k-bounded. O

Theorem [6.6.9] If trans (e,c) = e’ and D' -+ e’ || (p' +w), then D :: [e'] || v where
W(D') = 0(W(D)).

Proof
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By Theorem [6.6.6] e’ is deeply 1-bounded.

The algorithm trans merely applies the translation rules, so - - e : T < e’. By
Theorem D : [e'l || v, and the given derivation D’ and all its subderivations have
HC bounded by k.

By Theorem [6.6.7] the number of dirty rule applications in D’ is at most %W(D’).
Each rule application is either clean or dirty, so W(D’) < (k + 1) - W(D), where k = 1.
By inspecting the evaluation rules, it is clear that W(D’) > W(D). Therefore, W(D’)
O(W(D)).

oo
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Appendix B

Benchmark Plots
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Figure B.1: Time for complete run; time and speedup for change propagation for split
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Figure B.2: Time for complete run; time and speedup for change propagation for gsort
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