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ABSTRACT

In the past decades, embedded system designers moved from sim-
ple, predictable system designs towards complex systems equipped
with caches, branch prediction units and speculative execution.
This step was necessary in order to fulfill increasing requirements
on computational power. Static analysis techniques considering
such speculative units had to be developed to allow the estimation
of an upper bound of the execution time of a program. This bound
is called worst-case execution time (WCET). Its knowledge is cru-
cial to verify whether hard real-time systems satisfy their timing
constraints, and the WCET is a key parameter for the design of
embedded systems.

In this paper, we propose a WCET-driven branch prediction
aware optimization which reorders basic blocks of a function in
order to reduce the amount of jump instructions and mispredicted
branches. We employed a genetic algorithm which rearranges basic
blocks in order to decrease the WCET of a program. This enables
a first estimation of the possible optimization potential at the cost
of high optimization runtimes. To avoid time consuming repeti-
tive WCET analyses, we developed a new algorithm employing
integer-linear programming (ILP). The ILP models the worst-case
execution path (WCEP) of a program and takes branch prediction
effects into account. This algorithm enables short optimization
runtimes at slightly decreased optimization results. In a case study,
the genetic algorithm is able to reduce the benchmarks’ WCET by
up to 24.7% whereas our ILP-based approach is able to decrease
the WCET by up to 20.0%.

Categories and Subject Descriptors
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1. INTRODUCTION
Complex processor designs employing branch predictors have

become popular to increase the computational power of embed-
ded systems. This feature is developed to work transparently with
regard to the software running on a system by integrating a fully
autonomous hardware controller. The effectiveness of such a spec-
ulative unit highly depends on the control flow of a program and the
arrangement of its basic blocks in memory. If the target of a jump
instruction can be predicted correctly, the next instruction to be ex-
ecuted can be fetched in advance and thus, the performance can be
increased. But if the branch target was mispredicted, the processor
pipeline has to be stalled until the next instruction has been fetched
from memory. These penalty cycles can lead to a performance de-
crease.

Branch prediction units are designed to decrease the average-
case execution time (ACET). Their disadvantage is the limited pre-
dictability since it is hard to determine if a jump instruction results
in a pipeline stall due to a mispredicted branch target or not. Since
many embedded systems have to meet hard real-time constraints,
static analysis techniques have been developed to allow safe esti-
mations of the impact of branch prediction units on the worst-case
performance of a system [18].

The worst-case execution time (WCET) of a program is the upper
bound of its execution time for all possible input data and all pos-
sible initial system states. The WCET is a key parameter for real-
time scheduling and the development of hardware platforms which
have to satisfy critical timing constraints. Since the real WCET of a
system can not be determined, static timing analyzers are employed
to determine WCET estimations (WCETest).

The WCET of a program corresponds to the length of the worst-
case execution path (WCEP) which is that path of the control flow
graph (CFG) with the highest execution time. Optimizations of el-
ements like functions on the WCEP can shorten this longest path in
such a way that another path becomes the new WCEP. Optimiza-
tions of elements not lying on the WCEP will not result in a reduc-
tion of the WCET. Hence, possible switches of the WCEP have to
be taken into account during optimizations.

In this paper, we present two novel WCET-driven code position-
ing algorithms to rearrange the order of basic blocks of a function.
They aim at improving the performance of static branch predictors
and at avoiding unnecessary jumps. The first algorithm employs a
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genetic approach which starts with a random population. By ex-
ploiting the evolutionary techniques crossover and mutation, off-
spring individuals are generated which desirably converge to the
optimal solution w. r. t. the WCET of a program.

Usually, evolutionary strategies can be implemented with small
effort and often without understanding the mechanism behind the
optimization problem. Even small memory layout modifications,
for instance, can have hardly predictable effects on the instruction
fetch unit of a processor. Evolutionary algorithms (EA) implicitly
consider such effects by evaluating the WCET to determine the fit-
ness values of newly created individuals. Thus, we employ an EA
to understand the mechanisms behind the optimization problem and
to explore the possible optimization potential of code positioning
techniques before developing complex algorithms.

The second optimization discussed in this paper is such a “com-
plex” algorithm. A more promising order of basic blocks is de-
termined based on an integer-linear programming (ILP) approach.
The ILP explicitly models the WCEP as well as the impact on the
branch prediction and thereby avoids repetitive WCET analyses. To
enable such WCET-centric optimizations, we employ the sophisti-
cated static WCET analyzer aiT developed by AbsInt [1]. The main
contributions of this paper are as follows:

• We rearrange the order of basic blocks of a function based on
its impact on the WCET of a program.

• An evolutionary approach is presented which fathoms the
possible potential of code positioning techniques for sophis-
ticated WCET optimizations.

• Our ILP-based approach determines a more promising order
of basic blocks w. r. t. the WCET of a program by explicitly
modeling the WCEP of a program. For the first time, both
branch penalty costs and the amount of executed uncondi-
tional jumps are modeled in the ILP.

• By applying on a set of benchmarks, we show that WCET
reductions of up to 24.7% can be achieved.

In this paper, the influence of code positioning techniques on the
cache performance is not considered since we already tackle this
problem in [8].

This paper is organized as follows: In the next section, an over-
view of related work is provided. Section 3 presents our new
WCET-driven code positioning algorithms. Section 4 introduces
the WCET-aware C compiler WCC employed to develop our novel
algorithms. An evaluation of the performance which is achieved by
our WCET-driven branch prediction aware code positioning opti-
mizations is presented in Section 5. Finally, we conclude our work
and give a brief overview of future work.

2. RELATED WORK
Burguière et al. [4] compare static and dynamic branch predic-

tion in terms of suitability for WCET analysis. They argue for em-
ploying static instead of dynamic branch prediction and show that
static branch prediction can achieve lower WCETs in most cases.
Mitra et. al, however, present schemes for estimating the effect of
dynamic branch predictors on the WCET of a program in [18].
They derive linear inequations, which can be integrated into ILP
models for WCET analyses, to bound the number of mispredicted
branches during execution.

In [10], a technique for rearranging the positions of tasks to im-
prove the cache performance is presented. The interdependency

relation of tasks is evaluated in order to determine a memory lay-
out which maximizes the number of persistent cache sets for each
task.

A technique for procedure placement to reduce the cache miss
ratio of programs is presented in [11]. Guillon et al. provide an
optimal algorithm for memory placement which is improved re-
garding the unavoidable code size increase caused by gaps in the
address space. In contrast to our optimizations, the presented ap-
proach does not target WCET reductions and the order of basic
blocks stays untouched which wastes optimization potential.

The authors of [17] present their basic block reordering method
based on neural networks. For this purpose, Liu et al. detect typ-
ical structures in the control-flow graph and employ a branch cost
model to choose the layout with minimal costs. Unlike our ap-
proach, their model focuses on the optimization of the average-case
execution time and is unaware of the WCET of a program.

Zhao et al. also address the problem of determining improved
code layouts which decrease the WCET of a program [23]. As op-
posed to our optimizations, only architectures without branch pre-
dictors are considered where unconditional and taken conditional
branches always stall the pipeline for a constant number of cycles.
An iterative approach is proposed which selects single edges to be
contiguous in memory in order to avoid transfers of control. In [3]
Bodin et. al, however, aim at improving the WCET of processors
supporting compiler-directed branch predictions. By setting a dedi-
cated bit of conditional branch instructions during optimization, the
direction to predict is indicated. Optimization potential is wasted,
compared to the work presented in this paper, since unconditional
branches can not be removed due to missing reordering techniques.
In contrast to [23] and [3], our approaches are able to optimize both
unconditional and statically predicted conditional branches. Both
works also do not explore the space of possible solutions in order
to evaluate the quality of their results as it is done in this paper by
employing an EA as basis of comparison. Finally, our ILP-based al-
gorithm avoids time consuming repetitive WCET analyses required
by state-of-the-art optimization techniques. This is done by explic-
itly modeling all possible control flow paths as part of the ILP in
order to always optimize along the WCEP. Therefore, only a single

WCET analysis is required.
Falk et al. counteract possible predictability problems of caches

with a static allocation of program code to so-called scratchpad
memories (SPM) [7]. They employ integer-linear programming to
select the optimal content of the SPM w. r. t. the program’s WCET.
Although basic blocks are moved between different memories, the
branch prediction can not be influenced. This is due to the un-
changed logical order of blocks in each considered memory. For the
same reason, unconditional jumps are only optimized indirectly: a
jump instructions bypassing some basic blocks can be removed if
the bypasses bocks are allocated to a different memory.

Another work considering scratchpad allocation is presented in
[20]. Suhendra et al. developed an ILP-based allocation of fre-
quently accessed data objects to faster memories in order to de-
crease the overall WCET. Their model of the program’s WCET
and possible execution paths serves as basis for the ILP-based al-
gorithm presented in [7] and was also employed for the technique
discussed in Section 3.2.

3. WCET-DRIVEN BRANCH PREDICTION

AWARE CODE POSITIONING
Nowadays, embedded systems employ complex CPUs equipped

with caches, branch prediction units and speculative execution.
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_L3:

jlez %d10, _L4

_L5:
mul.f %d8, 7
j_L7

_L4:
add %d8, -1

_L7:
...

.code16
_L3:

jgtz %d10, _L5

_L4:
add %d8, -1

_L7:
...

.code16

j_L7

_L5:
mul.f %d8, 7

Figure 1: Rearranging code layout to support branch predic-

tion

Such techniques are a source of unpredictability, but are necessary
in order to fulfill increasing computational power requirements of
current and future embedded applications.

Branch prediction units try to determine the target address of a
branch instruction before the instruction is completely processed.
Thereby, it is possible to fetch the next instruction to be exe-
cuted from memory in advance to avoid a performance-decreasing
pipeline stall. This can either be the instruction which is directly
following the branch instruction in memory (fall-through edge) or
the branch target (pass-through edge).

Either dynamic or static techniques are applied for predicting
the branch target: Dynamic branch prediction units store a history,
for instance, by implementing a simple counter denoting whether a
branch was taken in the past or not. If the branch has been taken
in the past, it also tends to be taken in the future. Thus, the branch
target is fetched in advance as next instruction to be executed. Oth-
erwise, the fall-through edge was predominantly taken in the past
and the instruction immediately following the branch instruction is
fetched from memory. Due to this dynamic behavior, the branch
predictor can adapt to changing situations if, for instance, the out-
come of a branch condition changed due to different input data.
This often improves the average case performance but also has the
disadvantage that the impact of the branch prediction is hardly pre-
dictable by static timing analyzers.

In contrast, a static branch prediction unit determines if a branch
will be taken based on static features like the branch direction, the
instruction bit width or a dedicated bit in the instruction code. The
Infineon TriCore processor TC1796 [14], which is considered in
this paper, predicts 16 bit jumps as always taken whereas 32 bit
jumps are predicted depending on the branch direction. Forward
jumps (to higher addresses) are predicted to be not taken while
backward jumps are predicted to be taken. These static features
influencing the branch prediction can be evaluated by analyzing
the object code without executing the program. Thereby, the influ-
ence of the branch prediction can easily be modeled within a timing
analyzer.

If the control flow and the memory layout of a program are ill-
arranged, it can happen that the branch targets are predominantly
mispredicted by a static branch prediction unit. A high number
of mispredicted branches leads to an increased number of pipeline
stalls and, as a result, in a performance decrease. Therefore, re-
arranging the order of basic blocks may be promising in order to
support the branch prediction unit.

On the left-hand side of Figure 1, a code example for the TC1796
processor and a disadvantageous memory layout is depicted. If
register d10 less or equal zero, the instruction at the end of _L3
branches to _L4. Else, the fall-through edge is passed and _L5

is executed which in turn jumps to _L7. The floating point multi-
plication in _L5 takes more cycles than an integer addition. Thus,

a static timing analyzer has to assume _L3,_L5,_L7 as WCEP
(represented by solid arrows) if a data flow analysis can not identify
the path as infeasible. Due to the static branch prediction which
assumes 16 bit jumps to be taken, the first instruction of _L4 is
fetched in advance if the jlez instruction leaves the decode stage
of the processor pipeline. After evaluating the instruction in the ex-
ecute stage, the first instruction of _L5 has to be fetched as actual
branch target resulting in two cycles where the pipeline is stalled.

Rearranging the code structure as can be seen on the right-hand
side of Figure 1 helps the branch prediction to fetch the correct
instruction in advance. Therefore, the position of _L4 and _L5

has to be switched and the test condition of _L3 has to be negated.
In this way, one processor cycle can be saved for each execution
of _L3. Since the unconditional jump at the end of _L5 is now
superfluous, two additional cycles on the WCEP can be saved; one
cycle for executing the jump instruction and one for evaluating and
fetching the branch target. Inserting a jump at the end of _L4 to
correct the control flow does not worsen the WCET as long _L4

does not reside on the WCEP.
The WCC compiler comprises a jump optimization which au-

tomatically corrects the control flow by inserting unconditional
jumps as well as a correction of branch conditions. Superfluous
unconditional branches are removed as well. Thus, we do not
explicitly mention its application to optimized programs in the
following.

In order to support an automatic optimization of the code layout
which is aware of possible WCEP switches, Section 3.1 presents an
evolutionary approach, whereas Section 3.2 presents our ILP-based
optimization technique.

3.1 Evolutionary Approach
Finding an improved order of basic blocks inside a function

w. r. t. the WCET of a program is a complex task which – in most
cases – can not be done manually. In order to explore the possible
space of solutions automatically, we developed an evolutionary
approach. In this way, it is possible to fathom the optimization po-
tential of code positioning algorithms with small implementation
effort. Such a procedure is advisable before spending time and
effort on developing complex optimization techniques with vague
practical effect.

Evolutionary algorithms stem from the domain of artificial in-
telligence and try to implement the principles of biological evolu-
tion. By employing reproduction mechanisms including mutation
and recombination, offspring generations are created. From a new
generation, stronger individuals w. r. t. a certain fitness function are
selected as parents for the next generation. With such an approach,
preferably improved solutions are “cultured” instead of tackling an
optimization problem analytically.

We employed the PISA framework [2] which defines a com-
mon interface for the communication of the so-called selector
and variator modules. The selector picks out individuals for the
archive containing promising individuals for a later use and as par-
ents for an offspring generation, whereas the variator implements
the problem representation. The variator is responsible for creat-
ing offspring individuals from parents by applying the mentioned
crossover and mutation operators as well as for the evaluation of
the fitness value. There are several optimization algorithms for
single- and multi-objective optimizations problems providing an
interface for PISA. The Strength Pareto Evolutionary Algorithm 2

(SPEA-2) [24] shows good performance for different numbers of
objectives at negligible computational power requirements. Hence,
it was chosen as selector although a simpler algorithm could be
applied as well.
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Our implementation of the variator creates individuals which
represent the order of basic blocks by a mapping of consecutively
numbered positions in memory to basic block names: for each
function, a vector stores the basic block names and thereby en-
codes their position. A one-point crossover at a random position
i is applied as recombination operator to create new individuals.
Therefore, the first i of k functions of the first parent individual
are combined with the last k − i functions of the second parent
individual to create an offspring individual. Such a newly created
one is mutated with a probability of 1 by exchanging two randomly
chosen basic blocks of a randomly chosen function solution vector.

For the evaluation of the fitness of an individual which corre-
sponds to the WCET of the modified program, the sophisticated
WCET analyzer aiT is employed. A method to avoid redundant
WCET analyses is a lookup table for already evaluated solution
vectors: if an older individual represents the same solution vector
as a newly created one, the appropriate WCET is read from the
lookup table instead of invoking aiT.

A more sophisticated way to determine an improved order of
basis block positions without the need of repetitive WCET estima-
tions is explained in the following section.

3.2 ILP-based optimization
Trial-and-error approaches enhanced by evolutionary techniques

as presented in the last section are often time consuming. This is
due to the repetitive creation of individuals and evaluation of the fit-
ness function. In contrast, an analytic strategy may yield a problem-
aware optimization technique which also leads to good or even op-
timal solutions. Often, the disadvantage of such “methodological
techniques” is their complexity. They also require a high level of
knowledge w. r. t. the optimization problem on the part of the de-
veloper. Especially for WCET-driven optimizations, the recogni-
tion and handling of possible WCEP switches makes optimizations
challenging.

This section presents our ILP-based optimization technique
which is capable to model a program’s control flow in order to
always optimize along the WCEP. It determines an improved order
of basic blocks w. r. t. the WCET of a program. Our algorithm
requires only a single WCET analysis and is able to consider the
influence of the code layout on the branch prediction. Section
3.2.1 describes the modeling of a function’s control-flow in the ILP
whereas Section 3.2.2 introduces constraints steering the position
of basic blocks. In Section 3.2.3, jump penalties for various jump
scenarios are modeled. Finally, Section 3.2.4 models the global
control flow whereas Section 3.2.5 describes the ILP’s objective
function.

3.2.1 ILP Model of the Control Flow of Functions

In the following, ILP variables are represented using lowercase
letters whereas constants are represented by uppercase letters. For a
function F , the order of its basic blocks in memory is consecutively
numbered. The position of a basic block bi inside F is represented
by an integer variable xi as part of the ILP model. Thus, the value
of xi represents the absolute position inside F which consists of N
basic blocks:

xi ∈ {1 , ...,N } (1)

The costs Ci of basic block bi represent the WCET of this block
for a single execution as part of the unoptimized program.

For reducible CFGs, an innermost loop L of F has exactly one
basic block bLentry being the loops unique entry point, and pos-
sibly several back-edges turning it into a cyclic graph. Not con-
sidering these back-edges turns L’s CFG into an acyclic graph.

GL = (V,E) denotes this acyclic graph in the following. With-
out loss of generality, it can be assumed that there is at least one
basic block bLexit in GL being the loop’s exit node. The WCET
wL

exit of block bLexit is equal to its costs:

w
L
exit = C

L
exit (2)

The WCET of a path leading from a node bi 6= bLexit of GL

to one of the exit nodes bLexit must be greater than or equal to the
WCET of any successor of bi in GL, plus the cost Ci of bi:

∀bi ∈ V \ {bLexit} : ∀(bi , bsucc) ∈ E : wi ≥ wsucc + Ci (3)

Since paths are built bottom-up, variable wL
entry models the

WCET of all paths of a loop L if it is executed exactly once. In
order to model multiple executions of L, all CFG nodes v ∈ V of
GL are represented by a super-node vL. The costs of vL are the
product of L’s WCET for a single execution and L’s maximal loop
iteration count:

cL = w
L
entry ∗ CountLmax (4)

Replacing a loop L by a super-node vL in the CFG may turn
another loop L′ of F directly surrounding L into an innermost loop
with acyclic CFG G′

L. Hence, the constraints of Equation 3 and 4
can be formulated for L′. This way, the innermost loops of F are
successively collapsed in the CFG so that ILP constraints modeling
F ’s control flow are created from the innermost to the outermost
loops.

During optimization, a WCEP switch of a program can only hap-
pen at such points in the CFG where a basic block bi has more than
one successor. Only there, forks in the control flow are possible
where the outgoing paths can have different WCETs. But since
Equation 3 is formulated for each successor of bi, variable wi al-
ways reflects the WCET of any path starting at bi – irrespective of
the fact which successors are actually part of the current WCEP.
This way, the constraint of Equation 3 realizes the implicit consid-
eration of WCEPs and their changes in the ILP.

The fundamental structure of the ILP constraints of Equations 2
– 4 stem from the work of Suhendra et al. proposed in [20]. In order
to implement a fully functional code positioning technique, these
basic constraints had to be refined substantially. Our extensions of
the original ILP formulation are described in the following sections.

3.2.2 Position Constraints

The decision variable xi for a basic block bi allows a free posi-
tioning of each basic block inside a function. However, there are
some constraints which have to be regarded. First, without loss of
generality, each function F has one dedicated entry block bFentry

with its corresponding decision variable xF
entry which has to be

kept as first block of the function:

x
F
entry = 1 (5)

Furthermore, at each logical position of a functionF , exactly one
block must be assigned. Let V be the set of F ’s basic blocks, bi
and bj two basic blocks with their corresponding decision variables
xi and xj , respectively. Then, a number of constraints has to be
formulated to ensure that there are no two variables with the same
value in order to avoid several basic blocks at the same position:

∀bi , bj ∈ V : xi 6= xj (6)

3.2.3 ILP Model of Jump Penalties

The WCET of a basic block bi does not only depend on its own
WCET and the WCET of the outgoing paths starting at bi, but also
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Table 1: Jump Penalties [cycles]

Predicted

Outcome Taken Not Taken

Taken 1 2

Not Taken 2 0

on possible jump penalties resulting from rearranging the order of
blocks inside a function.

By default, the WCET for a single execution of a basic block bi
also comprises possible jump penalties of unconditional and con-
ditional jump instructions. Table 1 depicts the resulting penalty
cycles if a branch was predicted to be taken or not and the real
outcome during execution. As it can be seen, the worst-case is
a mispredicted branch causing two cycles pipeline stall. In order
to simplify the jump penalty constraints presented in the follow-
ing, the penalty cycles of jump instructions are distilled in advance.
Differing from the ILPs presented in [7] and [20], the costs Ci of a
basic block bi used in Equations 2 – 4 thus have to be redefined:

• If block bi does not end with a jump instruction, its costs Ci

equal the WCET for a single execution.

• For a block bi with an unconditional jump as last instruction,
two cycles are subtracted from the WCET to derive the costs
Ci. These two cycles are composed of one cycle for execut-
ing the jump and of one cycle pipeline stall for determining
the jump target.

• The WCET of a block bi ending with a conditional jump in-
struction is determined by evaluating all outgoing edges to
find the edge resulting in the highest execution time of bi.
Depending on whether this is the fall- or pass-through edge,
it is also known if the branch is taken or not. To determine
the jump penalties for a conditional branch instruction from
Table 1, the bit width and the jump direction has to be eval-
uated, too. If, for instance, a conditional branch was mispre-
dicted, two cycles pipeline stall occur. In contrast to an un-
conditional jump, only these two cycles are subtracted from
the WCET of the corresponding block bi in order to calculate
the costs Ci. This is done since the conditional jump itself
can not be removed.

To determine the jump penalties as ILP constraints, the different
jump scenarios which are depicted in Figure 2 and their impact on
the branch prediction of the employed processor have to be mod-
eled: The simple case in Figure 2a is an implicit edge between two
contiguous basic blocks bi and bj where bi does not end with a
jump instruction. If the ILP decides to not allocate these blocks
contiguously (xi 6= xj − 1), then an unconditional jump has to be
inserted resulting in two cycles penalty:

jp
i
impl = 2 − 2 ∗ (bi ◦ bj ) (7)

In Equation 7, the operator ◦ checks if two blocks are contiguous
in memory by evaluating the corresponding decision variables:

(bi ◦ bj) =

{

1 if xi = xj − 1

0 else
(8)

The ◦ operator can be modeled within an ILP, but we omitted the
listing of these constraints for the sake of simplicity.

An unconditional branch, as shown in Figure 2b, also connects
exactly two basic blocks bi and bj and usually bypasses a number of
other basic blocks with a jump instruction. Due to the fact, that the

bi

bj

(a) Implicit

bi

bk

bj

(b) Uncondi-
tional

bk

bi

bj

(c) Condi-
tional
Backward

bi

bj

bk

(d) Condi-
tional
Forward

Figure 2: Typical Jump Scenarios

jump costs were distilled from the costs Ci in advance, this case
can be also handled by Equation 7: If the ILP decides to allocate
these blocks contiguously, nothing has to be done since removing
the jump results in jump scenario 2a. Otherwise, two cycles penalty
have to be readded for each execution of bi.

Compared to the unconditional branch instructions, conditional
jumps require a rather complex modeling of jump constraints: The
static branch prediction of the TriCore TC1796 distinguishes be-
tween 16 bit conditional jumps which are always predicted as taken
and 32 bit conditional jumps where the prediction depends on the
jump direction. A 32 bit conditional jump with backward displace-
ment (cf. Figure 2c) is predicted as taken whereas the same instruc-
tion with forward displacement (cf. Figure 2d) is predicted as not
taken.

Jumps with 16 bit width are always predicted taken; in com-
pliance with the second column of Table 1 either one cycle for a
correctly predicted (pass-through edge) or two cycles for a mis-
predicted branch (fall-through edge) have to be added as penalty.
Since the costs Ci of a block bi are free of any jump penalties, the
jump penalty constraints for both successors can now be handled in
the same way. For each edge to successor bsucc ∈ {bj , bk}, a sepa-
rate constraint determines the jump penalty depending on whether
blocks bi, bsucc are contiguous in memory or not:

jp
i,succ

cond16 = 1 + (bi ◦ bsucc) (9)

If bi → bsucc is not contiguous (pass-through edge), the penalty
for visiting bsucc from bi is only one cycle for a correctly predicted
branch. But if the edge to bsucc is the fall-through edge ((bi ◦
bsucc) = 1 ), a second cycle for a mispredicted branch is added to
the penalty.

In contrast, 32 bit jumps require more complex constraints since
the prediction of the target depends on the direction of the jump.
For a backward jump which can be seen in Figure 2c, the second
column of Table 1 has to be modeled whereas for a forward jump,
the third column applies. As done for the 16 bit jump penalties,
there is no need to care about the initial order of the basic blocks
and the resulting jump penalties due to the distilled costs Ci. In-
stead, the four possible jump scenarios for a block bi and its suc-
cessors bj and bk are modeled as constraints. In the following, we
present the jump penalties of edge bi → bj , but edge bi → bk is
modeled analogously:

1. Blocks bi and bj are contiguous (fall-through edge) and
jumping to bk results in forward displacement (predicted not
taken). According to Table 1, the correctly predicted implicit
edge results in no penalties:

jp
i,j

cond32 ≥ 0 ∗ (bi ◦ bj ∧ xi < xk ) (10)
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Of course, this constraint is not added to the ILP but depicted
for the sake of completeness.

2. Blocks bi and bj are contiguous (fall-through edge) and
jumping to bk results in backward displacement (predicted
taken). If the fall-through edge is visited although the jump
was predicted taken, two penalty cycles are the result:

jp
i,j

cond32 ≥ 2 ∗ (bi ◦ bj ∧ xi > xk ) (11)

3. Blocks bi and bk are contiguous and jumping to bj (pass-
through edge) results in forward displacement (predicted not
taken). Since the fall-through target bk is predicted to be
executed, jumping to bj would result in two cycles penalty:

jp
i,j

cond32 ≥ 2 ∗ (bi ◦ bk ∧ xi < xj ) (12)

4. Blocks bi and bk are contiguous and jumping to bj (pass-
through edge) results in backward displacement (predicted
taken). If jumping to bj is predicted correctly, only one cycle
penalty has to be added:

jp
i,j

cond32 ≥ 1 ∗ (bi ◦ bk ∧ xi > xj ) (13)

Depending on the jump scenario (JS) of a basic block bi, the
overall jump penalty jpi is defined as follows:

jpi =



























jpiimpl if JS of bi is implicit or

initially unconditional

jp
i,j

cond16 if JS of bi is conditional 16 bit

jp
i,j

cond32 if JS of bi is conditional 32 bit

0 else

(14)

The jump penalties are used to extend the basic control flow con-
straints defined in Equations 2 and 3:

w
L
exit = C

L
exit + jp

L
exit (15)

∀bi ∈ V \ {bLexit} : ∀(bi , bsucc) ∈ E :

wi ≥ wsucc + Ci + jpi
(16)

3.2.4 ILP Model of the Global Control Flow

Up to this point, Equations 1 - 16 only model the intra-procedural
control flow of a single function F within the ILP. Without loss
of generality, we assume one dedicated entry block bFentry as first

block of F . For bFentry, the ILP variable wF
entry denotes the WCET

of any path starting at bFentry for a single execution of F .
However, some basic block bi of a function F ′ may contain a call

to function F . In this situation, F ’s WCET represented by variable
wF

entry has to be added to the WCET of block bi. Thus, the control

flow constraint in Equation 16 is extended by wF
entry, representing

F ’s WCET, if block bi calls F :

∀bi ∈ V \ {bLexit} : ∀(bi, bsucc) ∈ E :

wi ≥ wsucc + Ci + jpi,succ + w
F
entry

(17)

3.2.5 Objective Function

The overall goal of our ILP is to minimize a program’s WCET by
rearranging the order of basic blocks inside a function. Due to the
nature of Equations 16 and 17, variable wF

entry corresponds to the
WCET of function F including the WCETs of all functions called
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Figure 3: Workflow of the WCET-aware C compiler WCC

by F extended by possible jump penalties. Function main is the
unique entry point of an entire program; hence, variable wmain

entry

denotes the overall WCET of the program. As a consequence, the
value of this variable has to be minimized by the ILP:

w
main
entry  min. (18)

4. WORKFLOW
WCET-driven optimizations and especially branch-prediction-

aware code positioning need support of an underlying compiler
to collect WCET data and to perform the required memory lay-
out modifications. We employ the WCET-aware C compiler frame-
work, called WCC [9], which is intended to assist the development
of various high- and low-level WCET-driven optimizations. It is a
compiler targeted at Infineon’s TriCore TC1796 processor coupling
AbsInt’s static WCET analyzer aiT [1] which provides WCETest

data that is imported into the compiler backend and made accessi-
ble for optimizations.

Figure 3 depicts WCC’s internal structure. One or more files of
a program are read in the form of ANSI-C source files with user
annotations for loop bounds and recursion depths, called flow facts.
These source files are parsed and transformed into the high-level
intermediate representation (IR) called ICD-C [19]. At this level,
the compiler frontend provides several standard compiler optimiza-
tions focussing on ACET minimization.

In the next step, the LLIR Code Selector translates the high-level
IR into a low-level IR called ICD-LLIR [5]. Again, several standard
compiler optimization can be performed – now on this TC1796-
specific low-level IR. One of these optimizations is the proposed
branch prediction aware code positioning which is performed as
second last. As very last one, the automatic jump correction is per-
formed (cf. Section 3) which corrects the control flow by inserting
and removing unconditional jumps as well as negating test condi-
tions.

To enable such a WCET-aware optimization, aiT is employed
to perform static WCET analyses on the low-level IR. Mandatory
information about loop bounds (among others required as constant
CountLmax in Equation 4) and recursion depths is supplied by flow
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Figure 4: Relative WCETs after Code Positioning Optimizations

fact annotations. These flow facts are automatically translated from
the high-level IR to the low-level IR and are always kept valid and
consistent during each optimization and transformation step of the
compiler.

Finally, WCC emits WCET-optimized assembly files and its own
linker script in order to generate the optimized binary.

5. EVALUATION
This section evaluates the performance of our WCET-driven

branch prediction aware code positioning algorithms applied to
real-life benchmarks. In Section 5.1, the experimental environment
which is employed to perform evaluations is presented. Section 5.2
discusses the WCET reductions achieved by the code positioning
algorithms described in Section 3, whereas Section 5.3 discusses
the achieved ACET reductions. Finally, Section 5.4 deals with the
computational complexity of the proposed optimization.

5.1 Experimental Environment
For benchmarking, we used the optimization level O3 for which

the WCC compiler (cf. Figure 3) applies 42 different optimiza-
tions in order to evaluate the performance of our new algorithms on
highly optimized code. 23 of these optimizations, comprising vari-
ous loop optimizations, are performed on the high-level IR ICD-C.
The remaining optimizations are performed on the low-level IR
ICD-LLIR. The compiler supports the Infineon TriCore TC1796
processor which integrates a 2 MB program Flash as main memory
and 48 kB scratchpad as a fast, tightly coupled memory (SPM). The
TriCore v1.3 family is equipped with a static branch prediction unit
for which equations 7 - 16 are tailored.

For our measurements, we used 15 benchmarks stemming from
the benchmark suites Mediabench [16], MiBench [13], MRTC [12]
and UTDSP [22]. The number of benchmarks was limited since
the evolutionary optimization algorithm would otherwise require
several weeks of optimization runtime as discussed in Section 5.4.
The code size of the benchmarks ranges from 1.7 kB (fir_256_64)
up to 15 kB for the basicmath benchmark.

Today’s embedded systems are equipped with main memories in
megabyte ranges. Nevertheless, all evaluations are performed with
the program code residing in the fast SPM in order to avoid unde-
sired side-effects by hardly predictable access latencies of FLASH
memories due to their page buffers. This enables comparable re-
sults for both optimization algorithms. Otherwise, the evolution-

ary algorithm would have a slight advantage since the repetitive
creation and evaluation of individuals implicitly considers memory
hierarchy effects by repetitive WCET analyses. In contrast, these
effects are very difficult to express adequately within an ILP-based
optimization.

In order to evaluate the achievable WCET reduction, the evolu-
tionary approach is invoked with an initial population of α = 20
individuals. Each offspring generation has µ = 20 parents and also
comprises λ = 20 individuals. The maximum number of genera-
tions amounts to maxGen = 20.

For solving the ILP-model generated by the algorithm in Section
3.2, IBM ILOG CPLEX [15] is employed which is a sophisticated
solver for integer programming problems.

5.2 WCET Estimations
Figure 4 depicts the results achieved by our branch prediction

aware code positioning algorithms for the considered 15 bench-
marks. For each benchmark, the left bar represents the result for
by the evolutionary code positioning technique, whereas the right
bar represents the result if the ILP-based algorithm is applied. The
100% line is equal to the estimated WCET of the benchmarks com-
piled with the optimization level O3 without code positioning (the
code layout mainly matches the logical order found in the C source
code). The bars depict the WCETest of the optimized program
computed by the static WCET analyzer as percentage of its “unop-
timized” version.

The evolutionary algorithm reduces the WCETest of the bench-
marks by up to 24.7% (prime benchmark). For the same bench-
mark, the ILP-based algorithm is able to achieve WCETest reduc-
tions of up to 20.0%. Significant WCETest reductions could be
achieved for almost all benchmarks except for basicmath_small.
Here, the EA achieved only a marginal WCETest reduction of
0.6% whereas the ILP-bases approach did not achieve any improve-
ment. On average, we were able to reduce the WCETest for all
benchmarks by 8.9% by applying the evolutionary approach and
by 6.7% for the ILP-based optimization, respectively.

Table 2 shows the ratio of executed unconditional (columns la-
beled “Uncond.”) and mispredicted conditional jump instructions
(columns labeled “Mispred.”) on the WCEP. For each benchmark,
values for the unoptimized version, the evolutionary and the ILP-
based approach were collected. Here, 100% equals the overall
number of executed jump instructions on the WCEP (conditional
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Table 2: Ratio of unconditional and mispredicted jumps
Unoptimized EA ILP

#Jumps Uncond. Mispred. #Jumps Uncond. Mispred. #Jumps Uncond. Mispred.

basicmath_small 76691 0.0% 0.5% 77407 0.9% 0.6% 76691 0.0% 0.5%

binarysearch 15 0.0% 66.7% 14 14.3% 35.7% 17 29.4% 29.4%

countnegative 1240 32.3% 0.1% 1041 19.3% 0.1% 840 0.0% 0.1%

crc 8878 23.1% 24.0% 8892 23.2% 24.0% 9388 27.3% 16.4%

fir_256_64 768 33.2% 0.1% 517 0.8% 49.3% 514 0.2% 0.2%

g721.marcuslee_decoder 14442 0.0% 50.0% 21664 33.3% 0.0% 16849 14.3% 14.3%

g723_encoder 95980 2.3% 23.5% 96133 2.5% 23.8% 141217 35.0% 9.2%

janne_complex 70 5.7% 47.1% 75 12.0% 22.7% 71 7.0% 16.9%

lmsfir_32_64 14802 17.0% 24.5% 14962 17.9% 17.0% 14931 17.7% 1.1%

ndes 4369 0.1% 74.3% 6007 27.3% 41.6% 6617 34.0% 33.3%

prime 865 0.0% 49.7% 865 0.0% 0.2% 866 0.0% 0.1%

qurt 240 0.0% 27.5% 246 2.4% 1.2% 277 13.4% 13.4%

select 969 0.0% 1.8% 970 0.1% 1.8% 1004 3.5% 1.8%

selection_sort 341160 0.0% 74.9% 433315 21.3% 18.9% 425300 20.0% 19.8%

sqrt 547 0.0% 24.3% 547 0.0% 0.0% 620 11.8% 11.8%

Average 37402 7.6% 32.6% 44177 11.7% 15.8% 46347 14.2% 11.2%

and unconditional) in columns labeled with “#Jumps”. Multiple
executions of a jump are counted multiple times.

Considering the amount of mispredicted branches, both algo-
rithms perform best for the selection_sort benchmark where reduc-
tions of 56% (EA) and 55.1% (ILP) were achieved. Conversely, un-
conditional jumps had to be inserted in order to correct the control
flow. They amount to 21.3% (EA) and 20% (ILP) of the overall ex-
ecuted number of jumps. Thereby, WCETest reductions of 14.4%
and 14.6% were achieved, respectively.

The amount of unconditional jumps could be decreased by
32.4% and 33% for the benchmark fir_256_64 by applying the evo-
lutionary and the ILP-based approach, respectively. Even though
considerable reductions can be achieved, in the majority of cases,
the number of executed unconditional jumps was increased by up
to 33.3% (g721.marcuslee_decoder, EA) and 33.9% (ndes, ILP).

On average, the number of mispredicted branches was reduced
by 16.8% (EA) and 21.4% (ILP) whereas the unconditional jumps
were increased by 4.1% (EA) and 6.7% (ILP).

Corner cases

For the benchmark with the highest WCETest reductions (prime),
it turned out that both reordering algorithms were able to eliminate
almost all mispredicted branches. No unconditional jumps are exe-
cuted at all. Nevertheless, the EA algorithm was able to outperform
the ILP-based approach by 4.7% w. r. t. WCETest reduction.

This behavior is caused by the impact of the resulting memory
layout of the modified program on the WCETest: It is, for instance,
worthwhile to align loop headers at the beginning of memory lines.
Otherwise, the crossing of memory lines is more frequent. This of-
ten results in a decreased performance since multiple memory lines
have to be fetched in order to execute the loop header. The ILP is
not aware of any memory addresses during the rearranging of basic
blocks with the result that line crossing effects can not be mod-
eled. In contrast, the evolutionary approach always implicitly takes
the impact of memory layout modifications on the WCETest into
account by evaluating the fitness of each newly created individual
using aiT.

For the fir_256_64 benchmark, both algorithms were able to
remove almost all executed conditional jump instructions (0.8%
respectively 0.2% remaining). But the evolutionary algorithms was
able to outperform the ILP optimization by 16% WCETest reduction
(77.7% vs. 93.7% resulting WCETest) although the number of
mispredicted branches is increased by 33%. The ILP generates a

basic block order where 99.6% of the conditional branches are cor-
rectly predicted taken, each resulting in one cycle pipeline stall (cf.
Table 1). The EA, however, determines a memory layout where
half of the branches are correctly predicted not taken resulting in
no penalty cycles. The remaining conditional jumps were mispre-
dicted, each resulting in two cycles penalty. Since the executed
jumps induce the same amount of overall pipeline stall cycles,
the evolutionary algorithm only performs better due to a memory
layout causing less line crossings of instructions.

Although the evolutionary approach should have a small advan-
tage compared to the ILP-based optimization, there are cases, for
instance the benchmark select, where the ILP-based approach per-
forms better (in finite time): The ILP optimization explicitly mod-
els absolute positions of basic blocks and the influence of possible
branch penalties on the WCET. The corresponding constraints are
always considered during solving the equations. Thus, the com-
plexity only depends on the number of constraints which in turn
depend on the control flow of a program. Hence, the overhead for
solving the ILP is independent of the number of basic blocks which
have to be moved.

In contrast to the ILP-model, the evolutionary approach can only
apply small modifications to the order of basic blocks of a function
by employing the operators crossover and mutation when a new
offspring individual is created. Thus, for benchmarks with com-
plex control flows with a lot of control flow edges, a large number
of offspring individuals has to be created until the space of valid
solutions can be explored extensively in order to find an improved
solution. The selection_sort benchmark is an example where the
optimal result is typically found after 40 generations, leading to up
to 800 WCET analyses.

Such an insufficiency could be tackled by tuning the evolution
parameters; for instance, each position of the solution vector could
be mutated with a certain probability instead of mutating only a sin-
gle position. In this paper, the evolutionary approach only serves as
a case study if reordering basic blocks w. r. t. the WCET of a pro-
gram pays off. Another aim is to obtain WCET reference data for a
comparison with the ILP-based approach. Thus, we omit improv-
ing the evolutionary approach at this point.

5.3 ACET Estimations
Figure 5 depicts the impact of our branch prediction aware code

positioning algorithms on the ACET. The commercial, cycle true
instruction set simulator CoMET [21] was employed to measure
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Figure 5: Relative ACETs after Code Positioning Optimizations

ACETs. Once again, the bars depict the resulting ACET of the op-
timized program as percentage of its “unoptimized” version. For
each benchmark, the left bar represents the result achieved by the
evolutionary code positioning technique, whereas the right bar rep-
resents the result if the ILP-based algorithm is applied. The 100%
line is equal to the ACET of the benchmark compiled with the op-
timization level O3 without any code positioning optimization (the
code layout matches the logical order found in the C source code).

The evolutionary algorithm was able to decrease the ACET of the
considered benchmarks by up to 14.4% (selection_sort). But there
are also cases, where the ACET is increased (sqrt, 24.7% increase).
On average, a marginal ACET decrease of 0.3% can be achieved.

Evaluating the ILP-based optimization shows that the algorithm
does not have the ability to perform better than the EA. Here,
too, ACET reductions can be observed (only up to 10.4% for
g721.marcuslee_decoder). But once again, there are cases of in-
creased ACETs (up to 24.7% for sqrt). On average, the ACET is
even worsened by 1.7%.

Comparing Figures 4 and 5 shows that both algorithms behave
completely different for the estimated WCET and the ACET: Our
WCET-driven branch prediction aware code positioning is best
suited to achieve WCET reductions but performs worse for ACET
optimization. This is caused by the fact that the WCET serves as
metric during the optimization of the programs. The EA evaluates
the fitness of individual by invoking a static timing analyzer. The
ILP-based optimization employs WCETs of basic blocks as well as
worst-case execution frequencies to set up the constraints modeling
the objective function. Hence, the impact of any reordering on the
ACET can not be taken into account.

The WCET of the benchmark sqrt, for instance, can be decreased
by 6% whereas the ACET is worsened. In sqrt, a loop performs
square root computations on floats. For average case scenarios,
this loop exits usually after few iterations. Regardless of this fact,
a WCET analyzer has to assume the maximum iteration count of
the loop as worst case. Thus, the WCEP is different from the
most frequently used path. The positions to the benchmark’s basic
blocks are changed in order to shorten the WCEP. In order to cor-
rect the control flow, unconditional jumps are inserted on the most
frequently used path which (in this case) does not contribute to the
WCEP. The inserted jumps lead to an ACET increase of 24.7%.

These observations obtained comparing the ACET and WCET
performance of WCET-tailored optimizations conform to the ob-
servations presented in [6].

5.4 Optimization Time
To consider the optimization time, we utilized an Intel Xeon

E5506 (2.13 GHz). Most of the time necessary for our novel
WCET-driven branch prediction aware code positioning algorithms
was consumed by the repetitive WCET analyses using aiT. The
maximal number of WCET analyses during an evolutionary opti-
mization run amounts to

n = α+ λ ∗ (maxGen− 1) = 400 (19)

where α is the size of the initial population and λ the number
of offspring individuals. For the ILP-based approach, only a single
WCET analysis is necessary to determine the costs Ci for each
basic block bi (cf. Section 3.2).

For a single WCET analysis, up to 20 CPU minutes are required
for the basicmath benchmark. Thereby, the evolutionary approach
requires almost 2 days for the optimization of this benchmark
which is not feasible in practice. The ILP-based optimization, in
contrast, merely spends 20 minutes for the one required WCET
analysis which is highly suitable for most application scenarios.
The immense WCET analysis time for the evolutionary approach
is the reason why we had to limit the number of benchmarks to 15
in order to avoid optimization times of months.

The complexity of solving the ILPs generated by the optimiza-
tion discussed in Section 3.2 is of no practical relevance. For a
CFG with n nodes, the ILP has a size of O(n2) constraints and
variables. The employed ILP solver CPLEX takes up to 2 CPU
minutes (basicmath) but mostly terminates within a few seconds for
the considered benchmarks. Compared to the WCET analysis re-
quired to determine the cost constants Ci for each basic block and
the immense time required for the evolutionary algorithm, these
values are convenient.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented two code positioning techniques con-

sidering the influence on branch predictors with the objective to
decrease the WCET of a program. The order of basic blocks inside
a function is changed with the goal to avoid unconditional branches
and to support the branch prediction of conditional branches in or-
der to fetch the frequently visited successor in advance.

We presented an evolutionary approach which employs the well-
known techniques mutation and crossover to create offspring indi-
viduals whose order of basic blocks hopefully tends to decrease the
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WCET of the represented program. Applying this technique, we
were able to achieve a WCET decrease of up to 24.7%, with the
drawback of repetitive WCET estimations incurring high optimiza-
tion times. On average, WCET reductions of 8.9% were achieved.

An ILP-based approach was introduced avoiding time-consum-
ing repetitive WCET analyses. Therefore, the control flow of a
program and the resulting jump penalties were explicitly modeled
to determine an improved order of basic blocks w. r. t. the WCET.
In so doing, our algorithm was able to decrease WCET of pro-
grams by up to 20.0%. On average, WCET reductions of 6.7%
were achieved.

Considering the amount of mispredicted branches, the EA is
able to reduce the number of mispredicted branches by up to 56%
whereas the ILP-based approach achieves up to 55.1%. On aver-
age, the ILP-based optimization is able to outperform the EA by
4.6% (21.4% vs. 16.8% reduction).

In the future, we intend to improve our integer-linear program-
ming based approach to take the influence of different instruction
types on the different pipelines of a processor into account. The
TriCore processor, for instance, executes unconditional branches
on the Load Store pipeline. Inserting branches behind integer in-
structions can be dual issued which means a parallel execution of
two instructions on different pipelines. Additionally, line crossing
effects should be modeled in the ILP in order to close the gap to the
results achieved by the evolutionary algorithm.

Furthermore, we plan to combine our optimal static WCET-
aware scratchpad allocation of program code [7] with the ILP-
based optimization presented in this paper. Basically, the SPM
allocation does not change the logical order of basic blocks resid-
ing in the same memories. It should be possible to trigger synergy
effects by simultaneous modeling of basic block reordering and the
memory allocation in a coupled optimization.
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