
Timing analysis for a composable mode switch

Yin Hang, Hans Hansson
Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, SWEDEN

Email: young.hang.yin@mdh.se

Abstract—Component based software development (CBD) re-
duces development time and effort by allowing systems to be built
from pre-developed reusable components. A classical approach
to reduce embedded systems design and run-time complexity is
to partition the behavior into a set of major system modes.
In supporting system modes in CBD, a key issue is seamless
composition of multi-mode components into systems.

In addressing this issue, we have developed a mode switch
logic and algorithm for component-based multi-mode systems.
In this paper we introduce timing analysis for our composable
mode switch.

Index Terms—component-based, mode switch, timing analysis

I. INTRODUCTION

Partitioning system behaviors into different operational
modes is a frequently used approach to reduce complexity of
system design and verification, as well as to increase efficiency
in system execution. Typically, for each mode a different set
of subsystems are executing.

We have developed a mode switch approach for component-
based software [1], in which we consider component-based
systems built by hierarchically organized components. If mul-
tiple modes are supported, some components may reconfigure
themselves during mode switch in order to provide different
functionalities. Figure 1 illustrates the component hierarchy of
a simple multi-mode system (used throughout this paper). The
system supports two operational modes: M1 and M2. At top
level, the system consists of components a and b. Component
a consists of components c, d and e. However, Component d is
deactivated (not in use) in mode M2. Similarly, Component b
has two subcomponents: f and g (g is deactivated in M1). As
a and b both have subcomponents, we call them composite
components, and we call components that cannot be further
decomposed (e.g., c and d) primitive components.

Fig. 1. Component hierarchy in different modes

Related research, includes mode switch protocols [2] and
schedulability analysis during mode switch [3], as well as
exploration of mode switch problems in CBD by various
frameworks, including COMDES-II [4] and MyCCM-HI [5].
However, none of them comes up with a general mode switch

Fig. 2. Multi-mode components

logic (MSL) guiding the reconfiguration of hierarchically
composed components. In this paper, we provide an overview
of our MSL for multi-mode systems, explaining how the
component reconfiguration is implemented. The contribution
of this paper is that we introduce a timing analysis for mode
switch in a component-based system using our MSL.

II. THE MODE SWITCH MECHANISM

To be compatible with our MSL, a component must be
equipped with explicit interfaces related to mode switching
and it must internally integrate certain rules to control its own
mode switch process.

Figure 2 illustrates multi-mode primitive and composite
components. Each component has one or more input and out-
put ports, including a dedicated port pMS for sending/receiving
Mode Switch Requests (MSRs) and other mode switch related
messages. The configuration of a primitive component consists
of its running status (activiated or deactivated) and mode-
specific behavior/code. The configuration of a composite com-
ponent consists of its running status, activated subcomponents,
connections in use between ports of its subcomponents and
connections in use between its own ports and the ports of its
subcomponents.

As an illustration, Figure 3 extends the example in Figure 1
with component connections. The sample system gets data
from the input, processes data and generates output. The flow
of data is indicated by arrows.

The mode switch must be performed such that severe
problems and anomalies (e.g. mode or data inconsistency and
mode switch failure) are avoided. Our MSL is designed to
eliminate these potential problems.

We will in this paper make the following simplifying
assumptions (which we intend to weaken in our future work):



Fig. 3. System overview illustrating component connections

• The execution of primitive components can be aborted at
any time (to allow immediate response to a MSR).

• All components support the same modes (to avoid the
need for a mode mapping mechanism).

Also, note that the reconfiguration time of components is
independent of interference of other components, since we
assume a separate schedulability analysis handling this issue,
i.e., in scheduling terms the reconfiguration time is a “response
time”.

Our MSL consists of a MSR propagation mechanism and
dependency rules.

Mode switch request propagation: A MSR is initially is-
sued by one of the primitive components. The MSR is then
propagated to other components until all the components get
notified. All composite components propagate the MSR to their
subcomponents and parents.

Let’s demonstrate the MSR propagation mechanism using
the example in Figure 3. Suppose the MSR is initiated from
Component c in both modes. Component c is primitive and
propagates the MSR to its parent a and itself to trigger mode
switch. Once Component a receives the MSR, it propagates
it in two directions: to its subcomponents d and e and
to its parent, which is the top level component. Since the
subcomponents d and e are primitive, there is no further MSR
propagation from them. The top level component has no par-
ent, and will only propagate the MSR to its subcomponent b,
which only needs to propagate the MSR to its subcomponents
f and g. Since f and g are primitive, the MSR propagation
is finally terminated. Once a component completes its MSR
propagation, it can start its own mode switch process.

Dependency rules: The mode switch completion of a com-
ponent have the following dependency on other components:

A. A composite component cannot complete its mode
switch before the completion of the corresponding mode
switch in its subcomponents.

B. A component cannot complete its mode switch before
the mode switch completion of all components with
the same parent connected to its ingoing ports. This is
called the forward dependency rule, particularly made
for pipes-and-filters type of systems. Other dependency
rules, adapted to other types of systems/component are
also possible, but will not be considered here.

C. For components with parents, Rule B cannot be applied
until the parent has updated the component connections
for the new mode.

Components that cannot proceed with the mode switch due
to a dependency rule are temporarily blocked until the corre-
sponding condition is satisfied. Here ”blocked” means that a
component is waiting for a message from other components.

Algorithm 1 and 2 describe the mode switch processes
of primitive and composite components respectively, imple-
menting the MSR propagation mechanism and dependency
rules. Regarding these two algorithms, a few points should
be mentioned:

• MSR is the mode switch request signal, carrying the
identity of the new mode and the sending component.

• parentOK is a signal from a composite component
used to tell its subcomponents that its reconfiguration is
completed. It may include a request for a response upon
mode switch completion.

• ms done is used to signal completion of mode switch
and the ms done transmission is based on the depen-
dency rules.

• Reconfiguration means that a component changes its
configuration in the current mode to the configuration in
the new mode.

Details of the algorithms can be found in [1].

Algorithm 1 PrimitiveComponent.mode switch

loop
Wait for MSR;
Reconfiguration;
Wait for parentOK;
ms done transmission;
Execute in the new mode;

end loop

Algorithm 2 CompositeComponent.mode switch

loop
Wait for MSR;
MSR propagation;
Reconfiguration;
Broadcast parentOK;
Wait for parentOK if not top level;
ms done transmission;

end loop

III. MODE SWITCH TIMING ANALYSIS

For real-time embedded systems supporting multiple modes,
not only is the correctness of the mode switch important, but
also the time it takes for the system to complete a mode switch.
We have successfully verified the correctness of our MSL
using the UPPAAL model checker [6]. Here we will provide
an analytical model for the mode switch timing analysis of
component-based multi-mode real-time systems.

We will analyze the global mode switch time, i.e., the time
from initial triggering of the mode switch to system-wide
completion of the mode switch. We divide the global mode
switch into three phases:



A. MSR propagation
B. Component reconfiguration
C. Mode switch completion
The MSR propagation starts when the triggering source

initiate the mode switch and ends when all components have
received the MSR. Due to the MSR propagation delay, the
reconfiguration starting times of different components may be
different. The reconfiguration phase ends when all components
have completed their reconfigurations. The reconfiguration
completion times (RCTs) can be calculated for each com-
ponent and end of reconfiguration will then simply be the
largest such time. Mode switch completion starts from the
completion of component reconfiguration and ends when the
top component receives an ms done message, which is a
confirmation that all components are executing in the new
mode.

A. The timing analysis in the MSR propagation phase

Let DLi denote the depth level of Component i in the
component hierarchy (cf. Figure 1) defined such that it is 0
for the top level component and j + 1 for the children of a
component with depth j.

The MSR propagation time is based on the number of trans-
mitted MSR messages. In calculating the MSR propagation
time we use the following notation: components x, y, and z
are the triggering source, the target component, and the closest
common ancestor of x and y, respectively.

In propagating the MSR from x to y the MSR is first
propagated upwards in the component hierarchy to z and then
downwards from z to y. Assuming a fixed transmission time
tMSR for all MSR messages, the total propagation time txytotal
can be calculated by the following equation:

txytotal = tMSR ∗ (DLx −DLz +DLy −DLz)

B. The timing analysis in the component reconfiguration phase

In the component reconfiguration phase, different compo-
nents reconfigure themselves in parallel. Due to the depen-
dency rules in our MSL, some components which complete
their reconfigurations earlier than other components may be
blocked by the reconfiguration of other components. There
are two blocking factors. One is the need to wait for the
parentOK message from the parent, indicating that the com-
ponent connections have been updated. The other is waiting on
the ms done message either from a neighboring component
or from a subcomponent. indicating that the mode switch of
the sender is completed.

For each component, its Reconfiguration Completion Time
(RCT) is calculated as the sum of its MSR propagation delay
and its reconfiguration time. The RCTs of different compo-
nents are then compared with each other from the bottom
level to the top level. The component with the largest RCT,
corresponding to the end of reconfiguration, is thus identified.

C. The timing analysis in the mode switch completion phase

In phase B we have identified the component w with largest
RCT. For the other components, some have completed their

mode switches while the rest are all blocked by w directly or
indirectly. We call this chain blocking. At the beginning of
the final phase, all blocked components are waiting for the
ms done message, either from their neighboring components
or subcomponents. Three different scenarios of ms done
message transmission must be considered:

1) If Component w is composite, all its subcomponents are
directly blocked by its parentOK message. Therefore,
the ms done message transmission between all its sub-
components must be considered. Apart from that, the
parentOK message sent by w is also considered as it
is transmitted after its reconfiguration.

2) Among the components with the same parent as w, the
ms done transmission between some of them may be
blocked by w due to the forward dependency rule.

3) Similar to Scenario 2, the parent and ancestor compo-
nents of w may also block the ms done transmission
of other components with the same parents due to the
forward dependency rule.

Since these ms done messages must be transmitted in a
sequential order due to chain blocking, the transmission time
from w to the top level component could be substantial.
In essence, the timing analysis in the final phase boils
down to calculating the number of transmitted ms done
messages. In the calculation we will use the recursive func-
tion Calculate(current C,DL) described in Algorithm 3.
It begins by counting the number of active output ports
(nAOP (current C)) of Component current C, and then fol-
lows those active output ports (AOP (n)(current C)) and
finds the next component (by calling the GetNext function).
Each active output port corresponds to one ms done message
transmission. The calculation terminates when the current
component is requested to send a response back to the parent,
i.e. last(current C) = true. (We assume that only one
component is asked to send back this response and this
component blocks no other components at the same depth
level). Function Calculate(current C,DL) finally returns
the total number of transmitted ms done messages at depth
level DL in the final phase.

To calculate the total ms done transmission time ttotal
in the final phase at all related depth levels we use the
integer array n[1..DLw + 1] to store the number of message
at each depth level. The calculations are realized by Algo-
rithm 4, where the following additional notations are used:
first C(DL) denotes the component with no ingoing compo-
nents at Depth Level DL and (by the forward dependency rule)
this component will not be blocked by other components at
the same depth level (the case with multiple such components
is not considered in this paper); t is the time spent transmitting
one ms done message; ntotal is the total number of ms done
messages transmitted in the final phase; and w(i) denotes the
ancestors of w at depth i (or also w itself when w = w(i) as
a special case).

Please note that if a system has more than one potential
mode switch triggering source, the timing analysis must be



Fig. 4. Global mode switch timing analysis demonstration (from M1 to M2)

Algorithm 3 Calculate(current C,DL)

if last(current C) then
n[DL]+ = 1;

else
for i = nAOP (current C) downto 1 do
next = GetNext(AOP (i)(current C));
n[DL]+ = Calculate(next,DL);

end for
end if
return n[DL];

Algorithm 4 ms done transmission time calculation

if Type(w(DLw)) = composite then
n[DLw + 1] = Calculate(first C(DLw+1), DLw+1);

end if
for i from DLw downto 1 do
n[i] = Calculate(w(i), i);

end for
ntotal =

DLw+1∑
i=1

n[i];

ttotal = t ∗ ntotal;

repeated for all triggering sources, since the mode switch times
will probably be different.

Figure 4 presents the mode switch from M1 to M2 of the
example introduced in Figure 1. Component reconfiguration
time is marked on the bars. The message transmission for
MSR, parentOK and ms done are all assumed to be 0.3
time units. Component b has the largest RCT (8.9) and the
mode switch time from triggering to system-wide completion
is 10.1.

IV. DISCUSSION AND FUTURE WORK

We have presented a Mode Switch Logic (MSL) for
component-based systems with multiple operational modes,
for which we introduced an analysis to calculate the time to
perform a global mode switch.

There are several important issues that we intend to address
in our continued work. We intend to lift the restrictions in
the considered setup with the aim to provide a MSL and
timing analysis that is fully applicable in a real industrial
setting. For instance, it is unrealistic to assume that a primitive
component can terminate its execution at any time due to mode
switch. Lifting this assumption may increase mode switch
latency and must thus be analyzed. Also, in the final phase
of the global mode switch, our timing analysis assumes the
forward dependency rule, which could be rather inefficient in
some situations by requiring blocking of a large number of
components. Other dependency rules should be explored so
that the one that minimizes the global mode switch time can
be selected. In addition, we are currently focusing on pipes-
and-filters systems, but intend to look into mode switch in
other types of systems. Finally, we intend to analyze the time
complexity and scalability of our algorithms.

ACKNOWLEDGMENT

This work is supported by the Swedish Research Council.

REFERENCES

[1] Y. Hang, E. Borde, and H. Hansson, “Composable mode switch for
component-based systems,” in APRES ’11: Third International Workshop
on Adaptive and Reconfigurable Embedded Systems, 2011, pp. 19–22.

[2] J. Real and A. Crespo, “Mode change protocols for real-time systems:
A survey and a new proposal,” Real-Time Systems, vol. 26, no. 2, pp.
161–197, 2004.

[3] P. Pedro and A. Burns, “Schedulability analysis for mode changes
in flexible real-time systems,” in Euromicro Conference on Real-Time
Systems, 1998, pp. 172–179.

[4] X. Ke, K. Sierszecki, and C. Angelov, “COMDES-II: A component-based
framework for generative development of distributed real-time control
systems,” in 13th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA 2007), 2007.

[5] E. Borde, G. Haı̈k, and L. Pautet, “Mode-based reconfiguration of critical
software component architectures,” in Proceedings of the Conference on
Design, Automation and Test in Europe, 2009, pp. 1160–1165.

[6] K. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” STTT-
International Journal on Software Tools for Technology Transfer, vol. 1,
no. 1-2, pp. 134–152, 1997.


