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ABSTRACT

The worst-case execution time (WCET) of a task denotes the
largest possible execution time for all possible inputs and thus,
hardware states. For non-preemptive multitask scheduling,
techniques for the static estimation of safe upper bounds have
been subject to industrial practice for years. For preemptive
scheduling however, the isolated analysis of tasks becomes
imprecise as interferences among tasks cannot be considered
with sufficient precision. For such scenarios, the cache-related
preemption delay (CRPD) denotes a key metric as it reflects
the effects of preemptions on the execution behavior of a
single task. Until recently, proposals for CRPD analyses
were often limited to direct mapped caches or comparably
imprecise for k-way set-associative caches.

In this paper, we propose how the current best techniques
for CRPD analysis, which have only been proposed separately
and for different aspects of the analysis can be brought
together to construct an efficient CRPD analysis with unique
properties. Moreover, along the construction, we propose
several different enhancements to the methods employed. We
also exploit that in a complete approach, analysis steps are
synergetic and can be combined into a single analysis pass
solving all formerly separate steps at once. In addition, we
argue that it is often sufficient to carry out the combined
analysis on basic block bounds, which further lowers the
overall complexity. The result is a proposal for a fast CRPD
analysis of very high accuracy.
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1. INTRODUCTION

Systems with hard real-time constraints depend on the
knowledge of strict timing bounds of their components. In
software systems, the worst-case execution time (WCET) of
one or multiple tasks is one of the key metrics used to reason
about the overall timing behavior in such scenarios. A safe
bound on the WCET of a single task is typically obtained
by means of static analysis. This enables the determination
of worst-case system states at micro-architectural level, inde-
pendent of actual runtime parameters that would otherwise
affect the execution time in runtime profiling approaches.

In a non-preemptive multitask system, WCET values of
the tasks analyzed as separate, isolated entities are suffi-
cient to reason about the feasibility of a given schedule.
That is, whether all tasks meet their deadlines. However,
non-preemptiveness severely deteriorates task responsiveness,
since high-priority tasks are not allowed to execute immedi-
ately, unless no other task is seizing the respective CPU.

Fully preemptive schedules, in contrast, are inherently
responsive. Their drawback, however, is that considerable
complexity is added to the static analysis of such scenarios
to reason about a system’s timing behavior and specifically
about the feasibility of the chosen scheduling.

Given the fact that a task can potentially be preempted at
any given time, the mere knowledge of the isolated WCET
is not sufficient to determine whether a task meets its dead-
line. Potentially, starting times can be delayed and overall
execution times can be prolonged.

In addition, each preemption implies immediate context-
switch penalties due to — for example — the disruption of
pipelined execution, context-saving, the potential execution
of scheduling logic, etc. The most important factor, however,



is the eviction of cache contents due to the execution of
higher-priority tasks. Loss of cached data due to eviction
does not, as in the former case, affect execution performance
immediately and practically independently of the system
state, but shows its effects upon the next respective memory
access at a later time and under conditions that are highly
dependent on the memory layout and runtime behavior of
the tasks involved.

The cache-related preemption delay (CRPD) accounts for
the additional delay that is caused by cache evictions incurred
from the set of preempting tasks. It has a significant impact
on the estimation of preemption costs and is highly dependent
on an accurate knowledge of the possible cache contents on
preemption. The CRPD is a vital component of the worst-
case response time [9] (WCRT) analysis on which practically
all approaches to schedulabillity analysis are based on. The
CRPD and its safe, accurate and efficient estimation is the
topic of this paper.

The two primary aspects in CRPD analysis are, on the
one hand, how the cache is affected by preemptions by other
tasks within a single instance of a task and on the other
hand, the effects on the cache between instances of the same
task. The predominating concept for the former is that of
useful cache blocks [6] (UCB) and this is also the domain we
restrict our proposal to.

Overall, this paper focuses on the efficient and highly ac-
curate estimation of the CRPD under periodic, fixed-priority
scheduling for k-way set-associative instruction caches with
LRU replacement policy. We base the work on the most
accurate techniques to date, which have only been proposed
incompletely or in limited contexts. Specifically, we construct
a UCB analysis for set-associative caches from a highly accu-
rate approach which was limited to direct-mapped caches but
was shown to be the most accurate approach in its domain
[10]. We apply this analysis on the most accurate algorithm
for CRPD estimation for set-associative caches [2], which
has only been proposed in general terms and independently
of an actual UCB analysis. We propose how these can be
combined and how synergetic effects can be exploited to save
redundant computations. In principle all proposals can be
applied to instruction and data caches. But as we will show
later, the handling of instructions yields specific optimization
potential to vastly reduce the computational complexity even
further and we show that this reduction comes at no loss of
accuracy. Additionally, we propose a new safe upper bound
on the effects of multiple preempting tasks.

Since all components we base our work on have shown to be
the most accurate ones in their specific usage domains, and
for which we propose further improvements, to the best of
the authors’ knowledge our synergetic approach is currently
the most accurate UCB-bound CRPD analysis published.

In the following Sec. 2, we discuss related work. Sec. 3
addresses the general construction of the proposed analysis
and discusses limitations and improvements in existing ap-
proaches. We present novel techniques for the reduction of
complexities in existing approaches and specify a complete
CRPD analysis. In Sec. 4, results of our proposed technique
are presented. The closing Sec. 5 concludes the paper and
briefly presents ideas for future work.

2. RELATED WORK

The domain of WCRT analyses is, as of today, well un-
derstood and techniques of varying complexity and accuracy
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have been proposed so far. Some of these have matured to
the point of industrial strength. For non-preemptive schedul-
ing, the determination of safe bounds on single task WCET
is sufficient to reason about the overall behavior of a set of
tasks, as no interference by other tasks needs to be taken
into account [17].

For fully-preemptive scheduling with fixed priorities, such
as Rate Monotonic Scheduling (RMS) [7], a considerable
interference between tasks exist, mainly due to the CRPD.

In the original work on WCRT [15], the CRPD has not yet
been considered as a factor. Different approaches have been
proposed to circumvent the problem of CRPD altogether by
establishing optimized memory layouts to prevent tasks from
mutually evicting each other [11, 12].

Either way, if no information on the cache is available,
a safe but overly pessimistic bound on the CRPD can be
obtained by the assumption that all cache contents are being
invalidated when being preempted. In a fully preemptive
schedule, this effectively draws the cache useless for scenarios
with hard real-time constraints.

Static cache analyses [5, 8] enable the consideration of
possible (may) or guaranteed (must) cache contents to tighten
these bounds. Two approaches with varying precision and
complexity are presented in [5, 10]. Although the latter
(so called “state-based” approach) scales exponentially in
space and time in its originally proposed form, it offers
high accuracy, which is why this is used as the basis for
our proposed approach. Moreover, the authors of [13] have
proposed a technique to flexibly scale the complexity of the
latter analysis at the expense of precision. The general
topic of cache analysis and CRPD computation at a broader
perspective is discussed in depth in the following Sec. 3.

With the knowledge of cache contents at runtime, tighter
bounds on the CRPD can be determined: The interference of
the cached elements of a task with its preempting tasks can
be computed statically. In [4, 6], the concept of useful cache
blocks (UCB) is introduced, which describe blocks, once
accessed and thus, cached, that are being reused at a later
time within the same task instance. Hence, evictions of UCB
by preempting tasks would potentially lead to cache misses
after resumption. This leads to a safe estimation of CRPD
by only considering the preempted task, independently of
the set of preempting ones.

Variations of the basic idea have been proposed in the
following publications. Notably, the concept of evicting cache
blocks (ECB) [16] does not only allow for the consideration
of the eviction of all UCB at preemption, but explicitly
considers the cache utilization of the preempting tasks. [16]
considers ECB only, independently of the actually preempted
task. In [10, 13, 14], the CRPD is bounded by considering
both UCB and ECB with varying precision. While most
proposals limit themselves to direct-mapped caches for the
sake of formal simplification, specific problems related to set-
associativity have been overlooked or neglected [3] with the
consequence of either being unsound or overly pessimistic.

The authors of [1] have shown that the WCET of an
isolated task already accounts for certain types of cache
misses, which allowed them to bound the WCRT with so
called definitely-cached UCB. This results in even tighter
bounds but requires full control over both the WCET and
CRPD analyses.

Recently, [2] proposed a technique called resilience analysis,
which classifies useful cache blocks according to their ability



to “survive” preemptions which tightens CRPD estimations to
a degree yet to be matched. The foundation of the proposal
is still the UCB analysis, which is left unspecified.

In the following sections, we will demonstrate how the
very accurate UCB analysis of [10] can be combined with the
resilience analysis of [2] to compute highly accurate CRPD es-
timations. We show that both techniques are synergetic so as
to save unnecessary computations and memory consumption.

3. BOUNDING CRPD

In the following, the basic model of our proposed CRPD
analysis is presented. In Sec. 3.1, we discuss the construction
of a safe and accurate cache analysis for k-way set-associative
caches with LRU replacement policy. In Sec. 3.2, we address
how UCB and ECB are computed. In Sec. 3.3, we briefly
introduce the analysis of cached block resilience and that
unique properties of the previously introduced cache analysis
can be exploited to combine both separate analyses into
one. In Sec. 3.4, we demonstrate how accurate CRPD can be
computed from our results. In Sec. 3.5, we propose techniques
to significantly reduce the analysis complexity by showing
that is is possible to perform our combined analysis on basic
block boundaries.

3.1 Accurate Cache Analysis

As sketched in Sec. 1, the key to the determination of an
upper bound on the CRPD is a preferentially accurate, but
necessarily safe estimation of the state of the cache memories
of a system.

We restrict the following discussion to instruction caches.
In principle the techniques can be applied to data caches as
well, but this complicates the formalism and, as we will show
later, the handling of instructions yields specific optimization
potential to vastly reduce the complexity of all analyses
presented in the rest of this paper.

In the following, we present the predominating concept
in CRPD analysis: useful cache blocks (UCB). We present
the basics in Sec. 3.1.1 and discuss the construction of the
state-based approach for set-associative caches in Sec. 3.1.2.

3.1.1 Fundamentals

Consider a task’s control flow graph where each instruction
represents a program point p € P. We refer to a block of
memory as being useful, if it may have been loaded into the
cache (by accessing the respective memory block) at some
program point p; and may be accessed again at some point
p;, which is reachable along a path in the control flow graph
starting at p; without being evicted (without preemption)
from the cache along this path. This is depicted in Fig. 1.
The white circles represent accesses to m along a control
flow. As can be seen, m is only classified “useful” at those
program points from where an access to m is reachable in
forward and backward direction without being evicted along
the path are classified useful. For paths where this does not
hold, m is not useful.

Consequently, when a useful block is evicted because the
corresponding task has been preempted after the previous ac-
cess, the next access to it is a cache miss and thus contributes
to the CRPD.

A safe but usually overly pessimistic upper bound on
the CRPD for a single preemption can be obtained at the
program point with the largest set of UCB, since a preemption
at such a point would potentially cause the highest number
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Figure 1: Useful blocks

of evictions from the cache and in turn, may cause cache
misses at later points along the control flow. In other words,
all UCB are considered invalidated when preempted, so the
number of possible future cache misses corresponds to the
cardinality of the UCB [6].

The contribution of UCB alone to the CRPD can be signif-
icantly reduced by obtaining information on the accesses of
the preempting tasks, so as to consider only those UCB with
actual interference. The interfering blocks of the preempting
tasks are termed evicting cache blocks (ECB). As we will see
later, ECB are a by-product of the UCB analysis and thus
come with negligible extra computational effort.

The precision of the UCB analysis is highly dependent
on the cache analysis employed. To statically estimate an
upper bound on the UCB in all program points, a so-called
may-analysis of the cache states is to be performed.

3.1.2  State-based Analysis

Primarily two techniques [6, 10] have been proposed to
solve the problem of UCB computation, which differ in pre-
cision and complexity and which are both based on finding
a fix-point of possible cache memory states over all program
points. In the literature, they are known as the “set-based”
and “state-based” approaches [13]. In the following, we sketch
the construction of the state-based approach which we will
use as the basis for our proposal, as we seek to exploit its
unique properties as detailed later.

Let ¢ denote the number of cache sets and let k& denote
the cache’s associativity. Let M = {m1, ma, ...} denote all
memory blocks mapped to a cache, and let B = {b1,...,bn}
denote the set of cache blocks where n = ¢ X k denotes their
count.

In k-way set-associative caches, cache blocks are logically
grouped into cache sets. Then set : M — [1,c] maps a
memory block to a cache set index.

A cache block uniquely identifies a memory block, if the
latter has been loaded. We then write b; — m; to denote
this fact.

The approach to UCB analysis as initially proposed in [10]
is a highly accurate means to determine cache contents at
arbitrary program points. Its purpose is to compute so-called
abstract cache states which are defined as:

CcPBY x - xBF) with B; = MU {1} (1)
Where C is the set of all tuples, where each such tuple has
¢ X k elements representing a memory block or L, where
the latter denotes an undefined mapping. In other words,
a single tuple represents one possible state of a cache at a
program point. Potentially, multiple of such states may be
feasible in a program point. Each B* denotes the contents
of a cache set. For simplicity, s; € S with |S| = ¢ denotes
exactly the blocks in cache set i in the following. Note that



cache sets and replacement policy need not be encoded in the
abstract state itself as they are purely functional properties.

For example, 3 possible cache states for a cache of n =4
blocks and associativity k = 1 could look like:

{(m17 J—7 mr, m4)7 (m17 1,mz, m12)7 (m97 J—7 mr, m4)}

As can be seen, for each cache block with a potentially
ambiguous mapping of m a separate cache state exists.

To compute UCB under this model, two iterative data flow
equations need to be solved. In a forward-iterative fix-point
computation, the reaching cache states (RCS) are determined.
These represent all feasible mappings of memory blocks onto
a cache along the control flow path in every program point
peEP.

To this end, we define the generating function which rep-
resents the accesses issued in a program point:

gen: P x[l,c] > MU{Ll} (2)

with

—

if m accessed in p A set(m) =1
otherwise

m

" (3)

gen maps to the memory accesses (if any) issued at program
point p and which are mapped to cache set i. We assume
a single access per cache set at each program point. This
is a feasible restriction for the targeted architectures and
simplifies the following definitions.

Many set-associative caches depend on the least-recently
used replacement policy (LRU) as an eviction policy when a
new memory block is loaded into a cache set due to a cache
miss. We only sketch the idea.

Let the replacement function lru : M x B* — B* for a
single cache set (of associativity k) s = (b1, ..., bx) be defined
as:

lru(m, s) = {

mtf(m, s)
(m, [)17 “eay bkfl)

with mtf : M x B¥ — B* defined as:

if m mapped in s
otherwise

(4)

mtf(m,s) = (m,bi,... ,bk) (5)

When m is not already in the set, lru places it at the head
of the queue and therefore drops the oldest element by or,
if m is already in the set, the function mtf (move-to-front)
places it at the head, shifting blocks accordingly.

The data flow equations to compute the RCS for each
program point are then defined as:

U

pjEpred(p;)

ybic1,bigr, ...

RC'Sin(pi) RCSout(p;y) (6)
RCSout(pi) = {te(r)|r € RCSin(pi)}
with t. : s¢ — s¢ defined as:

tc((51, ey Sc)) =
(ts(gen(psy 1), 81), ..., ts(gen(ps,c), sc)

where ts : M x B* — B is defined as:
| lru(m,s) ifm#1L
ts(m, ) = { s otherwise
That is, RC'S;n represents all different preceding abstract

cache states and RCS,.: represents the set of cache states
after memory accesses have been applied to sets according

(7)

(8)

9)
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(b) Cache states

Figure 2: Propagation of state for a direct-mapped
cache

to the replacement policy. In Eq. 7, r € RC'S;,, represents a
cache’s state, which is just a tuple of cache blocks as defined
earlier. For the sake of simplicity, s; in Eq. 8 represents the
blocks composing a cache set. We apply the appropriate
memory access for the respective cache set in Eq. 9. When
a memory block mapped to the particular cache set which
has been accessed (not L), the replacement policy is applied.
Otherwise, the cache set remains unaltered.

The application of the equations is then repeated until a fix-
point is reached. For a simple example of the computation of
reaching states, consider Fig. 2. We assume a direct-mapped
cache for the sake of simplicity. In Fig. 2(a), the mapping
of a memory block into a respective cache block for each
program point p; (Eq. 2) is shown. Accordingly, Fig. 2(b)
depicts the changes in the in and out sets due to Eq. 6 and
Eq. 7. Note how multiple possible cache states exist after
the control flow joins which implicitly encode the different
paths taken.

Inversely, the live cache states (LCS) can be computed
by applying analogous join and update functions during
backward iteration by collecting states of successors in the
control flow graph instead. The LCS represent the memory
blocks at a particular program point which may be accessed
again at a later time along the control flow without being
evicted.

3.2 Computation of UCB and ECB

With RCS and LCS computed, the UCB at each program
point p € P can be determined. Computing the UCB requires
to intersect cache states of RCS and LCS. Formally, the set
of UCB at some program point p is defined as:

UCB? = {rn.l|r € RCS?,,,1 € LCS?

out» out

(10)
where operator N. on two abstract cache states is defined as:

cNec = (51Ng 81,...,8:Ns 5) (11)

with

siNs s;:={blb € s; \NbE s;} (12)

That is, the UCB at each program point are a set of tuples
that represent the pairwise intersection of RC'S and LC'S.
Each tuple element corresponds to a cache set and contains
the intersection of blocks mapped onto the respective set.
We say a block m is useful in a program point p, iff

me u
uweUCBP

and abbreviate this with m € UCB? for simplicity.

Note that information on the cache set ordering is dropped.
But we still maintain individual cache sets and all cache
states.

(13)



m

m

dist = 3

(b)

Figure 3: Concept of block age and resilience

In turn, the ECB represent an upper bound on the cache
usage of preempting tasks. This enables the computation
of much tighter bounds on the task interference, as only
those UCB can lead to cache misses that have potentially
been evicted by a preempting task, as has been noted in the
introduction.

The ECB can directly be derived from the analysis results
for the UCB. Similar to the computation of UCB, potentially
multiple ECB are feasible for a single program point. There-
fore, for a single preempting task, we define ECB as the set
of all feasible reaching states of the final program point pezit:

ECB = RCSPest (14)

out
Note that ECB denote which cache sets have been used and
to what extent. For RCS specifically, this is more accurate
than in other approaches [13] to cache analysis as the set of
states only holds those cache states that are actually feasible
along all paths leading to the final program point.

3.3 Cached Block Resilience

In the following Sec. 3.3.1, a technique called resilience
analysis [2] is sketched, which vastly improves accuracy for
UCB-based CRPD for set-associative caches. In Sec. 3.3.2,
an alternative algorithm for its computation is proposed and
we show that in case of state-based UCB computations, an
explicit resilience analysis is redundant.

3.3.1 Concept of Resilience

Given a memory block m is referenced for the first time,
it is placed at the head of the logical “queue” of its cache
set, which is implied by the replacement policy. An access
to a different memory block will increase m’s distance to the
head position, which we call the block’s age in the following.
As long as age(m) < k — 1, m is not evicted from the cache
and therefore causes no cache miss upon its next reference.
Obviously, referencing m again resets its age to 0. This is
depicted in Fig. 3(a) where the accesses to m and accesses
to other memory blocks mapping into the same cache set are
marked along the control flow from the first access of m to
the next one.

Not only do different accesses from the same task increase
m’s age, but so do accesses from other tasks, if they happen
to preempt the current one after m has been loaded into the
cache. Therefore, the accesses of preempting tasks potentially
increase the age in addition to the aging happening in the
preempted task alone.

Given only the accesses of the preempted task that con-
tribute to m’s aging, the maximum amount of additional
accesses by the preempting tasks without causing a cache
miss upon the next access to m is referred to as the block’s
resilience [2]. In the following, we use the term cached block
resiliencies (CBR).
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The CBR are composed of the maximal age from all pre-
vious points with an access to m to some program point p
(“forward age”) and the maximal aging from p, until the next
access to m occurs (“backward age”). Knowing these two
metrics allows to reason about whether m is guaranteed to
be present in the cache at p at all and whether m remains to
be cached even if a preemption at p with known ECB occurs.

Consider Fig. 3(b). Accesses to m are labeled. All other
accesses map into the same cache set. The longest path is
between the top left to the bottom left access to m. For every
point between these two accesses, the sum of the forward and
backward ages is constantly 3, even though a shorter path is
possible from the top right. On the path to the bottom right
from the branch, m is not useful and is therefore ignored in
finding the longest path.

Let agef;@i (m) denote the maximal age from previous ac-
cesses of m to just before the current program point p, then
we define:

ifmeUCBP
otherwise

aatm) = { e (15)
Where maz;, denotes the maximal age from the previous
access to m to the current point p. max;, is subject to
further discussion and so the exact definition postponed to
Sec. 3.3.2.

If m € UCBP, then there must be at least one path leading
to p on which m is useful. Therefore, on this path, m must
be cached and reused before eviction. If m would be evicted
due to preemption in p, a later cache miss is possible. This
implies that the maximum age is computed only from those
paths where m is useful. Otherwise, we default the age to
0. In turn, age?),(m) denotes the ages after changes due to
accesses in p have been applied. Analogously, ages in reverse
direction (age’) are determined to compute the maximum
age to the next access.

From age' and age’ a distance metric can be computed.
By adding both ages, we obtain a value that denotes the
length of the longest path between the last and next access,
if any existed.

Formally, the maximal distance at a program point p is
defined as:

dist”(m) = age”*(m) @ age” T (m) (16)
where @ : Ng — Np is defined as:
i [ k=1 ifa+d >k
ada = { a+a otherwise (17)

The value of dist?(m) denotes the maximal distance between
accesses to m among all relevant paths. If m is not useful
on at least one path through p (Eq. 15), it cannot be in the
cache and therefore cannot be evicted later. If the maximal
distance exceeds the associativity, then we cannot guarantee
resilience on all useful paths. The value of k — 1 is chosen
for convenience in that case.

The resilience per memory block m at each program point
p can then be defined as:

cbr?(m) = (k — 1) — dist? (m) (18)

In case the maximal distance between two accesses is smaller
than the associativity k, cbr?(m) denotes how many addi-
tional accesses from preempting tasks are allowed before m
is potentially evicted. In the other case, we default to a safe



Figure 4: Cache state and block ages

lower bound of 0, which means that we assume that any
access from a preempting task evicts m instantly.

3.3.2  CBR from Cache States

In its originally proposed form, the resilience analysis serves
as a means to optionally tighten the CRPD. Similarly to
ECB, which tighten the bounds on the CRPD estimation
by providing information on what blocks may be evicted in
case of a preemption, the CBR provide information on what
blocks must be irrelevant to consider as they are so resilient
that they can never be evicted.

Contrary to the computation of CBR in its originally
proposed form [2], we can exploit the state-based encoding
as presented in Sec. 3.1.2 to avoid computing UCB and CBR
in separate steps. Nonetheless, we can obtain bounds at
least as tight as proposed originally. The separation was
necessary mainly due to the fact that the UCB analysis
was left unspecified. And arguably, one of the two primary
approaches to UCB analysis (“set-based approach” [6]) relies
on an abstract state encoding [5] which trades accuracy for
memory requirements [13] at a scale, which necessitates the
explicit computation of CBR.

Consider Fig. 4, which exemplifies a scenario for a single
program point with in-edges ep to es. The blocks on top
denote the possible cache states after the predecessors have
been processed according to Sec. 3.2. We assume that each
cache state denotes a single cache set, where blocks are aged
from left to right. In other words, these states denote the
RC' Syt of the predecessors. The block at the bottom denotes
the LC Sout, of some successor. That is, blocks that may be
reached from our program point without being evicted.

For UCB in p, this means a is useful due to eg or e; and b
is useful due to ep or ea. The RCS;, at p is the join of all
the states from the predecessors. Therefore, if a is available
in one of the incoming states, it is available in the joined
states. In other words, a may be cached before p. To derive
a safe age for a from these states, we first conclude: If a
is not useful, it cannot have been cached or, if cached, it
cannot reach the point of reuse without being evicted without
preemption after p. Therefore, the computation of resilience
for non-useful blocks need not be taken into consideration. If
a is useful in p, it must be among at least one incoming cache
state. Since the age of a only matters for states where m
actually must have been cached, its maximum age is therefore
only to be determined from the states where a is present
and iff a is useful. In other words, max;n(p, m) from Eq. 15,
must be defined as:

b

where s = (b1,...,bx) is the set m is mapped to. That is,
we seek the maximum of all ages in the cache sets where m
is mapped. If m is not present in some state in RC'S;,,, we
assume a safe default age of 0.

ifbiGS,biHm

1
mazin(p,m) = { 0 otherwise

max
RCSin(p)
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To summarize, we exploit the fact that for the state-based
encoding, minimum and maximum ages are always exact
and all paths leading to different states are always implicitly
distinguishable from the states.

3.4 Cache-Related Preemption Delay

In the following, we propose the computation of CRPD.
In Sec. 3.4.1, we address the issue of computing safe bounds
on combined ECB for multiple preemptions of a task for
set-associative caches and present an optimized variant of
a previously proposed algorithm which greatly improves its
precision. In Sec. 3.4.2, we formulate how the CRPD is
actually computed from all that has been discussed so far.

3.4.1 Task Interaction and Safe ECB: A Revision

A critical aspect of the determination of CRPD has not
been investigated yet. Although we already introduced ECB,
we have not yet addressed their implications on the CRPD
computation.

As stated in Sec. 3.2, the ECB for a single preempting task
is equal to RC'Soyt. So, ECB are in fact a set of cache states.
To simplify matters, we restrict the following discussion to a
single element ecb € ECB. Then ecb; is a state from task T;.
The application to all states should be obvious.

If preemptions nest, that is, they preempt each other in
one point of a preempted task, their combined effect on
the preempter is basically the set-wise join of all cache sets
s € ecb of all preempting tasks.

If a task is preempted multiple times by multiple tasks, so
called “interaction” [2] occurs that might cause more evic-
tions than the separate tasks’ ecb would suggest. The authors
define that two preemptions interact, if there are two con-
secutive accesses to a memory block m that enclose the
preemptions.

For preemptions from different tasks and with an associa-
tivity £ > 1, interaction can cause more evictions than one
preemption would cause in isolation.

Consider Fig. 5(a). The circles denote whether m is cached.
The cardinality of the ecby and ecb; denote the cache set usage
of the preempting tasks Tp and 77. Without preemption, m
does not age from left to right. Therefore, for a resilience
of 4, the ecb of Ty alone do not cause an eviction, between
two accesses to m. However, if multiple preemptions of
different tasks happen to occur between two accesses to m, it
is evicted in fact. Therefore, the ecb of one task in isolation
is insufficient to reason about actual evictions for CRPD
computations.

The principle insight is that for each preemption alone
m’s age only increases by an amount that would not cause
an eviction between the two accesses to m. But multiple
preemptions in succession possibly increase m’s age multiple
times before the next access, so that in fact an eviction
occurs. Not taking interaction into account underestimates
the number of cache misses.

In [2], a safe bound has been proposed for this case. The
idea is that we can safely bound interaction by assuming
that each preemption by one task always interacts with all
other preemptions. We cannot know the actual interaction
in a fully preemptive schedule. But if each preemption by
a task Ti is treated as a nested preemption of T3 with all
other tasks of higher priority, then this single preemption
causes an aging that is an upper bound on all possible agings
through interaction. In other words, the ecb for an “artificial”



Figure 5: Task interaction

task is computed that denotes a safe bound on the number of
evictions one task could cause in interaction with all possible
others.

Due to space restrictions, we will directly state their
proposed bound here. Assume a set of preempting tasks
T = (T1,...,Ty), which is ordered by non-increasing num-
bers of preemptions!. Then a safe bound on the CRPD
despite interaction is:

CRPD(T) = > #P(T;) x CRPDr(ecb])  (20)
=1 n
where
<k
echi = U ecb; (21)
j=1.i

That is, for each preemption of a task T;, we assume a
preemption of an artificial task 71, instead, that causes a
safe amount of aging. The join operator then joins cache
set-wise and drops elements if a set’s cardinality exceeds k.
The total CRPD is then the sum of all per-preempter CRPD
weighted by their number of preemptions.

A problem with this bound is that it not only accounts for
possible evictions due to interaction. It also unnecessarily
accounts for evictions that are caused by the preempters in
isolation already, therefore increasing the CRPD by assum-
ing identical evictions multiple times although they are not
subject to interaction.

Consider Fig. 5(b). As can be seen, one preemption alone
by task Ty does not contribute to m’s aging at all. T1
alone then causes the eviction. According to Eq. 21, we
assume a miss due to interaction for T;. When later the
per-preemption CRPD for T3 is computed, the same eviction
is counted again.

We propose to only join cache sets in ecb conditionally,
depending on whether the cache sets in the actually preempt-
ing task T; are non-empty. For an empty set, interaction
with other preemptions cannot occur.

Formally, we propose ecb™ instead of ecb™, which is defined
as:

<k
ech” = U (ech; ®<y ecbj) (22)
j=l.i

where e ®<y, € joins all cache sets up to a size of k but only
for those whose corresponding sets in the ecb of task i is
non-empty, since no interaction can occur with regard to
such sets.

The extension to all cache states is their cross-product. In
the following, when using EC' B, we mean EC B~ which is

'For RMS [7], priority is a monotonically decreasing function
of the period.
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the extension of ecb™ to all cache states whose definition we
omit here due to space limitations.

3.4.2 Computing accurate CRPD

As discussed in Sec. 3.1, the UCB denote an upper bound
on the possible number of cache misses, given a preemption
at an arbitrary program point. From the previous discussion,
we draw the following conclusions:

e The UCB usually vastly overestimate the actual num-
ber of evictions: Since with UCB alone, we have no
information about which blocks are actually referenced
by the preempting tasks and in turn which ones are
evicted, the only safe assumption is an eviction of all
UCB.

e The amount of additional accesses from a preempting
task is already known at this point. £C B denotes an
upper bound on their occurrence. That is, the final set
of cache states which have previously been determined,
indicate to what extent blocks are possibly mapped
into cache sets.

o If cbr?(m) > |ecbs|, where |ecbs| denotes the number
of blocks mapped into a set for a single state, then the
eviction of m in p is impossible and therefore cannot
contribute to the CRPD even though m is useful.

Therefore, a safe bound on the CRPD caused by a single
preemption by a single preempting task of a task whose UCB
are known, is defined as:

CRPDr(ECB) = maz{CRPD”(ECB)|p e P}  (23)

Over all program points of the preempted task, we take
the maximum CRPD which depends on the ECB of the
preempters and the UCB in p. To compute CRPD?, we have
to consider all feasible UCB and ECB elements in a point:

CRPD?(ECB) = max {AP(u,e)|lu € UCB?,e € ECB}

(24)
Recall that UCB and ECB elements are derived from RCS
and LCS cache states. Different states could result in different
useful and evicting blocks. So, each combination has to be
considered to find the greatest interference. The function
AP (u, e) computes the CRPD over all cache sets and is defined
as:

AP (uch, ech) = Z CRT x 6% (ucht, echs) (25)
where ucbs and ecbs represent useful and evicting cache
blocks for single cache sets. CRT denotes the cache reload
time. Finally, the CRPD due to a single cache set is defined
as:

0% (ucht, echs) = |uch \{m/|cbr? (m) > |ecbs|}| (26)

A block which is classified useful and therefore represents a
future cache miss can be discarded if its resilience is greater
than the amount of disturbance by the preempting task.

3.5 Block-bounded Estimations

In the following, we show that it is safe not to compute
states for all program points but that we can restrict all
analysis steps previously presented to basic block boundaries,
significantly reducing the computational effort. Sec. 3.5.1
deals with the general idea for UCB. In Sec. 3.5.2, we show
that this is also feasible for CBR at no loss of accuracy, which
then allows to fully exploit the combined UCB and CBR
analysis as proposed previously.
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Figure 6: UCB with computations on basic block
bounds
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3.5.1 UCB on Basic Block Bounds

When performing cache analysis, we relied on the esti-
mation of cache contents at instruction-granularity. This is
highly accurate but comes at the price of considerable costs
during cache analysis. This manifests in potentially very
high execution times and high memory usage. However, we
can exploit specific properties of the program structure to
significantly lower the amount of relevant program points.

To explain this, recall that a (maximal) basic block bb; is a
maximal sequence of instructions which can only be entered
at the first and left after the last instruction, respectively.

It is sufficient to compute UCB for instruction caches at
basic block bounds [6]. We restrict the discussion to reaching
states. The computation for live cache states should be
obvious.

For the states right before and after bb;, we reuse the terms
RCS?, and RCS:,;, which were previously used for states
at instruction-level program points.

When considering all program points within a basic block,
the first observation is that only the last k references to
memory blocks mapping to the same cache set are relevant
for RC Sout, since only these will affect the state of the cache
set in question. Specifically, m is present in RC Sy, iff it
has been referenced on the path from the entry of the task
to the end of the basic block and is not evicted along that
path.

UCB analysis relies on the safe overestimation of block
ages. If m is present in RC'S;,, or the last k accesses, then it
will be in RCS,yt. If it is not in RC'S,y¢, then it was either
in RC'S;, but is actually evicted within bb;. Or it was not
in RCS;, in the first place, which means m has not been
referenced at all before, or it has been evicted as it has not
been among the last k references of all preceding basic blocks.
Analogously, the property holds for the live sets.

Fig. 6 depicts these considerations where RC Sour =) {}
and LCSout =1 {}, respectively. In Fig. 6(a), both references
are external to the basic block, the memory block (m) being
referenced is obviously classified useful. In Fig. 6(b), the
block remains useful nonetheless, although m only occurs in
the last k accesses. Fig. 6(c) depicts the result, when m is
only referenced within this single basic block. In all cases,
m remains useful and would therefore safely overestimate
the CRPD regardless of where a preemption actually would
occur within the basic block.

3.5.2 CBR on Basic Block Bounds

Now that we know that it is possible to significantly re-
duce the number of program points for which states for UCB
computation need to be maintained, it would be most de-
sirable to achieve similar results for CBR. This would allow
to compute accurate CRPD with a significant reduction in
complexity.
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Figure 7: Computing safe block-wide ages

The problem of computing CBR at basic block bounds is
that ages must be safe overestimations in each interior point,
whereas in the case of UCB, overestimating reachability
and liveness at the bounds implicitly overestimates these
classifications for the entire basic block. So the question is:
Can the estimated age ever happen to be smaller than the
real age for all interior points of a basic block?

If we rely only on the last k accesses in a basic block bb, then
we can only easily guarantee this property for instruction
caches.

Fig. 7 shows how ages at block bounds are computed in
principle. An empty circle denotes an access into m’s cache
set by some other memory block. For each basic block, we
need a safe age in forward direction (age') from the last
access to the next access. Analogously, we need this for the
backward age (age’).

Given an access to m in some bb, then age¢

out

denotes the
age from the access to the bottom of bb. Inversely, agezut
denotes the aging from the top of bb to the access of m. agefn
and age! can be directly computed from RCS;, or LCS;,.

We only consider forward ages now. Since m is useful in
bb, there are two options:

e m has been accessed in some preceding point and is
not evicted in all cache states until we reach bb. Then
a safe maximal age can be computed from those cache
states in RC'S;, where m is present.

e m is not among any state in RC'S;,,. That means m is
useful only because it is accessed within bb for the first
time (see Fig. 6). Then age;, can be ignored and we
set its value to 0.

This also directly applies to backward ages and LCS. Note
that this is already in accordance to Eq. 15, where the
program point is now the age at the top of bb.

Computing the ages at the top and the bottom accordingly,
we compute the distance according to Eq. 16, which denotes
the maximal path length to and from the access (dist in Fig.
7). The maximum of both distances denotes a safe metric
for Eq. 18, where max from Fig. 7 replaces dist?.

If there is no access to m in bb, the aging is obvious. If m
is not useful, we skip the computation.

For data caches, the maximum distance between all ac-
cesses within the same basic block would have to be taken
into account. Notwithstanding, it would be sufficient to keep
the maximal ages at the bounds.

4. EVALUATION

In this section, we evaluate the results of our proposed
analysis. We conducted the experiments with our WCET-
aware C compiler framework (WCC) which was extended



Name Size | UCB | ECB
adpcm_encoder | 2844 59 81
bins 134 5 6
cre 976 17 18
edn 3054 43 98
fit1 4866 56 58
fibcall 56 2 3
jfdctint 2740 52 87
lednum 1184 8 10
Ims 1834 31 43
matmult 520 9 15
ndes 2586 54 61
qurt 1772 20 21
sqrt 236 7 9
st 1410 20 24

Table 1: Properties of MRTC benchmarks
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Figure 8: CRPD for a two preemptions by fibcall

by a static cache analysis framework. The latter uses a
built-in static pipeline analysis for the TriCore TC1796 CPU
to obtain precise static memory access information. The
analysis is strictly bound to basic block boundaries.

We chose a 2-way set-associative cache of 4kB total size
and LRU replacement policy. Although CBR improve the
results for increasing set sizes, LRU is rarely applied to caches
of more than 4 ways per set.

The evaluation has been carried out on an Intel E5630
(2.53GHz) CPU with no parallel computations.

We made use of the MRTC and PapaBench benchmark
suites to present results on realistic embedded software. We
evaluated with floating point operations carried out on the
FPU.

For MRTC, we modeled two preemptions of a benchmark
by a single other benchmark. Due to space limitations, we
only present two evaluations with different benchmarks as
the preempters. We perform three computations:

e UCB: CPRD from only the preemptee’s UCB.
e FCB: ... from full cache sets that interfere with ECB.
e CBR: ... from Eq. 20 with ecb™.

We set the cache reload time (CRT) to 1 cycle, as this only
scales the CRPD results but obfuscates the actual effects of
UCB, ECB and CBR (see Eq. 25). Note that all diagrams
are of logarithmic scale.

For MRTC, we selected a subset of benchmarks to demon-
strate the effectiveness of the approach, which are shown in
Tab. 1. The size is given in bytes. UCB and ECB are the
peek values among all cache states for all program points for
the former and those of RC Sy, for the latter. The analysis
time for the benchmarks ranges between 300ms to 14s. On
average, 87% less program points were required for the com-
putations when limited to basic block bounds (73 on avg.,
instead of 328 on avg. at instruction-level granularity).
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Figure 9: CRPD for two preemptions by jfdctint

Name ‘ Size ‘ UCB ‘ ECB ‘ Period? ‘ Priority ‘ Preemptions
T5 166 4 7 375 5 23
T6 752 5 26 375 6 26
T7 164 5 7 75 2 4
T10 462 9 17 375 7 28
Ti12 700 5 26 75 3 6
14 338 3 10 150 4 8
15 260 3 5 75 0 0
16 108 3 13 75 1 2

Table 2: Properties of PapaBench tasks

In Fig. 8, the CRPD for preemptions by fibcall is depicted,
which only shows a minimal impact on the preempted tasks
due to its small number of ECB. As can be seen, for purely
UCB-based computations, the CRPD ranges from 16 misses
for lednum to 118 misses for adpcm_encoder. Considering the
ECB of the preempter at cache set granularity already causes
a reduction of 75% (16 to 4 misses) for the first and 95% (118
to 6 misses) for the latter benchmark. For both benchmarks,
the CBR-based analysis reduces the estimated CRPD to 0.
Only for edn a CRPD of 2 is estimated as opposed to 86 for
the purely UCB based computation and 8 for ECB.

Fig. 9 depicts the results for a preempting task with a com-
parably large number of ECB. The preempting benchmark
is jfdctint. As can be seen, even though the ECB are taken
into account, the CRPD estimation is almost identical to
the estimation with UCB alone. This behavior is typical for
these estimations when comparably high cache-usage occurs.
Particularly in such cases, the CBR-based estimation is supe-
rior to the other approaches. For adpcm_encoder for example,
a 88% (118 to 14 misses) tighter bound is computed, whereas
ECB-based estimation is just 8% (118 to 96 misses) tighter
than the plain UCB-based computation. The preempters
cache usage leads to constantly 2 misses in all preemptees.

PapaBench composes an entire multitask system for an
autonomous aircraft. We left out a task (T9) of the bench-
mark because its disproportional size in combination with its
predefined high priority are not beneficial to a meaningful
evaluation since it would result in an actual eviction of the
entire cache (regardless of what a CRPD analysis would
estimate). Execution modes are not distinguished.

Tab. 2 lists the considered tasks’ properties. The size is
given in bytes, the period is given as a cycle-factor®>. To
obtain deterministic results from identical periods, we manu-
ally set fixed priorities by setting periods off by 1 cycle. The
priority is O for the highest priority task. The last column
denotes an upper bound on number of total preemptions of
the task. The total analysis time is 7s with only using 2844
computations on basic block bounds as opposed to 18462
computations which would be necessary at instruction-level
granularity (85% less).

*Period is value x 10® cycles (at 150MHz)
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Fig. 10 shows the results of the CRPD computations for
all tasks , where each one can be preempted by all higher
priority tasks. As can be seen, the UCB-based analysis is
significantly overestimating all CRPD except for 15 which
is not preempted. Except for T10, considering the ECB at
cache set granularity already tightens the CRPD estimation
sigificantly (33% for 16). In all cases (except T6, T10), the
CBR-based estimation denotes a CRPD of 0. For T6, 80%
(130 to 26 misses, ECB and CBR) and for T10 88% (252 to
28 misses, CBR) tighter estimations are computed. In all
cases, the CBR-based estimations outperform the UCB-only
approach by 89% to 100%.

Fig. 11 depicts the different cardinalities of the peek ECB
of the preempters of each task (according to Egs. 21,22).
As can be seen, ECB™ largely overestimates the ECB in
non-trivial cases. The results for 15 and 16, as the two highest
priority tasks, are obviously 0 or match the ECB of the one
evicting task. For T5, 75% (54 to 13 ECB) tighter bounds
are computed with EFCB~. On average we computed 60%
tighter bounds.

S.  CONCLUSIONS AND FUTURE WORK

We presented how to construct an analysis for CRPD
estimation of very high accuracy. To this end, we chose
current state-of-the art analysis techniques as the basis for
our work, where each one of them has only been presented
in a limited context or incompletely.

We showed how a highly accurate UCB analysis which
has originally only been proposed for direct-mapped caches
can be extended to set-associative caches. As for the re-
silience analysis, we showed how it can be combined with the
proposed UCB analysis to prevent redundant computations.
This effectively enables further optimization potential which
we exploited in the following.

We also showed that for the computation of ECB for
multiple preempting task, a much tighter upper bound can
be specified than was previously proposed.

Another aspect is the restricting computations to basic
block bounds. Since it is known to be applicable for UCB
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computations, a synergetic approach necessitates that this is
also feasible for CBR. We showed that CBR can be computed
on basic block bounds with no loss of accuracy. Therefore,
the computational complexity of the combined approach can
be significantly lowered.

To the best of our knowledge, a complete approach to
CRPD analysis with these components and for set-associative
caches has been proposed for the first time. Moreover, since
each technique we based our proposal on has been shown
to be the most accurate means in their specific contexts,
we assume that our proposal is the most accurate purely
UCB-based CRPD analysis as of today.

In the future, we intend use our analysis to perform op-
timizations on schedulings and their parameters, as well as
on the tasks themselves to increase the accuracy of estima-
tions and improve optimization potential in hard real-time
scenarios.
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