
Safety-Assured Development of the GPCA Infusion Pump
Software ∗

BaekGyu Kim Anaheed Ayoub
Oleg Sokolsky Insup Lee

Computer and Information Science Dept.,
University of Pennsylvania

Philadelphia
Pennsylvania

USA
{baekgyu,anaheed,

sokolsky,lee}@cis.upenn.edu

Paul Jones Yi Zhang Raoul Jetley
OSEL, Center for Devices and Radiological

Health
U.S. Food and Drug Administration

Silver Spring
Maryland

USA
{PaulL.Jones, Yi.Zhang2,

Raoul.Jetley}@fda.hhs.gov

ABSTRACT
This paper presents our effort of using model-driven en-
gineering to establish a safety-assured implementation of
Patient-Controlled Analgesic (PCA) infusion pump software
based on the generic PCA reference model provided by the
U.S. Food and Drug Administration (FDA). The reference
model was first translated into a network of timed automata
using the UPPAAL tool. Its safety properties were then as-
sured according to the set of generic safety requirements
also provided by the FDA. Once the safety of the reference
model was established, we applied the TIMES tool to au-
tomatically generate platform-independent code as its pre-
liminary implementation. The code was then equipped with
auxiliary facilities to interface with pump hardware and de-
ployed onto a real PCA pump. Experiments show that the
code worked correctly and effectively with the real pump.
To assure that the code does not introduce any violation
of the safety requirements, we also developed a testbed to
check the consistency between the reference model and the
code through conformance testing. Challenges encountered
and lessons learned during our work are also discussed in
this paper.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: [Formal meth-
ods, Model checking, Validation]

General Terms
Design and Verification

Keywords
PCA infusion pump, model-based engineering, formaliza-
tion, verification, code synthesis, timed automata

1. INTRODUCTION
Infusion pumps are medical devices that deliver medicine

such as antibiotics, chemotherapy drugs, and pain relievers,
into a patient’s body in prescribed amounts for therapeu-
tic purposes. According to the Infusion Pump Improvement
Initiative of U.S. Food and Drug Administration (FDA) [18],

∗This research is supported in part by NSF CNS-0834524,
NSF CNS-0930647, NSF CNS-1035715, and NSF CNS-
1042829 (FDA SIR).

numerous adverse events have been reported that are asso-
ciated with the use of infusion pumps; some of the cases
resulted in serious injuries and deaths. Software defects are
implicated in many of these adverse events.

Researchers at the FDA have launched a Generic Infusion
Pump (GIP) project, to help address safety problems associ-
ated with infusion pump software. The goal of the project is
to develop a set of generic safety reference models that can
be used as reference standards and test harnesses to verify
the safety of infusion pump software [5, 11]. As an extension
to the GIP project, we concentrated on safety issues related
to Patient Controlled Analgesic (PCA) infusion pumps [4].
A PCA infusion pump allows patients to request additional
doses (called boluses) of pain-relief medication - beyond a
preset base dose (rate), by pressing a “request” button at-
tached to the pump. A preliminary hazard analysis, safety
requirements, and reference model, called the Generic PCA
(GPCA) model, are already released to the public [1, 2].

Model-driven development (MDD) is a software develop-
ment approach in which abstract models of software sys-
tems are created, analyzed for correctness, and systemati-
cally transformed to a concrete implementation [9]. In this
paper, we use MDD to establish an implementation of a
PCA infusion pump prototype based on the GPCA model
and safety requirements [1, 2]. Our approach is to: 1) for-
malize the model and the requirements using the UPPAAL
tool [7], 2) formally verify that the model satisfies the safety
requirements, and 3) use the TIMES tool [3] to generate code
out of the verified model. The platform-independent C code
produced by the TIMES tool is then extended with glue code
and installed on a real PCA pump hardware. The correct-
ness of the extended code is verified by conformance testing
on a testbed, which monitors the execution of the code and
compares it with the corresponding model execution. The
overall scheme of our approach is shown in Figure 2 and
further discussed in Section 3.

The main contributions of this paper are as follows:

• We present a case study of immediate practical im-
portance. The FDA Infusion Pump Improvement Ini-
tiative provides specific guidelines to infusion pump
manufacturers. We believe that our methodology may
provide an exemplar for the medical device industry
towards satisfying these guidelines.

• We discuss the challenges encountered applying a MDD
approach to the case study. In particular, the TIMES
tool generates code for closed systems which raises a
practical issue of interfacing an open system with its
environment at the deployment stage. We introduce
our approach to overcoming this issue by adding glue
code in order to keep the semantics of environmental
channels unchanged in the implementation.

• We categorize the informally stated GPCA safety re-
quirements into classes that require different handling
in the development process. Some requirements can be
formalized and verified at the model level. Verification
of some other requirements, on the other hand, cannot
be performed given the level of model detail. The rest
of the requirements are not formalizable, but can be
validated at the implementation level. We discuss han-
dling these different categories of requirements in our
development methodology.

This paper is organized as follows. First, the GPCA safety
requirements and GPCA model are introduced in Section 2.
Our approach is given in Section 3. Formal verification and
automated implementation are detailed in Sections 4 and 5,
respectively. Our testbed of the model-driven implementa-
tion and the testing results are shown in Section 6. Related
work is introduced in Section 7, followed by discussion and
future work in Section 8.

2. THE GPCA PROJECT
This section describes the GPCA Safety Requirements

and the GPCA model that our work relies on.

2.1 The GPCA Safety Requirements
The GPCA safety requirements [2] were derived from an

analysis of hazards encountered in the use of PCA infusion
pumps on the market. They serve to establish a minimum
degree of safety for these devices. The hazards, and hence
safety requirements, were developed primarily from an ab-
stracted software system perspective, permitting total free-
dom in actual device implementation.
Two examples of the GPCA safety requirements are de-

fined as follows:

• No normal bolus doses should be administered when
the pump is alarming.

• If the calculated volume of the reservoir is y ml, and
an infusion is in progress, an Empty Reservoir alarm
shall be issued.

As shown in these two examples, all requirements are spec-
ified in natural language and may contain symbolic param-
eters, e.g., y in the second example, to meet the needs of a
wide range of PCA pump classes.
Our development process needs to ensure that the GPCA

implementation satisfies the safety requirements. The first
step is to formalize the requirements as temporal formulae
in the syntax of the UPPAAL model checker. Formalized
safety requirements are used not only to verify the GPCA
model but also to build test cases for the GPCA implemen-
tation in the validation phase.
Unfortunately, not all safety requirements can be formal-

ized as temporal logic formulae or directly verified against
the GPCA model. We discuss this in later sections.

State Controller

Figure 1: System Architecture of the GPCA Model

2.2 The GPCA Model
The GPCA model is an abstract representation of com-

mon behaviors shared by typical PCA pump software. The
model is built using Mathworks Simulink [16] and State-
flow [17]. As shown in Figure 1, the GPCA model consists
of two state machines - the State Controller and the Alarm
Detecting Component. The primary purpose of the State
Controller is to regulate the rest of the pump to fulfill its
expected functionality, i.e., administering the right drug to
the right patient at a right rate and dosage. On the other
hand, the Alarm Detecting Component serves as an inter-
face to receive surveillance signals, e.g., ambient tempera-
ture, from hardware sensors. It should also notify the State
Controller of any anomaly in the signals received, so that
the State Controller can react to the anomaly promptly.

In this paper, we concentrate on the State Controller be-
cause it embodies the core functions of PCA pump software.
The State Controller receives infusion requests from the user
through a user interface and instructs the pump motor to
deliver medication accordingly. It also provides additional
functions to ensure the smooth and correct operation of the
pump, including checking patient information, checking the
correctness of infusion programs, guiding the user on how
to use the device, notifying the user of unsafe conditions via
alarms, and so on. A detailed description of the model is
given in [1].

The GPCA State Controller consists of four parts - Power-
On-Self-Test (POST), Check Drug Routine, Infusion Con-
figuration Routine and Infusion Session Submachine - cor-
responding to four typical steps in infusion processes.

• The POST, triggered by turning the power on, includes
self-tests of processors and memory, critical circuitry,
indicators, displays, and alarms to ensure that the de-
vice is ready for use.

• The Check Drug Routine checks drug type and con-
centration to make sure that the right drug is loaded.

• The Infusion Configuration Routine enables the user
to input and adjust infusion parameters. A typical in-
fusion programming instance requires the user to de-
fine the dose rate and dosage, i.e., volume to be in-
fused (VTBI). To reduce potential dose errors, this
submachine also checks the input infusion parameters
against a pre-loaded drug library. If these parameters
are deemed unsafe based on the drug library, the sub-
machine would prompt the user to either reconfigure
them or abort the infusion.

• The Infusion Session Submachine abstracts how soft-
ware coordinates the rest of the pump to complete the
infusion process. The user may change the pump ad-
ministration process, such as canceling or suspending
the infusion, requesting boluses, adjusting infusion pa-
rameters, resetting or disabling alarms, etc. The In-
fusion Session Submachine has to correctly interpret
user inputs and adjust pump operation accordingly.

The behavior of these subsystems within the GPCA State
Controller is expressed in Stateflow state-transition charts,
which in total consist of more than 50 states and 100 tran-
sitions. The control flows of these charts depend on about
50 user events and hardware conditions.

3. OUR APPROACH
We pursued a model-driven approach in the development

of the GPCA prototype, which relies on formal modeling
and analysis tools. Through this approach, we expect to
find any incompleteness in the GPCA model or any of its
violations to the safety requirements, and further to auto-
matically generate code from the verified model. In this
section, we introduce how the GPCA safety requirements
and the GPCA model are used in developing the GPCA
prototype.
Figure 2 shows our approach; given the GPCA Simulink/S-

tateflow model, a UPPAAL model was constructed using a
manual translation process. Along with functional and ar-
chitecture requirements, safety requirements were also man-
ually translated into temporal logic formulae using the UP-
PAAL query language. The UPPAAL model was then for-
mally verified, by using the UPPAAL model checker, to as-
sure that it satisfies all the formalized safety requirements.
Once the safety of the UPPAAL model was assured, we

used the TIMES tool to synthesize it into C code. An advan-
tage of using the TIMES tool is that it guarantees behavioral
consistency between the synthesized code and the UPPAAL
model. The TIMES tool generates either BrickOS platform
code or platform independent code1. We chose to generate
platform-independent code, and then customized it for our
particular target platform. We introduced glue code that
invokes platform-dependent system calls to interface with
the platform-independent code on our target platform. In

1We note that the TIMES tool is for generating real-time
task scheduling where timed automata are used for task ar-
rival, execution time, deadline. However, we are only using
the timed behavior of automata and synchronization. Our
proposed methodology is equally applicable with other code
generators/synthesizers from timed automata.

GPCA Safety Requirements
GPCA Model

(Simulink/Stateflow)

Manual translation Manual translation

UPPAAL Queries UPPAAL Model

Formal Verification

Verification Result (Yes/No)

Code-Synthesis

(TIMES tool)

Manual

Implementation

External Channels

Clock Source

Glue-Code
Platform-Independent Code

(C code)

Code-Interfacing

Compilation

Executable Image

of the target platform
Validation

Test sequences

Test sequences

Model Trace

Implementation

TraceValidation Result

Figure 2: The Model-Driven Development for the
GPCA prototype.

particular, the glue code provides a clock source implementa-
tion that provides the timing semantics of timed automata.
Further, the glue code is used to implement communication
channels between the GPCA code and its platform environ-
ment. The glue code is described in more detail in Section 5.

In order to validate the synthesized GPCA implementa-
tion, we developed a tester that consists of two primary
parts: 1) an input generator that fed the implementation
with environmental stimulus, such as user inputs or hard-
ware conditions, and 2) a monitor that observed the runtime
behavior of the implementation relative to the particular
stimulus. The observed runtime behavior was then com-
pared with the execution of the UPPAAL model using the
same stimulus (conformance testing) illustrated as dotted
lines in Figure 2. The safety requirements were also used
to produce testing scenarios that were used as input to the
tester.

The next three sections explain the steps of our model-
driven approach: formal verification, automated implemen-
tation, and validation.

4. FORMAL MODELING AND VERIFICA-
TION

Formalization of the GPCA model. We transformed
the GPCA model expressed in Simulink and Stateflow into
a network of UPPAAL automata through a manual process.
To retain as much of the syntactic structure of the Stateflow
model as possible, the transformation maintained one-to-
one mapping between states, conditions, actions, and tran-
sitions in the two models. It is noted that our transformation
process is not intended to have a precise replication of the
Simulink/Stateflow model by overcoming all the semantic
differences between two models. Instead, we reconstructed
the general functions of the Simulink/Stateflow model in the
UPPAAL model, which was formally verifiable against the
GPCA safety requirements.

The GPCA Stateflow model is organized hierarchically as
four sequentially connected state machines. Each of these
four state machines has a final state that sets a special con-
dition variable when it is entered. This condition variable

triggers the execution of the model transition from this state
machine to the next. While it is possible to combine the four
state machines into a single UPPAAL automaton, we chose
to model them separately, preserving the model structure.
Condition variables are also used in the Stateflow model to
represent inputs. These variables are set by the model en-
vironment and trigger transitions between states. Each of
such variables was kept in the UPPAAL model in the format
of communication channels that triggers the corresponding
transitions in the model.
Most states and transitions in both the GPCA Stateflow

model and UPPAAL automata have accompanied actions.
For example, if one of the models is in the Alarm-Empty-
Reservoir state, it is expected to launch an alarm to inform
the empty-reservoir condition. Such accompanied actions
also need to be implemented when code is generated from the
models. For example, the action of raising an alarm when
the model is in the Alarm-Empty-Reservoir state should be
implemented as sending an electric signal to the pump’s
buzzer to make an appropriate alarming sound. Fortunately,
since we forced the generated code to inherit the structure
of the UPPAAL automata, it became easier to implement
the accompanied actions.
During the transformation, we also had to introduce quan-

titative timing information into the UPPAAL model. The
GPCA Stateflow model contains timeout transitions, but
constraints triggering timeout transitions are not specified.
We introduced a clock shared by all UPPAAL automata to
capture the progress in time. Then, we added invariants to
the automata locations and extended transition guards to
enforce timeout constraints. The timeout constraints were
derived from the GPCA safety requirements and instanti-
ated with specific values when used in UPPAAL models.
We now describe the four UPPAAL automata that corre-

spond to the four parts of the GPCA model. Due to space
limitation, we only present the time automata for the In-
fusion Configuration Routine and the Infusion Session Sub-
machine.

The POST Session. The GPCA model abstracts rele-
vant testing procedures into a state, called POST, which
is mapped to the POST-In-Progress state in the UPPAAL
model. An exception state is entered if the POST check
fails or stalls for a certain period of time. The GPCA safety
requirements related to the POST session are:
◦ No bolus dose shall be possible during the POST.

◦ The POST shall take no longer than t seconds.
We noted that the second requirement cannot be checked at
the model level, since the details of actual POST operations
and times they take are abstracted away. Instead, we inter-
preted the requirement to mean that if POST does not com-
plete within t seconds, the pump enters into an alarm state.
This interpretation is consistent with the GPCAmodel, which
includes an alarm state in the POST session that is entered
by a timeout transition.

The Check Drug Routine. This automaton goes through
a series of checks such as checking drug types. The result of
each check is decided by the user, and can take one of the
two possible outcomes: a successful outcome will move the
automaton to a state where the next check can be performed,
while an unsuccessful one raises an alarm to be displayed by
the user interface.

Figure 3: The Infusion Configuration Routine.

The Infusion Configuration Routine. Figure 3 shows
the UPPAAL model of the Infusion Configuration Routine.
This model describes a workflow that a caregiver goes through
to setup an infusion administration program (i.e. prescrip-
tion). Two infusion parameters are specified in the Infusion
Configuration Routine: dose rate and VTBI, both of which
must be set before the model enters into the Infusion Ses-
sion Submachine. The routine raises alarms if the entered
parameter values exceed the soft or hard limits specified in
a drug library. Relevant GPCA safety requirements are:

◦ The pump shall include a programmable drug library
configurable according to patient type (adult, pedi-
atric, etc.) and care area (home care, ambulatory,
clinic, etc.).

◦ If the programmed infusion parameters exceed the up-
per or lower hard/soft limits, the pump shall issue an
alarm and prompt the user to revise the parameters.

◦ If the pump is idle for t minutes while programming
an infusion prescription, the pump shall issue an alert
to indicate that the user needs to finish programming
and start infusion.

The first requirement cannot be formalized, but can be
validated by design review. The remaining two require-
ments, on the other hand, can be formalized and verified in
the UPPAAL model. We note that the GPCA model does
not specify a timeout on the states that require user inputs
such as ChangeDoseRate or ChangeVTBI. This is one of the
places that we added timeout values and extended transition
guards to capture the safety requirements.

The Infusion Session Submachine. Figure 4 is the UP-
PAAL model of the Infusion Session Submachine. The Infu-
sion Session Submachine is entered after acceptable infusion
parameters have been set. The pump performs the infusion
in the Infusion-NormalOperation state. Code to control the
pump reacts to multiple user requests or failure conditions.
In particular, 1) a patient can request a bolus during the
ongoing infusion as reflected by the E-RequestBolus event;
2) the caregiver can pause a current infusion by pressing
a pause button that triggers event E-PauseInfusion; 3) an

empty-reservoir condition (condition Cond-6-3) occurs if the
remaining volume of the drug reservoir is less than a pre-
specified threshold; and 4) the condition Level-Two-Alarm
should be processed if a hardware failure such as the drug
reservoir door is open or an occlusion is detected. Tran-
sitions caused by failure conditions must take precedence
over those caused by user events. To implement this rule,
we gave higher priority to the transitions triggered by failure
conditions such as Cond-6-3 or Level-Two-Alarm over the
transitions triggered by user events such as E-RequestBolus
or E-PauseInfusion. Relevant GPCA safety requirements
are:

◦ The pump shall issue an alert if paused for more than
t minutes.

◦ If the calculated volume of the reservoir is y ml, and
infusion is in progress, an Empty Reservoir alarm shall
be issued.

Note that the second requirement affects both the Infusion
Session Submachine and the Alarm Detecting Component,
which performs volume calculations and sets the low-volume
condition (Cond-6-3). Since the latter component is not
modeled in our case study, the requirement is restated as: if
condition Cond-6-3 is set and an infusion is in progress, an
Empty Reservoir alarm shall be issued.

Formalization of safety requirements. The GPCA safety
requirements are translated into temporal logic formulae ex-
pressed in the UPPAAL query language. For example, con-
sider the safety requirement, No bolus dose shall be possible
during the POST. This requirement can be captured by the
following temporal logic formula:

A[] (! (POST.POST-In-Progress && ISSM.BolusRequest))

where the word No is mapped to the logic operator !(not),
POST.POST-In-Progress is a variable reflecting whether or
not the model stays in the POST state, and the variable
ISSM.BolusRequest is used to indicate if a bolus request is
issued. Lastly, the temporal quantifier A[] (invariantly)
enforces the above formula to be satisfied by the model in
all its executions.
The requirement, The pump shall issue an alert if paused

for more than t minutes, is formalized as a leads to formula
in UPPAAL. The leads to form can express a property like
whenever a certain condition is satisfied, then eventually
another condition will be satisfied. The following temporal
logic formula captures this safety requirement.

(ISSM.InfusionPaused && x1 > MAX-PAUSED-T) →
ISSM.Alrm-TooLongInfusionPause

whereMAX-PAUSED-T is the instantiated time unit from
t minutes in the safety requirement. Several more exam-
ples of requirement formalization are shown in Table 1. The
current GPCA safety requirements contain 97 requirements.
We translated 20 requirements into temporal logic formu-
lae, and verified them in the UPPAAL model. All of these
requirements are satisfied by the GPCA UPPAAL model.
The remaining requirements either could not be expressed
as temporal logic formulae or could not be verified on the
GPCA model. In Section 8, we present our categorization
of GPCA requirements and discuss the manipulation of dif-
ferent categories of these requirements.

Table 1: Mapping between Safety Requirements and
Safety Properties
Category Safety Requirement(SR) / Safety

Property(SP)

SR 1.4.3 No normal bolus doses should be administered
when the pump is alarming (in an error state).

SP A[](! (ISSM.BolusRequest && CDR.Alrm-
UnknownDrug))

SR 3.4.3 The POST shall take no longer than t seconds.
SR (POST.Post-In-Progress && x1 > MAX-POST-

WAIT) → POST.Alrm-POSTFailure
SR 1.5.6 If the calculated volume of the reservoir is y ml,

and an infusion is in progress, an Empty Reservoir
alarm shall be issued.

SP (ISSM.Infusion-NormalOperation && Cond-6-3
== true) → (ISSM.Alrm-EmptyReservior)

SR 2.2.4 If the pump is idle for t minutes while program-
ming a dose setting, the pump shall issue an alert
to indicate that the user needs to finish program-
ming and start infusion.

SP (ICR.ChangeDoseRate && x1 > MAX-
WAIT-INPUT-T) → (ICR.Alrm-LongWait-
ChangeDoseRate)

5. CODE SYNTHESIS AND ADAPTATION
Applying the automatic code synthesis to the GPCA im-

plementation is introduced in this section. The TIMES tool
is used to generate source code from the formal model. The
generated code uses glue code to interface with the target
platform. The glue code for the environmental channel is
explained.

5.1 Automated Implementation with TIMES
Manual implementation of embedded system software is

error prone due to the large number of control states and va-
riety of events that the code needs to react to. An automated
implementation improves the quality of embedded software
in that it reduces human errors while retaining the bene-
fits of model verification. The current UPPAAL model has
more than 50 states and 100 transitions, and reacts to over
50 conditions and user events. Even a moderately complex
application such as this is difficult to implement manually
without introducing significant errors.

TIMES is a tool suite for symbolic schedulability analysis
and synthesis of executable code with predictable behavior
for real-time systems [3] . We use its code-synthesis func-
tion to translate the behavior of the UPPAAL model into
source code. The tool generates C code that is either plat-
form independent or specific to brickOS operating system
running on the LEGO Mindstorm platform. We adopted
the platform-independent version and then instrumented it
to run on our target platform. We briefly explain the code-
synthesis scheme of the TIMES tool to help in understanding
the glue code in the next subsection.

In the code-synthesis scheme of the TIMES tool, transi-
tions in a timed-automata model are stored in an array of
type trans-t. The data structure trans-t contains four fields
to represent transitions: an active transition flag, a source-
location-id, a destination-location-id, and a synchronization-
id. The active transition flag is an indicator that the transi-
tion needs to be evaluated in the current state. For example,
in the InfusionPaused state in Figure 4, two transitions are
active: a transition to the Infusion-NormalOperation state

Figure 4: The Infusion Session Submachine.

and a transition to the Alrm-TooLong-InfusionPause state.
The eval-guard function evaluates guards of active transi-
tions. If guards for multiple transitions from a same state
are satisfied, one of these transitions will be taken accord-
ing to their order in the trans-t array: a transition with
a lower index has a higher priority. The source-location-
id and the destination-location-id are used to specify the
origin and destination states of a single transition, respec-
tively. Once a transition t is taken, transitions indexed by
t’s source-location-id are deactivated by setting their ac-
tive fields to false. In contrast, transitions indexed by t’s
destination-location-id are activated so that the new active
transitions can be processed in the next iteration of the eval-
uation of guards. The synchronization-id indicates that a
transition contains a channel synchronization with another
complement transition. The check-trans function shown in
Listing 1, automatically generated by the TIMES tool, im-
plements the behavioral flow of timed automata based on
the trans-t data structure.

5.2 Communication with the environment
The platform-independent code generated by the TIMES

tool needs to be ported to the target platform in a way
that preserves the semantics of timed automata. Two kinds
of glue code are needed to interface with the platform inde-
pendent code: code implementing the clock source for timed
automata and code implementing synchronous channels for
communication with the environment. For the clock source,
we introduced a platform-specific system call to implement
the notion of time that can be used by the platform inde-
pendent code. In this section, we concentrate on the glue
code for external communication, addressing a practical is-
sue in using the TIMES tool. As mentioned earlier, TIMES
generates code for a closed system, but we are working with
an open system that communicates with its environment.

As in common practice, we modeled the GPCA environ-
ment as another automaton in order to close the model.
We used UPPAAL channels to capture communication be-
tween the GPCA system and its environment. We used a
very general environment model, which can send an input
action at any moment and is always ready to accept any
output action. This allows us to verify whether the safety
requirements are satisfied regardless of the user behavior or
hardware events.

Of course, the GPCA implementation should not contain
code for the environmental model. One approach is to gen-
erate the code with both the environmental model and the
GPCA model using the TIMES tool, and then eliminate the
code of the environmental model. However, it turned out
that the code generated by TIMES was tightly coupled, and
it was difficult to manually separate out the environment
code without affecting the correctness of the GPCA code.

Listing 1: pseudo-code of check-trans
1 function check−t rans
2 for each t r a n s i t i o n t ∈ trans-t array
3 if t i s a c t i v e and eval-guard(t) i s t rue
4 if t conta in s a channel synchron i za t i on .
5 if the re e x i s t s a t ’ s complement t ran s i−
6 −t ion , t’ , and eval-guard (t’) i s t rue
7 assign(t) and assign(t’)
8 endif
9 else if t has no channel synchron i za t i on }

10 assign(t)
11 endif
12 endif
13 endfor
14 endfunction

The check-trans function in Listing 1 evaluates transitions
defined in the model using the eval-guard function. Note
that if a transition t in the GPCA model contains channel

synchronization such as E-RequestBolus?, check-trans tests
the complement transition t′, which in this case would be
defined in the environmental model. This process is de-
scribed in lines 3-8 of Listing 1. The generated code would
have to be modified in many different places to account for
communication channels, which communicate with the en-
vironment.
We took an alternative approach to overcome the difficulty

of decoupling the environment model from the GPCAmodel.
We generated source code only for the GPCA model by re-
placing the environmental channels with state variables. For
example, synchronization of E-RequestBolus? on a transition
was replaced with a guard, E-RequestBolus== true, and an
update action, E-RequestBolus:= false. The evaluation of
the guard was done in line 3, and the update action was
evaluated in lines 9-11 of Listing 1. Then, the environment
automaton was removed from the model before code gener-
ation. Note that channels internal to the model were not
affected and were processed according to the TIMES logic.
In addition, we needed to implement a software routine to

receive user events, and interface this routine to the platform-
independent code. For this part, another thread Impl(Ain),
where Ain defines user input, was created to process a user
input at the front end. Listing 2 shows the pseudo-code of
Impl(Ain). After receiving a user request, this front-end
thread passes the request to the model thread, denoted as
Impl(M), through shared variables. For example, when a
user presses the bolus request button, Impl(Ain) sets E-
RequestBolus to true. In parallel to Impl(Ain), Impl(M)
waits until a guard of the communication transition becomes
true, and resets E-RequestBolus to false after processing the
bolus request event. However, according to the synchro-
nization semantics, a transition with the synchronization E-
RequestBolus! can be taken only if the GPCA model is in
a state where it can perform E-RequestBolus? synchroniza-
tion. If a pump is not in such a state, the request is ignored.
In general, this may lead to desynchronization between the
system and its environment; in the case of handling user in-
put, this is appropriate. The Impl(M) thread informs the
Impl(Ain) thread of its state using a shared variable, and
checks it in line 4 of Listing 2.
We argue that the generated code preserves the behav-

iors of the UPPAAL model. Indeed, the interaction with
the environment using the shared-variable implementation
may happen only when synchronization over communica-
tion channels is used in the model. Checking the state of
the GPCA model before accepting the request ensures this.
By atomically resetting the shared variable, we ensure that
no events that should be responded to are missed, and that
“old” events that have been already processed would not af-
fect the system again.
Ideally, code synthesis tools should support modular gen-

eration. If so, separating the system from its environment,
after the closed-system verification, would be straightfor-
ward. In our experience, this is the most error-prone aspect
of a model-based development that relies on systematic code
generation.

Listing 2: glue code for environmental channels
1 function exte rna l−channel−thread
2 exte rna l−event ← recv−exte rna l−channel ()
3 if (exte rna l−event i s a bo lus r eque s t)
4 if (Impl(M) i s in the InfusionNormal−

GPCA State Machine
(OMAP 3530)

TCP/IP Connection
(to Monitor)

User Interface

Sensor/Actuator

Controller
(Atmega1281)

RS232 Connection
(to Controller)

Figure 5: The GPCA Prototype System.

5 Operation s t a t e)
6 E−BolusRequest ← t rue
7 endif
8 endif
9 endfunction

6. TESTBED : THE GPCA PROTOTYPE
Infusion pumps rely on hardware components to reduce

the risk of harm, such as stepper motors to administer pre-
cise amounts of drugs to patients, sensors to detect an empty
reservoir, air-in-line sensors to detect air bubbles in the drug
flow, and so on. We built a testbed in order to test our
UPPAAL implementation of the GPCA Simulink/Stateflow
model. Figure 5 shows the current version of the GPCA
infusion pump prototype. This prototype is equipped with
software routines that control sensors and actuators. To
build it, we obtained a used infusion pump and reused its
hardware. The pump contains a stepper motor, with the At-
mega1281 processor performing low-level control of the mo-
tor. The pump hardware also contains a buzzer that sounds
alarms and sensors that detect environmental conditions
such as temperature and humidity. In our future work, more
sensors will be attached to detect additional infusion prob-
lems. Our GPCA software implementation is running on an
OMAP3530 processor running Linux OS. POSIX threads
are used for parallel executions of the GPCA State Con-
troller Impl(M), the front-end of the environmental channel
Impl(Ain), event logging, and RS-232 communication with
the sensors and the motor controller.

Although automatic code generation procedures ensured
that our GPCA pump implementation inherited the struc-
ture of the UPPAAL model, the existence of the glue code,
including code implementing environmental channels and
control over actual hardware peripherals, required the final
implementation to be comprehensively validated. Since not
all of the requirements could be formalized and directly ver-
ified against the final implementation, it became necessary
to use testing to achieve sufficient confidence in our sys-

tem. Based on this observation, we implemented a tester in
a physically isolated system, which facilitated conformance
testing in an Internet environment to check the runtime be-
havior of the GPCA system.
The tester communicates with the GPCA system using

a communication protocol over a TCP/IP connection. The
protocol provides compact encoding of signals and values ex-
changed between the tester and the GPCA system. Through
this communication protocol, the tester is fully capable of
observing the outputs of the GPCA system and providing
any stimulus that the GPCA system may expect. The stim-
uli include both user actions and hardware conditions. In
addition, the GPCA system reports the current state to the
tester at regular intervals. All states of the GPCA model are
encoded as one-byte values in the communication protocol.
Our testing strategy is shown in Figure 2 with dotted

lines. Test scenarios are selected based on the GPCA safety
requirements. Suppose, the safety requirement, The pump
shall issue an alert if paused for more than t minutes, is to
be tested. This scenario is used to build a test sequence for
the model and the implementation. First, the tester drives
the GPCA system to a particular state from which the val-
idation of the requirement can start. In particular, if state
V-Init is needed so that the validation of a certain safety
requirement can start, we query the UPPAAL tool to verify
the property A[](!V-Init) against the model. If V-Init is
reachable from the initial state of the GPCA model, UP-
PAAL would return a counterexample, which can be used
to infer an input sequence to drive the system to V-Init [10].
With such a technique, we acquire an input sequence and use
it to drive the GPCA system to the InfusionPaused state.
Once in the InfusionPaused state, the tester delays for t1
minutes, where t1 > t, and watches if the system transitions
to the desired Alrm-TooLongInfusionPause state. The vali-
dation result, as shown in Figure 6, proves that the GPCA
system hits the Alrm-TooLongInfusionPause state after the
delay and hence conforms to the safety requirement.
Although our current tester implementation relies on a

manual testing procedure, many aspects of it can be auto-
mated. In Section 8, we explain our future work to extend
the manual testing procedure to an automated one with a
tool support using UPPAAL-TRON.

7. RELATED WORK
General issues of a model-driven approach are summa-

rized in [15]. There are several approaches that have been
proposed to overcome these issues. JAHUEL [6], for ex-
ample, was proposed as a compilation tool chain to gen-
erate code that bridges the semantic gap between platform-
independent modeling and platform-specific implementation.
However, the system description language of JAHUEL, called
FXML, does not support verification of behavioral aspects.
A UML-based approach was studied in [8] to model and syn-
thesize code for hard real-time systems. This work proposes
to use UML notations to describe a system independent of
its particular platform, and then map the description to a
platform-specific model before synthesizing code. In partic-
ular, this methodology focuses on specifying hard real-time
constraints like WCET and upper bounds for reaction times.
However, this methodology is not suitable for our case study,
because we want to ensure that safety properties are satisfied
by all possible executions of the model.
On the other hand, some other approaches strived to en-

Injecting drugs

Pause button

Yes, Pause

Alarm!

Stop infusion

session.

Figure 6: The implementation trace of the GPCA
prototype.

hance the safety in medical devices from the perspective of
software product lines. One example is the work presented
in [14], which integrates product-line safety analysis with
model-based development. This work uses the Rhapsody
tool to develop executable UML models for the purpose of
modeling and verifying medical device software. Although
this work involved modeling, verification and code-synthesis
that we discussed in our paper, it did not describe a method-
ology for how a concrete implementation can be obtained
and validated from the model.

8. DISCUSSIONS AND FUTURE WORK
This section discusses a few issues that we faced while

applying formal methods to the development of a GPCA
infusion pump implementation, and proposes future direc-
tions.
The categorization of safety requirements. Our work
focused on applying formal techniques to establish a safety-
assured implementation from the GPCA reference model
(Simulink and Stateflow) and GPCA pump safety require-
ments, which were provided by FDA, and can be found
at [1]. During the process of formalizing the GPCA pump
Simulink/Stateflow model, we faced a significant challenge in
that the GPCA model lacks sufficient details. This makes it
somewhat impractical to verify the model against the generic
safety requirements.

As mentioned earlier, not all GPCA requirements are di-
rectly formalizable and verifiable. We divided these safety
requirements into four categories.

◦ Category 1 : Safety requirements that can be formal-
ized and verified in the UPPAAL model.

◦ Category 2 : Safety requirements that can be formal-
ized, but the GPCA Simulink/Stateflow model needs
additional information to verify them.

◦ Category 3 : Safety requirements that cannot be for-

Table 2: Categorization of GPCA Safety Require-
ments

Category 2
SR 1.5.4. Reservoir amount remaining shall be re-

calculated at the beginning of every bolus dose.
SR 1.6.2. If the suspend occurs due to a fault condition,

the pump shall be stopped immediately with-
out completing the current pump stroke.

Category 3
SR 1.4.2. The flow rate for the bolus dose shall be pro-

grammable.
SR 1.11.3. Each log entry shall be stamped with a corre-

sponding date/time value.
Category 4

SR 1.1.3. Flow discontinuity at low flows (f ml/hr or less)
should be minimal.

SR 5.1.7. A clear indication should be displayed any
time the drug library is not in use.

malized, but can be validated at the implementation
level.

◦ Category 4 : Safety requirements that cannot be for-
malized because they address issues related to the am-
bient environment of the pump or they are vague in
description.

Out of 97 safety requirements, we identified 20 require-
ments as Category 1; 23 as Category 2; 31 as Category 3;
and 23 as Category 4. This means that we cannot verify all
safety requirements just using formal methods.2 The safety
requirements in Category 1 were addressed in Table 1. We
discuss Categories 2 through 4 with examples of the safety
requirements shown in Table 2.
For safety requirements in Category 2, the GPCA Simulink/

Stateflow model is not detailed enough to verify them. A
major reason for this is that the GPCA Simulink/State-
flow model relies on a different level of abstraction from
that of the safety requirements. For example, the GPCA
Simulink/Stateflow model does not describe detailed func-
tions related to the calculation of the remaining reservoir
amount, which is mentioned in SR 1.5.4. However, the
model can specify a placeholder that guides a programmer
to fill the functionality at the implementation level. In par-
ticular, the model can provide a function interface, calculate-
remaining-amount(), as a placeholder on a certain transition
or state, and then a detailed calculation procedure can be
implemented in this placeholder. SR 1.6.2 cannot be cap-
tured by the GPCA model since the behavior of pump stroke
is not detailed enough. Unlike SR 1.5.4, the GPCA model
should have multiple placeholders that have dependencies on
each other in different places to guide a programmer to im-
plement details of the pump stroke and suspension. In this
case, rather than using the placeholder approach directly, it
makes more sense to extend the model to a lower level, e.g.,
providing states that describes the pump stroke, so that a
placeholder can guide a programmer to implement the cor-
responding features independent from other placeholders.
Safety requirements in Category 3 cannot be formalized

regardless of the abstraction level of the GPCA Simulink/S-
tateflow model. Even if these requirements were formal-
ized in any form, the meaning of the formal property would

2We plan to integrate our study into a future release of the
GPCA safety requirements and the GPCA model.

be difficult to verify in the context of the safety require-
ments. For the safety requirements in Category 3, develop-
ers will need to spend time validating them at the imple-
mentation level rather than trying to formalize them. For
example, SR 1.4.2 requires a system to have the functionality
to maintain flow-rate information in memory so that it can
be modified on demand. Since this requirement describes
implementation-specific functionality, developers need to as-
sure this requirement at the implementation level through
validation instead of formal verification.

Lastly, safety requirements in Category 4 are too vague,
so they can neither be formalized for verification nor be val-
idated at the implementation level. For example, the defini-
tions of minimal and a clear indication are not clear. These
requirements need to be clarified and improved before they
can be formally verified at the model level or validated at
the implementation level.

Uncertainties in GPCA requirements. As mentioned
in Section 4, all safety properties checked on the formalized
GPCA UPPAAL model were satisfied. However, we had
to make several state and transition changes to the GPCA
model to ensure that verification was possible. Interestingly,
this does not necessarily mean that the GPCA model is in-
correct with respect to the requirements. Instead, it points
to the incomplete requirements traceability in the existing
GPCA Simulink/Stateflow model. Consider, for example,
the following requirement: If the pump is in a state where
user input is required, the pump shall issue periodic alerts
every t minutes until the required input is provided. For
each user input, this requirement can be addressed in two
ways. The first way is to handle the requirement completely
in the user interface component of the pump. In this case,
the State Controller component will passively wait until the
input is provided. Thus the above requirement becomes ir-
relevant for the case study since the user interface was not
modeled. The second way to handle the above requirement
is to handle it in the State Controller, as the State Con-
troller is responsible for keeping track of the pump’s status.
However, the GPCA model does not provide this functional-
ity for some user events such as E − ChangeDoseRate and
E − StartInfusion in its Infusion Configuration Routine.
To capture this requirement in the GPCA UPPAAL model,
we had to add timeout transitions in the respective states.
These timeout transitions lead to a new state where the user
interface component would be notified to display the alert,
and the State Controller would return to waiting for the re-
quired input.

The necessity of online testing. Model checking cannot
completely replace testing, since deployed systems not only
interact with real environments, but also contain many fac-
tors that cannot be formalized, such as platform-dependent
APIs. In general, test suites that form input sequences to the
target system are generated based on system requirements or
specifications. Then, test-case execution validates whether
the system output agrees with the predicted one [13].Our
testing methodology introduced in Section 6 manually gener-
ates test suites based on the safety requirements. We believe
that automation in testing can enhance the contribution to
safety in infusion pump systems.

One of the tools that facilitates automated testing is the
UPPAAL-TRON tool. It performs conformance testing of
timed systems [12] and is based on the same formalism that

we used in our development approach. The environment,
e.g., users, is modeled along with the specification, e.g., the
GPCA model; this information is fed into UPPAAL-TRON
for establishing input-output conformance with the target
system, e.g., the GPCA implementation. The UPPAAL-
TRON checks whether the GPCA implementation conforms
with the model when the implementation is running under a
certain environmental assumption defined in the user model.
We expect that this systematic online testing can reduce

test costs while providing reasonable test coverage, and ul-
timately contribute to the safety of infusion pumps.

Improvements for manual translation. Our translation
procedure from the GPCA Simulink/Stateflow model to the
UPPAAL model is manual because there is no translation
tool from Simulink and Stateflow to UPPAAL models. If
there were a tool that automated translation between the
two tool systems, it could lead to more reliable modeling
and verification processes.

9. CONCLUSION
We present our case study which applies model-driven

development to GPCA infusion pump safety requirements
and the GPCA Simulink/Stateflow model. This case study
serves to illustrate how model-driven development can im-
prove the safety of infusion pump systems. Our future work
is to extend the current GPCA UPPAAL model to capture
the entire GPCA Simulink/Stateflow model. In particular,
the Alarm Detecting Component in the GPCA model is not
discussed in this paper. Another direction for study is to
develop a systematic method that can be used to close the
gap of code generation/synthesis that is based on the notion
of a closed system. This is an important gap to fill since
many life-critical systems like medical devices operate in an
open environment.

10. ACKNOWLEDGMENT
We would like to thank David Arney for his contribution

on the GPCA model and safety requirements.

11. REFERENCES
[1] The generic patient controlled analgesia pump model.

http://rtg.cis.upenn.edu/gip.php3.

[2] Safety requirements for the generic patient controlled
analgesia pump. http://rtg.cis.upenn.edu/gip.php3.

[3] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson,
and W. Yi. TIMES: a tool for schedulability analysis
and code generation of real-time systems. In
FORMATS, 2003.

[4] D. E. Arney, R. Jetley, P. Jones, I. Lee, A. Ray,
O. Sokolsky, and Y. Zhang. Generic infusion pump
hazard analysis and safety requirements version 1.0.
Technical report, University of Pennsylvania, February
2009. Department of Computer and Information
Science Technical Report No. MS-CIS-08-31.

[5] D. E. Arney, R. Jetley, P. Jones, I. Lee, and
O. Sokolsky. Formal methods based development of a
PCA infusion pump reference model: Generic infusion
pump (GIP) project. In Joint Workshop on High
Confidence Medical Devices, Software, and Systems
and Medical Device Plug-and-Play Interoperability
(HCMDSS-MDPnP 2007), pages 23 – 33, 2007.

[6] I. Assayad, V. Bertin, F. X. Defaut, P.Gerner,
O. Quevreux, and S. Yovine. Jahuel: A formal
framework for software synthesis. ECMDA-FA, 2005.

[7] G. Behrmann, A. David, and K. G. Larsen. A tutorial
on UPPAAL. In Formal Methods for the Design of
Real-Time Systems (revised lectures), volume 3185 of
LNCS, pages 200–237, 2004.

[8] S. Burmester, H. Giese, and W. Schafer. Model-driven
architecture for hard real-time systems: From platform
independent models to code. ECMDA-FA, 2005.

[9] R. France and B. Rumpe. Model-driven development
of complex software: A research roadmap. In FOSE,
2007.

[10] H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and
H. Ural. Data flow testing as model checking. In
ICSE, pages 232–243, 2003.

[11] R. Jetley and P. Jones. Safety requirements based
analysis of infusion pump software. In SMDS, 2007.

[12] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou.
Testing real-time embedded software using
UPPAAL-TRON - an industrial case study. In The 5th
ACM International Conference on Embedded Software,
2005.

[13] M. Leucker and C. Schallhart. A brief account of
runtime verification. The Journal of Logic and
Algebraic Programming, pages 293–303, 2009.

[14] J. Liu, J. Dehlinger, and R. Lutz. Safety analysis of
software product lines using state-based modeling. The
Journal of Systems and Software, 80:1879–1892, 2007.

[15] D. C. Schmidt. Model-driven engineering. IEEE
Computer Magazine, February 2006.

[16] Mathworks Simulink.
http://www.mathworks.com/products/simulink.

[17] Mathworks Stateflow.
http://www.mathworks.com/products/stateflow.

[18] U.S. Food and Drug Administration, Center for
Devices and Radiological Health. White Paper:
Infusion Pump Improvement Initiative, April 2010.

