
Flexible Support for Distributing User Interfaces
 Across Multiple Devices

Marco Manca, Fabio Paternò

CNR-ISTI, HIIS Laboratory
Via Moruzzi 1, 56124 Pisa, Italy

{marco.manca, fabio.paterno}@isti.cnr.it

ABSTRACT
In this paper, we describe a solution to obtain flexible user
interface distribution across multiple devices, even supporting
different modalities. For this purpose we extend a model-based
user interface language in order to address the specification of
distribution at various user interface granularities. We also
introduce how this solution works at run-time in order to support
dynamic distribution of user interface elements across various
devices.

Categories and Subject Descriptors
H.5 Information Interfaces And Presentation; H.5.2 User
Interfaces

General Terms
Algorithms, Design, Human Factors, Languages,

Keywords
Distributed user interfaces, multi-device environments, model-
based approaches, user interface software and technology.

1. INTRODUCTION
The current technological trends are determining a steadily
increasing number of computers per person along with many
sensors able to detect a wide variety of contextual events. The
computers are becoming more and more variegated in terms of
possible interaction resources and modalities, including
interconnected embedded devices composed of small electronic
components, which can interact with each other.
This implies that in the near future we will no longer access our
applications through one device at a given time but we will rather
use sets of collaborating devices available while moving, such as
using the smartphone to control the content on a large screen.
Distributed User Interfaces (DUIs) have recently become a new
field of research and development in Human-Computer
Interaction (HCI). The DUIs have brought about drastic changes
affecting the way interactive systems are conceived. DUIs go
beyond the vision that user interfaces are controlled by a single
end user on the same computing platform in the same
environment. Unlike existing user interfaces, DUIs enable end

users to distribute any user interface element, from the largest one
to the smallest one, across different computing platforms and
physical environments [9]. Thus, emerging ubiquitous
environments need Distributed User Interfaces, which are
interfaces whose different parts can be distributed in time and
space on different monitors, devices, and computing platforms,
depending on several parameters expressing the context of use [3].
This has an impact on the user interface languages and
technologies because they should be able to support the main
concepts characterising interactions with an application through
various combinations of multiple devices.

Model-based approaches have been considered in order to manage
the increasing complexity derived from managing user interfaces
in multi-device environments, since each device has specific
interaction resources and implementation languages to execute
such user interfaces. They are also currently under consideration
for W3C for standardization purposes [4]. The basic idea is to
provide a universal small conceptual vocabulary to support user
interface design, which can then be refined into a variety of
implementation languages with the support of automatic
transformations without requiring developers to learn all the
details of such implementation languages.

Some research effort to address distributed user interfaces with
model-based approaches has already been carried out but with
limited results and not able to support the many possible ways to
distribute user interface elements. In HLUID (High Level UI
Description) [7] the user interface has a hierarchical structure and
the leaves of the tree are Abstract Interactor Object (AIOs)
describing high-level interactors. During the rendering process the
AIOs are mapped onto Concrete Interaction Object (CIOs)
associated with the current platform. In addition, they introduce a
split concept for the groupings through an attribute that, when it is
set to true, allows the distribution of the user interface elements
without losing its logical structure. In our case we propose a
different solution, still using a model-based approach. One
difference is that we support the specification at the concrete level
because at this level it is easier to generate the corresponding
implementations and there is a better understanding of the actual
effects that can be obtained. Vanderdonckt and others [8] have
developed a set of primitives to manage user interface distribution
but they only consider graphical user interfaces while our
approach is able to support user interfaces exploiting also other
modalities, such as voice. Blumendorf and others [1] address
multimodal interfaces but they lack an underlying language able
to support user interface distribution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHItaly 2011, September 13–16, 2011, Alghero, Italy.
Copyright 2011 ACM 978-1-4503-0876-2/11/09... $10.00.

191

To overcome the limitations of previous work our starting point
was the MARIA language [6], which in current version consists in
a set of languages: one for abstract user interface description, and
a set of concrete refinements of such language for various target
platforms (Vocal, Desktop, Smartphone with touch, Mobile,
Multimodal desktop, Multimodal mobile). Then. user interfaces
generators for various implementation languages (XHTML,
SMIL, VoiceXML, X+V, HTML 5) are available starting with
such concrete languages. Tools for authoring user interfaces in
MARIA and for reverse engineering Web pages into MARIA
specifications are publicly available at
http://giove.isti.cnr.it/Tools/

We have extended such language in order to be able to specify
distributed user interfaces and we have also designed a solution to
generate implementations of such distributed user interfaces,
which can dynamically change how the user interface elements
are distributed according to user requests or other events.
In the paper we first provide an overview of the solution that we
have developed. Next, we provide some detail on the language
supporting it. We discuss the corresponding architectural solution
for providing support at run-time and show an example
application. Lastly, we draw some conclusions and provide
indications for future work.

2. THE APPROACH
The approach proposed has been developed aiming to satisfy two
main requirements:

• flexible support able to address a wide variety of
granularities in terms of user interface components to
distribute;

• small and simple set of primitives to indicate how to
perform the distribution.

Regarding the set of primitives we decided to use the CARE
(Complementarity, Assignment, Redundancy, and Equivalence)
properties [2], which were introduced to describe multimodal user
interfaces, and have already been considered in the MARIA
concrete language for multimodal interfaces [5]. In our case the
idea is to use them with this meaning:

• Complementarity: the considered part of the interface is
partly supported by one device and partly by another
one

• Assignment: the considered part of the interface is
supported by one assigned device

• Redundancy: the considered part of the interface is
supported by both devices

• Equivalence: the considered part of the interface is
supported by either one device or another.

Regarding the possible granularity levels to address we have
started from the consideration that in MARIA a user interface is
composed of presentations (in graphical interfaces they
correspond to the set of elements that can be perceived at a given
time, e.g. a Web page). Then, in each presentation there can be a
combination of user interface elements and instances of
composition operators. In MARIA there are three types of

composition operators: grouping (a set of elements logically
related to each other), relation, a relation between groups of
elements (e.g. in a form there usually are a set of interactive
elements and a set of associated control elements to send or clear
them), repeater (a group of elements that are repeated multiple
times). Since we aim to obtain full control on what can be
distributed we decided to consider also the possibility of
distributing the elements within a single interaction element. For
example, a text edit interactor can be distributed in such a way
that the user enters the text in one device but receives feedback on
what has actually been input in another device. For this purpose
we provide the possibility to decompose interactive interface
elements into three subparts: prompt, input, and feedback.

Then, by combining the set of four possible granularity levels
(presentations, compositions, interface elements, interactive
subparts) with the CARE properties we obtain a simple and
powerful tool to indicate how the user interface can be distributed
in a flexible way. Thus, we can distribute an entire presentation.
For example, by associating the Redundancy property we indicate
that one presentation should be completely rendered in two
different devices. However, we can also distribute single interface
elements. For example, distributing a textual object in a
complementary way means that part of the text is rendered
through one device and part through another one. As we
mentioned, it is even possible to distribute sub-elements of a
single interaction object. For example, a single selection object
can be distributed in such a way that when the user selects one
element then the feedback indicating what has been selected is
rendered through another device. This means that the prompt and
input components have been assigned to one device while the
feedback sub-component to another one.

It is worth pointing out that the decomposition into prompt, input
and feedback is meaningful only for interactive interface element,
and cannot be applied for only-output elements.

In this way it is also possible to easily indicate how dynamically
the user interface elements can be distributed. Thus, if we want to
move one element from one device to another then it means that
we have changed the device to which that element is assigned.
While if we want to copy a user interface element from one device
to another then it means that we have changed the corresponding
CARE property from Assignment to Redundancy.

3. THE LANGUAGE
In order to formalise the concepts introduced in a language that
can be used to design and generate the corresponding user
interfaces we have extended the MARIA language.
In particular, we have introduced a language with the possibility
of defining a concrete distributed user interface. In such language
it is possible to indicate the types of devices on which the user
interface can be distributed. Each device belongs to a platform for
which already exists a corresponding concrete language. Such
concrete languages refine the abstract vocabulary taking into
account the interaction resources that characterise the
corresponding platform. This allows designers to specify interface
elements that better adapt to the devices in which they are
rendered.

The user interface is hierarchically structured: the user interface is
composed of presentations. Each presentation is composed of a
combination of interface elements and composition elements,
which can be recursively composed of interface and composition
elements. When a CARE property is associated to one element of

192

this hierarchy then all the underlying elements inherit such
association. Thus, if a grouping of elements is assigned to a
device then all the user interface elements of the group will be
assigned to it. This also simplifies the specification process by
avoiding the need to indicate the value of the CARE properties to
all the interface elements.
Below we can see an excerpt from an example of MARIA
specification of a distributed user interface. We consider a
grouping of interactor elements. The corresponding CARE
property is complementarity, which means that the interface
elements are distributed across various devices. In particular, there
are two interactors (a video and a text) and four devices. For each
device it is specified the corresponding platform, in this case we
have one desktop, one vocal, one mobile, and one multimodal.

<grouping>
 <output care_value="complementarity">
 <bind>
 <interactor interactor_id="description_video"/>
 <device id="paterno" platform="desktop"/>
 </bind>
 <bind>
 <interactor interactor_id="description_text"/>
 <device id="sisti" platform="vocal"/>
 <device id="iphone_lab" platform="mobile"/>
 <device id="manca" platform="multimodal"/>
 </bind>
 </output>

Afterwards we have the specification of the two involved
interactors. Since the text is complementary over three devices,
the specific attributes for each of them can be specified. Actually,
since in one case one device is multimodal, we can again apply
the CARE properties to indicate how the information is
distributed across the two modalities of the same device. In the
example, it is complementary again.

 <description id="description_video">
 <description_desktop>
 <video src="video.flv" alt="alternative_text"/>
 </description_desktop>
 </description>

 <description id="description_text">
 <!—COMPLEMENTARY DISTRIBUTION -->
 <description_mobile>
 <text><string>Mobile Text </string></text>
 </description_mobile>
 <description_vocal>
 <speech><content>VocalText </content></speech>
 </description_vocal>
 <description_multimodal output="complementary">
 <!-- [graphical part] -->
 <text><string>Mobile Text</string></text>
 <!-- [vocal part] -->
 <speech><content>Vocal Text</content>

 </speech>
 </description_multimodal>
 </description>
</grouping>

A dynamic change of the distribution of the user interface
elements is supported by adding a distribution event in the
dialogue model in the MARIA specification. The dialogue model
is composed of a number of event handlers and indicate the
temporal relation among them. The distribution event can be
triggered by a user action and the event handler indicates what
user interface elements and what devices are involved by
changing the corresponding CARE attributes.

In the following we can see an example of such events. It is
generated by a button that when pressed activates a distribution of
the input, prompt, and feedback components of one interactor in
such a way that the input can be entered either though a desktop
or a vocal device, the prompt is complementary across such two
devices, and the feedback is assigned to only the desktop device.

<activator>
 <button><label>Distribute UI</label><button>
 <event>
 <distribution_event>
 <handler>

<change_property interactor_id=”multiple_id”
phase=”prompt” care_value=”COMPLEMENTARITY”>

 <device id=”manca_pc” platform=”desktop”/>
 <device id=”sisti_pc” platform=”vocal”>
 </change_property>

<change_property interactor_id=”multiple_id”
phase=”input” care_value=”EQUIVALENT”>

 <device id=”manca_pc” platform=”desktop”/>
 <device id=”sisti_pc” platform=”vocal”>
 </change_property>
 <change_property interactor_id=”multiple_id”

phase=”feedback” care_value=”ASSIGNMENT”>
 <device id=”manca_pc” platform=”desktop”/>
 </change_property>
 </handler>
 </distribution_event>
 </event>
</activator>

4. AN EXAMPLE APPLICATION
In order to show how our approach works let us consider a
concrete example, not too complex for sake of clarity. We
consider an application to show slides, it allow users to go back
and forth, and to annotate them. Figure 1 shows the initial user
interface, completely rendered in a desktop graphical device.

193

Figure 1. The Slide Share application.

More precisely Figure 2 shows the corresponding hierarchical
structure: one presentation with a couple of output descriptive
objects (the application title and the slide), a grouping composing
two buttons to go back and forth, an interactive elements to write
comments and a button to store them. Since the interface is
completely shown in one single device, it is sufficient to associate
the assignment property to the root.

Figure 2. The Structure of the Example.

Now, suppose that the user wants to distribute parts of the user
interface to a multimodal mobile device as indicated in Figure 3.

Figure 3. The Slide Share Distributed.

To obtain this example of distributed user interface a number of
elements have been assigned new values of the CARE attribute as
indicated by Figure 4. Thus, there is no longer a CARE attribute
assigned at the presentation level. The title description is
redundant while the slide description is assigned to the desktop
device, because it has a larger screen that can better show its
content. The grouping with the buttons for going forth and back is

assigned to the mobile device and it has a multimodal support:
prompt is redundant with vocal and graphical modality, and input
is equivalent and can be provided by either modality. The text edit
interactor for entering comments is redundant in both devices but
the button to store the comments is assigned only to the mobile
device, for immediate activation by the user.

Figure 4. The Updated CARE Attributes.

5. RUN-TIME SUPPORT
Once the distributed user interface has been designed there is the
issue of obtaining the corresponding implementation able to
support the desired dynamic behavior. There are two possible
ways to do this:

• Dynamically modify the CARE properties in the
MARIA logical description and then regenerate the
corresponding updated user interfaces;

• Initially generate all the possible user interface elements
but initially presenting only those that should be
perceivable according to the CARE properties, and
when an event changes the value of such properties,
change the perceivability of the user interface elements
accordingly.

We opted for the second solution because it is more efficient since
it does not require generation of all the distributed user interface
elements for each change in the CARE property. For this purpose
the specification of the CARE properties is included in the data
structure supporting the data model associated with the user
interface.

At first the user interface generator analyses the devices involved
in the MARIA specification of the distributed user interface,
separates the concrete user interfaces for each of them, and
generates the corresponding initial user interfaces, which are
available in the associated application server. When a distribution
event occurs it is forwarded to a specific component (Data Model
and Property List in Figure 5), which updates the CARE
properties according to the indications in the associated event
handler, and then updates the user interfaces of the devices
involved accordingly. For this purpose the Web socket
mechanism is used because it provides an efficient way to push
the updated content.
Indeed, in the MARIA language it is possible to include a data
model to represent the data types handled by the user interface.
The user interface elements (interactors) can be associated with
data types through the data reference attribute. This dependency
implies that at run-time if an element of the data model changes
its value then all the associated interactors should be notified of
the change in order to update their state accordingly.

The changes in values in the data model are described through
event handlers that indicate when they should occur and the new
value that should be applied to the data element in question. In
addition, such event handlers can also communicate changes in
the CARE properties of some user interface components. As

194

mentioned, in the case of distributed user interfaces, all the user
interfaces generated for the various devices involved share the
data model, indicating also the values for the CARE properties.

More in detail, Figure 5 shows how the software architecture
works at run-time. We assume a case in which the user interface is
distributed across a desktop and a mobile device. At the beginning
the user accesses the application through the desktop device, the
environment creates a data model and property list according to
the MARIA specification and provides the requested user
interface (3 in Figure 5) and the same process is followed for the
mobile device. When the user changes a value of an interactor,
this is communicated to the websocket server, which checks the
CARE properties of that interface element to see whether changes
are necessary and updates the other instances in other devices (9)
accordingly.

Figure 5. The Run-Time Architecture.

The current prototype environment takes Distributed MARIA
specifications and generates JSP implementations, which are
dynamic pages able to generate XHTML or HTML5 or
VoiceXML or X+V implementations depending on the type of
target device.

6. CONCLUSIONS and FUTURE WORK
Distributed user interfaces require novel languages and tools in
order to obtain flexible support for user interface designers and
developers. In this paper, we have presented an approach able to
describe distribution at various granularity levels, even involving
multimodal devices. We have also introduced how dynamic
distribution can be achieved through such approach and the
software architecture supporting the corresponding
implementation.

Future work will be dedicated to engineering the supporting
environment and to usability evaluation of both the authoring
environment and the resulting distributed interactive applications.

ACKNOWLEDGMENTS
This work is supported by the EU ARTEMIS SMARCOS Project,
http://www.smarcos-project.eu/.

REFERENCES
[1] Marco Blumendorf, Dirk Roscher, Sahin Albayrak, Dynamic

User Interface Distribution for Flexible Multimodal
Interaction, Proceedings ICMI-MLMI’10, 8-12, 2010,
Beijing, China

[2] Coutaz J., Nigay L., Salber D.,.Blandford A, May J., Young
R., 1995. Four Easy Pieces for Assessing the Usability of
Multimodal Interaction: the CARE Properties. Proceedings
INTERACT 1995, pp.115-120.

[3] Demeure, A., Sottet J.S., Calvary G., Coutaz J., Ganneau V.,
and Vanderdonckt J.. The 4C Reference Model for
Distributed User Interfaces. Proceedings of the Fourth
International Conference on Autonomic and Autonomous
Systems 2008, pp. 61-69.

[4] Fonseca J.M.C. (ed.), W3C Model-Based UI XG Final
Report, May 2010, available at
http://www.w3.org/2005/Incubator/model-based-ui/XGR-
mbui-20100504/

[5] M.Manca, F.Paternò. Supporting Multimodality in Service-
oriented Model-based Development Environments,
Proceedings HCSE 2010, 3rd Conference on Human-Centred
Software Engineering, pp.135-148, LNCS 6409 Springer,
Reykjavik, October 2010.

[6] Paternò F., Santoro C., Spano L.D.: MARIA: A universal,
declarative, multiple abstraction-level language for service-
oriented applications in ubiquitous environments. ACM
Trans. Comput.-Hum. Interact. 16(4): (2009).

[7] Vandervelpen C., Conix K., Towards Model-Based Design
Support for Distributed User Interfaces, NordiCHI 2004: 61-
70, 2004.

[8] Vanderdonckt J., A Model-based Approach for Distributed
User Interfaces, Proceedings ACM EICS 2011, Pisa.

[9] Workshop on Distributed User Interfaces 2011. DUI2011 @
CHI2011 - Workshop held at ACM CHI Conference on
Human Factors in Computing Systems (Vancouver, BC,
Canada, 7-12 May 2011). University of Castilla-La Mancha,
Spain; ACM, 2011.

195

	p3-verschure
	p7-vanderveer
	p9-overbeeke
	p11-brusatin
	p13-castelfranchi
	p15-kirsh
	p17-bannon
	p21-spinelli
	p27-stienstra
	p33-talamo
	p39-stienstra
	p45-giusti
	p53-pittarello
	p59-parlangeli
	p65-marti
	p71-pollini
	p79-dellemonache
	p85-camilli
	p92-bonomo
	p96-zandanel
	p103-levy
	p108-chessa
	p114-marchetti
	p118-iacolina
	p125-buzzi
	p132-montanari
	p139-zamboni
	p143-camilli
	p151-buzzi
	p157-ardito
	p163-giraud
	p167-bassoli
	p171-magielse
	p178-leonardi
	p185-humayoun
	p191-manca

