
ar
X

iv
:1

10
2.

07
05

v2
  [

cs
.S

C
] 

 2
1 

Ju
l 2

01
1

Computing Semi-algebraic Invariants for Polynomial
Dynamical Systems

Jiang Liu
State Key Lab. of Comp. Sci.

Institute of Software
Chinese Academy of Sciences

liuj@ios.ac.cn

Naijun Zhan
State Key Lab. of Comp. Sci.

Institute of Software
Chinese Academy of Sciences

znj@ios.ac.cn

Hengjun Zhao
State Key Lab. of Comp. Sci.

Institute of Software
Chinese Academy of Sciences

zhaohj@ios.ac.cn

ABSTRACT
In this paper, we consider an extended concept of invariant
for polynomial dynamical system (PDS) with domain and
initial condition, and establish a sound and complete cri-
terion for checking semi-algebraic invariants (SAI) for such
PDSs. The main idea is encoding relevant dynamical prop-
erties as conditions on the high order Lie derivatives of poly-
nomials occurring in the SAI. A direct consequence of this
criterion is a relatively complete method of SAI generation
based on template assumption and semi-algebraic constraint
solving. Relative completeness means if there is an SAI in
the form of a predefined template, then our method can in-
deed find one using this template.

Keywords
Invariant, Semi-algebraic set, Polynomial dynamical system

1. INTRODUCTION
Hybrid systems are those systems involving both continuous
evolutions and discrete transitions. How to design correct
(desired) hybrid systems is a grand challenge in computer
science and control theory. From a computer scientist’s
point of view, the main concern on hybrid systems up to
now is to verify so-called safety properties. A safety prop-
erty claims that some unsafe state is never reachable from
any initial state along with any trajectory of the system.

1.1 Motivation
Directly computing the reachable set is a natural way to ad-
dress this issue. As we know, there are two well-developed
techniques for computing reachable set so far, that is, tech-
niques based on model-checking [5, 22] and the decision pro-
cedure of Tarski algebra [28], respectively. However, the
former technique requires the decidability and therefore can
only be applied to some simple hybrid systems, e.g. timed
automata [1], multirate automata [2], rectangular automata
[21, 12], and so on. Comparably speaking, the latter tech-
nique has a wider scope of applications. For example, in

[14] how to compute reachable sets for three classes of spe-
cial linear hybrid systems are investigated. However, this
technique heavily depends on whether the explicit solutions
of the considered differential equations are or can be reduced
to polynomials. So, this approach can not be applied to gen-
eral linear hybrid systems, let alone nonlinear systems.

To deal with more complicated systems, recently, a deduc-
tive method has been established and successfully applied
in practice [17, 18], which can be seen as a generalization of
the so-called Floyd-Hoare-Naur inductive assertion method.
Inductive assertion method is thought to be the dominant
method for the verification of sequential programs. To gen-
eralize the inductive method to hybrid systems, a logic sim-
ilar to Hoare logic which can deal with continuous dynam-
ics is necessary. For example, differential-algebraic dynamic
logic [16] due to Platzer was invented by extending dynamic
logic with continuous statements. Recently, Liu et al [15]
had another effort by extending Hoare logic to hybrid sys-
tems for the same purpose.

The most challenging part of the inductive method is how
to discover invariants of hybrid systems. An invariant is a
property that holds at all reachable states from any initial
state that satisfies this property. If we can get invariants
that are strong enough to imply the safety property to be
verified, then we succeed in safety verification without solv-
ing differential equations, while differential equations have
to be exactly solved or approximated in the methods via di-
rectly computing reachable sets. In particular, if the term
expressions of a hybrid system are or can be reduced to poly-
nomials, the so-called inductive invariants [25] can be effec-
tively generated using the constraint-based approach [9].

The key issue in generating inductive invariants of a hybrid
system is to deal with continuous dynamics, i.e. to generate
continuous invariant of the continuous evolution at each lo-
cation (mode) of the hybrid system. A location (mode) of
a hybrid system is usually represented by a continuous dy-
namical system with domain and initial condition (CDSwDI
for short) of the form (H, f ,Ξ), where f is a vector field, H
is a domain restriction of continuous evolution, and Ξ ⊆ H
is a set of initial states. A property ϕ is called a continuous
invariant (CI for short) of (H, f ,Ξ), if it is always satis-
fied along any trajectory whose starting point satisfies Ξ, as
long as the trajectory still remains in domain H . For ϕ to
be a CI of (H, f ,Ξ), the more complex the forms of H , f , Ξ
and ϕ are, the more intricate constraints should be induced

http://arxiv.org/abs/1102.0705v2


accordingly. A global (discrete) inductive invariant of a hy-
brid system consists of a set of CIs such that: the initial
condition of the initial location (mode) entails the CI of the
initial location, and if there is a discrete transition between
two locations of the system, then the CI at the pre-location
implies the CI at the post-location w.r.t. the discrete tran-
sition. There are many methods, e.g. [31], for certifying and
generating global inductive invariants of a system by using
the global inductiveness. Therefore in this paper we only
focus on how to generate CI at a single location (mode), i.e.
a CDSwDI.

1.2 Related Work
In the literature, lots of efforts have been made towards
algebraic or semi-algebraic continuous invariants generation
for polynomial dynamical systems, even though CI may have
different synonyms.

The generation of algebraic invariants, i.e. sets defined by
polynomial equations are usually based on the theory of ide-
als in polynomial ring. In [25], to handle continuous differ-
ential equations, two strong continuous consecution condi-
tions are imposed on the predefined templates, and then the
two conditions are encoded as ideal membership statements.
The work in [23] showed that the set of algebraic invariants
of a linear system, which forms a polynomial ideal, is com-
putable. The above two approaches both use Gröbner bases
computation. An efficient technique that computes alge-
braic invariants as the greatest fixed point of a monotone
operator over pseudo ideals was presented in [24].

As for the polynomial inequality case, to guarantee that
p ≥ 0 is a CI of a PDS (H, f ,Ξ), it is useful to analyze the
direction of f with regard to the set p ≥ 0. In [19, 20], the
authors proposed the notion barrier certificates for safety
verification of hybrid systems. A polynomial p could be a
barrier certificate if the unsafe region is included in p < 0,
and at any point in p = 0, f points (strictly) inwards the
set p ≥ 0. Such polynomial barrier certificates can be ef-
fectively computed using sum of squares decomposition and
semi-definite programming. In [9] a similar idea is adopted
and by reducing the conditions of CI to semi-algebraic con-
straints, invariants that are boolean combinations of poly-
nomial equations and inequalities can be generated. Unfor-
tunately, the approaches in [19, 9] were discovered in [27,
26, 16] to have certain problems with their soundness, if at
the boundary of a CI, f is not strictly inward the invariant
set. In [17] the authors proposed the notion of differential in-
variant and the principle of differential induction. Basically,
p ≥ 0 is a differential invariant of (H, f ,Ξ) if at any point in
H , the directional derivative of p in the direction of f is non-
negative. Such requirement is strong, but provide a sound
and effective way of generating complex semi-algebraic con-
tinuous invariants.

1.3 Our Contribution
The problem of checking inductiveness for continuous dy-
namical systems was considered in [27] and [26]. Therein
various sound checking rules are presented, which are also
complete for classes of continuous invariants, e.g. linear,
quadratic, convex and smooth invariants. The authors even
proposed a sound and relatively complete rule using higher
order Lie derivatives, which is quite similar to ours. How-

ever, in their relatively complete rule there are infinitely
many candidate tests and thus is computationally infeasi-
ble. Our work in this paper actually resolves this problem
and completes the gap left open in [27, 26]

The relative completeness of our method means that for a
given PDS, if there is an SAI of the predefined template,
then our method can indeed discover one SAI using this
template. Thus, there are two advantages with our approach
comparing with the well-established approaches: firstly, more
general SAIs can be generated; secondly, a by-product of the
completeness of our approach is that whether a given semi-
algebraic set is really an SAI of a given PDS is decidable.
This is quite useful in the interplay of discrete invariant gen-
eration (global) and CI generation (local).

1.4 Paper Organization
The rest of this paper is organized as follows. Section 2
presents some basic notions and fundamental theories on
algebraic geometry and dynamical system. Section 3 gives a
formal definition of the SAI generation problem. In Section
4, we prove the fundamental results based on which our
method is developed. Section 5 illustrates the basic idea of
our approach in simple cases. How to apply our approach to
general cases is investigated in Section 6. Two case studies
are given in Section 7. Section 8 concludes this paper with
a discussion of future work.

2. PRELIMINARIES
In this section, we will recall some basic notions.

2.1 Polynomial Ideal Theory
Let K be an algebraic field and K[x1, . . . , xn] denote the
polynomial ring with coefficients in K. In this paper, K will
be taken as the rational number field Q. Customarily, let
x denote the n-tuple (x1, · · · , xn) with dim (x) = n, and a
polynomial in Q[x1, . . . , xn] (Q[x] for short) may be written
as p(x) or p simply. A parametric polynomial

p(u,x) ∈ Q[u1, u2, . . . , ut, x1, x2, . . . , xn]

is called a template, where x are variables taking values from
Rn and u are coefficient parameters taking values from Rt.
Given u0 ∈ Rt, we call the polynomial pu0(x) resulted by
substituting u0 for u in p(u,x) an instantiation of p(u,x).

In what follows, we recall the theory of polynomial ideal
(refer to [6]).

Definition 1. A subset I ⊆ K[x] is called an ideal if

i) 0 ∈ I.

ii) If p(x), g(x) ∈ I, then p(x) + g(x) ∈ I.

iii) If p(x) ∈ I and h(x) ∈ K[x], then p(x)h(x) ∈ I.

It is easy to check that if p1, · · · , pk ∈ K[x], then

〈p1, · · · , pk〉 = {
k∑

i=1

pihi | ∀i ∈ [1, k]. hi ∈ K[x]}



is an ideal. In general, we say an ideal I is generated by poly-
nomials g1, . . . , gk ∈ K[x] if I = 〈g1, . . . , gk〉, and {g1, . . . , gk}
is called a set of generators of I .

Theorem 2 (Hilbert Basis Theorem). Every ideal
I ⊆ K[x] has a finite generating set. That is, I = 〈g1, . . . , gk〉
for some g1, . . . , gk ∈ K[x].

For its proof, please refer to [6]. Based upon this result, it
is easy to see that

Theorem 3 (Ascending Chain Condition). For any
ascending chain

I1 ⊆ I2 ⊆ · · · ⊆ Iℓ ⊆ · · ·

of ideals in polynomial ring K[x], there must be N such that
for all ℓ ≥ N , Iℓ = IN .

2.2 Semi-algebraic Set
An atomic polynomial formula over variables x1, x2, . . . , xn

is p ⊲ 0, where p is a polynomial in Q[x] and ⊲ ∈ {≥, >,≤, <
,=, 6=}. A quantifier free polynomial formula is a boolean
combination of atomic polynomial formulas using connec-
tives ∨,∧,¬,→, etc.

Definition 4 (Semi-algebraic Set). A subset S of
Rn is called a semi-algebraic set, if there is a quantifier free
polynomial formula ϕ s.t.

S = {x ∈ R
n | ϕ(x) is true} .

We will use the S(ϕ) to denote the semi-algebraic set defined
by a quantifier free polynomial formula ϕ. It is easy to check
that any semi-algebraic set can be transformed into the form

S(
I∨

i=1

Ji∧

j=1

pij ⊲ 0), where ⊲ ∈ {≥, >} .

Note that semi-algebraic sets are closed under basic set op-
erations, since

• S(ϕ1) ∩ S(ϕ2) = S(ϕ1 ∧ ϕ2) ;

• S(ϕ1) ∪ S(ϕ2) = S(ϕ1 ∨ ϕ2) ;

• S(ϕ1)
c = S(¬ϕ1) ;

• S(ϕ1) \ S(ϕ2) = S(ϕ1) ∩ S(ϕ2)
c = S(ϕ1 ∧ ¬ϕ2) ,

where Ac and A \B stand for the complement and subtrac-
tion operation of sets respectively.

2.3 Continuous Dynamical System
We recall the theory of continuous dynamical systems in the
following. Please refer to [10] for details.

2.3.1 Trajectories of Continuous Dynamical System
An autonomous continuous dynamical system (CDS) is mod-
eled by first-order ordinary differential equations

ẋ = f(x) , (1)

where x ∈ Rn and f is a vector function from Rn to Rn,
which is also called a vector field in Rn.

If f satisfies the local Lipschitz condition, then given x0 ∈
Rn, there exists a unique solution x(x0; t) of (1) defined on
(a, b) with a < 0 < b s.t.

∀t ∈ (a, b).
dx(x0, t)

dt
= f(x(x0; t)) and x(x0; 0) = x0.

When x0 is clear from the context, we just write x(x0; t)
as x(t). Based upon this, we shall use the following useful
notions for our discussion in the sequel.

Definition 5 (Trajectory). Suppose x(x0; t) is the
solution to (1) defined on (a, b) with a < 0 < b, as stated
above. Then

• x(x0; t) (x(t) for short) defined on [0, b) is called the
trajectory of (1) starting from x0;

• x(x0;−t) (x(−t) for short) defined on [0,−a), resulted
by substituting −t for t in x(x0; t), is called the inverse
trajectory of (1) starting from x0 .

2.3.2 Polynomial Vector Field and Lie Derivatives
In this paper, we focus on vector fields defined by polyno-
mials.

Definition 6 (Polynomial Vector Field). Suppose
f = (f1, f2, · · · , fn) in (1). If for all 1 ≤ i ≤ n, fi is a poly-
nomial in Q[x1, x2, . . . , xn], then f is called a polynomial
vector field, denoted by f ∈ Qn[x].

Obviously polynomial vector fields satisfy the local Lipschitz
condition. Let p be a polynomial in ring Q[x], which is a
scalar function. Then the gradient of p :

∂

∂x
p =̂ (

∂p

∂x1
,
∂p

∂x2
, · · · ,

∂p

∂xn

)

is a vector of polynomials with dimension dim (x) . Thus
the inner product of a polynomial vector field f and the gra-
dient of a polynomial p is still a polynomial, if f ∈ Qn[x]
and dim (x) = n (in the rest of the paper, this will be as-
sumed implicitly). Therefore we can inductively define the
Lie derivatives of p along f , Lk

f p : Rn 7→ R, for k ∈ N, as
follows:

• L0
f p(x) = p(x),

• Lk
f p(x) = ( ∂

∂x
Lk−1

f
p(x), f(x)), for k > 0,

where (·, ·) is the inner product of two vectors, that is,
(a,b) =

∑n

i=1 aibi for a = (a1, . . . , an) and b = (b1, . . . , bn).



Example 7. Suppose f = (−x, y) and p(x, y) = x + y2,
then

L0
f p = x+ y2

L1
f p = −x+ 2y2

L2
f p = x+ 4y2

· · · · · ·

For a parametric polynomial p(u,x), we can define the Lie
derivatives of p along f similarly if the gradient of p(u,x)
is taken as ∂

∂x
p(u,x), and all Li

fp(u,x) are still parametric
polynomials.

Given a polynomial vector field, we can make use of Lie
derivatives to investigate the tendency of its trajectory in
terms of a polynomial p (as an energy function). To capture
this, look at Example 7 shown in I of Figure 1.

In I of Figure 1, arrow B denote the corresponding evolution
direction according to the vector field f = (−x, y), and we
could imagine the points on the parabola p(x, y) = x + y2

with zero energy, and the points in white area have pos-
itive energy, i.e., p(x, y) > 0. Arrow A is the gradient
∂
∂x
p|(−1,1) of p(x, y), which infers that the trajectory start-

ing at (−1, 1) will enter white area immediately if the angle,
between ∂

∂x
p|(−1,1) and the evolution direction at (−1, 1),

is less than π
2
, that is, the 1-order Lie derivative is posi-

tive. Thus the 1-order Lie derivative L1
f p|(−1,1) = 3 of p

along f (the inner product of ∂
∂x
p|(−1,1) and f(x, y)|(−1,1))

predicts that there is some positive d > 0 such that the
trajectory starting at (−1, 1) (curve C) has the property
p(x((−1, 1), t)) > 0 for all t ∈ (0, d).

However, if the angle between gradient and evolution di-
rection is π

2
or the gradient is zero-vector, then 1-order Lie

derivative is zero and it is impossible to predict trajectory
tendency by means of 1-order Lie derivative. In this case,
we resort to nonzero higher order Lie derivatives. For this
purpose, we introduce the pointwise rank of p with respect
to f as the function γp,f : R

n 7→ N ∪ {∞} defined by

γp,f (x) = min{k ∈ N | Lk
f p(x) 6= 0},

if such k exists, otherwise γp,f (x) = ∞.

Example 8. Let f(x, y) = (ẋ = −2y, ẏ = x2) and h(x, y) =
x+ y2, then

L0
f h(x, y) = x+ y2

L1
f h(x, y) = −2y + 2x2y

L2
f h(x, y) = −8y2x− (2− 2x2)x2

...

Here, γh,f (0, 0) = ∞, γh,f (−4, 2) = 1, etc.

Look at II of Figure 1. At point (−1, 1) on curve h(x, y) =
0, the gradient of h is (1, 2) (arrow A) and the evolution
direction is (−2, 1) (arrow B), so their inner product is zero.
Thus it is impossible to predict the tendency (in terms of
curve h(x, y) = 0) of trajectory starting from (−1, 1) via its
1-order Lie derivative. By a simple computation, its 2-order
Lie derivative is 8. Hence γh,f (−1, 1) = 2. In the sequel,

Figure 1: Lie Derivatives

we shall show how to use such high order Lie derivatives to
analyze the trajectory tendency.

For analyzing trajectory tendency by high order Lie deriva-
tives, we need the following fact.

Proposition 9. Given polynomial functions p and f , then
x0 is on the boundary S(p(x) = 0) iff γp,f (x0) 6= 0. Suppose
x0 = x(0), then it follows that

(a) if γp,f (x0) <∞ and L
γp,f (x0)

f
p(x0) > 0, then

∃ǫ > 0,∀t ∈ (0, ǫ).p(x(t)) > 0;

(b) if γp,f (x0) <∞ and L
γp,f (x0)

f
p(x0) < 0, then

∃ǫ > 0,∀t ∈ (0, ǫ).p(x(t)) < 0;

(c) if γp,f (x0) = ∞, then

∃ǫ > 0,∀t ∈ (0, ǫ).p(x(t)) = 0.

Proof. Polynomial functions are analytic, so f is analytic
and thus x(t) is analytic in a small interval (a, b) containing
zero [29]. Besides, p is analytic, so the Taylor expansion of
p(x(t)) at t = 0

p(x(t)) = p(x0) +
dp

dt
· t+

d2p

dt2
·
t2

2!
+ · · ·

= L0
f p(x0) + L1

f p(x0) · t+ L2
f p(x0) ·

t2

2!
+ · · · (2)

converges in another small interval (a′, b′) containing zero
[13]. Then the conclusion of Proposition 9 follows imme-
diately from formula (2) by case analysis on the sign of

L
γp,f (x0)

f
p(x0).

Based on this proposition, we introduce the notion of trans-
verse set to indicate the tendency of the trajectories of a con-
sidered polynomial vector field in terms of the first nonzero
Lie derivative of a underlying polynomial as follows.

Definition 10. Given a polynomial p and a polynomial
vector field ẋ = f(x), the transverse set of f over the domain
S(p(x) ≥ 0) is

Transf↑p=̂{x ∈ R
n | γp,f (x) <∞ ∧ L

γp,f (x)

f
p(x) < 0}.



Intuitively, if x ∈ Transf↑p, then either x is not in S(p(x) ≥
0) or x is on the boundary of S(p(x) ≥ 0) such that the
trajectory x(t) starting with x will exit S(p(x) ≥ 0) imme-
diately.

3. SEMI-ALGEBRAIC INVARIANT
A hybrid system consists of a set of CDSs, a set of jumps
between these CDSs, and a set of initial states. The CDSs
in a hybrid system are a little different from the standard
ones, as normally they are equipped with a domain and a
set of initial states, in the form (H, f ,Ξ), where H is used
to force some jumps outgoing the mode to happen, that is,
a hybrid system can stay within a mode only if the domain
of the current mode holds, and Ξ is a subset of H , standing
for the set of initial states. Obviously, a CDS can be seen
as a special CDSwDI by letting H = Rn. The goal of this
paper is to present a complete method for automatically
discovering SAIs of PDSs, based on which, as we discussed
in the introduction, we can finally verify polynomial hybrid
systems.

3.1 Continuous Invariants of CDSwDI
The notion of continuous invariant of CDSwDI is quite simi-
lar to the one of positive invariant set of CDS [3]. Informally,
a continuous invariant P of a CDwDI (H, f ,Ξ) is a super-
set of Ξ such that all continuous evolutions starting from Ξ
keep within P if they are within H . Here, we give a formal
definition of CI adapted from [17] as follows:

Definition 11 (Continuous Invariant [17]). Given
a CDSwDI (H, f ,Ξ) with Ξ ⊆ H ⊆ Rn and f : Rn 7→ Rn

that is local Lipschitz continuous, a set P ⊆ Rn is called a
continuous invariant of (H, f ,Ξ), iff

1. Ξ → P ; and

2. for all x0 ∈ P , and for any T ≥ 0,

(∀t ∈ [0, T ].x(x0; t) ∈ H) → (∀t ∈ [0, T ].x(x0; t) ∈ P ).

Regarding Definition 11, we would like to give the following
remarks.

1. Continuous invariant in Definition 11 is more general
than standard positive invariant set of continuous dy-
namical systems. However, if H = Rn and Ξ = P ,
then the two notions coincide.

2. One may have noticed that in Definition 11, a con-
tinuous invariant set P is not necessarily a subset of
domain H . In fact, any P satisfying H ⊆ P is contin-
uous invariant of (H, f ,Ξ). This seems weird at first
sight, because such continuous invariant sets are use-
less if we only concern the CDSwDI in isolation. But it
would be quite useful in the verification of the hybrid
system if we assume that the continuous invariant of a
mode always holds if the hybrid system does not stay
within the mode.

3.2 PDS and SAI
Definition 12. A CDSwDI (H, f ,Ξ) is called a polyno-

mial dynamical system with semi-algebraic domain and ini-
tial states (PDS), if H and Ξ are semi-algebraic sets and f

is a polynomial vector field in Qn[x].

A continuous invariant of a PDS is called a semi-algebraic
invariant (SAI) if it is a semi-algebraic set.

In the subsequent sections, we will present a sound and com-
plete method to automatically discover SAIs for a PDS.

4. FUNDAMENTAL RESULTS
The set Transf↑p in Definition 10 plays a crucial role in our
theory. First of all, we have

Theorem 13. The set Transf↑p is a semi-algebraic set
if p is a polynomial and f is a polynomial vector field, and
hence it is computable.

To prove this theorem, it suffices to show γp,f (x) is com-
putable for each x ∈ S(p(x) ≥ 0). However, γp,f (x) may be
infinite for some x ∈ S(p(x) ≥ 0). Thus, it seems that we
have to compute Lk

f p(x) infinite times for such x to deter-
mine if x ∈ Transf↑p. Fortunately, we can find a uniform
upper bound on γp,f (x) for all x with γp,f (x) being finite.

Theorem 14 (Rank Theorem). If p and f are poly-
nomial functions, then there is an integer N such that for
all x ∈ Rn, γp,f (x) < ∞ implies γp,f (x) ≤ N . Later on,
such an N is called the rank of p and f , denoted by γp,f .

Proof. Let Dl = {x | ∀m < l.Lm
f p(x) = 0} for l ≥ 0.

Note that the sequence {Dl}l∈N is decreasing. We will show
that there is an N such that Dl = DN for all l ≥ N .

Since p and f are polynomial functions, all Lm
f p(x) must

be polynomials for any m ∈ N. We consider the polyno-
mial ideal I generated by {Lm

f p(x) | m ∈ N}. Let Im =
〈L0

f p(x), L
1
f p(x), · · · , L

m
f p(x)〉. Then I = ∪mIn. By The-

orem 3, there is k such that I = Ik. Thus for all l > k,
there are gi ∈ R[x1, · · · , xn] for i ≤ k such that Ll

fp(x) =∑
i≤k giL

i
fp(x) for all x ∈ Rn.

Fix l > k. If x ∈ Dl, then Ll
fp(x) =

∑
i≤k giL

i
fp(x) = 0

since all Li
fp(x) = 0 for i ≤ k as x ∈ Dl. Let N = k + 1.

Then Dl = DN for all l ≥ N . Thus, if x ∈ DN then
γp,f (x) = ∞. Therefore, γp,f (x) < ∞ implies γp,f (x) ≤
N .

Now, it suffices to compute the values

L0
f p(x0), L

1
f p(x0) · · · , L

γp,f
f

p(x0)

to determine whether γp,f (x0) is infinite. Therefore if γp,f is
computable then Transf↑p is computable too. It is desirable
to get an expression of γp,f for given p and f . However,
we did not find it yet. Nevertheless, a computable upper
bound for γp,f can indeed be found effectively according to
the following theorem.



Theorem 15 (Fixed Point Theorem). If

Li+1
f

p ∈ 〈L0
f p, L

1
f p, · · · , L

i
fp〉,

then Lm
f p ∈ 〈L0

f p,L
1
f p, · · · , L

i
fp〉, for all m > i.

Proof. We prove this theorem by induction. Assume
this conclusion is true for all l ≤ k with k > i. Espe-
cially, Lk

f p ∈ 〈L0
f p, L

1
f p, · · · , L

i
fp〉. Then there are gj ∈

R[x1, · · · , xn] for j ≤ i such that

Lk
f p =

∑

j≤i

gjL
j
f
p. (3)

By the definition of Lie derivative and equation (3), it follows
that

Lk+1
f

p

= (
∂

∂x
Lk

f p, f)

= (
∂

∂x
(
∑

j≤i

gjL
j
f
p), f)

=
∑

j≤i

(Lj
f
p
∂

∂x
gj , f) +

∑

j≤i

(gj
∂

∂x
Lj

f
p, f)

=
∑

j≤i

(
∂

∂x
gj , f)L

j
f
p+

∑

j≤i

gjL
j+1
f

p

=
∑

j≤i

(
∂

∂x
gj , f)L

j
f
p+

∑

j<i

gjL
j+1
f

p+ giL
i
fp.

By induction hypothesis, Li
fp is in 〈L0

f p, L
1
f p, · · · , L

i
fp〉. So

Lk+1
f

p ∈ 〈L0
f p, L

1
f p, · · · , L

i
fp〉.

By induction, the theorem follows immediately.

Let Np,f be the minimal i satisfying the condition of Theo-
rem 15 in the sequel. Then γp,f ≤ Np,f . Look at Example
8, where Nh,f = 2. Now, applying above two theorems we
can prove Theorem 13.

Proof of Theorem 13. Since γp,f ≤ Np,f ,

x ∈ Transf↑p iff γp,f (x) ≤ Np,f ∧ L
γp,f (x)

f
p(x) < 0.

Therefore, Transf↑p is computable as Np,f is computable
according to Theorem 15. Given p and f , let

π(0)(p, f ,x) =̂ p(x) < 0, (4)

for 1 ≤ i ∈ N,

π(i)(p, f ,x) =̂




∧

0≤j<i

Lj
f
p(x) = 0



 ∧ Li
fp(x) < 0, (5)

and

π(p, f ,x) =̂
∨

0≤i≤Np,f

π(i)(p, f ,x). (6)

By Theorem 14 and γp,f ≤ Np,f , we have another equiva-
lence

x ∈ Transf↑p iff π(p, f ,x)holds. (7)

In fact, π(i)(p, f ,x) here is a particular semi-algebraic sys-
tem, and so π(p, f ,x) is a union of semi-algebraic systems.
Thus Transf↑p is actually a semi-algebraic set.

In the SAI generation, it actually makes use of parametric
polynomials p(u,x) with parameter u = (u1, u2, . . . , ut).
The following theorem indicates Theorem 14 still holds after
substituting p(u,x) for p(x).

Theorem 16 (Parametric Rank Theorem). Given
polynomial functions p(u,x) and f , there is an integer N
such that γpu0 ,f

(x) < ∞ implies γpu0 ,f
(x) ≤ N for all

x ∈ Rn and all u0 ∈ Rt.

This proof is quite close to the one of Theorem 14. The
difference, between the proof of this theorem and the one of
Theorem 14, lies in the settings of polynomials. Here, we
consider polynomials p and f in the polynomial ring R[u,x].
Similarly, we also introduce the rank function on polynomi-
als with parameters, still denoted by γp,f . Accordingly, let
Np,f denote the upper bound computed by a similarity of
Theorem 15 .

5. GENERATING SAI IN SIMPLE CASE
Given a polynomial vector field ẋ = f(x) with a semi-algebraic
domain H and initial condition Ξ, our task is to find a semi-
algebraic set P such that P is an SAI of (H, f ,Ξ).

First of all, we illustrate our idea by showing how to compute
an SAI of the simple form P =̂ p(x) ≥ 0 for a simple domain
H=̂h(x) ≥ 0. For convenience, we will simply write the dy-
namical system (h(x) ≥ 0, f ,Ξ) as (h, f ,Ξ). Notice that P
is an SAI of (h, f ,Ξ) only if ∀x(Ξ(x) → P (x)). It is evident
that if x(0) is in the interior of S(p(x) ≥ 0) ∩ S(h(x) ≥ 0),
then the trajectory x(t) starting at x(0) will remain in the
interior within adequately small t > 0. Therefore, the con-
dition of continuous invariant could be violated only at the
points on the boundary S(p(x) = 0) of S(p(x) ≥ 0). Thus
by Definition 10 and Proposition 9, p ≥ 0 is an invariant of
(h, f ,Ξ) if and only if it meets ∀x(Ξ(x) → P (x)) and

x ∈ S(p(x) = 0) → x /∈ Transf↑p \ Transf↑h,

i.e.

x ∈ S(p(x) = 0) → x ∈ (Transf↑p)
c ∨ Transf↑h. (8)

By equivalences (7), the formula (8) is equivalent to

p(x) = 0 → (¬π(p, f ,x) ∨ π(h, f ,x)),

i.e.
(
p(x) = 0 ∧ π(p, f ,x)

)
→ π(h, f ,x). (9)

Let θ(h, p, f ,x) denote the formula (9). According to this
equivalence, we obtain the sufficient and necessary condition
for being SAI as follows.

Theorem 17 (Criterion Theorem). Given a polyno-
mial p, p(x) ≥ 0 is an SAI of system (h, f ,Ξ) if and only if
the formula θ(h, p, f ,x) ∧ (Ξ(x) → p(x) ≥ 0) is true for all
x ∈ Rn.



Now, we are ready to present a constraint based approach to
generate polynomial continuous invariants. The basic idea
is as follows:

I. First, set a parametric polynomial p as

p(u,x) =̂
∑

i1+i2+···+in=k≤d

ui1i2···inx
i1
1 x

i2
2 · · · xin

n .

(10)
Such a parametric polynomial is called a template con-
ventionally. There are t =

(
n+d

d

)
many terms and ac-

cordingly t many parameters ui1i2···in . For simplicity,
let u denote such a t-tuple {ui1i2···in}i1+i2+···+in=k≤d.

II. Then we appy the quantifier elimination (QE1 for short)
to the formula ∀x.(θ(h, p, f ,x)∧(Ξ(x) → p(x) ≥ 0)). If
the output is false, then there is no polynomial contin-
uous invariant of degree ≤ d for (h, f ,Ξ). Otherwise,
it will give us a constraint on u, denoted by R(u). In
fact, R(u) is a union of semi-algebraic systems (refer
to [28]).

III. Let SInv be the set of solutions to R(u). Now, using a
tool like DISCOVERER [30] to pick a u0 ∈ SInv and
then pu0(x) ≥ 0 is an invariant of (h, f ,Ξ) by Theorem
17.

Remark

1) Note that in real applications, one usually picks up the
specific terms with nonzero coefficients. A simplified
template could make the resulted polynomial satisfy
special conditions and also reduce the complexity of
the searching process.

2) In the above Step III, if the dimension of SInv equals
t, then we can easily select a rational sample point u0

from SInv and the obtained pu0(x) ≥ 0 is an SAI in Rn;
otherwise when it is difficult (or impossible) to get a
rational instantiation for u, we can always compute an
algebraic sample point u0 ∈ SInv, that is, u0 is itself
defined by polynomial equations. It is easy to show
that in the latter case, pu0(x) ≥ 0 is also an SAI in
Rn.

Example 18. Again, we make use of Example 8 to demon-
strate above method. That is, f(x, y)=̂(ẋ = −2y, ẏ = x2).
Here, we take H=̂{(x, y) ∈ R2 | h(x, y) = −x − y2 ≥ 0}
as the domain and Ξ=̂{(−1, 0.5), (−0.5,−0.6)} as the ini-
tial states. Apply procedure (I-III), we have:

1. Set a template p(u,x) := ay(x− y) ≥ 0 where u=̂〈a〉.
Then we have γp,f ≤ Np,f = 2.

2. Compute the corresponding formula

θ(h, p, f ,x) =̂ p = 0 ∧ (π
(0)
p,f,x ∨ π

(1)
p,f,x ∨ π

(2)
p,f,x) →

(π
(0)
h,f,x ∨ π

(1)
h,f,x ∨ π

(2)
h,f,x)

1QE has been implemented in many computer algebra tools
such as DISCOVERER [30], QEPCAD [4] and Redlog [8].

Figure 2: Semi-Algebraic Invariants

where

π
(0)
h,f,x =̂ −x− y2 < 0,

π
(1)
h,f,x =̂ −x− y2 = 0 ∧ 2y − 2x2y < 0,

π
(2)
h,f,x =̂ −x− y2 = 0 ∧ 2y − 2x2y = 0 ∧

8xy2 + 2x2 − 2x4 < 0,

π
(0)
p,f,x =̂ ay(x− y) < 0,

π
(1)
p,f,x =̂ ay(x− y) = 0 ∧ −2ay2 + ax3 − 2yax2 < 0,

π
(2)
p,f,x =̂ ay(x− y) = 0 ∧ −2ay2 + ax3 − 2yax2 = 0 ∧

40axy2 − 16ay3 + 32ax3y − 10ax4 < 0.

Then we implement quantifier elimination on formula
∀x, y(θ(h, p, f ,x)∧ (0.5a(−1−0.5) ≥ 0∧−0.6a(−0.5+
0.6) ≥ 0). We get the constraint on a is a ≤ 0

3. Just pick a = −1, and then −xy+ y2 ≥ 0 is an invari-
ant for (H, f ,Ξ). The grey part of the picture III is the
intersection of this invariant and domain H.

6. GENERAL CASE
Now, we consider how to automatically discover SAIs of a
PDS in general case. Given a PDS (H, f ,Ξ) with

H = S(

I∨

i=1

Ji∧

j=1

pij(x) ⊲ 0), Ξ = S(

N∨

i=1

Mi∧

j=1

qij(x) ⊲ 0) (11)

and f ∈ Qn[x], where Ξ ⊆ H and ⊲ ∈ {≥, >}. The procedure
for automatically generating SAIs with a general template

P = S(
K∨

k=1

Lk∧

l=1

pkl(ukl,x) ⊲ 0) , where ⊲ ∈ {≥, >}

for (H, f ,Ξ), is essentially the same as the steps (I-III) de-
picted in the previous section. However, we must sophis-
ticatedly handle the complex combination due to the com-
plicated boundaries. In what follows, we will first establish
the necessary and sufficient conditions for general CIs of
a CDSwDI by some topological analysis. Then we show for
SAIs of a PDS, these conditions can be encoded equivalently
into first order polynomial formulas.

6.1 Necessary and Sufficient Condition for CI
First of all, we study a necessary and sufficient condition
like formula (8) for P being an invariant of (H, f ,Ξ). To
analyze the evolution tendency of trajectories dominated by



a locally Lipschitz continuous vector field f : Rn 7→ Rn in
terms of a subset A of Rn, we need the following notions
and notations.

Inf (A) =̂ {x0 ∈ R
n | ∃ǫ > 0∀t ∈ (0, ǫ).x(x0; t) ∈ A},

IvInf (A) =̂ {x0 ∈ R
n | ∃ǫ > 0∀t ∈ (0, ǫ).x(x0;−t) ∈ A}.

Intuitively, x0 ∈ Inf (A) means that the trajectory starting
from x0 enters A immediately and keeps inside A for some
time; x0 ∈ IvInf (A) means that the trajectory through x0

reaches x0 from the interior of A.

Analogous to Inf (A) and IvInf (A), we introduce another two
notations Outf (A) and IvOutf (A).

Outf (A) =̂ {x0 ∈ R
n | ∃ǫ > 0∀t ∈ (0, ǫ).x(x0; t) ∈ Ac};

IvOutf (A) =̂ {x0 ∈ R
n | ∃ǫ > 0∀t ∈ (0, ǫ).x(x0;−t) ∈ Ac},

where Ac stands for the complement of A in Rn. Intuitively,
x0 ∈ Outf (A) means that the trajectory starting at x0 leaves
A immediately and keep outside A for some time in future;
x0 ∈ IvOutf (A) means that the trajectory passing through
x0 reaches x0 from the outside of A.

Based on the above notations, we have

Theorem 19. Given a CDSwDI (H, f ,Ξ) with H ⊆ Rn,
Ξ ⊆ Rn and locally Lipschitz continuous f : Rn 7→ Rn, a
subset P of Rn is a CI of (H, f ,Ξ) if and only if

1. Ξ ⊆ P ;

2. ∀x ∈ P ∩H ∩ Inf (H).x ∈ Inf (P );

3. ∀x ∈ P c ∩H ∩ IvInf (H).x ∈
(
IvInf (P )

)c
.

Proof. First of all, the proof about condition 1 is trivial.
In what follows, we focus on the proofs about conditions 2
and 3.

“⇐” Suppose P is not a CI of (H, f ,Ξ). According to Defi-
nition 11, there exists x0 ∈ P ∩H , T0 > 0 and T1 ∈ (0, T0]
s.t.

∀t ∈ [0, T0].x(t) ∈ H and x(T1) /∈ P.

It is not difficult to check that the set

TP =̂ {T ∈ R, T ≥ 0 | ∀t ∈ [0, T ].x(t) ∈ P}

is not empty, and is a right-open or right-closed interval
[0, TP 〉 with 0 ≤ TP ≤ T1. If [0, TP 〉 = [0, TP ], then TP <
T1. Thus x(TP ) ∈ P ∩ H ∩ Inf (H), but x(TP ) /∈ Inf (P ),
otherwise TP could not be the right end point of TP . So 2
is violated.

If [0, TP 〉 = [0, TP ), then TP > 0 and x(TP ) ∈ P c ∩ H .
Furthermore, ∀t ∈ [0, TP ).x(t) ∈ P ∩H , i.e.

∀t ∈ [0, TP ).x(x0; t) ∈ P ∩H,

which is equivalent to

∀t ∈ [−TP , 0).x(x0; t+ TP ) ∈ P ∩H.

Let x′
0 = x(x0;TP ). Then x(x′

0; t) = x(x0; t+Tp). Thus we
get

∀t ∈ [−TP , 0).x(x
′
0; t) ∈ P ∩H,

i.e.

∀t ∈ (0, TP ].x(x
′
0;−t) ∈ P ∩H.

This means x′
0 ∈ IvInf (H) ∩ IvInf (P ). Besides,

x
′
0 = x(x′

0; 0) = x(x0; TP ) = x(TP ) ∈ P c ∩H.

So 3 is violated by x′
0.

“⇒” If 2 does not hold, then there exists x1 ∈ P ∩H , ǫ1 > 0
and 0 < t1 < ǫ1 such that ∀t ∈ [0, ǫ1).x(x1; t) ∈ H and
x(x1; t1) /∈ P . By Definition 11, P could not be a CI.

If 3 does not hold, then there exists

x2 ∈ P c ∩H ∩ IvInf (H) ∩ IvInf (P ).

This means there exists ǫ2 > 0 such that

∀t ∈ (0, ǫ2).x(x2;−t) ∈ P ∩H,

i.e.

∀t ∈ (−ǫ2, 0).x(x2; t) ∈ P ∩H.

Thus

∀t ∈ [−ǫ2/2, 0).x(x2; t) ∈ P ∩H.

i.e.

∀t ∈ [0, ǫ2/2).x(x2; t− ǫ2/2) ∈ P ∩H.

Let x′
2 = x(x2;−ǫ2/2). Then x(x′

2; t) = x(x2; t − ǫ2/2).
Thus we get

∀t ∈ [0, ǫ2/2).x(x
′
2; t) ∈ P ∩H.

Furthermore,

x(x′
2; ǫ2/2) = x(x2; 0) = x2 ∈ P c ∩H.

Thus the trajectory starting from x′
2 violates the condition

of Definition 11, so P could not be a CI either.

6.2 Necessary and Sufficient Condition for SAI
Given a PDS (H, f ,Ξ) and an SAI P , to encode the condi-
tions in Theorem 19 as polynomial formulas, it is sufficient
to show that Inf (H), Inf (P ), IvInf (H) and IvInf (P ) are all
semi-algebraic sets. By the structure of H , it is natural to
consider the relation between Inf (H) and Inf

(
S(pij ⊲ 0)

)
.

Through a careful analysis, we establish the following cru-
cial equality:

Theorem 20. For a semi-algebraic set H defined by for-
mula (11) and a polynomial vector field f , we have

Inf (H) =
I⋃

i=1

Ji⋂

j=1

Inf

(
S(pij ⊲ 0)

)
.

To prove Theorem 20, we need the following two Lemmas,
wherein ⊲ ∈ {≥, >}.



Lemma 21. For any atomic polynomial formula p⊲0 and
polynomial vector field f , and for any x0 ∈ Rn, we have
either x0 ∈ Inf

(
S(p ⊲ 0)

)
or x0 ∈ Outf

(
S(p ⊲ 0)

)
.

Proof. Polynomial functions are analytic, so f is ana-
lytic and thus x(x0; t) (x(t) for short) is analytic in a small
interval (a, b) containing 0. Besides, p is analytic, so the
Taylor expansion of p(x(t)) at t = 0

p(x(t)) = p(x0) +
dp

dt
· t+

d2p

dt2
·
t2

2!
+ · · ·

= L0
f p(x0) + L1

f p(x0) · t+ L2
f p(x0) ·

t2

2!
+ · · ·

converges in (a, b). Then the proof proceeds by case analysis

on the sign of L
γp,f (x0)

f
p(x0):

• if γp,f (x0) = ∞, then ∃ǫ > 0∀t ∈ (0, ǫ). p(x(t)) = 0, so
x0 ∈ Inf

(
S(p ≥ 0)

)
and x0 ∈ Outf

(
S(p > 0)

)
;

• if L
γp,f (x0)

f
p(x0) > 0, then ∃ǫ > 0∀t ∈ (0, ǫ). p(x(t)) >

0, so x0 ∈ Inf

(
S(p ≥ 0)

)
and x0 ∈ Inf

(
S(p > 0)

)
;

• if L
γp,f (x0)

f
p(x0) < 0, then ∃ǫ > 0∀t ∈ (0, ǫ). p(x(t)) <

0, so x0 ∈ Outf
(
S(p ≥ 0)

)
and x0 ∈ Outf

(
S(p > 0)

)
.

Then we can see that for all x0 ∈ Rn, either x0 ∈ Inf

(
S(p ⊲

0)
)
or x0 ∈ Outf

(
S(p ⊲ 0)

)
.

Lemma 22. For any semi-algebraic set B = S
(∧J

j=1 pj ⊲

0
)
, and polynomial vector field, we have

1. Inf (B) =
⋂J

j=1 Inf

(
S(pj ⊲ 0)

)
;

2. for any x0 ∈ Rn, either x0 ∈ Inf (B) or x0 ∈ Outf (B).

Proof. 1. “⊆” Trivial.

“⊇” For any x0 ∈
⋂J

j=1 Inf

(
S(pj ⊲ 0)

)
, there exist pos-

itive ǫ1, ǫ2, . . . , ǫJ such that for all 1 ≤ j ≤ J and any
t ∈ (0, ǫj), pj(x(x0; t)) ⊲ 0. Let ǫ = min{ǫ1, ǫ2, . . . , ǫJ}.

Then for any t ∈ (0, ǫ),
∧J

j=1 pj(x(x0; t)) ⊲ 0. Thus

x0 ∈ Inf (B).

2. By 1 if x0 /∈ Inf (B), then there exists j0 ∈ [1, J ]
such that x0 /∈ Inf

(
S(pj0 ⊲ 0)

)
. By Lemma 21, x0 ∈

Outf
(
S(pj0 ⊲ 0)

)
. Thus there exists ǫ > 0 s.t. for all

t ∈ (0, ǫ), ¬
(
pj0(x(x0; t)) ⊲ 0

)
. Then for all t ∈ (0, ǫ),∨J

j=1 ¬
(
pj(x(x0; t)) ⊲ 0

)
, i.e. ¬

(∧J

j=1 pj(x(x0; t)) ⊲ 0
)
.

This means x0 ∈ Outf (B).

Now we are ready to prove Theorem 20 as follows.

Proof of Theorem 20. “⊇” Trivial.

“⊆” If x0 /∈
⋃I

i=1

⋂J

j=1 Inf

(
S(pij ⊲ 0)

)
, then for all i ∈ [1, I ],

x0 /∈
⋂J

j=1 Inf

(
S(pij ⊲ 0)

)
. By Lemma 22, for all i ∈ [1, I ],

x0 ∈ Outf (B), where B =
∧J

j=1 pij ⊲ 0. Thus there exist

positive ǫ1, ǫ2, . . . , ǫI s.t. for all i ∈ [1, I ] and any t ∈ (0, ǫi),

¬
(∧J

j=1 pij(x(x0; t)) ⊲ 0
)
. Let ǫ = min{ǫ1, ǫ2, . . . , ǫI}. Then

for all t ∈ (0, ǫ),
∧I

i=1 ¬
(∧J

j=1 pij(x(x0; t)) ⊲ 0
)
, or equiv-

alently, ¬
(∨I

i=1

∧J

j=1 pij(x(x0; t)) ⊲ 0
)
. This means x0 ∈

Outf (H) and x0 /∈ Inf (H).

Based on Theorem 20, in order to show Inf (H) is a semi-
algebraic set for any semi-algebraic set H , it is sufficient
to show that Inf

(
S(p ⊲ 0)

)
is a semi-algebraic set for any

polynomial p, where ⊲ ∈ {≥, >}.

In fact, we have proved in Lemma 21 the following result.

Lemma 23. For any polynomial p and polynomial vector
field f ,

Inf (S(p > 0)) = Γ+(p, f) and

Inf (S(p ≥ 0)) = Γ0(p, f) ∪ Γ+(p, f) ,

where

Γ0(p, f) =̂ {x0 ∈ R
n | γp,f (x0) = ∞} and (12)

Γ+(p, f) =̂ {x0 ∈ R
n | γp,f (x0) < 0 ∧ L

γp,f (x0)

f
p(x0) > 0}.

(13)

Next, we show Γ0 and Γ+ are semi-algebraic sets. We will do
so in a more general way for parametric polynomials p(u,x).
In their proofs, we need the fundamental results about Lie
derivatives shown in Section 4. In the sequel we adopt the
convention that

∧
i∈∅ φi = true, where φi is a polynomial

formula.

Lemma 24. Given p =̂ p(u,x) and polynomial vector field
f , for any u0 ∈ Rt we have

Γ0(pu0 , f) = S
(
ϕ0(p, f) |u=u0

)
,

where

ϕ0(p, f) =̂

Np,f∧

i=0

Li
fp = 0 . (14)

Proof. “⊆”This is trivial by definition of pointwise rank
in Section 2.

“⊇” If x0 ∈ S
(
ϕ0(p, f) |u=u0

)
, then by definition of point-

wise rank we have γpu0 ,f
(x0) > Np,f . By the similarity

of Theorem 14 with parameters in polynomial p, we get
γpu0 ,f

(x0) = ∞. Thus x0 ∈ Γ0(pu0 , f).

Lemma 25. Given p =̂ p(u,x) and polynomial vector field
f , for any u0 ∈ Rt we have

Γ+(pu0 , f) = S
(
ψ+(p, f) |u=u0

)
,

where

ψ+(p, f) =̂

Np,f∨

i=0

ψ(i)(p, f) with (15)



ψ(i)(p, f) =̂
( i−1∧

j=0

Lj
f
p = 0

)
∧ Li

fp > 0 .

Proof. “⊇”If x0 ∈ S
(
ϕ+(p, f) |u=u0

)
, then by definition

of pointwise rank, we have
(
γpu0 ,f

(x0) ≤ Np,f <∞
)

∧ L
γpu0 ,f (x0)

f
pu0(x0) > 0 .

Thus x0 ∈ Γ+(pu0 , f) .

“⊆” If x0 ∈ Γ+(pu0 , f), then by definition of pointwise rank
we know x0 satisfies

L0
f pu0 = 0∧ · · · ∧L

γpu0 ,f (x0)−1

f
pu0 = 0∧L

γpu0 ,f (x0)

f
pu0 > 0 .

By the similarity of Theorem 14 with parameters in poly-
nomial p, we have γpu0 ,f

(x0) ≤ Np,f . Thus u0,x0 satisfy

φ
γpu0 ,f (p, f). This means x0 ∈ S

(
ϕ+(p, f) |u=u0

)
.

Based on Lemma 23, 24 and 25 we have

Theorem 26. For any polynomial p and vector field f ,

Inf (S(p > 0)) = S(ψ+(p, f)), and

Inf (S(p ≥ 0)) = S
(
ψ+(p, f) ∨ ϕ0(p, f)

)

where ϕ0(p, f) and ψ+(p, f) are defined in (14) and (15) re-
spectively.

Therefore, Inf (H) can be translated into a polynomial for-
mula. By a similar argument, we are able to prove that

Theorem 27. For a semi-algebraic set H defined by for-
mula (11) and a polynomial vector field f , we have

IvInf (H) =
I⋃

i=1

Ji⋂

j=1

IvInf

(
S(pij ⊲ 0)

)
.

Accordingly,

Theorem 28. For any polynomial p and vector field f ,

IvInf

(
S(p > 0)

)
= S

(
ϕ+(p, f)

)
, and

IvInf

(
S(p ≥ 0)

)
= S

(
ϕ+(p, f) ∨ ϕ0(p, f)

)

where

ϕ+(p, f) =̂

Np,f∨

i=0

ϕ(i)(p, f) with (16)

ϕ(i)(p, f) =̂
( i−1∧

j=0

Lj
f
p = 0

)
∧
(
(−1)i · Li

fp > 0
)
.

Now we are able to present our main result of automatic
SAI generation for PDS.

Theorem 29 (Main Result). A semi-algebraic set
S(P ) with

P =̂
K∨

k=1




jk∧

j=1

pkj(ukj ,x) ≥ 0 ∧

Jk∧

j=jk+1

pkj(ukj ,x) > 0





is a continuous invariant of the PDS
(
S(H), f ,Ξ

)
with

H =̂
M∨

m=1

(
lm∧

l=1

pml(x) ≥ 0 ∧

Lm∧

l=lm+1

pml(x) > 0

)
,

if and only if u=̂〈ukj〉 satisfy

∀x.

(
(Ξ(x) → P (u,x))∧(
P ∧H ∧ ϕH → ϕP

)
∧
(
¬P ∧H ∧ ϕIv

H → ¬ϕIv
P

)
)
,

where

ϕH =̂
M∨

m=1

(
lm∧

l=1

ψ0,+(pml, f) ∧

Lm∧

l=lm+1

ψ+(pml, f)

)
,

ϕP =̂
K∨

k=1




jk∧

j=1

ψ0,+(pkj , f) ∧

Jk∧

j=jk+1

ψ+(pkj , f)



 ,

ϕIv
H =̂

M∨

m=1

(
lm∧

l=1

ϕ0,+(pml, f) ∧

Lm∧

l=lm+1

ϕ+(pml, f)

)
,

ϕIv
P =̂

K∨

k=1




jk∧

j=1

ϕ0,+(pkj , f) ∧

Jk∧

j=jk+1

ϕ+(pkj , f)



 ,

with ψ0,+(p, f) =̂ψ+(p, f)∨ϕ0(p, f) and ϕ0,+(p, f) =̂ϕ+(p, f)∨
ϕ0(p, f).

Proof. This theorem is a direct consequence of Theorem
19, 20, 26, 27 and 28.

Note that ϕH and ϕIv
H are trivially “true” when H is the

whole space Rn.

Compared to related work, e.g [17, 19, 20, 24], our method
for SAI generation based on Theorem 29 has the following
two features:

1. Given a PDS (with arbitrary semi-algebraic domain
and initial states), we consider arbitrary semi-algebraic
sets as invariants, which are of complicated forms and
may be neither open nor closed.

2. Our criterion for checking semi-algebraic invariants for
PDS is sound and complete; our method for automati-
cally generating semi-algebraic invariants is sound, and
complete w.r.t to the predefined template.

Now we demonstrate how our approach can be used to gen-
erate a general SAI by the following example.

Example 30. Let f(x, y) = (ẋ = −2y, ẏ = x2) withH =̂R2

and Ξ=̂x+y ≥ 0. Take a template: τ =̂x−a ≥ 0∨y−b > 0.



By Theorem 29, τ is an SAI of (H, f ,Ξ) iff (a, b) satisfies
the following two formulas

x+ y ≥ 0 → (x− a ≥ 0 ∨ y − b > 0) (17)

(τ → ζ) ∧ (¬τ → ¬ξ) (18)

for all (x, y) ∈ R2, where

ζ=̂(x− a > 0) ∨ (x− a = 0 ∧ −2y > 0)

∨ (x− a = 0 ∧ −2y = 0 ∧ −2x2 ≥ 0)

∨ (y − b > 0) ∨ (y − b = 0 ∧ x2 > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx = 0 ∧ 8y2 − 4x3 > 0)

ξ=̂(x− a > 0) ∨ (x− a = 0 ∧ −2y < 0)

∨ (x− a = 0 ∧ −2y = 0 ∧ −2x2 ≥ 0)

∨ (y − b > 0) ∨ (y − b = 0 ∧ x2 < 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx = 0 ∧ 8y2 − 4x3 < 0)

By applying quantifier elimination to this formula, we get
a + b ≤ 0 ∧ b ≤ 0. Let a = −1 and b = −0.5, and it results
that {(x, y) ∈ R2 | x ≥ −1 ∨ y > −0.5} is an SAI for this
PDS, which is shown in IV of Figure 2.

Note that in the above example, the generated SAI is a
general semi-algebraic set that is a union of two simple semi-
algebraic sets, which is neither closed nor open.

7. CASE STUDY
In this section, we show that our method presented above
can be used to generate continuous invariants for some real
systems.

7.1 Formal Verification of CTCS-3
In [15], the authors use HCSP [11, 33] to formally model the
Chinese Train Control System at Level 3 (CTCS-3) [32].
They also propose a calculus of HCSP for the purpose of
verifying safety properties of CTCS-3. For this calculus to
work, effective techniques for dealing with continuous dy-
namics must be incorporated.

Consider the following fragment of the HCSPmodel of CTCS-
3:

Pebi =̂ 〈ṡ = v, v̇ = a〉 → v ≥ v.Seg ;flag
EB

:= true ;PEB .

Process Pebi models the running of a train, with s, v, a rep-
resenting its position, velocity and acceleration (a is a con-
stant) respectively. Once v exceeds the speed limit v.Seg of
the current segment, flag

EB
for emergency brake is set to

true and the train starts braking immediately, expressed by
the subprocess PEB.

The safety property needs to be verified about Pebi can be
stated as

Inv =̂ v ≥ v.Seg → flag
EB

= true ,

which means whenever the train’s speed exceeds certain
limit, it must execute the emergency brake process.

To verify this property, i.e. to check that Inv is indeed
an invariant of Pebi, according to the calculus in [15], it
amounts to check that v < v.Seg is a continuous invariant
of the PDS (H, f ,Ξ), where H =̂S(v < v.Seg), f =̂ (v, a) and
Ξ =̂ {(s0, v0)} with v0 < v.Seg. According to our method,
this can be further reduced to the checking of the validity of

∀v.(v = v.Seg ∧ v < v.Seg → a ≤ 0),

which is obvious.

Perhaps this example seems a bit trivial, for the continuous
dynamics is an affine system and the required invariant co-
incides with the domain. What we want to stress here is the
completeness of our criterion for checking continuous invari-
ants compared to others. For example, the principle given
in [17] requires the directional derivative of an invariant in
the direction of the vector field to have the same sign in
the domain. As a result, it may fail to generate the above
invariant S(v < v.Seg), because

∀v.(v < v.Seg → v̇ = a < 0)

is false when a ≥ 0.

7.2 Collision Avoidance Maneuvers
We consider the following two-aircraft flight dynamics from
[18]:

f =̂

[
ẋ1 = d1 ẏ1 = e1 ḋ1 = −ωd2 ė1 = −θe2
ẋ2 = d2 ẏ2 = e2 ḋ2 = ωd1 ė2 = θe1

]
. (19)

System (19) has 8 variables: (x1, x2) and (y1, y2) represent
the positions of aircraft 1 and 2 respectively, and (d1, d2) and
(e1, e2) represent their velocities. The parameters ω and θ
denote the angular speed of the two aircrafts.

We shall apply our method to generating special invariants
of form p = 0 for PDS (H, f ,Ξ) with H =̂R8 and f de-
fined in (19). For simplicity, we take Ξ to be a singleton
{(x0

1, x
0
2, d

0
1, d

0
2, y

0
1 , y

0
2 , e

0
1, e

0
2)} .

In order to determine candidates for invariants of (H, f ,Ξ),
we enumerate parametric polynomials p =̂ p(u,x) by the de-
gree of p and the number of variables appearing in it. For
example, we can choose the linear template p(u,x) =̂ u1x1+
u2x2 + u3d1 + u4d2 + u0.

According to Theorem 29, it is easy to check that p(u,x) = 0
is an invariant of (H, f ,Ξ) if and only if u satisfies

• ∀x.Ξ → p = 0 ; and

• ∀x. p = 0 →
∧Np,f

i=1 Li
fp(u,x) = 0 .

For the template defined above, we can get Np,f = 2. By
applying quantifier elimination to the corresponding con-
straint, we get u2 − u3ω = 0 ∧ u1 + u4ω = 0 ∧ u0 + u1x

0
1 +

u2x
0
2 + u3d

0
1 + u4d

0
2 = 0 . Thus we can obtain the following

invariants by assigning suitable values to uis:

• ωx2 + d1 − ωx0
2 − d01 = 0;

• −ωx1 + d2 + ωx0
1 − d02 = 0;



• −ωx1 + ωx2 + d1 + d2 + ωx0
1 − ωx0

2 − d01 − d02 = 0.

If we use the quadratic template p =̂u1d
2
1 + u2d

2
2 + u0, we

can also get Np,f = 2, and the constraint for u is u1 − u2 =
0 ∧ u0 + u1(d

0
1)

2 + u2(d
0
2)

2 = 0 . Let u1 = u2 = 1 and we
obtain an invariant

d21 + d22 − (d01)
2 − (d02)

2 = 0 .

Using arbitrary semi-algebraic templates, we can generate
invariants beyond polynomial equations for (H, f ,Ξ), at the
cost of heavier computation.

8. CONCLUSIONS
In this paper, we present a sound and complete criterion
for checking SAIs for PDSs, as well as a relatively complete
method for automatic SAI generation using templates. Our
approach is based on the computable algebraic-geometry
theory. Our work in this paper actually completes the gap
left open in [27]. Compared with the related work, more
invariants can be generated through our approach. This is
demonstrated by simple examples and case studies.

In the future, we will concentrate on the following prob-
lems. Firstly, we believe that our method can be applied
to generate invariance sets for stability analysis, controller
synthesis and so on in control theory, in particular for con-
struction of Lyapunov functions. Secondly, we will consider
how to extend the approach to more general dynamical sys-
tems whose vector fields are functions beyond polynomials.
Since our approach makes use of first-order quantifier elim-
ination which is with doubly exponential cost [7], how to
improve the efficiency of our approach will be our main fu-
ture work. For instance of linear templates, it is helpful to
reduce the complexity via linear programming.

9. REFERENCES
[1] R. Alur and D. L. Dill. A theory of timed automata.

Theor. Comput. Sci., 126(2):183–235, 1994.

[2] R. Alur and et al. The algorithmic analysis of hybrid
systems. Theor. Comput. Sci., 138(1):3–34, 1995.

[3] F. Blanchini. Set invariance in control. Automatica,
35(11):1747–1767, 1999.

[4] C. W. Brown. QEPCAD B: A program for computing
with semi-algebraic sets using CADs. SIGSAM
Bulletin, 37:97–108, 2003.

[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[6] D. Cox, J. Little, and D.O’Shea. Ideals, Varieties, and
Algorithms: An Introduction to Computational
Algebraic Geometry and Commutative Algebra.
Springer, 1996.

[7] J. H. Davenport and J. Heintz. Real quantifier
elimination is doubly exponential. J. Symb. Comput.,
5(1/2):29–35, 1988.

[8] A. Dolzmann and T. Sturm. Redlog user manual -
edition 2.0, for redlog version 2.0. 1999.

[9] S. Gulwani and A. Tiwari. Constraint-based approach
for analysis of hybrid systems. In CAV’08, LNCS,
5123:190–203, 2008.

[10] W. M. Haddad and V. Chellaboina. Nonlinear
Dynamical Systems and Control: A Lyapunov-Based
Approach. Princeton University Press, 2008.

[11] J. He. From CSP to hybrid systems. In A Classical
Mind: Essays in Honour of C. A. R. Hoare,
Prentice-Hall International Series In Computer
Science, pages 171–189, 1994.

[12] T. A. Henzinger and et al. What’s decidable about
hybrid automata? In STOC’95, pages 373–382, 1995.

[13] S. Krantz and H. Parks. A Primer of Real Analytic
Functions. Birkhäuser Boston, second edition, June
2002.

[14] G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic
reachability computation for families of linear vector
fields. J. Symb. Comput., 32(3), 2001.

[15] J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou,
and L. Zou. A calculus for hybrid CSP. In APLAS’10,
LNCS, 6461:1–15, 2010.

[16] A. Platzer. Differential-algebraic dynamic logic for
differential-algebraic programs. J. Log. Comput.,
20(1):309–352, 2010.

[17] A. Platzer and E. M. Clarke. Computing differential
invariants of hybrid systems as fixedpoints. Form.
Methods Syst. Des., 35(1):98–120, 2009.

[18] A. Platzer and E. M. Clarke. Formal verification of
curved flight collision avoidance maneuvers: A case
study. In FM ’09, LNCS, 5850:547–562, 2009.

[19] S. Prajna and A. Jadbabaie. Safety verification of
hybrid systems using barrier certificates. In HSCC’04,
LNCS, 2993:477–492, 2004.

[20] S. Prajna, A. Jadbabaie, and G. J. Pappas. A
framework for worst-case and stochastic safety
verification using barrier certificates. IEEE
Transactions on Automatic Control, 52(8):1415–1429,
2007.

[21] A. Puri and P. Varaiya. Decidability of hybrid systems
with rectangular differential inclusion. In CAV’94,
LNCS, 3114:95–104, 1994.

[22] J.-P. Queille and J. Sifakis. Specification and
verification of concurrent systems in CESAR. In
Proceedings of the 5th Colloquium on International
Symposium on Programming, pages 337–351, 1982.

[23] E. Rodŕıguez-Carbonell and A. Tiwari. Generating
polynomial invariants for hybrid systems. In HSCC
2005, volume 3414 of LNCS, pages 590–605. Springer,
2005.

[24] S. Sankaranarayanan. Automatic invariant generation
for hybrid systems using ideal fixed points. In
HSCC’10, ACM, pages 221–230, 2010.

[25] S. Sankaranarayanan, H. Sipma, and Z. Manna.
Constructing invariants for hybrid systems. In
HSCC’04, LNCS, 2993:539–554, 2004.

[26] A. Taly, S. Gulwani, and A. Tiwari. Synthesizing
switching logic using constraint solving. In
VMCAI’09, LNCS, 5403:305–319, 2009.

[27] A. Taly and A. Tiwari. Deductive verification of
continuous dynamical systems. In FSTTCS09, LIPIcs,
4:383–394, 2009.

[28] A. Tarski. A Decision Method for Elementary Algebra
and Geometry. University of California Press,
Berkeley, 1951.



[29] M. Tenenbaum and H. Pollard. Ordinary Differential
Equations. Dover Publications, Oct. 1985.

[30] B. Xia. DISCOVERER: A tool for solving
semi-algebraic systems. ACM SIGSAM Bulletin,
41:102–103, 2007.

[31] L. Yang, C. Zhou, N. Zhan, and B. Xia. Recent
advances in program verification through computer
algebra. Frontiers of Computer Science in China,
4:1–16, 2010.

[32] S. Zhang. The General Technical Solutions to Chinese
Train Control System at Level 3 (CTCS-3). China
Railway Publisher, 2008.

[33] C. Zhou, J. Wang, and A. P. Ravn. A formal
description of hybrid systems. In Hybrid Systems III,
LNCS, 1066:511–530, 1995.


	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Our Contribution
	1.4 Paper Organization

	2 Preliminaries
	2.1 Polynomial Ideal Theory
	2.2 Semi-algebraic Set
	2.3 Continuous Dynamical System
	2.3.1 Trajectories of Continuous Dynamical System
	2.3.2 Polynomial Vector Field and Lie Derivatives


	3 Semi-algebraic Invariant
	3.1 Continuous Invariants of CDSwDI
	3.2 PDS and SAI

	4 Fundamental Results
	5 Generating SAI in Simple Case
	6 General Case
	6.1 Necessary and Sufficient Condition for CI
	6.2 Necessary and Sufficient Condition for SAI

	7 Case Study
	7.1 Formal Verification of CTCS-3
	7.2 Collision Avoidance Maneuvers

	8 Conclusions
	9 References

