
An Efficient Multi-Tier Tablet Server Storage Architecture
Appears in the proceedings of the 2nd ACM Symposium on Cloud Computing (SOCC 2011)

Richard P. Spillane
rick@fsl.cs.sunysb.edu

Stony Brook University

Pradeep J. Shetty
pshetty@fsl.cs.sunysb.edu

Stony Brook University

Erez Zadok
ezk@cs.sunysb.edu
Stony Brook University

Shrikar Archak
sarchak@cs.sunysb.edu

Stony Brook University

Sagar Dixit
ssdixit@cs.sunysb.edu

Stony Brook University

ABSTRACT
Distributed, structured data stores such as Big Table, HBase, and
Cassandra use a cluster of machines, each running a database-like
software system called the Tablet Server Storage Layer orTSSL.
A TSSL’s performance on each node directly impacts the perfor-
mance of the entire cluster. In this paper we introduce an efficient,
scalable, multi-tier storage architecture for tablet servers. Our sys-
tem can use any layered mix of storage devices such as Flash SSDs
and magnetic disks. Our experiments show that by using a mix of
technologies, performance for certain workloads can be improved
beyond configurations using strictly two-tier approaches with one
type of storage technology. We utilized, adapted, and integrated
cache-oblivious algorithms and data structures, as well asBloom
filters, to improve scalability significantly. We also support ver-
satile, efficient transactional semantics. We analyzed andevalu-
ated our system against the storage layers of Cassandra and Hadoop
HBase. We used wide range of workloads and configurations from
read- to write-optimized, as well as different input sizes.We found
that our system is 3–10× faster than existing systems; that using
proper data structures, algorithms, and techniques is critical for
scalability, especially on modern Flash SSDs; and that one can fully
support versatile transactions without sacrificing performance.

1. INTRODUCTION
In recent years, many scientific communities are finding thatthey

are not limited by CPU or processing power, but instead they are
being drowned by a new abundance of data, and are searching for
ways to efficiently structure and analyze it. For example, Schatz
argues that with the exponentially decreasing cost of genome se-
quencing [54], data to analyze is increasingly more abundant. The
National Radio Astronomy Observatory is hosting a workshopto
focus on ways of “extracting the science from the data” [43].Sci-
entific researchers in fields ranging from archaeobiology [32] to
atmospheric science [49] are searching for ways to store, and then
analyzebig data. To solve peta-scale problems, researchers have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’11,October 27–28, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0976-9/11/10 ...$10.00.

turned to database clustering software such as the Big Tablein-
spired Hadoop HBase [5], or the Dynamo-inspired Cassandra [33].

How these systems interact with underlying storage devicesis a
critical part of their overall architecture. Cluster systems comprise
many individual machines that manage storage devices. These ma-
chines are managed by a networking layer that distributes tothem
queries, insertions, and updates. Each machine runs database or
database-like software that is responsible for reading andwriting
to the machine’s directly attached storage. Figure 1 shows these
individual machines, calledtablet servers, that are members of
the larger cluster. We call the portion of this database software
that communicates with storage, theTablet Server Storage Layer
(TSSL). For example, Hadoop HBase [5], a popular cluster tech-
nology, includes a database, networking, and an easier-to-program
abstraction above their TSSL (logical layer).

TSSL
(Compression)

Tablet Server 0...N

Client Requests

Network Layer

Logical Layer

In
n

o
D

B

SQL

B
D

B

C
as

sa
n

d
ra

C
as

sa
n

d
ra

D
B

H
B

as
e

H
B

as
e 

D
B

GTSSL

Figure 1: Different storage and communication technologies
are used at different layers in a typical database cluster archi-
tecture.

The performance and feature set of the TSSL running on each
node affects the entire cluster significantly. If performance charac-
teristics of the TSSL are not well understood, it is difficultto profile
and optimize performance. If the TSSL does not support a critical
feature (e.g., transactions), then some programming paradigms can
be difficult to implement efficiently across the entire cluster (e.g.,
distributed and consistent transactions).

It takes time to develop the software researchers use to analyze
their data. The programming model and abstractions they have
available to them directly affect how much time developmenttakes.
This is why many supercomputing/HPC researchers have come to

1



rely upon structured data clusters that provide a database interface,
and therefore an efficient TSSL [1,49].

One of the most important components to optimize in the clus-
ter is the TSSL. This is because affordable storage continues to be
orders of magnitude slower than any other component, such asthe
CPU, RAM, or even a fast local network. Any software that uses
storage heavily, such as major scientific applications, transactional
systems [40, 64], databases [45], file systems [31, 57, 58, 61, 65],
and more, are designed around the large difference in performance
between RAM and storage devices. Using a flexible cluster archi-
tecture that can scale well with an increasing number of nodes is
an excellent way to prorate these storage and computing costs [14].
Complimentary to this effort is increasing theefficiencyof each of
these nodes’ TSSLs to decrease overall computing costs.

We expect that the architecture we outline here, along with our
extensions to the compaction algorithms typically used, and our
software will have a high level of transferability to a larger cluster
installation. Others have transferred a separately designed TSSL
over to a cluster framework. Abouzeid et al. splice a Hadoop dis-
tribution framework on top of PostgreSQL [50], and Vertica [66]
also supports similar integration of its column-store withHadoop.
Determining the performance improvement for a Hadoop cluster
using a more efficient TSSL is a subject of future work.

In this work we present a new, highly scalable, and efficient
TSSL architecture called theGeneral Tablet Server Storage Layer
or GTSSL. GTSSL employs significantly improved compaction al-
gorithms that we adapted tomulti-tier storage architectures, archi-
tectures that mix together multiple storage devices (e.g.,magnetic
disk and Flash SSD) to improve performance to cost ratio for im-
portant workloads. GTSSL aggressively uses advanced data struc-
tures and algorithms to improve efficiency while fully integrating
versatile and efficient transactions into its total architecture. By
focusing on a single node we were better able to understand the
performance and design implications of these existing TSSLs, and
how they interact with Flash SSD devices when using small as well
as large data items.

We designed and developed GTSSL using the insights we ac-
quired from our analysis of the Cassandra and HBase TSSLs. In
this paper we detail both our theoretical and benchmarked evalu-
ation of existing TSSLs, and we introduce our GTSSL solution.
Specifically, our contributions are:

• We improved data compaction algorithms significantly, and
adapted them to multi-tier storage architectures. We discuss
multi-tier experiments for TSSL architectures in Section 5.4.
According to our survey of related work (Section 6), this is
the first paper to discuss a multi-tier design and experiments.

• We aggressively use advanced algorithms, data structures,
and Bloom filters to achieve 3–10× faster lookups (reads),
and 5× faster insertions (writes) over Cassandra and HBase.

• We integrated versatile and efficient transactions withoutcom-
promising performance.

• We include an empirical and theoretical evaluation of GTSSL,
the Cassandra TSSL, and the HBase TSSL. We especially
evaluated a wide range of configurations from read-optimized
to write-optimized.

• We evaluated a wide range of input sizes and found that per-
formance can become CPU-bound on small input sizes with
Flash SSD devices.

• We demonstrate that a write-optimized TSSL architecture
can remain efficient for transactional workloads in compari-
son to Berkeley DB and MySQL’s InnoDB.

Supercomputing research must solve large data problems quickly.
Data sets are now measured in petabytes, soon in exabytes [52].
Understanding and improving the performance and architecture of
the cluster software that interacts most directly with storage is crit-
ical for integrating the next generation of storage technology.

We introduce the standard TSSL architecture and terminology
in Section 2. We theoretically analyze existing TSSL compaction
techniques in Section 3. In Section 4 we introduce GTSSL’s design
and compare it to existing TSSLs. Our evaluation, in Section5,
compares the performance of GTSSL to Cassandra and HBase, and
GTSSL’s transactional performance to Berkeley DB and MySQL’s
InnoDB. We discuss related work in Section 6. We conclude and
discuss future work in Section 7.

2. BACKGROUND
As shown in Figure 1, the data stored in the TSSL is accessed

through a high-level logical interface. In the past, that interface has
been SQL. However, HBase and Cassandra utilize a logical inter-
face other than SQL. As outlined by Chang et al. [10], HBase, Cas-
sandra, and Big Table organize structured data as several large ta-
bles. These tables are accessed using a protocol that groupscolumns
in the table intocolumn families. Columns with similar compres-
sion properties, and columns which are frequently accessedto-
gether, are typically placed in the same column family. Figure 1
shows that the logical layer is responsible for implementing the
column-based protocol used by clients, using an underlyingTSSL.

The TSSL provides an API that allows for atomic writes, as well
as lookups and range queries across multiple trees which efficiently
store variable length key-value pairs orpairs on storage. These
trees are the on-storage equivalent of column families. Although
TSSLs transactionally manage a set of tuple trees to be operated on
by the logical layer, TSSL design is typically different from tradi-
tional database design. Both the TSSL and a traditional database
perform transactional reads, updates, and insertions intomultiple
trees, where each tree is typically optimized for storage access (e.g.,
a B+-tree [12]). In this sense, and as shown in Figure 1, the TSSL
is very similar to an embedded database API such as Berkeley DB
(BDB) [60], or a DBMS storage engine like MySQL’s InnoDB.
However, unlike traditional database storage engines, themajority
of insertions and lookups handled by the TSSL aredecoupled. A
decoupled workload is one where transactions either perform only
lookups, or only inserts, updates, or deletes. This workload is im-
portant because in a clustered system, one process may be inserting
a large amount of data gathered from sensors, a large corpus,or the
web, while many other processes perform lookups on what datais
currently available (e.g., search). Furthermore, most of these in-
sertions are simple updates, and do not involve large numbers of
dependencies across multiple tables. This leads to two important
differences from traditional database storage engine requirements:
(1) most insertions do not depend on a lookup, not even to check
for duplicates, and (2) their transactions typically need only pro-
vide atomic insertions, rather than support multiple read and write
operations in full isolation. We call the relaxation of condition (1)
decoupling, and it permits the use of efficientwrite-optimizedtree
data-structures that realize vastly higher insertion throughputs, and
are very different from traditional B+-trees. We call the relaxation
of condition (2)micro-transactions; it enables using a simple, non-
indexed, redo-only journal. Thus, the TSSL need not supporta mix
of asynchronous and durable transactions.

Compaction.
Fast TSSL insertions performance is key to realizing cheaper

2



large structured data clusters. If each node inserts faster, then fewer
nodes are required to meet a target insertion throughput.

To achieve faster TSSL insertion performance, HBase, Cassan-
dra, Big Table, and other systems such as Hypertable [27] do not
use a traditional tree structure, but a tree-like structurethat exploits
decoupling. This tree-like structure writes sorted buffers to stor-
age, which are then asynchronously merged into larger buffers by
a process calledcompaction. Although the compaction algorithms
of these designs differ, the overall goal is the same.

All these TSSL designs maintain separate caches for each tree
in RAM. These caches are sorted arrays calledmemtables. Every
write operation inserts a value into this cache. Once the cache ex-
ceeds a pre-configured size, it and its associated metadata structures
are serialized to disk in one sequential write, and the memtable is
marked clean. The serialized memtable is called anSSTable.

SSTables are divided into a data portion, and a metadata portion.
The data portion includes all the pairs stored within the SSTable,
and these pairs are interspersed with clusters of offsets that point to
individual pairs. A cluster and its associated pairs can be read in a
single IO. The smallest amount of pairs in bytes between two clus-
ters of offsets is called theblock size, and the block size of Cassan-
dra (default 256KB), HBase (default 64KB), and GTSSL (default
4KB) are all configurable. We discuss the effects of these block
size choices both on magnetic and Flash storage medium in Sec-
tion 5.2. The metadata portion consists of a secondary indexand
Bloom filter. The SSTable’s secondary index associates the first key
of each cluster to the offset of each cluster within the data portion,
facilitating single IO lookups into an SSTable, as the secondary in-
dex is always resident in RAM. The SSTable’s Bloom filter was
populated when the SSTable was a memtable, is serialized after the
secondary index when the SSTable is created, and is used during
lookup to avoid IO when possible.

To perform a read on a tree, each SSTable on storage and the
memtable are all queried: the closest, most recent value is returned.
Each of these SSTable-queries requires only a single IO. As more
values are inserted, the number of SSTables can grow unbounded.
To limit the number of these tables, and the cost of lookup and
scan, therefore, an asynchronousmerging compactionprocess of-
ten merges together smaller SSTables into larger SSTables.These
merges can be performed efficiently as the SSTables are sorted.

Periodically, amajor compactionis performed. This major com-
paction merges all SSTables belonging to a tree into one. At this
time we process deletes. During normal operations, to delete a tu-
ple, a new tuple with a matching key but an additionalDELETEflag
set is inserted into the tree. These tuples are ignored during merg-
ing compactions, but during major compactions, they effectively
cancel out the matching tuples: the major merging process simply
omits the delete and matching tuples from the output list.

3. TSSL COMPACTION ANALYSIS
GTSSL was designed to scale to a multi-tier storage hierarchy,

and much of how compaction works must be re-thought. We an-
alyze and compare the existing compaction methods employedby
HBase and Cassandra, and then in Section 4, we introduce what
extensions are necessary in a multi-tier regime.

We analyzed the compaction performance of Cassandra, HBase,
and our GTSSL using the Disk-Access Model (DAM) for cost, and
using similar techniques as those found in Bender et al.’s work on
the cache-oblivious look-ahead array [7]. The DAM is a simple
yet sufficiently accurate cost model. DAM divides the systeminto
a memoryM and storageS. The unit of transfer fromS to M
is a block ofb bytes. Operations and manipulations of data inM
are free, but every block transferred either fromM to S or from

S to M costs 1. For the remainder of this analysis, we will use
B = b

pair size instead ofb. Approximately, this means each data
structure is penalized 1 unit if either one random pair, orB serial
pairs were transferred fromM to S, or fromS to M .

C0

C1

C
2

C3

Clearing space for flush After flushing memtable

RAM

Disk

C0

C1

C
2

C3

Clearing space for flush After flushing memtable

RAM

Disk

HBase 3−COLA:

Cassandra SAMT:

C0

C1

C
2

C3

1

2

C0

C1

C
2

C3

Reclamation Multi−tier read caching

RAM

Disk

GTSSL  Multi−Tier SAMT:

GTSSL  Multi−Tier SAMT:

3

4

SSD

C0

C1

C
2

C3

C0

C1

C
2

C3

Clearing space for flush After flushing memtable

RAM

Disk

SSD

C0

C1

C
2

C3

C0

C1

C
2

C3

Figure 2: In panel ①, HBase mergesC0, C1, C2, and half of
C3 back into C3, like a 3-COLA would. In panel ②, Cassan-
dra merges buffers in quartets to create space for a flushing
memtable. In panels③ and ④, GTSSL merges, and then pro-
motes the resulting SSTable up into a higher tier. Subsequent
reads are also cached into the higher tier via re-insertion.

HBase Analysis.
HBase [18] is a variation of the Cache-Oblivious Lookahead Ar-

ray (R-COLA) [7]. The R-COLA supports increasingly more read-
optimized configurations as itsR parameter is increased. HBase
setsR = 3, which is optimal in practice for the R-COLA [7], so we
call HBase’s configuration a3-COLA. Figure 2, panel①, shows the
R-COLA consists of⌈log

R
N⌉ arrays of exponentially increasing

size, stored contiguously (C0 throughC3), for N the number of el-
ements inserted into the data structure. In this example,R = 3. C1

throughC3 on storage can be thought of as three SSTables, andC0

in RAM can be thought of as the memtable. When the memtable is
serialized to disk (and turned into an SSTable), the R-COLA checks
to see if level 0 is full. If not, it performs a merging compaction on
level 0, on all adjacent subsequent arrays that are also full, and on
the first non-full level, into that same level. In Figure 2’s example,
C0 throughC3 are merged intoC3; after the merge, the original
contents ofC3 have been written twice toC3. Each level can toler-
ateR − 1 merges before it too must be included in the merge into
the level beneath it. This means that every pair is writtenR − 1
times to each level.

Bender et al. provide a full analysis of the R-COLA, but in
sum, the amortized cost of insertion is(R−1) logR N

B
, and the cost of

lookup islog
R

N . This is because every pair is eventually merged
into each level of the R-COLA; however, it is repeatedly merged
into the same levelR−1 times due to subsequent merges. So forN
total pairs inserted, each pair would have been writtenR − 1 times
to log

R
N levels. As all pairs are written serially, we pay 1 in the

DAM for every B pair written, and so we get(R−1) logR N

B
amor-

tized insertion cost. A lookup operation must perform 1 random
read transfer in each oflog

R
N levels for a total cost oflog

R
N .

Bender et al. use fractional cascading [11] to ensure only 1 read
per level. Practical implementations and all TSSL architectures,
however, simply use small secondary indexes in RAM.

By increasingR, one can decrease lookup costs in exchange for
more frequent merging during insertion. HBase setsR = 3 by
default, and uses the R-COLA compaction method. HBase adds

3



additional thresholds that can be configured. For example, HBase
performs major compactions when the number of levels exceeds 7.

SAMT Analysis.
The R-COLA used by HBase has faster lookups and slower in-

sertions by increasingR. GTSSL and Cassandra, however, can
both be configured to provide fasterinsertionsand slower lookups
by organizing compactions differently. We call the structure adopted
by Cassandra’s TSSL and GTSSL, theSorted Array Merge Tree
(SAMT). As shown in Figure 2, panel②, rather than storing one
list per level, the SAMT storesK lists, orslotson each level. The
memtable can be flushedK times before a compaction must be per-
formed. At this time, only the slots inC1 are merged into a slot in
C2. In the example depicted, we must perform a cascade of com-
pactions: the slots inC2 are merged into a slot inC3, so that the
slots inC1 can be merged into a slot inC2, so that the memtable in
C0 can be serialized to a slot inC1. As every element visits each
level once, and merges are done serially, we performlogK N

B
disk

transfers per insertion. Because there areK slots per level, and
log

K
N levels, we performK log

K
N disk transfers per lookup.

The cost of lookup with the SAMT is the same forK = 2 and
K = 4, butK = 4 provides faster insertions. SoK = 4 is a good
default, and is used by both GTSSL and Cassandra.

Comparison.
We now compare the SAMT compaction algorithm to the COLA

compaction algorithm, and show how utilization of Bloom filters
permits the SAMT algorithm to out-perform the COLA algorithm
in most cases, especially on Flash SSD. Although the HBase 3-
COLA method permits more aggressive merging during insertion
to decrease lookup latency by increasingR, it is unable to favor in-
sertions beyond its default configuration. This permits faster scan
performance on disk, but for 64B or larger keys, random lookup
performance is already optimal for the default configuration. This
is because for the vast majority of lookups, Bloom filters [8]on
each SSTable avoid alllog

R
N SSTables except the one which con-

tains the sought after pair. Furthermore, on Flash SSD the 3-COLA
is less optimal, as the seeking incurred from scanning is mitigated
by the Flash SSD’s obliviousness toward random and serial reads.

Conversely, the SAMT can be configured to further favor in-
sertions by increasingK, while maintaining lookup performance
on Flash SSD and disk by using Bloom filters, and maintaining
scan performance on Flash SSD. Although Bloom filters defray
the cost of unnecessary lookups in SSTables, as the number of
filters increases, the total effectiveness of the approach decreases.
When performing a lookup in the SAMT with a Bloom filter on
each SSTable, the probability of having to perform an unnecessary
lookup in some SSTable is1− (1−f)NB whereNB is the number
of Bloom filters, andf is the false positive rate of each filter. This
probability is roughly equal tof ∗ NB for reasonably small values
of f . In our evaluation, Bloom filters remain effective as long asthe
number of SSTables for each tree/column-family is less than40.

4. DESIGN AND IMPLEMENTATION
We studied existing TSSLs (Cassandra and HBase) as well as

existing DBMS storage engines (Berkeley DB and InnoDB). This
guided GTSSL’s design. GTSSL utilizes several novel extensions
to the SAMT (discussed in Section 3). As shown in Figure 2 panels
③ and④, GTSSL supports storage device specific optimizations at
each tier. GTSSL intelligently migrates recently writtenand read
data between tiers to improve both insertion and lookup throughput
and permit effective caching in storage tiers larger than RAM.

TSSL efficiency is critical to overall cluster efficiency. GTSSL
extends the scan cache (described in Section 2) and buffer cache
architecture used by existing TSSLs. GTSSL completely avoids
the need to maintain a buffer cache while avoiding commonMMAP

overheads; GTSSL further aggressively exploits Bloom filters so
they have equal or more space in RAM than the scan cache.

Although Web-service MapReduce workloads do not typically
require more than atomic insertions [10], parallel DBMS archi-
tectures and many scientific workloads require more substantial
transactional semantics. GTSSL introduces a light-weighttrans-
actional architecture that allows clients to commit transactions as
either durable or non-durable. Durable transactions fullyexploit
group-commit as in other TSSL architectures. However, GTSSL
also allows non-durable transactions, and these can avoid writing to
the journal completely for heavy insertion workloads without com-
promising recoverability. In addition, GTSSL provides theneces-
sary infrastructure to support transactions that can perform multiple
reads and writes atomically and with full isolation.

We discuss how we improved the SAMT structure so that it could
operate in a multi-tier way that best exploits the capabilities of dif-
ferent storage devices in Section 4.1. We detail our cachingarchi-
tecture and design decisions in Section 4.2. We discuss GTSSL’s
transactional extensions to the typical TSSL in Section 4.3.

4.1 SAMT Multi-Tier Extensions
GTSSL extends the SAMT merging method in three ways. (1)

Client reads can be optionally re-inserted to keep recentlyread (hot)
data in faster tiers (e.g., a Flash SSD). (2) Lists of recently inserted
data are automatically promoted into faster tiers if they fit. (3) Dif-
ferent tiers can have different values ofK (the number of slots in
each level; see Section 3). We call our improved SAMT the Multi-
Tier SAMT or MTSAMT. In addition, our implementation also in-
cludes support for full deletion, variable-length keys andvalues,
and allows the logical layer to specify whatever format, bits, or
timestamps deemed necessary by the logical layer, as other TSSLs
do (see Section 2).

Re-Insertion Caching.
Whenever a pair is inserted, updated, deleted, or read, theC0

(fastest) cache is updated. The cache is configured to hold a preset
number of pairs. When a pair is inserted or updated, it is marked
DIRTY, and the number of pairs in the cache is increased. Similarly,
after a key is read into theC0 cache, it is marked asRD_CACHED,
and the number of pairs is increased. Once a pre-set limit is met, the
cacheevictsinto the MTSAMT structure using the merging process
depicted in Figure 2 panel③. By including RD_CACHED pairs in
this eviction as regular updates, we can answer future readsfrom
C1 rather than a slower lower level. However, if the key-value pairs
are large, this can consume additional write bandwidth. This fea-
ture is desirable when the working-set is too large forC0 (RAM)
but small enough to fit in a fast-enough device residing at oneof
the next several levels (e.g.,C1 andC2 on Flash SSD). Alterna-
tively, this feature can be disabled for workloads where saving the
cost of reading an average pair is not worth the additional insertion
overhead, such as when we are not in a multi-tier scenario. All
RD_CACHEDvalues are omitted during a compaction whose merge
includes the slots of the lowest level, and for which we are trying
to relieve space pressure in the tier (i.e., a major compaction), and
RD_CACHED values are omitted during a merging compaction if
another pair with the same key can be emitted instead. Therefore,
no additional space is used by insertingRD_CACHED pairs. Read
caching across multiple tiers (i.e., outside of RAM) is a newtopic,
and discussion of it is not found in our survey of related work. We

4



present some initial experiments related to multi-tier performance
in Section 5.4. One subject of future work is more carefully explor-
ing cache policies that work well for SAMTs or MT-SAMTs when
caching outside of RAM where random access is costly, even on
Flash SSD.

When scanning through trees (MTSAMTs), if read caching is
enabled, the scanner inserts scanned values into the cache,and
marks them asRD_CACHED. We have found that randomly reading
larger tuples (>4096KB) can make effective use of a Flash SSD
tier, however for smaller tuples (<64B) the time taken to warm
the Flash SSD tier with reads is dominated by the slower random
read throughput of the magnetic disk in the tier below. By allow-
ing scans to cache read tuples, applications can exploit application-
specific locality to pre-fetch pairs within the same or adjacent rows
whose contents are likely to be later read.

Evictions of read-cached pairs can clear out a Flash SSD cache if
those same pairs are not intelligently brought back into thehigher
tier they were evicted from after a cross-tier merging compaction.
In Figure 2 panel④, we see evicted pairs being copied back into
the tier they were evicted from. This is calledreclamation, and
it allows SSTables, including read-cached pairs, that wereevicted
to magnetic disks (or other lower-tier devices) to be automatically
copied back into the Flash SSD tier if they can fit.

Space Management and Reclamation.
We designed the MTSAMT so that more frequently accessed

lists would be located at higher levels, or atCi for the smallesti
possible. After a merge, the resulting list may be smaller than the
slot it was merged into because of resolved deletes and updates.
If the resultant list can fit into one of the higher (and faster) slots
from which it was merged (which are now clear), then it is moved
upward, along with any other slots at the same level that can also
fit. This process is calledreclamationand requires that the total
amount of pairs in bytes that can be reclaimed must fit into half the
size of the level they were evicted from. By only reclaiming into
half the level, a sufficient amount of space is reserved for merging
compactions at that level to retain the same asymptotic insertion
throughput. In the example in Figure 2, the result of the merging
compaction in panel③ is small enough to fit into the two (half of
four) available slots inC1, and specifically in this example requires
only one slot. If multiple slots were required, the SSTable would be
broken up into several smaller SSTables. This is possible because
unlike Cassandra and HBase, GTSSL manages blocks in the under-
lying storage device directly, rather than treating SSTables as entire
files on the file system, which allows for this kind of optimization.
Reclamation across levels within the same tier is very inexpensive,
as this requires merelymovingSSTable blocks by adjusting point-
ers to the block, rather thancopyingthem across devices. If these
rules are obeyed, then partially filled slots are guaranteedto always
move upward, eliminating the possibility that small lists of pairs re-
main stuck in lower and slower levels. As long as all lists arein the
smallest levels in which they can fit, we retain the optimal asymp-
totic performance outlined in Section 3. By performing reclamation
after every merge, we ensure this is always true, because reclama-
tion effectively searches for the smallest level in which tofit a list
produced by a merge.

We optimized our MTSAMT implementation for throughput. Our
design considers space on storage with high latency and highread-
write throughput characteristics (e.g., disk) to be cheaper than other
hardware (e.g., RAM or Flash SSD). GTSSL can operate opti-
mally until 1/2 of total storage is consumed; after that, perfor-
mance degrades gradually until the entire volume is full, save a
small amount of reserve space (usually 5% of the storage device).

(Such space-time trade-offs are common in storage systems [39],
such as HBase [18], Cassandra [33], and even Flash SSD devices [29],
as we elaborate further below.) At this point, only deletes and up-
dates are accepted. These operations are processed by performing
the equivalent of a major compaction: if there is not enough space
to perform a merging compaction into the first free slot, thenan
in-place compaction of all levels in the MTSAMT is performed
using the GTSSL’s reserve space. As tuples are deleted, space is
reclaimed, freeing it for more merging compactions that intersperse
major compactions until1/2 of total storage is again free; at that
point, only merging compactions need be performed, regaining the
original optimal insertion throughput.

Chang et al. do not discuss out of space management in Big Ta-
ble [10] except to say that a major compaction is performed inthose
situations; they also do not indicate the amount of overheadre-
quired to perform a major compaction. Cassandra simply requires
that half of the device remain free at all times [33], arguingthat disk
storage is cheap. It is not uncommon for write-optimized systems,
such as modern Flash SSD firmware, to require a large amount of
storage to remain free for compaction. High performance Flash
SSD devices build these space overheads (among other factors) into
their total cost [21]. Even commodity Flash SSD performs farbet-
ter when the partition actually uses no more than 60% of the total
storage capacity [29]. To exploit decoupling, compaction-based
systems such as GTSSL have some overhead to maintain optimal
insertion throughput in the steady state, without this space their
throughput degrades. Alternative systems such as Cassandra sim-
ply cease to operate when exceeding1/2 of the storage space. We
believe that GTSSL’s gradual degradation of performance beyond
50% space utilization is a sufficient compromise.

4.2 Committing and Stacked Caching
We showed how the MTSAMT extends the typical SAMT to op-

erate efficiently in a multi-tier environment. In addition to efficient
compaction, reclamation, and caching as discussed above, the effi-
ciency of the memtable orC0 (Section 2) as well as how efficiently
it can be serialized to storage as an SSTable is also extremely im-
portant. As we evaluate in Section 5, the architecture of thetrans-
action manager and caching infrastructure is the most important
determiner of insertion throughput for small key-value pairs (<
1KB). GTSSL’s architecture is mindful of cache efficiency, while
supporting new transactional features (asynchronous commits) and
complex multi-operation transactions.

Cache Stacking.
The transactional design of GTSSL is implemented in terms of

GTSSL’s concise cache-stacking feature. Like other TSSLs,GTSSL
maintains a memtable to store key-value pairs. GTSSL uses a red-
black tree with an LRU implementation, andDIRTY flags for each
pair. An instance of this cache for caching pairs in a particular col-
umn family or tree is called ascan cache. Unlike other TSSL ar-
chitectures, this scan cache can be stacked on top of anothercache
holding pairs from the same tree or MTSAMT. In this scenario the
cache on top or theupper cacheevicts into thelower cachewhen it
becomes full by locking the lower cache and moving its pairs down
into the lower cache. This feature simplifies much of GTSSL’s
transactional design, which we explore further in Section 4.3. In
addition to the memtable cache, like other TSSLs, GTSSL requires
a buffer cache, but as we discuss in the next paragraph, we do
not need to fully implement a user-level buffer cache as traditional
DBMSes typically do.

5



Buffer Caching.
We offload to the Linux kernel all caching of pages read from

128MB blocks, byMMAP ing all storage in 1GBslabs. This sim-
plifies our design as we avoid implementing a buffer cache. 64-bit
machines’ address spaces are sufficient and the cost of a random
read I/O far exceeds the time spent on a TLB miss. Cassandra’s
default mode is to useMMAP within the Java API to also per-
form buffer caching. However, serial writes to a mapping incur
reads as the underlying Linux kernel always reads the page into the
cache, even on a write fault. This can cause overheads on serial
writes of up to 40% in our experiments. Other TSSL architectures
such as Cassandra do not address this issue. To avoid this prob-
lem, wePWRITE during merges, compactions, and serializations,
and then we invalidate only the affected mapping usingMSYNC

with MS_INVALIDATE . As the original slots are in place during the
merge, reads can continue while a merge takes place, until the orig-
inal list must be deallocated. Once deallocated, reads can now be
directed to the newly created slot. The result is that the only cache
which must be manually maintained for write-ordering purposes is
the journal cache, which is an append-only cache similar to that
implemented by the POSIXFILE C API, which is light-weight, and
simple.

All TSSLs that employMMAP, even without additionally op-
timizing for serial writes like GTSSL, typically avoid readover-
heads incurred by a user-space buffer cache. On the other hand,
traditional DBMSes can not useMMAP as provided by commod-
ity OSes. This is because standard kernels (e.g., Linux) have no
portable method of pinning dirty pages in the system page cache.
Without this, or some other write-ordering mechanism, traditional
DBMSes that require overwrites (e.g., due to using B+-trees), can
violate write-ordering and break their recoverability. Therefore
they are forced to rely on complex page cache implementations
based onMALLOC [24,55,64] or use complex kernel-communication
mechanisms [62–64]. TSSLs utilized in cloud based data stores
such as Cassandra, HBase, or GTSSL never overwrite data during
the serialization of a memtable to storage, and therefore need not
pin buffer-cache pages, greatly simplifying these designs.

4.3 Transactional Support
Pavlo et. al [47] and Abouzeid et. al [1] use traditional parallel

DBMS architectures for clustered structured data workloads, but
these still rely on distributed transaction support. GTSSL’s trans-
actional architecture permits for atomic durable insertions, batched
insertions for higher insertion-throughput, and larger transactions
that can be either asynchronous or durable. This lets the same
TSSL architecture to be used in a cluster operating under either
consistency model.

We described MTSAMT’s design and operation and its asso-
ciated cache or memtable (C0). As mentioned before, each MT-
SAMT corresponds to a tree or column family in a cloud storage
center. GTSSL operates on multiple MTSAMTs to support row in-
sertions across multiple column families, and more complexmulti-
operation transactions as required by stronger consistency models.
Applications interact with the MTSAMTs through a transactional
API: BEGIN, COMMIT_DURABLE, andCOMMIT_ASYNC.

GTSSL’s transaction manager (TM) manages all transactionsfor
all threads. As shown in Figure 3, the TM maintains a stacked scan
cache (Section 4.2) called thestaged cacheon top of each tree’sC0

(also a scan cache). When an application begins a transaction with
BEGIN, the TM creates a handler for that transaction, and gives the
application a reference to it. At any time, when a thread modifies a
tree, a new scan cache is created if one does not already exist, and
is stacked on top of that tree’s staged cache. The new scan cache is

Staged

c

MTSAMT MTSAMT MTSAMT
0 1 2

0

Staged Staged

c
0

c
0

p
0

p
1

p
2

txn
0

txn
1

txn
2

STORAGE

RAM

Private

Caches

Figure 3: Three processes,p0...p2, each maintain an ongoing
transaction that has modified all 3 MTSAMTs so far.

placed in that transaction’s handler. This new scan cache iscalled
a private cache. In Figure 3 we see three handlers, each in use by
three separate threadsP0 throughP2. Each thread has modified
each of the three trees (MTSAMT0 through MTSAMT2).

Transactions managed by GTSSL’s TM are in one of three states:
(1) they are uncommitted and still exist only with the handler’s pri-
vate caches; (2) they are committed either durably or asynchronously
and are in either the staged cache orC0 of the trees they effect; or
(3) they are entirely written to disk. Transactions begin instate (1),
move to state (2) when committed by a thread, and when GTSSL
performs a snapshot of the system, they move to state (3) and are
atomically written to storage as part of taking the snapshot.

Durable and asynchronous transactions can both be committed.
We commit transactions durably by moving their transactionto
state (2), and thenscheduling and waitingfor the system to perform
a snapshot. While the system is writing a snapshot to storage, the
staged cache is left unlocked so other threads can commit (similar
to EXT3 [9]). A group commit of durable transactions occurs when
multiple threads commit to the staged cache while the current snap-
shot is being written, and subsequently wait on the next snapshot
together as a group before returning fromCOMMIT. Asynchronous
transactions can safely commit to the staged cache and return im-
mediately fromCOMMIT. After a snapshot the staged cache and
theC0 cache swap roles: the staged cache becomes theC0 cache.

Next we discuss how we efficiently record snapshots in the jour-
nal, and how we eventually remove or garbage-collect snapshots by
truncating the journal.

Snapshot, Truncate, and Recovery.
Unlike other BigTable based cluster TSSL architectures, GTSSL

manages blocks directly, not using separate files for each SSTable.
A block allocator manages each storage device. Every block allo-
cator uses a bitmap to track which blocks are in use. The block
size used is 128MB to prevent excessive fragmentation, but the OS
page cache still uses 4KB pages for reads into the buffer cache.

Each tree (column family) maintains a cluster of offsets andmeta-
data information that points to the location of all SSTable block off-
sets, secondary index block offsets, and Bloom filter block offsets.
This cluster is called theheader. When a snapshot is performed, all
data referred to by all headers, including blocks containing SSTable
information, and the bitmaps, are flushed to storage usingMSYNC.
Afterward, the append-only cache of the journal is flushed, record-
ing all headers to the journal within a single atomic transaction.
During recovery, the most recent set of headers are read backinto
RAM, and we recover the state of the system at the time that header
was committed to the journal.

Traditional TSSLs implement a limited transaction feature-set
that only allows for atomic insertion. Chang et. al [10] outline a

6



basic architecture that implements this. Their architecture always
appends insertions to the journal durably before adding them to the
memtable. Cassandra and HBase implement this transactional ar-
chitecture as well. By contrast Pavlo et. al [47] and Abouzeid et.
al [1] make the case for distributed transactions in database clus-
ters. GTSSL’s architecture does not exclude distributed transac-
tions, and is as fast as traditional TSSLs like Cassandra or HBase,
or a factor of 2 faster when all three systems use asynchronous
commits. One important feature of GTSSL is that high-insertion
throughput workloads that can tolerate partial durability(e.g., snap-
shotting every 3–5 seconds) need not write the majority of data into
the journal. Although Cassandra and HBase support this feature for
many of their use cases as well, they only delay writing to thejour-
nal, rather than avoid it. GTSSL can avoid this write becauseif the
C0 cache evicts its memtable as an SSTable between snapshots, the
cache is marked clean, and only the header need be serializedto the
journal, avoiding double writing. This design improves GTSSL’s
performance over other TSSLs.

5. EVALUATION
We evaluated GTSSL, Cassandra, and HBase along with some

traditional DBMSes for various workloads. However, we focus
here on their four most important properties relevant to this work:
(1) the flexibility and efficiency of their compaction methods, (2)
the efficiency of their serialization and caching designs for smaller
key-value pairs, (3) the multi-tier capabilities of GTSSL,and (4)
the transactional performance of GTSSL and potentially other TSSLs
with respect to traditional DBMSes for processing distributed trans-
actions in a cluster. As laid out in Sections 3 and 4, we believe these
are key areas where GTSSL improves on the performance of exist-
ing TSSL architectures.

5.1 Experimental Setup
Our evaluation ran on three identically configured machinesrun-

ning Linux CentOS 5.4. The client machines each have a quad-core
Xeon CPU running at 2.4GHz with 8MB of cache, and 24GB of
RAM; the machines were booted with kernel parameters to limit
the amount of RAM used to either 4.84GB, or 0.95GB of RAM
to test out-of-RAM performance, and we noted with each test how
much RAM was used. Each machine has two 146.1GB 15KRPM
SAS disks (one used as system disk), a 159.4GB Intel X-25M Flash
SSD (2nd generation), and two 249.5GB 10KRPM SATA disks.
Our tests used pre-allocated and zeroed out files for all configura-
tions. We cleared all caches on each machine before running any
benchmark. To minimize internal Flash SSD firmware interference
due to physical media degradation and caching, we focus on long-
running throughput benchmarks in this evaluation. Therefore, we
reset all Flash SSD wear-leveling tables prior to evaluation (using
the TRIM command), and we also confined all tests utilizing Flash
SSD to a 90GB partition of the 159.4GB disk, or 58% of the disk.
To control for variance, all benchmarks are run over long periods
of time (e.g., one half to two hours or longer) until throughput con-
verges.

In tests involving HBase and Cassandra, we configured both sys-
tems to run directly on top of the file system. That is, HBase did not
use HDFS, but ran directly on top of Ext3, the same file system used
by all the other systems. This was to isolate performance to just the
TSSL layer of HBase, and not penalize HBase for HDFS-related
activities. This is the default behavior for Cassandra, butHBase
had to be specially configured. Both systems were configured as
efficient single-node systems according to their documentation to
avoid network layer overheads [15,16]. We gave both systems3GB
of JVM heap, and we used the remaining 1.84GB as a file cache.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  500  1000  1500  2000  2500  3000  3500  4000

W
rit

e 
T

hr
ou

gh
pu

t i
n 

op
s/

se
c

Read Throughput in ops/sec

cassandra
flash-ssd-reference-point

gtssl
hbase

Figure 4: Cassandra has comparable insertion performance to
GTSSL when both systems retain as much lookup throughput
as possible. GTSSL reaches much further into the trade-off
space. HBase is already optimally configured, and cannot fur-
ther specialize for insertions.

We configured GTSSL to use upwards of 3GB for non-file cache in-
formation, including secondary indexes and Bloom filters for each
slot in each tree, and the tuple cache (C0) for each tree. GTSSL
often used much less than 3GB, depending on the size of the pairs,
but never more. We disabled compression for all systems because
measurements of its effectiveness and for which data-sets are or-
thogonal to efficient TSSL operation. To prevent swapping heap
contents when the file cache was under memory pressure due to
MMAP faults, we set theSWAPPINESSparameter to 0 for all systems
and monitored swap-ins and swap-outs to ensure no swapping took
place. All tests, except the multi-tier storage tests in Section 5.4
were run on the Intel X25-M Flash SSD described above.

5.2 Read-Write Trade-off
We evaluated the performance of Cassandra, HBase, and GTSSL

when inserting 1KB pairs into 4 trees, to exercise multi-tree trans-
actions. 1KB is the pair size used by YCSB [13]. In this par-
ticular experiment, keys and values were generated with uniform
distribution across the key space. Lookups are randomly uniform.
For each system we varied its configuration to either favor reads
or writes. HBase supported only one optimal configuration, so it
was not varied. Cassandra and GTSSL can trade off lookup for
insertion performance by increasingK (see Section 3). Our con-
figuration namedBALANCED setsK = 4, the default; configura-
tion MEDIUM setsK = 8; configurationFAST setsK = 80. We
measured insertion throughput and lookup separately to minimize
interference, but both tests utilized 10 writers or readers.

Configuration.
In addition to the configuration parameters listed in Section 5.1,

to utilize 4 trees in Cassandra and HBase, we configured 4 column
families. We computed the on-disk footprint of one of Cassan-
dra’s pairs based on itsSIZE routine in its TSSL sources (which we
analyzed manually), and we reduced the size of the 1KB key ac-
cordingly so that each on-disk tuple would actually be 1KB large.
We did this to eliminate any overhead from tracking column mem-
bership in each pair. We did the same for HBase, and used tuples
with no column membership fields for GTSSL, while also account-
ing for the 4 byte size field used for variable length values. This
minimized differences in performance across implementations due
to different feature sets that require more or less metadatato be
stored with the tuple on disk. Overall, we aimed to configure all
systems as uniformly as possible, to isolate only the TSSL layer,
and to configure Cassandra and HBase in the best possible light.

Results.
Figure 4 is a parametric function, where each point represents

7



 1

 10

 100

 10  100  1000  10000  100000  1e+06

O
ve

rh
ea

d 
in

 fa
ct

or
s 

(lo
g)

KV size in Bytes (log)

cassandra
gtssl

hbase

Figure 5: Neither Cassandra nor HBase improve beyond an
overhead of 2.0× for large pairs, or 76.3× for small pairs.

a run, and the parameter varied is the system configuration. The
x-axis measures that configuration’s insertion (write) throughput,
and the y-axis measures its random lookup (read) throughput. The
maximum lookup throughput of each structure can not exceed the
random read performance of the drive; similarly, the maximum in-
sertion throughput can not exceed the serial write throughput of
the drive. These two numbers are shown as one point at FLASH

SSDREFERENCE POINT. For theBALANCED configuration, Cas-
sandra and GTSSL have similar insertion throughputs of 16,970
ops/s and 22,780 ops/s, respectively. However, GTSSL has a 3×
higher lookup throughput than Cassandra, and a 10× higher than
HBase. GTSSL utilizes aggressive Bloom filtering to reduce the
number of lookups to effectively 0 for any slot that does not con-
tain the sought-after key. The random read throughput of theFlash
SSD drive tested here is 3,768 reads/s, closely matching theperfor-
mance of GTSSL. Cassandra uses 256KB blocks instead of 4KB
blocks, but uses the metadata to read in only the page within the
256KB block containing the key. We observed that block read
rates were at the maximum bandwidth of the disk, but Cassandra
requires 3 IOs per lookup [20] when memory is limited, resulting
in a lookup throughput that is only1/3 the random read through-
put of the Flash SSD. Both HBase and Cassandra utilize Bloom
filtering, but Bloom filtering is a new feature for HBase that was
recently added. HBase caches these Bloom filters in an LRU cache.
So although HBase can swap in different Bloom filters, for uniform
or Zipfian lookup distributions, HBase has to page in Bloom filter
data pages to perform lookups, causing a 10× slowdown compared
to Cassandra and GTSSL. However if we perform a major com-
paction (which can take upwards of an hour) we notice that with
4KB blocks, HBase lookups can be as high as 910 lookups/s, but
for the same block size before major compaction, lookup through-
put is 200 lookups/s, lower than with the default 64KB blocksize.
Performing major compactions with high frequency is not possible
as it starves clients. For the more write-optimized configurations,
GTSSL increased its available bandwidth for insertions consider-
ably: for MIDDLE , GTSSL achieved 32,240 ops/s and 3,150 ops/s,
whereas Cassandra reached only 20,306 ops/s and 960 ops/s, re-
spectively. We expected a considerable increase in insertion through-
put and sustained lookup performance for both Cassandra andGTSSL
as they both use variants of the SAMT. However, Cassandra’s per-
formance could not be improved beyond 21,780 ops/s for theFAST

configuration, whereas GTSSL achieved 83,050 ops/s. GTSSL’s
insertion throughput was higher thanks to its more efficientserial-
ization of memtables to SSTables on storage. To focus on the exact
cause of these performance differences, we configured all three sys-
tems (HBase, Cassandra, and GTSSL) to perform insertions but no
compaction of any sort. We explore those results next.

Cassandra and HBase limiting factors.
To identify the key performance bottlenecks for a TSSL, we ran

an insertion throughput test, where each system was configured
to insert sizes of pairs varying from 64B to 512KB as rapidly as
possible, using 10 parallel threads. In this particular experiment,
keys were generated with uniform distribution across the key space.
Lookups are randomly uniform. Cassandra, HBase, and GTSSL
were all configured to commit asynchronously, but still maintain
atomicity and consistency (theFAST configuration). Furthermore,
Cassandra’s compaction thresholds were both set to 80 (larger than
the number of SSTables created by the test); HBase’s compaction
(and compaction time-outs) were simply disabled, leaving both sys-
tems to insert freely withno compactionsduring this test. The ideal
throughput for this workload is the serial append bandwidthof the
Flash SSD (110MB/s), divided by the size of the pair used in that
run. Figure 5 shows these results. Each point represents an entire
run of a system. The y-axis represents how many times slower a
system is compared to the ideal, and the x-axis represents the size
of the pair used for that run. All three systems have the same curve
shape: a steep CPU-bound portion ranging from 64B to 1KB, and
a shallower IO-bound portion from 1KB to 512KB.

For the IO-bound portion, HBase and Cassandra both perform at
best 2.0× worse than the ideal, whereas GTSSL performs 1.1×
worse than the ideal, so GTSSL is 2× faster than Cassandra and
HBase in the IO-bound portion. Cassandra and HBase both log
writes into their log on commit, even if the commit is asynchronous,
whereas GTSSL behaves more like a file-system and avoids writing
into the log if the memtable can be populated and flushed to disk
before the next flush to the journal. This allows GTSSL to avoid
the double-write to disk that Cassandra and HBase perform, asig-
nificant savings for IO-bound insertion-heavy workloads that can
tolerate a 5-second asynchronous commit. For configurations not
able to tolerate this delay, GTSSL still outperforms in CPU-bound
workloads (additionally we perform durable commit experiments
in Section 5.5).

For the CPU-bound portion, we see that GTSSL is a constant
factor of 4× faster than both HBase and Cassandra, and addition-
ally that HBase and Cassandra have very similar performance: the
ratio of Cassandra’s overhead to HBase’s is always within a fac-
tor of 0.86 and 1.3 for all runs. When running Cassandra and its
journal entirely in RAM, their insertion throughput of the 64B pair
improved by only 50%, dropping from 99.2× to 66.1×, which is
still 4× slower than GTSSL which wasnot running in RAM. The
meager change in performance for running entirely in RAM fur-
ther confirms that these workloads were CPU-bound for smaller
pairs (< 1KB), and that the typically acceptable overheads intro-
duced by the JVM—such as garbage collection, bounds-checking,
copying of file caches across the JVM boundary—are not accept-
able for these CPU-bound pair sizes. GTSSL’s design minimizes
memory copies by addressing directly throughMMAP during se-
rialization, and only copying once into its scan cache for lookups
and updates. Objects are never copied but always moved between
stacked caches. These results corroborate the reported inefficient
use of CPU and RAM in HBase by others as well [4].

Future TSSL architectures must seriously consider CPU efficiency
as the cost of a random write drops significantly for 1KB block
sizes on Flash SSD.

5.3 Deduplication
To evaluate the performance of Cassandra, HBase, and GTSSL

when processing a real-world workload, we built a deduplication
index. We checksummed every 4KB block of every file in a re-
search lab network of 82 clients of home directory files and directo-
ries, with a total of 1.6TB hashes for each chunk. Chunking [17,68]
was done on a 4KB boundary, with no variable chunking. This gen-

8



 0

 20000

 40000

 60000

 80000

 100000

 120000

Cassandra

HBase

Gtssl

 0

 500

 1000

 1500

 2000

 2500

 3000
T

hr
ou

gh
pu

t (
op

s/
se

c) -Insertion-

 0

 20000

 40000

 60000

 80000

 100000

 120000

Cassandra

HBase

Gtssl

 0

 500

 1000

 1500

 2000

 2500

 3000
T

hr
ou

gh
pu

t (
op

s/
se

c) -Insertion- -Lookup-

Figure 6: Deduplication insertion and lookup performance of
the Cassandra and HBase TSSLs, and GTSSL.

erated over 1 billion hashes. In our analysis of the hashes, we found
a typical Zipfian shape [13] where after the first 100 unique hashes,
there was effectively a uniform distribution. We measured the time
taken to insert these hashes with 10 parallel insertion threads for all
systems. We then measured the time to perform random lookups
on these hashes for a uniformly randomly selected subset.

Configuration.
We generated the deduplication hashes by chunking all files in

our corpus into 4KB chunks, which were hashed with SHA256.
We appended these 32B hashes to a file in the order they were
chunked (depth-first traversal of the corpus file systems). To con-
trol the source of random read IO, we did not want to randomly
select hashes to query from the corpus during lookup. Instead we
wanted to serially traverse a pre-built list of lookups to perform.
Therefore, to test lookups, we shuffled the hashes in advanceinto
a separate lookup list. During insertion and lookup, we traversed
the hashes serially, introducing little overhead during evaluation of
each system.

Results.
As seen in Figure 6 we found that performance is analogous to

the 64B case in Section 5.2, which used randomly generated 64B
numbers instead of a stream of 32B hashes. Cassandra, HBase,
and GTSSL were able to perform 22,920 ops/s, 23,140 ops/s, and
109,511 ops/s, respectively. For lookup performance they scored
967 ops/s, 398 ops/s, and 2,673 ops/s, respectively. As we have
seen earlier, the performance gap between Cassandra and HBase
compared to GTSSL are due to CPU and I/O inefficiency, as the
workload is comparable to a small-pair workload, as discussed above.
Real-world workloads can often have pairs of 1KB or smaller in
size, such as this deduplication workload. An efficient TSSLcan
provide up to 5× performance improvement without any changes
to other layers in the cluster architecture.

5.4 Multi-Tier Storage
We modified the SAMT compaction method so that multiple

tiers in a multi-tier storage hierarchy would be naturally used for
faster insertion throughputs and better caching behaviors. Here we
explore the effectiveness of caching a working set that is too large
to fit in RAM, but small enough to fit in our Flash SSD. We ana-
lyze two caching policies, namely: (1) LRU caching in a FlashSSD
with a hot-set, and (2) Recent-insert caching.

Configuration.
As mentioned above, in the previous tests we used only the Flash

SSD. In this test we also use the SAS disk. We configured GTSSL
with the first tier as RAM, the second on Flash SSD, and the third
on the SAS disk. The Flash SSD tier holds two levels, each with
a maximum of 4 SSTables (slots): the maximum SSTable size on

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  2000  4000  6000  8000  10000  12000  14000

N
um

 K
V

s 
lo

ok
ed

 u
p 

pe
r 

se
c

Time in Secs

Figure 7: Multi-tier results: initially throughput is disk -bound,
but as the hot-set is populated, it becomes Flash SSD-bound,
and is periodically evicted and reclaimed.

 100

 1000

 10000

 100000

 0  1e+06  2e+06  3e+06  4e+06  5e+06  6e+06In
st

an
ta

ne
ou

s 
lo

ok
up

 th
rp

t (
lo

g)

Number of KVs present before the one being lookedup

ram-sas
ram-ssd-sas

Figure 8: Multi-tier insertion caching allows for lookups of re-
cently inserted data to happen rapidly, while still allowing for
very large data-sets that can be cheaply stored mainly on disk.

the first level is 256MB, and on the second level is 1GB. The SAS
tier holds one level, with a maximum of 4 SSTables, each no larger
than 4GB. For LRU caching, the size of the hot-set is 1GB, the size
of available cache is 256MB. The size of the pairs was 4KB.

Results.
LRU-Caching: As shown in Figure 7, initial lookup throughput

was 243 lookups/s, which corresponds to the random read through-
put of the disk, 251 reads/s. Pairs are read into the scan cache
(C0), and once 256MB have been read, as described in Section 4.1,
data inC0 is flushed into the Flash SSD to facilitate multi-tier
read caching. This corresponds to the 20 sudden drops in lookup
throughput. Once the entire 1GB of hot-set has been evicted into
the Flash SSD tier, subsequent reads, even from the Flash SSD,
are re-inserted. These reads cause the contents of the FlashSSD
to flush into the SAS tier, where they are dropped while merg-
ing as the SAS tier is the lowest level. However, as the hot-set
is small enough to fit into a single slot, it is reclaimed back into
the Flash SSD tier via a copy. The mean lookup throughput is
1,815 lookups/s, an 7.4× speedup over the disk read throughput,
and 48% the Flash SSD random read throughput. The sudden drops
in lookup throughput are due to evictions, now being caused by
reads which actually result in writes. Latency spikes are a common
problem with compaction based TSSLs. HBase and Cassandra use
load-balancing at higher layers and schedule daily compactions to
reduce their effect. For these tests their effects on performance
were minimized through configuration, and these techniquesoccur
at higher layers, or are easily adaptable to GTSSL.

Recent-insert Caching:For hotsets that are queried over a long
period of time, read-caching for random reads from lower stor-
age tiers can be beneficial, as we have shown above. Additionally,
caching of recently inserted values in higher tiers is an automatic
effect of the MTSAMT. We re-run the above experiment with a
data-set of 16GB of randomly inserted 1KB keys with read caching
disabled. After all values are inserted, we search for each pair from
most recently inserted to least. Figure 8 shows our results.Inser-

9



tion of the pairs was 33% faster for theRAM-SSD-SAS configura-
tion as the more frequent merging compactions of the higher tiers
took place on a Flash SSD device, and merges across tiers did not
have to read and write to the same device at once. The pairs are
inserted randomly, but the SSTables on storage are sorted, so we
see a series of random reads within each SSTable. After insertions,
the scan cache of 256MB was full, there were 3 256MB SSTa-
bles, and 3 1GB SSTables in the first tier, and 3 4GB SSTables
in the second tier. ForRAM-SSD-SAS only the 3 4GB SSTables
were on SAS, forRAM-SAS they all were. Although each SSTable
is guarded by an in-RAM bloom filter, false positives can cause
lookups to check these tables regardless. Furthermore the ratio
of buffer cache to SSTable size shrinks exponentially as thetest
performs lookups on lower levels. This causes the stair-step pat-
tern seen in Figure 8. Initial spikes in lookup throughput occur as
the buffer cache is extremely effective for the 256MB SSTables,
but mixing cache hits with the faster cache-populating Flash SSD
(14,118 lookups/s) provides higher lookup throughput thanwith
the SAS (1,385 lookups/s). Total lookup throughput of the first
3,000,000 pairs, or the first 27% of the data-set was 2,338 lookups/s
for RAM-SSD-SAS, and 316 lookups/s forRAM-SAS, a 7.4× perfor-
mance improvement.

5.5 Cross-Tree Transactions
We designed GTSSL to efficiently process small transactions, as

well as high-throughput insertion workloads. We evaluatedGTSSL’s
transaction throughput when processing many small and large trans-
actions. We ran two tests: (1)TXN-SIZE, and (2)GROUP-COMMIT.
In TXN-SIZE, the number of executing threads is fixed at one, but
each commit is asynchronous, so this thread need not wait forthe
commit to hit storage. Each run of the benchmark performs a trans-
action that inserts four pairs, each into a separate tree. Each run
uses a different size for the four pairs, which is either 32B,64B,
256B, or 4096B. InGROUP-COMMIT, each transaction inserts a
random 1KB pair into 4 separate trees, and then commits durably.
We ran the benchmark with 512 threads executing in parallel to test
scalability on our 4-core machine.

Configuration.
We configured 3 systems for comparison in this test: GTSSL,

MySQL (using InnoDB), and Berkeley DB (BDB). We configured
each system identically to have 1GB of cache. We did not include
HBase or Cassandra in these results as they do not implement asyn-
chronous transactions. We configured BDB as favorably as possi-
ble through a process of reconfiguration and testing: 1GB of cache
and 32MB of log buffer. We verified that BDB never swapped or
thrashed during these tests. We configured BDB with a leaf-node
size of 4096B. We configured InnoDB favorably with a 1GB of
cache and 32MB of log buffer. We configured GTSSL with 1GB of
cache (four 256MB caches).

Results.
GTSSL outperformed MySQL and BDB on the whole by a factor

of about 6–8×. We inserted 1,220MB of transactions (9,994,240
transactions of four 32-byte insertions). For 32-byte insertions,
overall insertion performance for BDB, MySQL, and GTSSL is
683, 732, and 8,203 commits/s, respectively. For 256 byte inser-
tions it is 294, 375, and 3,140 commits/s, respectively. At 4KB in-
sertions, MySQL does not permit 4K columns, and so we omit this
result. However, GTSSL and BDB each have throughputs of 804
and 129, respectively. GTSSL is 6.23× faster than BDB. We found
that the difference in performance was because synchronousap-
pends are much faster on our Flash SSD drive than random writes,

so MySQL and BDB begin converging on their B-Tree insertion
throughput as they write-back their updates. GTSSL, on the other
hand, avoids random writes entirely, and pays only merging over-
heads periodically due to merging compactions.

Despite the stark difference in throughput for the whole work-
load, we also found that BDB, GTSSL, and MySQL had equiva-
lent insertion throughput. As transactions are submitted serially,
the current transaction must wait for the disk to sync its write be-
fore the next transaction can proceed. On magnetic disks, wefound
that synchronous appends and random writes were both ideally 300
commits/s for direct updates to a file on Ext3. However, on Flash
SSD, due to a sophisticated FTL, withdurable transactions, our
Intel X-25M Flash SSD was able to sustain 15,000 synchronous
serial appends of 32 bytes/s. Consequently, MySQL, BDB, and
GTSSL each attainedinitial insertion throughputs of 2,281, 5,474,
and 9,908 transactions/s, respectively, when just updating their own
journals. GTSSL is able to keep the total amount written per-
commit small—as it must only flush the dirty pairs in itsC0 cache
plus book-keeping data for the flush (111 bytes). This additional
amount written per transaction gives direct synchronous append an
advantage of 66% over GTSSL; however, as GTSSL logs only redo
information, its records require no reads to be performed tolog
undo information, and its records are smaller. This means that as
BDB and MySQL must routinely perform random IOs as they in-
teract with a larger-than-RAM B+-tree, GTSSL need only perform
mostly serial IOs, which is why GTSSL and other TSSL architec-
tures are better suited for high insertion-throughput workloads.

When testing peak Flash SSD-bandwidthGROUP-COMMIT through-
put, we found that GTSSL could perform 26,368 commits/s for
transactions, updating 4 trees with 1KB values, at a bandwidth of
103MB/s. The high commit throughput was due to the Flash SSD
being able to perform serial durable writes much more quickly than
random durable writes.

Evaluation summary.
TSSL architectures have traditionally optimized for IO-bound

workloads for pairs 1KB or larger on traditional magnetic disks.
For 1KB pairs, GTSSL has a demonstrably more flexible com-
paction method. For the read-optimized configuration, GTSSL lookups
are near optimal: 88% the maximum random-read throughput of
the Flash SSD, yet our insertions are still 34% faster than Cassan-
dra and 14% faster than HBase. For the write-optimized config-
uration, GTSSL achieves 76% of the maximum write throughput
of the Flash SSD, yet our lookups are 2.3× and 7.2× faster than
Cassandra and HBase, respectively. This performance difference
was due to Cassandra and HBase being CPU-bound for pairs 1KB
or smaller. When we varied the pair size, we discovered that for
smaller pairs, even when performing no compaction and no opera-
tions other than flushing pairs to storage, all TSSLs became CPU-
bound, but GTSSL was still 5× faster than the others.

For larger pairs, all TSSLs eventually became IO-bound. GTSSL
achieved 91% of the maximum serial write throughput of the Flash
SSD. Cassandra and HBase achieved only 50% of the maximum
Flash SSD throughput, due to double-writing insertions even when
transactions were asynchronous. Cassandra’s and HBase’s designs
were geared for traditional hard-disks whose latencies aremuch
slower than RAM; but as modern Flash SSD’s get faster, the bottle-
neck in such designs shifts from I/O to CPU. By contrast, GTSSL’s
design explicitly incorporates Flash SSD into a multi-tierhierarchy.
When we insert a Flash SSD into a traditional RAM+HDD stor-
age stack, GTSSL’s insertion throughput increased by 33%, and
our lookup throughput increased by 7.4×. This allows the bulk of

10



colder data to reside on inexpensive media, while most hot data
automatically benefits from faster devices.

Based on our current experiments, we predict that caching at
higher layers will not significantly alter our current performance
results because the task of sorting and compaction still lies on the
shoulders of the TSSL layer. Constraints on throughput for exist-
ing TSSL designs are not due to latency in servicing read or write
requests into the cache, but due to the overall inefficiency of per-
forming serialization of the cache, compaction, and lack ofcareful
integration with the operating system caches. Further exploration
of this question is a subject of future work.

Lastly, supporting distributed transactions in clusters does not
necessarily require a different TSSL layer as suggested by related
research [47] (i.e., a read-optimized approach). GTSSL’s transac-
tions are light-weight yet versatile, and achieve 10.7× and 8.3×
faster insertion throughputs than BDB and MySQL InnoDB, re-
spectively.

6. RELATED WORK
We discuss cluster evaluation (1), multi-tier and hierarchical sys-

tems (2–4), followed by alternative datastructures for managing
trees or column families in a TSSL architecture (5–7).

(1) Cluster Evaluation.
Super computing researchers recognize the need to alter out-of-

the-box cluster systems, but there is little research on theperfor-
mance of individual layers in these cluster systems, and howthey
interact with the underlying hardware. Pavlo et al. have mea-
sured the performance of a Hadoop HBase system against widely
used parallel DBMSes [47]. Cooper et al. have compared Hadoop
HBase to Cassandra [33] and a cluster of MySQL servers (similar
to HadoopDB and Perlman and Burns’ Turbulence Database Clus-
ter). The authors of HadoopDB include a similar whole-system
evaluation in their paper [1]. We evaluate the performance bottle-
necks of a single node’s storage interaction, and provide a prototype
architecture that alleviates those bottlenecks.

Some supercomputing researchers develop custom cluster de-
signs for a particular application that avoids logical layer overheads
(such as SQL) when necessary [14, 37, 41]. These researchersstill
want to understand the performance characteristics of the compo-
nents they alter or replace, andespeciallyif those components are
storage-performance bottlenecks. In addition to its multi-tier con-
tributions, this paper outlines many of the critical aspects of archi-
tecting an efficient TSSL layer for these researchers.

(2) Multi-tier storage.
Flash SSD is becoming popular [25]. Solaris ZFS can use inter-

mediate SSDs to improve performance [34]. ZFS uses an Flash
SSD as a DBMS log to speed transaction performance, or as a
cache to decrease read latency. But this provides only temporary
relief: when the DBMS ultimately writes to its on-disk tree,it
bottlenecks on B-tree throughput. ZFS has no explicit support for
very large indexes or trees, nor does it utilize its three-tier architec-
ture to improve indexing performance. GTSSL, conversely, uses
a compaction method whose performance is bound by disk band-
width, and can sustain high-throughput insertions across Flash SSD
flushes to lower tiers with lower latencies. Others used Flash SSD’s
to replace swap devices. FlashVM uses an in-RAM log-structured
index for large pages [53]. FASS implements this in Linux [30].
Payer [48] describes using a Flash SSD hybrid disk. Conquest[67]
uses persistent RAM to hold all small file system structures;larger
ones go to disk. These systems use key-value pairs with smallkeys

that can fit entirely in RAM. GTSSL is more general and can store
large amounts of highly granular structured data on any combina-
tion of RAM and storage devices.

(3) Hierarchical Storage Management.
HSM systems provide disk backup and save disk space by mov-

ing old files to slower disks or tapes. Migrated files are accessible
via search software or by replacing migrated files with linksto their
new location [28, 46]. HSMs use multilevel storage hierarchies to
reduce overall costs, but pay a large performance penalty toretrieve
migrated files. GTSSL, however, was designed for always-online
access as it must operate as a TSSL within a cluster, and focuses on
maximum performance across all storage tiers.

(4) Multi-level caching.
These systems address out-of-sync multiple RAM caches that

are often of the same speed and are all volatile: L2 vs. RAM [19],
database cache vs. file system page cache [22], or located on dif-
ferent networked machines [36, 59]. These are not easily applica-
ble to general-purpose multi-tier structure data storage due to large
performance disparities among the storage devices at the top and
bottom of the hierarchy.

(5) Write-optimized trees.
The COLAmaintainsO (log (N)) cache lines forN key-value

pairs. The amortized asymptotic cost of insertion, deletion, or up-
dates into a COLA isO (log (N) /B) for N inserted elements [7].
With fractional cascading, queries requireO (log (N)) random reads [11].
GTSSL’s SAMT has identical asymptotic insertion, deletion, and
update performance; however, lookup with SAMT isO

`

log2 (N)
´

.
In practice GTSSL’s secondary indexes easily fit in RAM though,
and so lookup is actually equivalent for trees several TBs large.
Furthermore, as we show in our evaluation, GTSSL’s Bloom fil-
ters permit 10–30× faster lookups for datasets on Flash SSD than
what the COLA (used by HBase) can afford.Log-Structured Merge
(LSM) trees [44] use an in-RAM cache and two on-disk B-Trees
that areR andR2 times larger than cache, where1

R
+ R + R2 is

the size of the tree. LSM tree insertions are asymptoticallyfaster

than B-Trees:O
“√

N log N

B

”

[56] compared toO
`

log
B+1 N

´

, but

asymptotically slower than GTSSL’s SAMT. LSM tree query times
are more comparable to B-Tree’s times. Rose is a variant of an
LSM tree that compresses columns to improve disk write through-
put [56]. Anvil [38] is a library of storage components for as-
sembling custom 2-tier systems and focuses on development time
and modularity. Anvil describes a 2-COLA based structure and
compares performance with traditional DBMSes in TPC-C perfor-
mance. GTSSL’s uses the multi-tier MTSAMT structure, and isde-
signed for high-throughput insertion and lookups as a component
of a cluster node. We evaluate against existing industry standard
write-optimized systems and not random-write-bound MySQLInn-
oDB. Data Domain’s deduplicating SegStore uses Bloom filters [8]
to avoid lookups to its on-disk hash table, boosting throughput to
12,000 inserts/s. GTSSL solves a different problem: the base inser-
tion throughput to an on-disk structured data store (e.g., Data Do-
main’s Segment Index, for which insertion is a bottleneck).GTSSL
is complimentary to, and could significantly improve the perfor-
mance of similar deduplication technology.

(6) Log-structured data storage.
Log-structured file systems [51] append dirtied blocks to a grow-

ing log that must be compacted when full. Graefe’s log-structured
B-trees [23] and FlashDB [42] operate similarly to WAFL [26]by

11



rippling up changes to leaf pointers. Goetz uses fence-keysto avoid
expensive rippling, and uses tree-walks during scans to eliminate
leaf pointers. FAWN [3] is a distributed 2-tier key-value store de-
signed for energy savings. It uses a secondary index in RAM and
hash tables in Flash SSD. FAWN claims that compression (orthog-
onal to this work) allows large indexes to fit into 2GB of RAM. By
contrast, GTSSL has been tested with 1–2TB size indexes on a sin-
gle node. Log-structured systems assume that the entire index fits
in RAM, and must read in out-of-RAM portions before updating
them. This assumption breaks down for smaller (64B) pairs where
the size of the index is fairly large; then, compaction methods em-
ployed by modern TSSLs become vital.

(7) Flash SSD-optimized trees.
Flash SSD has high throughput writes and low latency reads,

ideal for write-optimized structured data storage. FD-Trees’s au-
thors admit similarity to LSM trees [35]. Their writes are worse
than an LSM-tree for 8GB workloads; their read performance,how-
ever, matches a B-tree. GTSSL’s insertions are asymptotically faster
than LSM trees. LA-Tree [2] is another Flash SSD-optimized tree,
similar to a Buffer Tree [6]. LA-Trees and FlashDB can adaptively
reorganize the tree to improve read performance. Buffer Trees have
asymptotic bound equal to COLA. However, it is not clear or dis-
cussed how to efficiently extend Buffer Trees, LA-Trees, or FD-
Trees for multiple storage tiers or transactions as GTSSL does.

7. CONCLUSIONS
We introduced GTSSL, an efficient tablet server storage archi-

tecture that is capable of exploiting Flash SSD and other storage
devices using a novel multi-tier compaction algorithm. Ourmulti-
tier extensions have 33% faster insertions and a 7.4× faster lookup
throughput than traditional RAM+HDD tiers—while storing 75%
of the data (i.e., colder data) on cheaper magnetic disks. Bymin-
imizing the number of IOs per-lookup, and aggressively using of
Bloom filters, GTSSL achieves 2.3× and 7.2× faster lookups than
Cassandra and HBase, respectively—while maintaining 3.8× faster
insertions for standard sized inputs. We demonstrated GTSSL’s
much wider range of support for either lookup-heavy or insert-
heavy workloads, compared to Cassandra and HBase. We have
shown how the existing TSSL layer can be extended to support
more versatile transactions capable of performing multiple reads
and writes in full isolation without compromising performance.
GTSSL achieved 10.7× and 8.3× faster insertion throughputs than
BDB and MySQL’s InnoDB, respectively.

Our analysis shows that the SAMT structure is better suited for
newer storage technologies such as Flash SSD that naturallyhave
a smaller DAM block size, however we have shown in Section 5.4
that significant performance gains can be made while still keep-
ing the majority of data stored on a magnetic disk by extending
the SAMT to support multi-tier workloads. These extensionsare
outlined in Section 4.1. Furthermore, our performance evaluation
of existing TSSL architectures show that, faced with increasingly
faster random I/O from Flash SSD’s, CPU and memory efficiency
are paramount for increasingly more complex and granular data.

From our evaluation we learned several key lessons: (1) multi-
tier support is critical for better performance to cost ratio in TSSLs,
(2) more complex transaction support requires a more traditional
DBMS/file system cache architecture tuned for fast insertion and
exploiting the log-structured nature of the TSSL compaction algo-
rithms, and (3) efficiency of key-value pairs below 1KB in size de-
pends on the cache implementation and general CPU-boundedness
of the design more than the specific compaction algorithms used.

Most importantly, integrating modern storage devices intoa TSSL

requires a more general approach to storage than currently avail-
able, and one that operates in a generic fashion across multiple tiers.
GTSSL offers just that.

Future Work.
We will explore measuring the performance effect of multi-tier

TSSLs on a larger cluster to demonstrate design transferability and
improved performance. Currently our Bloom filters lie completely
in RAM, however we are actively exploring ways of efficiently
inserting and searching within Bloom filter-like structures across
multiple tiers.

We are planning to release the GTSSL system, sources, and all
benchmarks and data-sets later this year.

8. REFERENCES
[1] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi,Avi

Silberschatz, and Alexander Rasin. Hadoopdb: an architectural
hybrid of mapreduce and dbms technologies for analytical
workloads.Proc. VLDB Endow., 2:922–933, August 2009.

[2] D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao, and S. Singh.
Lazy-adaptive tree: an optimized index structure for flash devices.
Proc. VLDB Endow., 2(1):361–372, 2009.

[3] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan,
and V. Vasudevan. FAWN: A Fast Array of Wimpy Nodes. In
Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP ’2009), pages 1–14. ACM SIGOPS, October 2009.

[4] Eric Anderson and Joseph Tucek. Efficiency matters!SIGOPS Oper.
Syst. Rev., 44:40–45, March 2010.

[5] The Apache Foundation. Hadoop, January 2010.
http://hadoop.apache.org.

[6] L. Arge. The buffer tree: A new technique for optimal i/o-algorithms
(extended abstract). InUniversity of Aarhus, pages 334–345.
Springer-Verlag, 1995.

[7] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C.
Kuszmaul, and J.Nelson. Cache-oblivious streaming b-trees. In
SPAA ’07: Proceedings of the nineteenth annual ACM symposium on
Parallel algorithms and architectures, pages 81–92, New York, NY,
USA, 2007. ACM.

[8] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors.Commun. ACM, 13(7):422–426, 1970.

[9] M. Cao, T. Y. Tsâ̆AŹo, B. Pulavarty, S. Bhattacharya, A. Dilger, and
A. Tomas. State of the Art: Where we are with the Ext3 filesystem.
In Proceedings of the Linux Symposium, Ottawa, ON, Canada, July
2005.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:a
distributed storage system for structured data. InOSDI ’06:
Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation, pages 15–15, Berkeley, CA, USA,
2006. USENIX Association.

[11] B. Chazelle and L. J. Guibas. Fractional cascading: A data
structuring technique with geometric applications. InProceedings of
the 12th Colloquium on Automata, Languages and Programming,
pages 90–100, London, UK, 1985. Springer-Verlag.

[12] D. Comer. The Ubiquitous B-Tree.ACM Computing Surveys,
11(2):121–137, June 1979.

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud serving
systems with ycsb. InProceedings of the 1st ACM symposium on
Cloud computing, SoCC ’10, pages 143–154, New York, NY, USA,
2010. ACM.

[14] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and
John Good. The cost of doing science on the cloud: the montage
example. InProceedings of the 2008 ACM/IEEE conference on
Supercomputing, SC ’08, pages 50:1–50:12, Piscataway, NJ, USA,
2008. IEEE Press.

[15] Cassandra Documentation. Getting started.http:
//wiki.apache.org/cassandra/GettingStarteda,
2011.

[16] HBase Documentation. Hbase: Bigtable-like structured storage for
hadoop hdfs.http://wiki.apache.org/hadoop/Hbasea,
2011.

12



[17] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, and P.Shilane.
Tradeoffs in scalable data routing for deduplication clusters. In
Proceedings of the 9th USENIX Conference on File and Storage
Technologies, San Jose, California, USA, 2011.

[18] Bruno Dumon. Visualizing hbase flushes and compaction.
http://outerthought.org/blog/465-ot.html, February 2011.

[19] E. D. Demaine. Cache-Oblivious Algorithms and Data Structures,
1999.

[20] J. Ellis. Re: Worst case iops to read a row, April 2010.
http://cassandra-user-incubator-apache-org.
3065146.n2.nabble.com/Worst-case-iops-to-
read-a-row-td4874216.html.

[21] FusionIO. IODrive octal datasheet.http:
//www.fusionio.com/data-sheets/iodrive-octal/.

[22] B. S. Gill. On Multi-level Exclusive Caching: Offline Optimality and
Why promotions are better than demotions. InFAST ’08:
Proccedings of the 6th conference on File and storage technologies,
Berkeley, CA, USA, 2008. USENIX Association.

[23] G. Graefe. Write-optimized b-trees. InVLDB ’04: Proceedings of
the Thirtieth international conference on Very large data bases,
pages 672–683. VLDB Endowment, 2004.

[24] J. Gray and A. Reuter.Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Mateo, CA, 1993.

[25] F. Hady. Integrating NAND Flash into the Storage Hierarchy ...
Research or Product Design?, 2009.http:
//csl.cse.psu.edu/wish2009_invitetalk1.html.

[26] D. Hitz, J. Lau, and M. Malcolm. File System Design for anNFS
File Server Appliance. InProceedings of the USENIX Winter
Technical Conference, pages 235–245, San Francisco, CA, January
1994. USENIX Association.

[27] Hypertable. Hypertable.http://www.hypertable.org,
2011.

[28] IBM. Hierarchical Storage Management.
www.ibm.com/servers/eserver/iseries/hsmcomp/,
2004.

[29] Intel Inc. Over-provisioning an intel ssd. Technical Report
324441-001, Intel Inc., October 2010.cache-www.intel.com/
cd/00/00/45/95/459555_459555.pdf.

[30] D. Jung, J. Kim, S. Park, J. Kang, and J. Lee. FASS: A Flash-Aware
Swap System. InProc. of International Workshop on Software
Support for Portable Storage (IWSSPS), 2005.

[31] R. Kothiyal, V. Tarasov, P. Sehgal, and E. Zadok. Energyand
Performance Evaluation of Lossless File Data Compression on
Server Systems. InProceedings of the 2nd Israeli Experimental
Systems Conference (ACM SYSTOR ’09), Haifa, Israel, May 2009.
ACM.

[32] Hans-Peter Kriegel, Peer Kröger, Christiaan Hendrikus Van
Der Meijden, Henriette Obermaier, Joris Peters, and Matthias Renz.
Towards archaeo-informatics: scientific data management for
archaeobiology. InProceedings of the 22nd international conference
on Scientific and statistical database management, SSDBM’10,
pages 169–177, Berlin, Heidelberg, 2010. Springer-Verlag.

[33] Avinash Lakshman and Prashant Malik. Cassandra: structured
storage system on a p2p network. InProceedings of the 28th ACM
symposium on Principles of distributed computing, PODC ’09,
pages 5–5, New York, NY, USA, 2009. ACM.

[34] A. Leventhal. Flash storage memory.Communications of the ACM,
51(7):47–51, 2008.

[35] Y. Li, B. He, Q. Luo, and K. Yi. Tree indexing on flash disks. In
ICDE ’09: Proceedings of the 2009 IEEE International Conference
on Data Engineering, pages 1303–1306, Washington, DC, USA,
2009. IEEE Computer Society.

[36] B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber,
U. Maheshwari, A. C. Myers, M. Day, and L. Shrira. Safe and
efficient sharing of persistent objects in thor. InSIGMOD ’96:
Proceedings of the 1996 ACM SIGMOD international conference on
Management of data, pages 318–329, New York, NY, USA, 1996.
ACM.

[37] Wei Lu, Jared Jackson, and Roger Barga. Azureblast: a case study of
developing science applications on the cloud. InProceedings of the
19th ACM International Symposium on High Performance
Distributed Computing, HPDC ’10, pages 413–420, New York, NY,
USA, 2010. ACM.

[38] M. Mammarella, S. Hovsepian, and E. Kohler. Modular data storage
with anvil. In SOSP ’09: Proceedings of the ACM SIGOPS 22nd

symposium on Operating systems principles, pages 147–160, New
York, NY, USA, 2009. ACM.

[39] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast file
system for UNIX.ACM Transactions on Computer Systems,
2(3):181–197, August 1984.

[40] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.
ARIES: a transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging.ACM Trans.
Database Syst., 17(1):94–162, 1992.

[41] Beomseok Nam, Henrique Andrade, and Alan Sussman. Multiple
range query optimization with distributed cache indexing.In
Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
SC ’06, New York, NY, USA, 2006. ACM.

[42] S. Nath and A. Kansal. FlashDB: Dynamic Self-tuning Database for
NAND Flash. Technical Report MSR-TR-2006-168, Microsoft
Research, November 2006.

[43] National Radio Astronomy Observatory. Innovations in
data-intensive astronomy. http://www.nrao.edu/meetings/bigdata/,
April 2011.

[44] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured
merge-tree (LSM-tree).Acta Inf., 33(4):351–385, 1996.

[45] Oracle. Database administrator’s reference.
http://download.oracle.com/docs/cd/B19306_01/
server.102/b15658/tuning.htm, March 2009.

[46] R. Orlandic. Effective management of hierarchical storage using two
levels of data clustering.Mass Storage Systems, IEEE Symposium
on, 0:270, 2003.

[47] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J.Abadi,
David J. DeWitt, Samuel Madden, and Michael Stonebraker. A
comparison of approaches to large-scale data analysis. In
Proceedings of the 35th SIGMOD international conference on
Management of data, SIGMOD ’09, pages 165–178, New York, NY,
USA, 2009. ACM.

[48] H. Payer, M. A. A. Sanvido, Z. Z. Bandic, and C. M. Kirsch.Combo
Drive: Optimizing Cost and Performance in a Heterogeneous
Storage Device. InProc. Workshop on Integrating Solid-state
Memory into the Storage Hierarchy (WISH), 2009.http:
//csl.cse.psu.edu/wish2009_papers/Payer.pdf.

[49] Eric Perlman, Randal Burns, Yi Li, and Charles Meneveau. Data
exploration of turbulence simulations using a database cluster. In
Proceedings of the 2007 ACM/IEEE conference on Supercomputing,
SC ’07, pages 23:1–23:11, New York, NY, USA, 2007. ACM.

[50] PostgreSQL Global Development Team. PostgreSQL.
http://www.postgresql.org, 2011.

[51] M. Rosenblum and J. K. Ousterhout. The design and implementation
of a log-structured file system. InProceedings of 13th ACM
Symposium on Operating Systems Principles, pages 1–15, Asilomar
Conference Center, Pacific Grove, CA, October 1991. Association
for Computing Machinery SIGOPS.

[52] J. Rydningcom and M. Shirer. Worldwide hard disk drive 2010-2014
forecast: Sowing the seeds of change for enterprise applications.
IDC Study 222797,www.idc.com, May 2010.

[53] M. Saxena and M. M. Swift. Flashvm: Revisiting the virtual
memory hierarchy, 2009.

[54] Michael C. Schatz. Cloud computing and the dna data race. Nature
Biotechnology, 28:691–693, 2010.

[55] R. Sears and E. Brewer. Stasis: Flexible TransactionalStorage. In
Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI 2006), Seattle, WA, November 2006. ACM
SIGOPS.

[56] R. Sears, M. Callaghan, and E. Brewer. Rose: Compressed,
log-structured replication. InProceedings of the VLDB Endowment,
volume 1, Auckland, New Zealand, 2008.

[57] P. Sehgal, V. Tarasov, and E. Zadok. Evaluating Performance and
Energy in File System Server Workloads extensions. InProceedings
of the Eighth USENIX Conference on File and Storage Technologies
(FAST ’10), pages 253–266, San Jose, CA, February 2010. USENIX
Association.

[58] P. Sehgal, V. Tarasov, and E. Zadok. Optimizing Energy and
Performance for Server-Class File System Workloads.ACM
Transactions on Storage (TOS), 6(3), September 2010.

[59] L. Shrira, B. Liskov, M. Castro, and A. Adya. How to scale
transactional storage systems. InEW 7: Proceedings of the 7th
workshop on ACM SIGOPS European workshop, pages 121–127,
New York, NY, USA, 1996. ACM.

[60] Sleepycat Software, Inc.Berkeley DB Reference Guide, 4.3.27

13



edition, December 2004.www.oracle.com/technology/
documentation/berkeley-db/db/api_c/frame.html.

[61] Keith A. Smith. File system benchmarks.
http://www.eecs.harvard.edu/~keith/usenix96/,
1996.

[62] R. Spillane, S. Dixit, S. Archak, S. Bhanage, and E. Zadok.
Exporting kernel page caching for efficient user-level I/O.In
Proceedings of the 26th International IEEE Symposium on Mass
Storage Systems and Technologies, Incline Village, Nevada, May
2010. IEEE.

[63] R. Spillane, R. Sears, C. Yalamanchili, S. Gaikwad, M. Chinni, and
E. Zadok. Story Book: An Efficient Extensible Provenance
Framework. InProceedings of the first USENIX workshop on the
Theory and Practice of Provenance (TAPP ’09), San Francisco, CA,
February 2009. USENIX Association.

[64] R. P. Spillane, S. Gaikwad, E. Zadok, C. P. Wright, and M.Chinni.
Enabling transactional file access via lightweight kernel extensions.
In Proceedings of the Seventh USENIX Conference on File and
Storage Technologies (FAST ’09), pages 29–42, San Francisco, CA,
February 2009. USENIX Association.

[65] A. Traeger, N. Joukov, C. P. Wright, and E. Zadok. A Nine Year
Study of File System and Storage Benchmarking.ACM Transactions
on Storage (TOS), 4(2):25–80, May 2008.

[66] Vertica. The Vertica Analytic Database.http://vertica.com,
March 2010.

[67] A. Wang, G. Kuenning, P. Reiher, and G. Popek. The conquest file
system: Better performance through a disk/persistent-ramhybrid
design.Trans. Storage, 2(3):309–348, 2006.

[68] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the
data domain deduplication file system. InProceedings of the 6th
USENIX Conference on File and Storage Technologies, San Jose,
California, USA, 2008.

14


