
Hard-Real-Time Scheduling of Data-Dependent Tasks in
Embedded Streaming Applications

Mohamed Bamakhrama
mohamed@liacs.nl

Todor Stefanov
stefanov@liacs.nl

Leiden Institute of Advanced Computer Science
Leiden University, Leiden, The Netherlands

ABSTRACT
Most of the hard-real-time scheduling theory for multiprocessor
systems assumes independent periodic or sporadic tasks. Such a
simple task model is not directly applicable to modern embedded
streaming applications. This is because a modern streaming appli-
cation is typically modeled as a directed graph where nodes rep-
resent actors (i.e. tasks) and edges represent data-dependencies.
The actors in such graphs have data-dependency constraints and
do not necessarily conform to the periodic or sporadic task models.
Therefore, in this paper we investigate the applicability of hard-
real-time scheduling theory for periodic tasks to streaming appli-
cations modeled as acyclic Cyclo-Static Dataflow (CSDF) graphs.
In such graphs, the actors are data-dependent, however, we analyt-
ically prove that they (i.e. the actors) can be scheduled as implicit-
deadline periodic tasks. As a result, a variety of hard-real-time
scheduling algorithms for periodic tasks can be applied to schedule
such applications with a certain guaranteed throughput. We com-
pare the throughput resulting from such scheduling approach to the
maximum achievable throughput of an application for a set of 19
real streaming applications. We find that in more than 80% of the
cases, the throughput resulting from our approach is equal to the
maximum achievable throughput.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: [Real-
time and embedded systems]; D.4.7 [Operating Systems]: Orga-
nization and Design—Real-time systems and embedded systems

General Terms
Algorithms, Design, Performance

Keywords
Real-time multiprocessor scheduling, streaming applications

1. INTRODUCTION
The ever-increasing complexity of embedded systems realized as

Multi-Processor Systems-on-Chips (MPSoCs) is imposing several

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0714-7/11/10 ...$10.00.

challenges on systems designers [17]. Two major challenges in de-
signing streaming software for embedded MPSoCs are: 1) How to
express parallelism found in applications efficiently?, and 2) How
to allocate the processors to provide guaranteed services to multi-
ple running applications, together with the ability to dynamically
start/stop applications without affecting other already running ap-
plications?

Model-of-Computation (MoC) based design has emerged as a
de-facto solution to the first challenge [9]. In MoC-based design,
the application can be modeled as a directed graph where nodes
represents actors (i.e. tasks) and edges represent communication
channels. Different MoCs define different rules and semantics on
the computation and communication of the actors. The main ben-
efits of a MoC-based design are the explicit representation of im-
portant properties in the application (e.g. parallelism) and the en-
hanced design-time analyzability of the performance metrics (e.g.
throughput). One particular MoC that is popular in the embedded
signal processing systems community is the Cyclo-Static Dataflow
(CSDF) model [4] which extends the well-known Synchronous Da-
ta Flow (SDF) model [14].

Unfortunately, no such de-facto solution exists yet for the second
challenge of processor allocation [22]. For a long time, self-timed
scheduling was considered the most appropriate policy for stream-
ing applications modeled as dataflow graphs [13, 26]. However, the
need to support multiple applications running on a single system
without prior knowledge of the properties of the applications (e.g.
required throughput, number of tasks, etc.) at system design-time
is forcing a shift towards run-time scheduling approaches as ex-
plained in [12]. Most of the existing run-time scheduling solutions
assume applications modeled as task graphs and provide best-effort
or soft-real-time services [22]. Few run-time scheduling solutions
exist which support applications modeled using a MoC and provide
hard-real-time services [10, 3, 19, 20]. However, these solutions
either use simple MoCs such as SDF/PGM graphs or use Time-
Division Multiplexing (TDM)/Round-Robin (RR) scheduling com-
bined with heuristics. Several algorithms from the hard-real-time
multiprocessor scheduling theory [7] can perform fast admission
and scheduling decisions for incoming applications while provid-
ing hard-real-time services. Moreover, these algorithms provide
temporal isolation which is the ability to dynamically start/stop
applications without affecting other already running applications.
However, these algorithms from the hard-real-time multiprocessor
scheduling theory received little attention in the embedded MPSoC
community. This is mainly due to the fact that these algorithms
assume independent periodic or sporadic tasks [7]. Such a simple
task model is not directly applicable to modern embedded stream-
ing applications. This is because a modern streaming application is
typically modeled as a directed graph where nodes represent actors,

195

and edges represent data-dependencies. The actors in such graphs
have data-dependency constraints and do not necessarily conform
to the periodic or sporadic task models.

Therefore, in this paper we investigate the applicability of the
hard-real-time scheduling theory for periodic tasks to streaming ap-
plications modeled as acyclic CSDF graphs. In such graphs, the
actors are data-dependent. However, we analytically prove that
they (i.e. the actors) can be scheduled as implicit-deadline peri-
odic tasks. As a result, a variety of hard-real-time scheduling algo-
rithms for periodic tasks can be applied to schedule such applica-
tions with a certain guaranteed throughput. We consider streaming
applications modeled as acyclic CSDF graphs with periodic input
streams. Typically, embedded streaming applications receive their
input samples from hardware sensors/devices which generate these
samples periodically. By considering acyclic CSDF graphs, our
investigation findings and proofs are applicable to most streaming
applications since it has been shown recently that around 90% of
streaming applications can be modeled as acyclic SDF graphs [28].
Note that SDF graphs are a subset of the CSDF graphs we consider
in this paper.

1.1 Problem Statement
Given a streaming application modeled as an acyclic CSDF gr-

aph with periodic input streams, determine whether it is possi-
ble to execute the graph actors as implicit-deadline periodic tasks.
An implicit-deadline periodic task τi is defined by a 3-tuple τi =
(Ci, Ti, Si). The interpretation is as follows: τi is invoked at time
instants t = Si+kTi and it has to execute for Ci time-units before
time t = Si + (k + 1)Ti for all k ∈ N0, where Si is the start time
of τi and Ti is the task period. This scheduling approach is called
Strictly Periodic Scheduling (SPS) [21] to avoid confusion with the
term periodic scheduling used in the dataflow scheduling theory to
refer to a repetitive sequence of actors invocations. The sequence is
periodic since it is repeated infinitely with a constant period. How-
ever, the individual actors invocations are not guaranteed to be pe-
riodic. In the remainder of this paper, periodic scheduling/schedule
refers to strictly periodic scheduling/schedule.

1.2 Contributions of this Paper
Given a streaming application modeled as an acyclic CSDF gr-

aph, we analytically prove that it is possible to execute the graph
actors as implicit-deadline periodic tasks. Moreover, we present an
analytical framework for computing the periodic task parameters
for the actors, that is the period and the start time, together with the
minimum buffer sizes of the communication channels such that the
actors execute as implicit-deadline periodic tasks. Upon empiri-
cal evaluation, we demonstrate that our strictly periodic scheduling
approach yields the maximum achievable throughput for a class
of applications called matched I/O rates applications which rep-
resents the majority of streaming applications. Applying our ap-
proach to matched I/O rates applications enables using a plethora
of schedulability tests developed in the real-time scheduling theory
[7] to easily determine the minimum number of processors needed
to schedule a set of applications using a certain algorithm to provide
the maximum achievable throughput. This can be of great use for
embedded systems designers during the Design Space Exploration
(DSE) phase.

The remainder of this paper is organized as follows: Section 2
gives an overview of the related work. Section 3 introduces the
CSDF model and the considered system model. Section 4 presents
the proposed analytical framework. Section 5 presents the results
of empirical evaluation of the framework presented in Section 4.
Finally, Section 6 ends the paper with conclusions.

2. RELATED WORK
Parks and Lee [24] studied the applicability of non-preemptive

Rate-Monotonic (RM) scheduling to dataflow programs modeled
as SDF graphs. The main difference compared to our work is: 1)
they considered non-preemptive scheduling. In contrast, we con-
sider only preemptive scheduling. Non-preemptive scheduling is
known to be NP-hard in the strong sense even for the uniprocessor
case [11], and 2) they considered SDF graphs which are a subset of
the more general CSDF graphs.

Goddard [10] studied applying real-time scheduling to dataflow
programs modeled using the Processing Graphs Method (PGM).
He used a task model called Rate-Based Execution (RBE) in which
a real-time task τi is characterized by a 4-tuple τi = (xi, yi, di, ci).
The interpretation is as follows: τi executes xi times in time period
yi with a relative deadline di per job release and ci execution time
per job release. For a given PGM, he developed an analysis tech-
nique to find the RBE task parameters of each actor and buffer size
of each channel. Thus, his approach is closely related to ours. How-
ever, our approach uses CSDF graphs which are more expressive
than PGM graphs in that PGM supports only a constant produc-
tion/consumption rate on edges (same as SDF), whereas CSDF sup-
ports varying (but predefined) production/consumption rates. As
a result, the analysis technique in [10] is not applicable to CSDF
graphs.

Bekooij et al. presented a dataflow analysis for embedded real-
time multiprocessor systems [3]. They analyzed the impact of TDM
scheduling on applications modeled as SDF graphs.

Moreira et al. have investigated real-time scheduling of dataflow
programs modeled as Homogeneous SDF (HSDF) graphs in [19,
20, 21]. They formulated a resource allocation heuristic [19] and a
TDM scheduler combined with static allocation policy [20]. Their
TDM scheduler improves the one proposed in [3]. In [21], they
proved that it is possible to derive a strictly periodic schedule for the
actors of a cyclic SDF graph iff the periods are greater than or equal
to the maximum cycle mean of the graph. They formulated the
conditions on the start times of the actors in the equivalent HSDF
graph in order to enforce a periodic execution of every actor as a
Linear Programming (LP) problem.

Our approach differs from [3, 19, 20] in: 1) using the periodic
task model which allows applying a variety of proven hard-real-
time scheduling algorithms for multiprocessors, 2) providing direct
analysis of acyclic graphs for which the maximum cycle mean anal-
ysis can not be applied without converting the graph into a cyclic
one, and 3) using the CSDF model which is more expressive than
SDF graphs. Compared to [21], our approach differs in: 1) we
derive an equation which always finds the actors periods that en-
sure periodic execution and scheduling. The authors in [21] indi-
cated that deriving the schedule for the original SDF graph from
the schedule of the HSDF graph requires adding extra constraints
to the LP problem which can result in an infeasible problem, and
2) we perform the analysis directly on the CSDF graph instead of
the equivalent SDF/HSDF graphs. Thus, our approach is faster and
more general since it avoids the exponentially complex conversion
from (C)SDF to HSDF.

3. BACKGROUND
We introduce in this section the CSDF model, system model,

and hard-real-time scheduling algorithms for periodic tasks. The
material presented is this section is essential for understanding our
contribution in Section 4.

196

3.1 The Cyclo-Static Dataflow (CSDF) Model
Cyclo-Static Dataflow (CSDF) is a MoC for describing applica-

tions in the digital signal processing domain [4]. It extends the pop-
ular Synchronous Data Flow (SDF) model proposed in [14]. The
main difference between CSDF and SDF is that CSDF supports
algorithms with a cyclically changing but predefined behavior.

3.1.1 Formal Definition
Bilsen et al. defined the CSDF model in [4] as a directed graph

G = 〈V,E〉, where V is a set of actors and E is a set of com-
munication channels. Actors represent functions that transform the
input data streams into output streams. The communication chan-
nels carry streams of data. An atomic data object is called a token.
A communication channel is a first-in, first-out (FIFO) queue with
unbounded capacity.

In CSDF, every actor vj ∈ V has an execution sequence [fj(1),
fj(2), · · · , fj(Pj)] of length Pj . The interpretation of this se-
quence is: The nth time that actor vj is fired, it executes the code of
function fj(((n−1) mod Pj)+1). Similarly, production and con-
sumption of tokens are also sequences of length Pj in CSDF. The
token production of actor vj on channel eu is represented as a se-
quence of constant integers [xuj (1), xuj (2), · · · , xuj (Pj)]. The nth
time that actor vj is fired, it produces xuj (((n − 1) mod Pj) + 1)
tokens on channel eu. The consumption of actor vk is completely
analogous; the token consumption of actor vk from a channel eu is
represented as a sequence [yuk (1), yuk (2), · · · , yuk (Pj)]. The firing
rule of a CSDF actor vk is evaluated as “true” for its nth firing iff
all its input channels contain at least yuk (((n − 1) mod Pj) + 1)
tokens.

Example 1. Figure 1 shows a CSDF graph consisting of four
actors and four communication channels.

v1

v2

v3

v4

e1

e2

e3

e4

[3, 2, 1]

[5, 3, 2]

[2] [2]

[1, 3, 1] [1, 1, 3]

[1, 2]

[4, 1]

Figure 1: Example CSDF graph

3.1.2 Compile-Time Scheduling
An important property of the CSDF model is the ability to derive

at compile-time a schedule for the actors. Compile-time schedul-
ing has been an attractive property of dataflow models because it
removes the need for a run-time scheduler [13]. In order to derive
a compile-time schedule for a CSDF graph, it has to be consistent
and live. We use the consistency property of the CSDF graph and
extend it later in Section 4 to allow periodic scheduling of CSDF
graphs. In this paper, we use the notations relating to CSDF graphs
as shown in Table 1.

Definition 1. Given a connected CSDF graph G, a valid static
schedule for G is a schedule that can be repeated infinitely on
the incoming sample stream and where the amount of data in the
buffers remains bounded. A vector ~q = [q1, q2, · · · , qN]T , where
qj > 0, is a repetition vector of G if each qj represents the num-
ber of invocations of an actor vj in a valid static schedule for G.

Table 1: Notation for CSDF graphs (Same as [4])
N Number of actors in a CSDF graph G
Pj Length of execution sequence of actor vj
xuj (n) Number of tokens produced by actor vj on channel eu dur-

ing its nth invocation
yuk (n) Number of tokens consumed by actor vk from channel eu

during its nth invocation
Xu
j (n) Number of tokens produced by actor vj on channel eu dur-

ing the first n invocations =
∑n
l=1 xuj (l)

Y uk (n) Number of tokens consumed by actor vk from channel eu
during the first n invocations =

∑n
l=1 yuk (l)

The repetition vector of G in which all the elements are relatively
prime1 is called the basic repetition vector of G, denoted ~̇q. G
is consistent if there exists a repetition vector. If a deadlock-free
schedule can be found, G is said to be live. Both consistency and
liveness are required for the existence of a valid static schedule.

THEOREM 1 (FROM [4]). In a CSDF graph G, a repetition
vector ~q = [q1, q2, · · · , qN]T is given by

~q = P · ~r, with Pjk =

{
Pj if j = k

0 otherwise
(1)

where ~r = [r1, r2, · · · , rN]T is a positive integer solution of the
balance equation

Γ · ~r = ~0 (2)

and where the topology matrix Γ ∈ Z|E|×|V | is defined by

Γuj =


Xu
j (Pj) if actor vj produces on ch. eu
−Y uj (Pj) if actor vj consumes from ch. eu
0 Otherwise.

(3)

Definition 2. For a consistent and live CSDF graph G, an actor
iteration is the invocation of an actor vi ∈ V for qi times, and a
graph iteration is the invocation of every actor vi ∈ V for qi times,
where qi ∈ ~q.

COROLLARY 1 (FROM [4]). If a consistent and live CSDF
graph G completes n iterations, where n ∈ N, then the net change
to the number of tokens in the buffers of G is zero.

LEMMA 1. Any acyclic consistent CSDF graph is live.

PROOF. Bilsen et al. proved in [4] that a CSDF graph is live
iff every cycle in the graph is live. Equivalently, a CSDF graph
deadlocks only if it contains at least one cycle. Thus, absence of
cycles in a CSDF graph implies its liveness.

Example 2. For the CSDF graph shown in Figure 1

Γ =


6 −2 0 0
10 0 −5 0
0 2 0 −3
0 0 5 −5

, ~r =


1
3
2
2

,

P =


3 0 0 0
0 1 0 0
0 0 3 0
0 0 0 2

, and ~̇q =


3
3
6
4


3.2 System Model and Scheduling Algorithms

In this section, we introduce the system model and hard-real-
time scheduling algorithms for periodic tasks.
1i.e. gcd(q1, q2, · · · , qN) = 1.

197

3.2.1 System Model
A system Ψ consists of a set Λ = {π1, π2, · · · , πM} of M

homogeneous processors. The processors execute a task set Γ =
{τ1, τ2, · · · , τN} ofN periodic tasks, and a task may be preempted
at any time. A periodic task τi ∈ Γ is defined by a 4-tuple τi =
(Ci, Ti, Di, Si), where Ci is the worst-case execution time, Ti is
the task period (where Ti ≥ Ci), Di is the deadline of τi, and
Si is the start time of τi. A periodic task τi is invoked (i.e. re-
leases a job) at time instants t = Si + kTi for all k ∈ N0. Upon
invocation, τi executes for Ci time-units. The deadline Di is in-
terpreted as follows: τi has to finish executing its kth invocation
before time t = Si + kTi + Di for all k ∈ N0. τi is said to
have implicit-deadline if Di = Ti. In this case, the deadline of the
current invocation is the time of the next invocation. If Di ≤ Ti,
then τi is said to have constrained-deadline. For a task set Γ, Γ is
said to be synchronous if all the tasks in Γ have the same start time.
Otherwise, Γ is said to be asynchronous.

The utilization of task τi, denoted Ui where Ui ∈ (0, 1], is de-
fined as Ui = Ci/Ti. For a task set Γ, UΓ is the total utilization of
Γ given by UΓ =

∑
τi∈Γ Ui. The maximum utilization factor in Γ,

denoted Umax
Γ , is defined as Umax

Γ = maxτi∈Γ(Ui).
In the remainder of this paper, a task set Γ refers to an asyn-

chronous set of implicit-deadline periodic tasks. As a result, we
refer to a task τi with a 3-tuple τi = (Ci, Ti, Si) by omitting the
implicit deadline.

3.2.2 Scheduling Asynchronous Set of Implicit Dead-
line Periodic Tasks

Given a system Ψ and a task set Γ, a periodic schedule is one
that allocates a processor to a task τi ∈ Γ for exactly Ci time-units
in the interval [Si + kTi, Si + (k + 1)Ti) for all k ∈ N0 with the
restriction that a task may not execute on more than one processor
at the same time. A necessary and sufficient condition for Γ to be
scheduled on Ψ to meet all the deadlines (i.e. Γ is feasible) is [7]:

UΓ ≤M (4)

The problem of constructing a periodic schedule for Γ can be
solved using several algorithms [7]. These algorithms differ in the
following aspects: 1) Priority Assignment: A task can have fixed
priority, job-fixed priority, or dynamic priority, and 2) Allocation:
Based on whether a task can migrate between processors upon pre-
emption, algorithms are classified into:
• Partitioned: Each task is allocated to a processor and no mi-

gration is permitted
• Global: Migration is permitted for all tasks
• Hybrid: Hybrid algorithms mix partitioned and global ap-

proaches and they can be further classified to:
1. Semi-partitioned: Most tasks are allocated to processors

and few tasks are allowed to migrate
2. Clustered: Processors are grouped into clusters and the

tasks that are allocated to one cluster are scheduled by a
global scheduler

An important property of scheduling algorithms is optimality. A
scheduling algorithm A is said to be optimal iff it can schedule
any feasible task set Γ on Ψ. Several global and hybrid algorithms
were proven optimal for scheduling asynchronous sets of implicit-
deadline periodic tasks, e.g. [1, 2, 6, 15]. The minimum number
of processors needed to schedule Γ using an optimal scheduling
algorithm, denoted MOPT, is given by:

MOPT = dUΓe (5)

Partitioned algorithms are known to be non-optimal for schedul-
ing implicit-deadline periodic tasks [5]. However, they have the

advantage of not requiring task migration. One prominent example
of partitioned scheduling is the Partitioned Earliest-Deadline-First
(PEDF) algorithm. EDF is known to be optimal for scheduling
arbitrary task sets on a uniprocessor system [8]. In a multipro-
cessor system, EDF can be combined with different processor al-
location algorithms (e.g. Bin-packing heuristics such as First-Fit
(FF), Worst-Fit (WF)). López et al. derived in [16] the worst-case
utilization bounds for a task set Γ to be schedulable using PEDF.
These bounds serve as a simple sufficient schedulability test. Based
on these bounds, they derived the minimum number of processors
needed to schedule a task set Γ under PEDF, denoted MPEDF:

MPEDF ≥

{
1 if UΓ ≤ 1

min
(⌈

N
β

⌉
,
⌈ (β+1)UΓ−1

β

⌉)
if UΓ > 1,

(6)

where β = b1/Umax
Γ c. A task set Γ with total utilization UΓ

and maximum utilization factor Umax
Γ is always guaranteed to be

schedulable on MPEDF processors. Since MPEDF is derived based
on a sufficient test, it is important to note that Γ may be schedula-
ble on less number of processors. We defineMPAR as the minimum
number of processors on which Γ can be partitioned assuming bin
packing allocation (e.g. First-Fit (FF)) with each set in the partition
having a total utilization of at most 1. MPAR can be expressed as:

MPAR = min
x∈N
{x : B is x-partition of Γ and Uy ≤ 1∀y ∈ B} (7)

MPAR is specific to the task set Γ for which it is computed. An-
other task set Γ̂ with the same total utilization and maximum uti-
lization factor as Γ might not be schedulable on MPAR processors
due to partitioning issues.

4. STRICTLY PERIODIC SCHEDULING
OF ACYCLIC CSDF GRAPHS

This section presents our analytical framework for scheduling
the actors in acyclic CSDF graphs as implicit-deadline periodic
tasks. We prove the existence of strictly periodic schedules for
acyclic CSDF graphs with a single periodic input stream. Nev-
ertheless, the presented results are applicable also to acyclic CSDF
graphs with multiple periodic input streams.

4.1 Notations
We introduce the following notations:

M Number of processors
G A consistent and live CSDF graph with a single periodic

input stream
V Set of actors in G
E Set of communication channels in G
N Number of actors in G

4.2 Existence of a Strictly Periodic Schedule

Definition 3. For G, an execution vector ~µ, where ~µ ∈ NN ,
represents the worst-case execution times, measured in time-units,
of the actors in G. The worst-case execution time of an actor vj ∈
V is given by

µj =
Pj

max
k=1

TR∑
l∈Ij

ylj(k) + TW
∑
r∈Oj

xrj (k) + TCj (k)

 (8)

where TR is the worst-case time needed to read a single token from
an input channel, Ij is the set of input channels of vj , TW is the

198

worst-case time needed to write a single token to an output channel,
Oj is the set of output channels of vj , and TCj (k) is the worst-case
computation time of vj in firing k.

Definition 4. An actor vi ∈ V is strictly periodic iff the time
period between any two consecutive firings is constant.

Definition 5. For G, a period vector ~λ, where ~λ ∈ NN , rep-
resents the periods, measured in time-units, of the actors in G.
λj ∈ ~λ is the period of actor vj ∈ V . ~λ is given by the solution to
both

q1λ1 = q2λ2 = · · · = qN−1λN−1 = qNλN (9)

and
~λ− ~µ ≥ ~0, (10)

where qj ∈ ~̇q (The basic repetition vector of G according to Defi-
nition 1).

LEMMA 2. The minimum period vector of G, denoted ~λmin, is
given by

λmin
i =

L

qi

⌈maxvj∈V (µjqj)

L

⌉
for vi ∈ V, (11)

where L = lcm(q1, q2, · · · , qN) (lcm stands for least-common-
multiple).

PROOF. Equation 9 can be re-written as:

Q~λ = ~0, (12)

where Q ∈ Z(N−1)×N is given by

Qij =


q1 if j = 1

−qj if j = i+ 1

0 otherwise
(13)

Observe that nullity(Q) = 1. Thus, there exists a single vector
which forms the basis of the null-space of Q. This vector can be
represented by taking any unknown λk as the free-unknown and
expressing the other unknowns in terms of it which results in:

~λ = λk[qk/q1, qk/q2, · · · , qk/qN]T

The minimum λk ∈ N is

λk = lcm(q1, q2, · · · , qN)/qk

Thus, the minimum ~λ ∈ N that solves Equation 9 is given by

λi = lcm(q1, q2, · · · , qN)/qi for vi ∈ V (14)

Let L = lcm(q1, q2, · · · , qN), and let ~̂λ be the solution given by
Equation 14. Equations 9 and 10 can be re-written as:

Q(c
~̂
λ) = ~0 (15)

cλ̂1 ≥ µ1, cλ̂2 ≥ µ2, · · · , cλ̂N ≥ µN (16)

where c ∈ N. Equation 16 can be re-written as:

c ≥ µ1q1/L, c ≥ µ2q2/L, · · · , c ≥ µNqN/L (17)

It follows from Equation 17 that c must be greater than or equal
to maxvi∈V (µiqi)/L. However, maxvi∈V (µiqi)/L is not always
guaranteed to be an integer. As a result, the value is rounded by
taking the ceil. It follows that the minimum ~λ which satisfies both
of Equation 9 and Equation 10 is given by

λi = L/qidmax
vj∈V

(µjqj)/Le for vi ∈ V

THEOREM 2. For any acyclic G, a periodic schedule S exists
such that every actor vi ∈ V is strictly periodic with a constant
period λi ∈ ~λmin and every communication channel eu ∈ E has a
bounded buffer capacity.

PROOF. We use Algorithm 1 to find the levels of G.

Algorithm 1 ACYCLIC-CSDF-GRAPH-LEVELS(G)

Require: Acyclic CSDF graph G = 〈V,E〉
1: i← 1
2: while V 6= ∅ do
3: Ai = {vj ∈ V | vj has no incoming channels}
4: Zi = {eu ∈ E | ∃vk ∈ Ai : vk is the source of eu}
5: V ← V \Ai
6: E ← E \ Zi
7: i← i+ 1
8: end while
9: d← i− 1

10: return d disjoint sets {A1, A2, ..., Ad}, where
⋃d
i=1 Ai = V

An actor vi ∈ Aj is said to be a level-j actor. Since G has a
single input stream, it follows that A1 contains a single actor.

Let α = q1λ1 = q2λ2 = · · · = qNλN (See Equation 9), and
let v1 denote the level-1 actor. Suppose that the input stream to v1

has a period equal to λ1. It follows that v1 can execute periodically
since its input is always available when it fires. By Definition 2, v1

will complete one iteration when it fires q1 times. Assume that v1

starts executing at time t = 0. Then, by time t = q1λ1 = α, v1

is guaranteed to finish one iteration. According to Theorem 1, v1

will also generate enough data such that every actor vk ∈ A2 can
execute qk times (i.e. one iteration) with a period λk. According
to Equation 9, firing vk for qk times with a period λk takes α time-
units. Thus, starting level-2 actors at time t = q1λ1 = α guaran-
tees that they can execute periodically with their periods given by
Definition 5 for α time-units. Similarly, by time t = 2α, level-3
actors will have enough data to execute for one iteration. Thus,
starting level-3 actors at time t = 2α guarantees that they can exe-
cute periodically for α time-units. By repeating this over all the d
levels, a schedule S1 (shown in Figure 2) is constructed in which
all the actors that belong to Ai are started at start time, denoted φi,
given by

φi = (i− 1)α (18)

time [0, α) [α, 2α)[2α, 3α)· · · [(d− 1)α, dα)
level A1(1)A2(1) A3(1) · · · Ad(1)

Figure 2: Schedule S1

Aj(k) denotes level-j actors executing their kth iteration. For
example, A2(1) denotes level-2 actors executing their first itera-
tion. At time t = dα, G completes one iteration. It is trivial to
observe from S1 that as soon as v1 finishes one iteration, it can im-
mediately start executing the next iteration since its input stream
arrives periodically. If v1 starts its second iteration at time t = α,
its execution will overlap with the execution of the level-2 actors.
By doing so, level-2 actors can start immediately their second iter-
ation after finishing their first iteration since they will have all the
needed data to execute one iteration periodically at time t = 2α.
This overlapping can be applied to all the levels to yield the sched-
ule S2 shown in Figure 3.

Now, the overlapping can be applied d times on schedule S1 to
yield a schedule Sd as shown in Figure 4.

199

time [0, α) [α, 2α)[2α, 3α)· · · [(d− 1)α, dα)
level A1(1)A2(1) A3(1) · · · Ad(1)

A1(2) A2(2) · · · Ad−1(2)

Figure 3: Schedule S2

time [0, α) [α, 2α)[2α, 3α)· · · [(d− 1)α, dα)
level A1(1)A2(1) A3(1) · · · Ad(1)

A1(2) A2(2) · · · Ad−1(2)
A1(3) · · · Ad−2(3)

· · · Ad−3(4)
· · · · · ·

A1(d)

Figure 4: Schedule Sd

Starting from time t = dα, a schedule S∞ can be constructed as
shown in Figure 5.

time [0, α) [α, 2α)[2α, 3α)· · · [(d− 1)α, dα)[dα, (d+ 1)α)· · ·
level A1(1)A2(1) A3(1) · · · Ad(1) Ad(2) · · ·

A1(2) A2(2) · · · Ad−1(2) Ad−1(3) · · ·
A1(3) · · · Ad−2(3) Ad−2(4) · · ·

· · · Ad−3(4) Ad−3(5) · · ·
· · · · · · · · · · · ·

A1(d) A1(d+ 1) · · ·

Figure 5: Schedule S∞

In schedule S∞, every actor vi is fired every λi time-unit once it
starts. The start time defined in Equation 18 guarantees that actors
in a given level will start only when they have enough data to ex-
ecute one iteration in a periodic way. The overlapping guarantees
that once the actors have started, they will always find enough data
for executing the next iteration since their predecessors have al-
ready executed one additional iteration. Thus, schedule S∞ shows
the existence of a periodic schedule ofG where every actor vj ∈ V
is strictly periodic with a period equal to λj .

The next step is to prove that S∞ executes with bounded mem-
ory buffers. In S∞, the largest delay in consuming the tokens oc-
curs for a channel eu ∈ E connecting a level-1 actor and a level-d
actor. This is illustrated in Figure 5 by observing that the data pro-
duced by iteration-1 of a level-1 source actor will be consumed by
iteration-1 of a level-d destination actor after (d − 1)α time-units.
In this case, eu must be able to store at least (d − 1)Xu

1 (q1) to-
kens. However, starting from time t = dα, both of the level-1 and
level-d actors execute in parallel. Thus, we increase the buffer size
by Xu

1 (q1) tokens to account for the overlapped execution. Hence,
the total buffer size of eu is dXu

1 (q1) tokens. Similarly, if a level-2
actor, denoted v2, is connected directly to a level-d actor via chan-
nel ev , then ev must be able to store at least (d−1)Xv

2 (q2) tokens.
By repeating this argument over all the different pairs of levels, it
follows that each channel eu ∈ E, connecting a level-i source actor
and a level-j destination actor, where j ≥ i, will store according to
schedule S∞ at most:

bu = (j − i+ 1)Xu
k (qk) (19)

tokens, where vk is the level-i actor, and qk ∈ ~̇q. Thus, an upper
bound on the FIFO sizes exists.

Example 3. We illustrate Theorem 2 by constructing a periodic
schedule for the CSDF graph shown in Figure 1. Assume that the
CSDF graph has an execution vector ~µ = [5, 2, 3, 2]T . Given ~̇q =
[3, 3, 6, 4]T as computed in Example 2, we use Equation 11 to find
~λmin = [8, 8, 4, 6]T . Figure 6 illustrates the periodic schedule of

the actors for the first 71 time-units. Applying Algorithm 1 on
the graph results in three sets: A1 = {v1}, A2 = {v2, v3}, and
A3 = {v4}. A1 actors start at time t = 0. Since α = qiλi = 24
for any vi in the graph, A2 actors start at time t = α = 24 and
A3 actors start at time t = 2α = 48. Every actor vj in the graph
executes for µj time-units every λj time-units. For example, actor
v2 starts at time t = 24 and executes for 2 time-units every 8 time-
units.

Time v1 v2 v3 v4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

Figure 6: Strictly periodic schedule for the CSDF graph shown
in Figure 1

4.3 Earliest Start Times and Minimum Buffer
Sizes

Now, we are interested in finding the earliest start times of the ac-
tors, and the minimum buffer sizes of the communication channels
that guarantee the existence of a periodic schedule. Minimizing
the start times and buffer sizes is crucial since it minimizes the ini-

200

tial response time and the memory requirements of the applications
modeled as acyclic CSDF graphs.

4.3.1 Earliest Start Times
In the proof of Theorem 2, the notion of start time was intro-

duced to denote when the actor is started on the system. The start
time values used in the proof of the theorem were not the minimum
ones. Here we derive the earliest start times.

THEOREM 3. For an acyclic G, the earliest start time of an
actor vj ∈ V , denoted φj , under a periodic schedule is given by

φj =

{
0 if Ω(vj) = ∅
maxvi∈Ω(vj) (φi→j) if Ω(vj) 6= ∅

(20)

where Ω(vj) is the set of predecessors of vj , and φi→j is given by

φi→j = min
t∈[φi,φi+α]

{t : prd
[φi,t+k)

(vi) ≥ cns
[φi,t+k]

(vj) ∀k ∈ [0, α]},

(21)
where φi is the earliest start time of a predecessor actor vi, α =
qiλi = qjλj , prd[ts,te)(vi) is the number of tokens produced by vi
during the time interval [ts, te), and cns[ts,te](vj) is the number of
tokens consumed by vj during the time interval [ts, te].

PROOF. Theorem 2 proved that starting a level-k actor vj at a
start time given by:

φj = (k − 1)α (22)

guarantees strictly periodic execution of the actor vj . Any start time
later than that guarantees also strictly periodic execution since vj
will always find enough data to execute in a strictly periodic way.

Equation 22 can be re-written as:

φj =

{
0 if Ω(vj) = ∅
maxvi∈Ω(vj)(φi) + α if Ω(vj) 6= ∅

(23)

The equivalence is immediate by observing that Algorithm 1 guar-
antees that a level-k actor, where k > 1, has a level-(k − 1) pre-
decessor. Hence, applying Equation 23 to a level-k actor, where
k > 1, yields:

φj = max((k − 2)α, (k − 3)α, · · · , 0) + α = (k − 1)α

Now, we are interested in starting vj ∈ Ak, where k > 1, earlier.
That is:

φj ≤ max
vi∈Ω(vj)

(φi) + α (24)

φj has also a lower-bound by observing that in order to have a peri-
odic execution, an actor vj can not start before all its predecessors
start. That is:

max
vi∈Ω(vj)

(φi) ≤ φj ≤ max
vi∈Ω(vj)

(φi) + α (25)

Equation 25 can be re-written as:

φj = max
vi∈Ω(vj)

(φi) + c, c ∈ [0, α] (26)

The choice of c in Equation 26 has to be made such that vj is guar-
anteed to start only after all its predecessors have generated enough
data to let vj execute in a strictly periodic way. Thus, Equation 26
can be re-written as:

φj= max
vi∈Ω(vj)

(φi→j) , φi→j = φi + c, c ∈ [0, α]

= max
vi∈Ω(vj)

(φi→j) , φi→j = t̂, t̂ ∈ [φi, φi + α] (27)

If we select t̂ in Eq. 27 such that prd[φi,t̂)
(vi) ≥ cns[φi,t̂]

(vj),
then this guarantees that vj can fire once at time t = t̂. If t̂ is
also selected such that prd[φi,t̂+k)(vi) ≥ cns[φi,t̂+k](vj) for all
k ∈ (0, α], then this guarantees that vj can fire at times t = t̂ +
λj , t̂ + 2λj , · · · , t̂ + α. Thus, the value of t̂ given by Equation
21 guarantees that once vj is started, it always finds enough data
to fire. As a result, vj executes in a strictly periodic way. Since t̂
is selected in Equation 21 as the minimum value that satisfies the
inequality, using a smaller value than t̂ will cause the inequality of
Equation 21 to not hold. If the inequality does not hold for any
k ∈ [0, α], then vj can not execute in a strictly periodic manner
since at some time point in [t̂, t̂+α] it will not have enough tokens
to fire and it will be blocked on reading. As a result, t̂ given by
Equation 21 is the earliest start time to guarantee strictly periodic
execution of the actors.

4.3.2 Minimum Buffer Sizes

THEOREM 4. For an acyclic G, the minimum bounded buffer
size bu of a communication channel eu ∈ E connecting a source
actor vi with start time φi, and a destination actor vj with start
time φj , where vi, vj ∈ V , under a periodic schedule is given by

bu = max
k∈[0,α]

(
prd

[φi,φj+k)

(vi)− cns
[φi,φj+k)

(vj)

)
, (28)

where prd[ts,te)(vi) is the number of tokens produced by vi during
the time interval [ts, te), and cns[ts,te)(vj) is the number of tokens
consumed by vj during the time interval [ts, te).

PROOF. Equation 28 tracks the maximum cumulative number
of unconsumed tokens in eu during the time interval [φi, φj +α).

vi

vj

φi φj φi + α φj + α

A B C

Figure 7: Execution time-lines of vi and vj

Figure 7 illustrates the execution time-lines of vi and vj . In in-
tervalA, vi is actively producing tokens while vj has not yet started
executing. As a result, it is necessary to buffer all the tokens pro-
duced in this interval in order to prevent vi from blocking on writ-
ing. Thus, bu must be greater than or equal to prd[φi,φj)(vi). Start-
ing from time t = φj , both of vi and vj are executing in parallel
(i.e. overlapped execution). In the proof of Theorem 2, an addi-
tionalXu

i (qi) tokens were added to the buffer size of eu to account
for the overlapped execution. However, this value is a “worst-case”
value. The minimum number of tokens that needs to be buffered
is given by the maximum number of unconsumed tokens in eu at
any time over the time interval [φj , φj + α) (i.e. intervals B and
C in Figure 7). Taking the maximum number of unconsumed to-
kens guarantees that vi will always have enough space to write to
eu. Thus, bu is sufficient and minimum for guaranteeing strictly
periodic execution of vi and vj in the time interval [φi, φj + α).
At time t = φj + α, both of vi and vj have completed one itera-
tion and the number of tokens in eu is the same as at time t = φj
(Follows from Corollary 1). Due to the strict periodicity of vi and
vj , the pattern shown in Figure 7 repeats. Thus, bu is also sufficient
and minimum for any t ≥ φj + α.

201

COROLLARY 2. For an acyclic G, let ΓG be a task set such
that τi ∈ ΓG corresponds to vi ∈ V . τi is given by:

τi = (µi, λi, φi), (29)

where µi ∈ ~µ, λi ∈ ~λmin given by Equation 11, and φi is the
earliest start time of vi given by Equation 20. ΓG is schedulable
onM processors using any hard-real-time scheduling algorithmA
for asynchronous sets of implicit-deadline periodic tasks if:

1. every edge eu ∈ E has a capacity of at least bu tokens, where
bu is given by Equation 28

2. ΓG satisfies the schedulability test of A

PROOF. Follows from Theorems 2, 3, and 4.

Example 4. This is an example to illustrate Theorems 3, 4, and
Corollary 2. First, we calculate the earliest start times and the cor-
responding minimum buffer sizes for the CSDF graph shown in
Figure 1. Applying Theorems 3 and 4 on the CSDF graph results
in: 

φ1

φ2

φ3

φ4

 =


0
8
8
20

 and


b1
b2
b3
b4

 =


3
5
3
5

 ,
where φi denotes the earliest start time of actor vi, and bj denotes
the minimum buffer size of communication channel ej . Given
~µ and ~λmin computed in Example 3, we construct a task set ΓG
= {(5, 8, 0), (2, 8, 8), (3, 4, 8), (2, 6, 20)}. We compute the mini-
mum number of required processors to schedule ΓG according to
Equations 5, 6, and 7:

MOPT = d5/8 + 2/8 + 3/4 + 2/6e = d47/24e = 2

MPEDF = min{d4/1e, d(2× 47/24− 1)/1e} = 3

MPAR = min
x∈N
{x : B is x-partition of Γ and Uy ≤ 1∀y ∈ B} = 3

ΓG is schedulable using an optimal scheduling algorithm on 2 pro-
cessors, and is schedulable using PEDF on 3 processors.

5. EVALUATION RESULTS
We evaluate our proposed framework in Section 4 by perform-

ing an experiment on a set of 19 real-life streaming applications.
The objective of the experiment is to compare the throughput of
streaming applications when scheduled using our strictly periodic
scheduling to their maximum achievable throughput obtained via
self-timed scheduling. After that, we discuss the implications of
our results from Section 4 and the throughput comparison exper-
iment. For brevity, we refer in the remainder of this section to
our strictly periodic scheduling/schedule as SPS and the self-timed
scheduling/schedule as STS.

The streaming applications used in the experiment are real-life
streaming applications which come from different domains (e.g.
signal processing, communication, multimedia, etc.). The bench-
marks are described in details in the next section.

5.1 Benchmarks
We collected the benchmarks from several sources. The first

source is the StreamIt benchmark [28] which contributes 11 stream-
ing applications. The second source is the SDF3 benchmark [27]
which contributes 5 streaming applications. The third source is in-
dividual research articles which contain real-life CSDF graphs such
as [23, 18, 25]. In total, 19 applications are considered as shown
in Table 2. The graphs are a mixture of CSDF and SDF graphs.
The actors execution times of the StreamIt benchmark are specified

by its authors in clock cycles measured on MIT RAW architec-
ture, while the actors execution times of the SDF3 benchmark are
specified for ARM architecture. For the graphs from [23, 25], the
authors do not mention explicitly the actors execution times. As a
result, we made assumptions regarding the execution times which
are reported below Table 2.

Table 2: Benchmarks used for evaluation
Domain No.Application Source

Signal Processing

1 Multi-channel beamformer
2 Discrete cosine transform (DCT)
3 Fast Fourier transform (FFT) kernel
4 Filterbank for multirate signal processing
5 Time delay equalization (TDE) [28]

Cryptography 6 Data Encryption Standard (DES)
7 Serpent

Sorting 8 Bitonic Parallel Sorting

Video processing 9 MPEG2 video
10 H.263 video decoder [27]

Audio processing

11 MP3 audio decoder
12 CD-to-DAT rate converter (SDF)1 [23]
13 CD-to-DAT rate converter (CSDF)
14 Vocoder [28]

Communication

15 Software FM radio with equalizer
16 Data modem [27]
17 Satellite receiver
18 Digital Radio Mondiale receiver [18]

Medical 19 Heart pacemaker2 [25]
1 We use two implementations for CD-to-DAT: SDF and CSDF and

we refer to them as CD2DAT-S and CD2DAT-C respectively. The
execution times assumed are ~µ = [5, 2, 3, 1, 4, 6]T µseconds.

2 We assume the following execution times: Motion Est.: 4µsec.,
Rate Adapt.: 3µsec., Pacer: 5µsec., and EKG: 2µsec.

We use SDF3 tool-set [27] for several purposes during the exper-
iments. SDF3 is a powerful analysis tool-set which is capable of
analyzing CSDF and SDF graphs to check for consistency errors,
compute the repetition vector, compute the maximum achievable
throughput, etc. SDF3 accepts the graphs in XML format. For
StreamIt benchmarks, the StreamIt compiler is capable of export-
ing an SDF graph representation of the stream program. The ex-
ported graph is then converted into the XML format required by
SDF3. For the graphs from the research articles, we constructed the
XML representation for the CSDF graphs manually.

5.2 Experiment: Throughput Comparison
In this experiment, we compare the throughput resulting from

our SPS approach to the maximum achievable throughput of a
streaming application. The maximum achievable throughput of a
streaming application modeled as a CSDF graph is its throughput
under STS schedule [26]. We measure the throughput of the actors
producing the output streams of the applications (i.e. sink actors).
Let ρSPS

i be the throughput of actor vi ∈ V with period λi under
SPS. It follows that:

ρSPS
i = 1/λi, (30)

where λi ∈ ~λmin given by Equation 11. In order to compute the
throughput under STS, we use the SDF3 tool-set. SDF3 defines
ρSTS
G as the graph throughput under STS, and ρSTS

i = qiρ
STS
G ,

where qi ∈ ~q (The repetition vector of G).
Computing the throughput of the STS using SDF3 is done using

the sdf3analysis-(c)sdf tool with the following parameters:
1) algorithm used: throughput, 2) auto-concurrency: disabled
(i.e. each actor has a self back-edge with one initial token, and 3)
channel size: unbounded.

We define some notations that help in understanding the results.
Let L = lcm(~̇q) and H = maxvi∈V (µiqi). Moreover, let H =
Lp + r, where p = H ÷ L (÷ is the integer division operator),

202

and r = H mod L (mod is the integer modulus operator). Now,
Table 3 shows the results of comparing the throughput of the sink
actor for every application under both STS and SPS schedules.
The most important column in the table is the last column which
shows the ratio of the STS schedule throughput to the SPS sched-
ule throughput (ρSTS

snk /ρ
SPS
snk), where snk denotes the sink actor. We

clearly see that our SPS delivers the same throughput as STS for
16 out of 19 applications. An SPS schedule that delivers the same
throughput as an STS one is called Rate-Optimal Strictly Periodic
Schedule (ROSPS) [21]. Only three applications (CD2DAT-(S,C)
and Satellite) have lower throughput under our SPS. To understand
the impact of the results, we introduce the concept of matched I/O
applications which according to [28] is the class of applications
with a small value ofL. The authors in [28] reported recently an in-
teresting finding: Neighboring actors often have matched I/O rates.
This reduces the opportunity and impact of advanced scheduling
strategies proposed in the literature. According to [28], the ad-
vanced scheduling strategies proposed in the literature (e.g. [26])
are suitable for mis-matched I/O rates applications (i.e. with large
L such as CD2DAT and Satellite in Table 3). Looking into the
results in Table 3, we see that our SPS performs very-well for
matched I/O applications.

Table 3: Results of Throughput Comparison. snk denotes the
sink actor.

Application q̇snk ρSTS
snk H L ρSPS

snk ρSTS
snk /ρ

SPS
snk

Beamformer 1 1.97 × 10−4 5076 1 1/5076 1.0

DCT 1 2.1 × 10−5 47616 1 1/47616 1.0

FFT 1 8.31 × 10−5 12032 1 1/12032 1.0

Filterbank 1 8.84 × 10−5 11312 1 1/11312 1.0

TDE 1 2.71 × 10−5 36960 1 1/36960 1.0

DES 1 9.765 × 10−4 1024 1 1/1024 1.0

Serpent 1 2.99 × 10−4 3336 1 1/3336 1.0

Bitonic 1 1.05 × 10−2 95 1 1/95 1.0

MPEG2 1 1.30 × 10−4 7680 1 1/7680 1.0

H.263 1 3.01 × 10−6 332046 594 1/332046 1.0

MP3 2 5.36 × 10−7 3732276 2 1/1866138 1.0

CD2DAT-S 160 1.667 × 10−1 960 23520 1/147 24.5

CD2DAT-C 160 1.361 × 10−1 1176 23520 1/147 20.0

Vocoder 1 1.1 × 10−4 9105 1 1/9105 1.0

FM 1 6.97 × 10−4 1434 1 1/1434 1.0

Modem 1 6.25 × 10−2 16 16 1/16 1.0

Satellite 240 2.27 × 10−1 1056 5280 1/22 5.0

Receiver 3840 4.76 × 10−2 80640 3840 1/21 1.0

Pacemaker 64 2.0 × 10−1 320 320 1/5 1.0

To further quantify the effect of our SPS, ρSPS
i can be re-written

by substituting H = Lp+ r in Equation 11 which results in:

ρSPS
i =


qi
L

if L - H ∧ L > H
qi

(p+1)L
if L - H ∧ L < H

qi
H

if L | H
(31)

Equation 31 highlights that the throughput under SPS depends
solely on the relationship between L and H . If L | H , then ρSPS

i is
exactly the same as ρSTS

i for SDF graphs and CSDF graphs where
all the firings of an actor vi require the same execution time (in
these two cases, ρSTS

i = qi/H). If L - H and/or the actor exe-
cution time differs per firing, then ρSPS

i is lower than ρSTS
G . These

findings illustrate that our framework has high potential since it
allows the designer to analytically determine the type of the appli-
cation (i.e. matched vs. mis-matched) and accordingly to select
the proper scheduler needed to deliver the maximum achievable
throughput.

5.3 Discussion
Suppose that an engineer wants to design an embedded MPSoC

which will run a set of matched I/O rates streaming applications.
How can he/she determine easily the minimum number of proces-
sors needed to schedule the applications to deliver the maximum
achievable throughput? Our SPS framework in Section 4 pro-
vides a very fast and accurate answer, thanks to Corollary 2. It
allows easy computation of the minimum number of processors
needed by different hard-real-time scheduling algorithms for pe-
riodic tasks to schedule any matched I/O streaming application,
modeled as an acyclic CSDF graph, while providing the maximum
achievable throughput. Figure 8 illustrates the ability to easily com-
pute the minimum number of processors required to schedule the
benchmarks in Table 2 using optimal and partitioned hard-real-time
scheduling algorithms for asynchronous sets of implicit-deadline
periodic tasks. For optimal algorithms, the minimum number of
processors is simply MOPT computed using Equation 5. For par-
titioned algorithms, we choose PEDF algorithm combined with
First-First (FF) allocation, denoted PEDF-FF. For PEDF-FF, the
minimum number of processors is computed using Eq. 6 (MPEDF)
and Eq. 7 (MPAR). For matched I/O applications (i.e. applications
where L | H), it is easy to show (by substituting L in Equation
11) that β defined in Section 3.2.2 is equal to 1. This implies that
for matched I/O applications, MPEDF = d2UΓ − 1e which is ap-
proximately twice as MOPT for large values of UΓ. MPAR provides
less resource usage compared to MPEDF with the restriction that it
is valid only for the specific task set ΓG for which it is computed.
Another task set Γ̂G with the same total utilization and maximum
utilization factor as ΓG may not be schedulable on MPAR due to
the partitioning issues. Comparing MPAR to MOPT, we see that
PEDF-FF requires in around 44% of the cases an average of 14%
more processors than an optimal algorithm due to the bin-packing
effects.

 0

 10

 20

 30

 40

 50

 60

 70

 80

Vocoder

Beam
form

er

D
C
T

Filterbank

D
ES

FM
R
adio

TD
E

FFT
BitonicSort

M
PEG

2

M
P3D

ecoder

H
263D

ecoder

M
odem

Serpent

R
eceiver

Pacem
aker

P
ro

c
e

s
s
o

rs

M_PEDF
M_PAR
M_OPT

Figure 8: Number of processors required by an optimal algo-
rithm and PEDF-FF

Unfortunately, such easy computation as discussed above of the
minimum number of processors is not possible for STS. This is
because the minimum number of processors required by STS, de-
noted MSTS, can not be easily computed with equations such as
Equations 5, 6, and 7. Finding MSTS in practice requires De-
sign Space Exploration (DSE) procedures to find the best alloca-
tion which delivers the maximum achievable throughput. This fact
shows one more advantage of using our SPS framework compared
to using STS in cases where our SPS gives the same throughput
as STS.

203

6. CONCLUSIONS
We prove that the actors of a streaming application, modeled as

an acyclic CSDF graph, can be scheduled as implicit-deadline pe-
riodic tasks. As a result, a variety of hard-real-time scheduling
algorithms for periodic tasks can be applied to schedule such ap-
plications with a certain guaranteed throughput. We present an
analytical framework for computing the periodic task parameters
for the actors together with the minimum channel sizes such that
a strictly periodic schedule exists. Based on empirical evaluations,
we demonstrate that our framework for strictly periodic scheduling
is very suitable for matched I/O rates applications since it provides
the maximum achievable throughput of the applications together
with the ability to analytically determine the minimum number of
processors needed to schedule the applications.

7. ACKNOWLEDGMENT
This work has been supported by CATRENE/MEDEA+ 2A718

project (TSAR: Tera-scale multi-core processor architecture). We
would like to thank William Thies and Sander Stuijk for their sup-
port with StreamIt and SDF3 benchmarks respectively. We also
would like to thank Taleb Alkurdi and Onno van Gaans from Lei-
den Mathematics Institute for their valuable comments. Finally,
we thank our colleagues at Leiden Embedded Research Center for
reviewing early drafts of this manuscript.

8. REFERENCES
[1] J. H. Anderson and A. Srinivasan. Mixed Pfair/ERfair

scheduling of asynchronous periodic tasks. In Proc. of
ECRTS, pages 76–85, 2001.

[2] B. Andersson and E. Tovar. Multiprocessor Scheduling with
Few Preemptions. In Proc. of RTCSA, pages 322–334, 2006.

[3] M. Bekooij, R. Hoes, O. Moreira, P. Poplavko, M. Pastrnak,
B. Mesman, J. Mol, S. Stuijk, V. Gheorghita, and
J. Meerbergen. Dataflow Analysis for Real-Time Embedded
Multiprocessor System Design. In Dynamic and Robust
Streaming in and between Connected Consumer-Electronic
Devices, volume 3, pages 81–108. Springer Netherlands,
2005.

[4] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete.
Cyclo-Static Dataflow. IEEE Transactions on Signal
Processing, 44(2):397–408, 1996.

[5] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson,
and S. Baruah. A Categorization of Real-time Multiprocessor
Scheduling Problems and Algorithms. In J. Y. T. Leung,
editor, Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. CRC Press, 2004.

[6] H. Cho, B. Ravindran, and E. D. Jensen. T-L plane-based
real-time scheduling for homogeneous multiprocessors.
Journal of Parallel and Distributed Computing,
70(3):225–236, 2010.

[7] R. I. Davis and A. Burns. A Survey of Hard Real-Time
Scheduling for Multiprocessor Systems. Accepted for
publication in ACM Computing Surveys. Pre-print available
at: http://www-users.cs.york.ac.uk/~robdavis/
papers/MPSurveyv5.0.pdf.

[8] M. L. Dertouzos. Control Robotics: The Procedural Control
of Physical Processes. In Proc. of IFIP Congress, pages
807–813, 1974.

[9] A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov,
D. D. Gajski, and J. Teich. Electronic System-Level
Synthesis Methodologies. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,
28(10):1517–1530, 2009.

[10] S. Goddard. On the Management of Latency in the Synthesis
of Real-Time Signal Processing Systems from Processing
Graphs. PhD thesis, University of North Carolina at Chapel
Hill, 1998.

[11] K. Jeffay, D. Stanat, and C. Martel. On non-preemptive
scheduling of periodic and sporadic tasks. In Proc. of RTSS,
pages 129–139, 1991.

[12] L. Karam, I. AlKamal, A. Gatherer, G. Frantz, D. Anderson,
and B. Evans. Trends in multicore DSP platforms. IEEE
Signal Processing Magazine, 26(6):38–49, 2009.

[13] E. A. Lee and S. Ha. Scheduling strategies for
multiprocessor real-time DSP. In Proc. of GLOBECOM,
volume 2, pages 1279–1283, 1989.

[14] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235–1245, 1987.

[15] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt.
DP-FAIR: A Simple Model for Understanding Optimal
Multiprocessor Scheduling. In Proc. of ECRTS, pages 3–13,
2010.

[16] J. M. López, J. L. Díaz, and D. F. García. Utilization Bounds
for EDF Scheduling on Real-Time Multiprocessor Systems.
Real-Time Systems, 28:39–68, 2004.

[17] G. Martin. Overview of the MPSoC design challenge. In
Proc. of DAC, pages 274–279, 2006.

[18] A. Moonen, M. Bekooij, R. van den Berg, and J. van
Meerbergen. Cache aware mapping of streaming applications
on a multiprocessor system-on-chip. In Proc. of DATE, pages
300–305, 2008.

[19] O. Moreira, J.-D. Mol, M. Bekooij, and J. van Meerbergen.
Multiprocessor Resource Allocation for Hard-Real-Time
Streaming with a Dynamic Job-Mix. In Proc. of RTAS, pages
332–341, 2005.

[20] O. Moreira, F. Valente, and M. Bekooij. Scheduling multiple
independent hard-real-time jobs on a heterogeneous
multiprocessor. In Proc. of EMSOFT, pages 57–66, 2007.

[21] O. M. Moreira and M. J. G. Bekooij. Self-Timed Scheduling
Analysis for Real-Time Applications. EURASIP Journal on
Advances in Signal Processing, 2007:1–15, 2007.

[22] V. Nollet, D. Verkest, and H. Corporaal. A Safari Through
the MPSoC Run-Time Management Jungle. Journal of
Signal Processing Systems, 60:251–268, 2010.

[23] H. Oh and S. Ha. Fractional Rate Dataflow Model for
Efficient Code Synthesis. The Journal of VLSI Signal
Processing, 37:41–51, 2004.

[24] T. Parks and E. Lee. Non-preemptive real-time scheduling of
dataflow systems. In Proc. of ICASSP, volume 5, pages
3235–3238, 1995.

[25] R. Pellizzoni, P. Meredith, M.-Y. Nam, M. Sun,
M. Caccamo, and L. Sha. Handling mixed-criticality in
SoC-based real-time embedded systems. In Proc. of
EMSOFT, pages 235–244, 2009.

[26] S. Sriram and S. S. Bhattacharyya. Embedded
Multiprocessors: Scheduling and Synchronization. CRC
Press, 2nd edition, 2009.

[27] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For Free. In
Proc. of ACSD, pages 276–278, 2006.

[28] W. Thies and S. Amarasinghe. An empirical characterization
of stream programs and its implications for language and
compiler design. In Proc. of PACT, pages 365–376, 2010.

204

