An Efficient Multi-Tier Tablet Server Storage Architecture

Appears in the proceedings of the 2nd ACM Symposium on Cloud @Gmputing (SOCC 2011)

Richard P. Spillane Pradeep J. Shetty Erez Zadok
rick@fsl.cs.sunysb.edu pshetty@fsl.cs.sunysb.edu €zk@cs.sunysh.edu
Stony Brook University Stony Brook University Stony Brook University
Shrikar Archak Sagar Dixit

sarchak@cs.sunysh.edu
Stony Brook University

ABSTRACT

Distributed, structured data stores such as Big Table, EBasd
Cassandra use a cluster of machines, each running a datidease
software system called the Tablet Server Storage LayarS@L

A TSSL's performance on each node directly impacts the perfo
mance of the entire cluster. In this paper we introduce aoiefi,
scalable, multi-tier storage architecture for tablet eesvOur sys-
tem can use any layered mix of storage devices such as Fl&h SS
and magnetic disks. Our experiments show that by using a fmix o
technologies, performance for certain workloads can bednsga
beyond configurations using strictly two-tier approachét wne
type of storage technology. We utilized, adapted, and rated
cache-oblivious algorithms and data structures, as welllasm
filters, to improve scalability significantly. We also supipwer-
satile, efficient transactional semantics. We analyzed emadli-
ated our system against the storage layers of Cassandreaaioopl
HBase. We used wide range of workloads and configuratioms fro
read- to write-optimized, as well as different input siZ2é& found
that our system is 3—20 faster than existing systems; that using
proper data structures, algorithms, and techniques igalritor
scalability, especially on modern Flash SSDs; and that andudly
support versatile transactions without sacrificing perfance.

1. INTRODUCTION

In recent years, many scientific communities are findingttret
are not limited by CPU or processing power, but instead they a
being drowned by a new abundance of data, and are searching fo
ways to efficiently structure and analyze it. For examplehaic
argues that with the exponentially decreasing cost of gensea
quencing [54], data to analyze is increasingly more abund&me
National Radio Astronomy Observatory is hosting a workstmp
focus on ways of “extracting the science from the data” [433i-
entific researchers in fields ranging from archaeobiolod] [8
atmospheric science [49] are searching for ways to storkthan

ssdixit@cs.sunysb.edu
Stony Brook University

turned to database clustering software such as the Big Table
spired Hadoop HBase [5], or the Dynamo-inspired Cassai®ia [

How these systems interact with underlying storage devicas
critical part of their overall architecture. Cluster systecomprise
many individual machines that manage storage devices.€Tthas
chines are managed by a networking layer that distributésetm
queries, insertions, and updates. Each machine runs detaia
database-like software that is responsible for readingvernitihg
to the machine’s directly attached storage. Figure 1 shoeset
individual machines, calletbblet servers that are members of
the larger cluster. We call the portion of this databasewsoft
that communicates with storage, thablet Server Storage Layer
(TSSL). For example, Hadoop HBase [5], a popular clusten-tec
nology, includes a database, networking, and an easigreigram
abstraction above their TSSlogical layer).

Client Requests []

Tablet Serverﬁ} N % é
Network Layer © L
Logical Layer : —
ek 2l|5|l5] 4| IGTSSL
(Compression) H =

Figure 1: Different storage and communication technologis
are used at different layers in a typical database cluster ashi-
tecture.

analyzebig data. To solve peta-scale problems, researchers have The performance and feature set of the TSSL running on each

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SOCC’11,0October 27-28, 2011, Cascais, Portugal.

Copyright 2011 ACM 978-1-4503-0976-9/11/10 ...$10.00.

node affects the entire cluster significantly. If performacharac-
teristics of the TSSL are not well understood, it is diffidolprofile
and optimize performance. If the TSSL does not support &alit
feature (e.g., transactions), then some programming jgemaccan
be difficult to implement efficiently across the entire carsfe.g.,
distributed and consistent transactions).

It takes time to develop the software researchers use tgzmnal
their data. The programming model and abstractions theg hav
available to them directly affect how much time developniekes.
This is why many supercomputing/HPC researchers have come t

rely upon structured data clusters that provide a datalndsedce, Supercomputing research must solve large data probleroklgui

and therefore an efficient TSSL [1, 49]. Data sets are now measured in petabytes, soon in exabyfes [52
One of the most important components to optimize in the clus- Understanding and improving the performance and architeaf
ter is the TSSL. This is because affordable storage corttitube the cluster software that interacts most directly withageris crit-

orders of magnitude slower than any other component, suttheas ical for integrating the next generation of storage tecbggpl
CPU, RAM, or even a fast local network. Any software that uses We introduce the standard TSSL architecture and termigolog

storage heavily, such as major scientific applicationsisaational in Section 2. We theoretically analyze existing TSSL contipac
systems [40, 64], databases [45], file systems [31, 57, 5&F1 techniques in Section 3. In Section 4 we introduce GTSSLsigte
and more, are designed around the large difference in peafuce and compare it to existing TSSLs. Our evaluation, in Secfipn

between RAM and storage devices. Using a flexible clustéri-arc compares the performance of GTSSL to Cassandra and HBake, an
tecture that can scale well with an increasing number of ségsle = GTSSL's transactional performance to Berkeley DB and MySQL
an excellent way to prorate these storage and computing [legt InnoDB. We discuss related work in Section 6. We conclude and
Complimentary to this effort is increasing théficiencyof each of discuss future work in Section 7.
these nodes’ TSSLs to decrease overall computing costs.

We expect that the architecture we outline here, along with o
extensions to the compaction algorithms typically used| aor 2. BACKGROUND
software will have a high level of transferability to a largtuster As shown in Figure 1, the data stored in the TSSL is accessed
installation. Others have transferred a separately dedigisSL through a high-level logical interface. In the past, thatiface has
over to a cluster framework. Abouzeid et al. splice a Haddsp d = paan SQL. However, HBase and Cassandra utilize a logiatint
tribution framework on top of PostgreSQL [50], and Verti€s] face other than SQL. As outlined by Chang et al. [10], HBases-C
also supports similar integration of its column-store witadoop. sandra, and Big Table organize structured data as sevegelta
Determining the performance improvement for a Hadoop efust e These tables are accessed using a protocol that grolupsns
using a more efficient TSSL is a subject of future work. in the table intocolumn families Columns with similar compres-

In this work we present a new, highly scalable, and efficient gjon properties, and columns which are frequently accessed
TSSL architecture called theeneral Tablet Server Storage Layer gether, are typically placed in the same column family. Fégl

or GTSSL. GTSSL employs significantly improved compactibn a ghows that the logical layer is responsible for implementine

gorithms that we adapted multi.-tier storage architecturesarch!- column-based protocol used by clients, using an underlyBgL.
tectures that mix together multiple storage devices (enggnetic The TSSL provides an API that allows for atomic writes, as wel

disk and Flash SSD) to improve performance to cost ratiorfer i 44 lookups and range queries across multiple trees whicheetfiy
portant workloads. GTSSL aggressively uses advanced 8 S gigre variable length key-value pairs pairs on storage. These
tures and algorithms to improve efficiency while fully intagng trees are the on-storage equivalent of column familieshclgh

versatile and efficient transactions into its total ardtitee. By TSSLs transactionally manage a set of tuple trees to be tegena
focusing on a single node we were better able to understand th by the logical layer, TSSL design is typically different finctradi-

performance and design implications of these existing &5&hd tional database design. Both the TSSL and a traditionabdata
how they interact with Flash SSD devices when using smalleds w perform transactional reads, updates, and insertionsninitiple

as large data items. _ o trees, where each tree is typically optimized for storagess(e.g.,
We designed and developed GTSSL using the insights we ac-4 g+ _tree [12]). In this sense, and as shown in Figure 1, tHBLTS

quired from our analysis of the Cassandra and HBase TSSLs. Injg very similar to an embedded database AP such as Berkddey D

th!s paper we detail both our theqretical and benchmarkaﬂJey (BDB) [60], or a DBMS storage engine like MySQL’s InnoDB.

atlon_qf existing TSS_Ls, _and we introduce our GTSSL solution However, unlike traditional database storage enginesngerity

Specifically, our contributions are: of insertions and lookups handled by the TSSL @deeoupled A

decoupled workload is one where transactions either paréorly

lookups, or only inserts, updates, or deletes. This workisam-
portant because in a clustered system, one process mayebings

; - .~. alarge amount of data gathered from sensors, a large canpiie
Accqrdlng to our survey of rela.te.d worK (Section 6), t.h's IS web, while many other processes perform lookups on whatigslata
the first paper to discuss a multi-tier design and experisient currently available (e.g., search). Furthermore, moshese in-

e \We aggressively use advanced algorithms, data structures,sertions are simple updates, and do not involve large nusmtfer
and Bloom filters to achieve 3—%Ofaster lookups (reads), dependencies across multiple tables. This leads to tworiamo
and 5« faster insertions (writes) over Cassandra and HBase. differences from traditional database storage engineinements:

o We integrated versatile and efficient transactions witibont- (1) most insertions do not depend on a lookup, not even tokchec
promising performance. for duplicates, and (2) their transactions typically neaty gro-

vide atomic insertions, rather than support multiple readi \arite

operations in full isolation. We call the relaxation of cdrah (1)

decoupling and it permits the use of efficientrite-optimizedree

data-structures that realize vastly higher insertionughputs, and
are very different from traditional B+-trees. We call théas@tion

e We evaluated a wide range of input sizes and found that per- of condition (2)micro-transactionsit enables using a simple, non-
formance can become CPU-bound on small input sizes with indexed, redo-only journal. Thus, the TSSL need not suppoix
Flash SSD devices. of asynchronous and durable transactions.

e We demonstrate that a write-optimized TSSL architecture
can remain efficient for transactional workloads in compari Compaction.
son to Berkeley DB and MySQL's InnoDB. Fast TSSL insertions performance is key to realizing cheape

e We improved data compaction algorithms significantly, and
adapted them to multi-tier storage architectures. We discu
multi-tier experiments for TSSL architectures in Sectioh 5

e Weinclude an empirical and theoretical evaluation of GTSSL
the Cassandra TSSL, and the HBase TSSL. We especially
evaluated a wide range of configurations from read-optichize
to write-optimized.

large structured data clusters. If each node inserts fastar fewer
nodes are required to meet a target insertion throughput.

To achieve faster TSSL insertion performance, HBase, @assa
dra, Big Table, and other systems such as Hypertable [27]otlo n
use a traditional tree structure, but a tree-like strucdtaé exploits
decoupling. This tree-like structure writes sorted buftr stor-
age, which are then asynchronously merged into larger tsulffg
a process calledompaction Although the compaction algorithms
of these designs differ, the overall goal is the same.

All these TSSL designs maintain separate caches for eagh tre
in RAM. These caches are sorted arrays caflfemtables Every
write operation inserts a value into this cache. Once thheex-
ceeds a pre-configured size, it and its associated metddataises
are serialized to disk in one sequential write, and the mielmta
marked clean. The serialized memtable is calle@8mhable

SSTables are divided into a data portion, and a metadataport
The data portion includes all the pairs stored within the &#;
and these pairs are interspersed with clusters of offsatgtint to
individual pairs. A cluster and its associated pairs carelagl in a
single 10. The smallest amount of pairs in bytes between tu® c
ters of offsets is called thHalock sizeand the block size of Cassan-
dra (default 256KB), HBase (default 64KB), and GTSSL (dk&fau
4KB) are all configurable. We discuss the effects of thesekolo

size choices both on magnetic and Flash storage medium in Sec

tion 5.2. The metadata portion consists of a secondary iadelx
Bloom filter. The SSTable’s secondary index associatesrstééy

of each cluster to the offset of each cluster within the datign,
facilitating single 10 lookups into an SSTable, as the sdaoyin-
dex is always resident in RAM. The SSTable’s Bloom filter was
populated when the SSTable was a memtable, is serializecthé
secondary index when the SSTable is created, and is usetyduri
lookup to avoid 10 when possible.

S to M costs 1. For the remainder of this analysis, we will use
B = otz instead ofb. Approximately, this means each data
structure is penalized 1 unit if either one random pairBoserial

pairs were transferred from/ to S, or from.S to M.

@ GTSSL Multi-Tier SAMT:

After flushing memtable Clearing space for flush After flushing memtable

"
(oH [ﬂ sso | €y cy HHHD
1
o[¢, [T o [11 o [[T] o [0
7
loC T 1T eI |7
@ GTSSL Multi-Tier SAMT:
After flushing memtable Reclamation Multi—tier read caching
N\
\
< (000 o< 400 c noo | ;
iz L
ok [¢, Mmmm o OO0 o [& [) DD/
77
s el < | | s 1] o I (.

Figure 2: In panel O, HBase mergesCo, C1, C2, and half of
Cs back into Cs, like a 3-COLA would. In panel 0O, Cassan-
dra merges buffers in quartets to create space for a flushing
memtable. In panels] and O, GTSSL merges, and then pro-
motes the resulting SSTable up into a higher tier. Subsequén
reads are also cached into the higher tier via re-insertion.

HBase Analysis.

HBase [18] is a variation of the Cache-Oblivious Lookahead A
ray (R-COLA) [7]. The R-COLA supports increasingly moredea
optimized configurations as it8 parameter is increased. HBase
setsR = 3, which is optimal in practice for the R-COLA [7], so we

To perform a read on a tree, each SSTable on storage and thecall HBase's configuration 2COLA Figure 2, panell, shows the

memtable are all queried: the closest, most recent val@tlsred.
Each of these SSTable-queries requires only a single 10. dg m
values are inserted, the number of SSTables can grow unbdund
To limit the number of these tables, and the cost of lookup and
scan, therefore, an asynchronausrging compactioprocess of-
ten merges together smaller SSTables into larger SSTabtese
merges can be performed efficiently as the SSTables aralsorte

Periodically, anajor compactions performed. This major com-
paction merges all SSTables belonging to a tree into onehiét t
time we process deletes. During normal operations, to elelét-
ple, a new tuple with a matching key but an additional eTe flag
set is inserted into the tree. These tuples are ignored glanigrg-
ing compactions, but during major compactions, they effebt
cancel out the matching tuples: the major merging procesplgi
omits the delete and matching tuples from the output list.

3. TSSL COMPACTION ANALYSIS

GTSSL was designed to scale to a multi-tier storage hieyarch
and much of how compaction works must be re-thought. We an-
alyze and compare the existing compaction methods employed

R-COLA consists offlog; N arrays of exponentially increasing
size, stored contiguously throughC's), for N the number of el-
ements inserted into the data structure. In this exaniple, 3. C1
throughC's on storage can be thought of as three SSTablesCand
in RAM can be thought of as the memtable. When the memtable is
serialized to disk (and turned into an SSTable), the R-COhécks

to see if level O is full. If not, it performs a merging comgacton
level 0, on all adjacent subsequent arrays that are alscafudl on
the first non-full level, into that same level. In Figure Zample,

Co throughCs are merged inta’s; after the merge, the original
contents of”'s have been written twice t6's. Each level can toler-
ate R — 1 merges before it too must be included in the merge into
the level beneath it. This means that every pair is writien 1
times to each level.

Bender et al. provide a full analysis of the R-COLA, but in
sum, the amortized cost of insertion‘&—21°52 X 'and the cost of
lookup islog, N. This is because every pair is eventually merged
into each level of the R-COLA; however, it is repeatedly neerg
into the same levek — 1 times due to subsequent merges. SavYor
total pairs inserted, each pair would have been wriiten 1 times

HBase and Cassandra, and then in Section 4, we introduce whatio log IV levels. As all pairs are written serially, we pay 1 in the

extensions are necessary in a multi-tier regime.

DAM for every B pair written, and so we gé®—212aN amgr-

We analyzed the compaction performance of Cassandra, HBasetized insertion cost. A lookup operation must perform 1 @and

and our GTSSL using the Disk-Access Model (DAM) for cost, and
using similar techniques as those found in Bender et al.kkwao
the cache-oblivious look-ahead array [7]. The DAM is a sienpl
yet sufficiently accurate cost model. DAM divides the systeta

a memoryM and storageS. The unit of transfer fromS to M

is a block ofb bytes. Operations and manipulations of datain
are free, but every block transferred either frathto S or from

read transfer in each dégy IV levels for a total cost ofog, N.
Bender et al. use fractional cascading [11] to ensure onlyatl r
per level. Practical implementations and all TSSL archibess,
however, simply use small secondary indexes in RAM.

By increasingR, one can decrease lookup costs in exchange for
more frequent merging during insertion. HBase sets= 3 by
default, and uses the R-COLA compaction method. HBase adds

additional thresholds that can be configured. For exampBadd
performs major compactions when the number of levels exceed

SAMT Analysis.

TSSL efficiency is critical to overall cluster efficiency. GEL
extends the scan cache (described in Section 2) and buffeeca
architecture used by existing TSSLs. GTSSL completelyds/oi
the need to maintain a buffer cache while avoiding commemp

The R-COLA used by HBase has faster lookups and slower in- overheads; GTSSL further aggressively exploits Bloomrélto

sertions by increasindk. GTSSL and Cassandra, however, can
both be configured to provide fast@sertionsand slower lookups
by organizing compactions differently. We call the struetadopted
by Cassandra’s TSSL and GTSSL, tBerted Array Merge Tree
(SAMT). As shown in Figure 2, panél, rather than storing one
list per level, the SAMT storeX lists, orslotson each level. The
memtable can be flushdd times before a compaction must be per-
formed. At this time, only the slots i@, are merged into a slot in

they have equal or more space in RAM than the scan cache.
Although Web-service MapReduce workloads do not typically
require more than atomic insertions [10], parallel DBMSharc
tectures and many scientific workloads require more subiatan
transactional semantics. GTSSL introduces a light-weligiris-
actional architecture that allows clients to commit tratises as
either durable or non-durable. Durable transactions felploit
group-commit as in other TSSL architectures. However, GTSS

C>. In the example depicted, we must perform a cascade of com- also allows non-durable transactions, and these can aviidgito

pactions: the slots id; are merged into a slot i6's, so that the
slots inCy can be merged into a slot @@k, so that the memtable in
Co can be serialized to a slot ifl;. As every element visits each
level once, and merges are done serially, we perf@ﬁgﬂ disk
transfers per insertion. Because there Areslots per level, and
log N levels, we performi log, N disk transfers per lookup.
The cost of lookup with the SAMT is the same f&f = 2 and
K = 4, but K = 4 provides faster insertions. 36 = 4 is a good
default, and is used by both GTSSL and Cassandra.

Comparison.

We now compare the SAMT compaction algorithm to the COLA
compaction algorithm, and show how utilization of Bloomeik
permits the SAMT algorithm to out-perform the COLA algorith

the journal completely for heavy insertion workloads withoom-
promising recoverability. In addition, GTSSL provides tieces-
sary infrastructure to support transactions that can parfoultiple
reads and writes atomically and with full isolation.

We discuss how we improved the SAMT structure so that it could
operate in a multi-tier way that best exploits the capaediof dif-
ferent storage devices in Section 4.1. We detail our cachiolyi-
tecture and design decisions in Section 4.2. We discuss G$SS
transactional extensions to the typical TSSL in Section 4.3

4.1 SAMT Multi-Tier Extensions

GTSSL extends the SAMT merging method in three ways. (1)
Client reads can be optionally re-inserted to keep receeds (hot)
data in faster tiers (e.g., a Flash SSD). (2) Lists of regénglerted

in most cases, especially on Flash SSD. Although the HBase 3-data are automatically promoted into faster tiers if they(8} Dif-

COLA method permits more aggressive merging during inserti
to decrease lookup latency by increasiRgt is unable to favor in-
sertions beyond its default configuration. This permitseiascan
performance on disk, but for 64B or larger keys, random Ipoku
performance is already optimal for the default configuratidhis
is because for the vast majority of lookups, Bloom filters ¢8]
each SSTable avoid dtig , N SSTables except the one which con-
tains the sought after pair. Furthermore, on Flash SSD (B®BA
is less optimal, as the seeking incurred from scanning igatéd
by the Flash SSD’s obliviousness toward random and segadkre
Conversely, the SAMT can be configured to further favor in-
sertions by increasings, while maintaining lookup performance

ferent tiers can have different values &f (the number of slots in
each level; see Section 3). We call our improved SAMT the Mult
Tier SAMT or MTSAMT In addition, our implementation also in-
cludes support for full deletion, variable-length keys amadlies,
and allows the logical layer to specify whatever formats bitr
timestamps deemed necessary by the logical layer, as o8&
do (see Section 2).

Re-Insertion Caching.

Whenever a pair is inserted, updated, deleted, or read_the
(fastest) cache is updated. The cache is configured to halesatp
number of pairs. When a pair is inserted or updated, it is etark

on Flash SSD and disk by using Bloom filters, and maintaining piRrTY, and the number of pairs in the cache is increased. Similarly
scan performance on Flash SSD. Although Bloom filters defray after a key is read into th€, cache, it is marked asb_CACHED,
the cost of unnecessary lookups in SSTables, as the number ofand the number of pairs is increased. Once a pre-set limigtsthe

filters increases, the total effectiveness of the approachedses.
When performing a lookup in the SAMT with a Bloom filter on
each SSTable, the probability of having to perform an unsesy
lookup in some SSTable is— (1 — f)V2 whereNp is the number
of Bloom filters, andf is the false positive rate of each filter. This
probability is roughly equal tgf * N for reasonably small values
of f. In our evaluation, Bloom filters remain effective as londtees
number of SSTables for each tree/column-family is less #fan

4. DESIGN AND IMPLEMENTATION

cacheevictsinto the MTSAMT structure using the merging process
depicted in Figure 2 panél. By including RD_CACHED pairs in
this eviction as regular updates, we can answer future rieans
C1 rather than a slower lower level. However, if the key-valagp
are large, this can consume additional write bandwidth.s Téa-
ture is desirable when the working-set is too large@ar(RAM)

but small enough to fit in a fast-enough device residing atafne
the next several levels (e.gZ andC> on Flash SSD). Alterna-
tively, this feature can be disabled for workloads wherérgathe
cost of reading an average pair is not worth the additiorsarition
overhead, such as when we are not in a multi-tier scenarid. Al

We studied existing TSSLs (Cassandra and HBase) as well asRD_CACHEDvalues are omitted during a compaction whose merge

existing DBMS storage engines (Berkeley DB and InnoDB).sThi
guided GTSSL'’s design. GTSSL utilizes several novel extess
to the SAMT (discussed in Section 3). As shown in Figure 2 [sane

includes the slots of the lowest level, and for which we ayant
to relieve space pressure in the tier (i.e., a major compagtand
RD_CACHED values are omitted during a merging compaction if

0 and, GTSSL supports storage device specific optimizations at another pair with the same key can be emitted instead. Tdresef

each tier. GTSSL intelligently migrates recently writ@nd read
data between tiers to improve both insertion and lookuputiinput
and permit effective caching in storage tiers larger thatvRA

no additional space is used by insertiRg_CACHED pairs. Read
caching across multiple tiers (i.e., outside of RAM) is a repic,
and discussion of it is not found in our survey of related wile

present some initial experiments related to multi-tief@anance
in Section 5.4. One subject of future work is more carefullyler-
ing cache policies that work well for SAMTs or MT-SAMTs when

(Such space-time trade-offs are common in storage syst@dps [
such as HBase [18], Cassandra [33], and even Flash SSD sl§2@je
as we elaborate further below.) At this point, only deleted ap-

caching outside of RAM where random access is costly, even on dates are accepted. These operations are processed hyrpegfo

Flash SSD.

When scanning through trees (MTSAMTS), if read caching is
enabled, the scanner inserts scanned values into the cactie,
marks them agD_CcACHED. We have found that randomly reading
larger tuples £4096KB) can make effective use of a Flash SSD
tier, however for smaller tuples<@4B) the time taken to warm
the Flash SSD tier with reads is dominated by the slower nando
read throughput of the magnetic disk in the tier below. Bpwail
ing scans to cache read tuples, applications can explditagipn-
specific locality to pre-fetch pairs within the same or adjgaows
whose contents are likely to be later read.

Evictions of read-cached pairs can clear out a Flash SSxéhch
those same pairs are not intelligently brought back intchigaer
tier they were evicted from after a cross-tier merging coctipa.

In Figure 2 panell, we see evicted pairs being copied back into
the tier they were evicted from. This is calleeclamation and

it allows SSTables, including read-cached pairs, that eeieted

to magnetic disks (or other lower-tier devices) to be autiraby
copied back into the Flash SSD tier if they can fit.

Space Management and Reclamation.

We designed the MTSAMT so that more frequently accessed
lists would be located at higher levels, or@ for the smallest
possible. After a merge, the resulting list may be smallantthe
slot it was merged into because of resolved deletes and egpdat
If the resultant list can fit into one of the higher (and fastots
from which it was merged (which are now clear), then it is ntbve
upward, along with any other slots at the same level that tsn a
fit. This process is callececlamationand requires that the total
amount of pairs in bytes that can be reclaimed must fit intbthel
size of the level they were evicted from. By only reclaimimgoi
half the level, a sufficient amount of space is reserved faging
compactions at that level to retain the same asymptotiatinge
throughput. In the example in Figure 2, the result of the nmgrg
compaction in pandll is small enough to fit into the two (half of
four) available slots i1, and specifically in this example requires
only one slot. If multiple slots were required, the SSTabbeild be
broken up into several smaller SSTables. This is possiltause
unlike Cassandra and HBase, GTSSL manages blocks in the-unde
lying storage device directly, rather than treating SS&sibk entire
files on the file system, which allows for this kind of optintina.
Reclamation across levels within the same tier is very inasjve,
as this requires merelyovingSSTable blocks by adjusting point-
ers to the block, rather tharopyingthem across devices. If these
rules are obeyed, then partially filled slots are guaranteeativays
move upward, eliminating the possibility that small listpairs re-
main stuck in lower and slower levels. As long as all listsiarie
smallest levels in which they can fit, we retain the optimghas-
totic performance outlined in Section 3. By performing agshtion
after every merge, we ensure this is always true, becaukemac
tion effectively searches for the smallest level in whicHita list
produced by a merge.

We optimized our MTSAMT implementation for throughput. Our
design considers space on storage with high latency andééagh
write throughput characteristics (e.g., disk) to be chetdpn other
hardware (e.g., RAM or Flash SSD). GTSSL can operate opti-
mally until 1/2 of total storage is consumed; after that, perfor-
mance degrades gradually until the entire volume is fuNesa
small amount of reserve space (usually 5% of the storagee&evi

the equivalent of a major compaction: if there is not enoyggrce
to perform a merging compaction into the first free slot, than
in-place compaction of all levels in the MTSAMT is performed
using the GTSSL's reserve space. As tuples are deletede $pac
reclaimed, freeing it for more merging compactions thatrisperse
major compactions until /2 of total storage is again free; at that
point, only merging compactions need be performed, reggitiie
original optimal insertion throughput.

Chang et al. do not discuss out of space management in Big Ta-
ble [10] except to say that a major compaction is performektose
situations; they also do not indicate the amount of overtread
quired to perform a major compaction. Cassandra simplyiresju
that half of the device remain free at all times [33], arguimaf disk
storage is cheap. It is not uncommon for write-optimizedeys,
such as modern Flash SSD firmware, to require a large amount of
storage to remain free for compaction. High performancetrla
SSD devices build these space overheads (among othersfricitor
their total cost [21]. Even commodity Flash SSD performsbiztr
ter when the partition actually uses no more than 60% of tt& to
storage capacity [29]. To exploit decoupling, compactiased
systems such as GTSSL have some overhead to maintain optimal
insertion throughput in the steady state, without this epheir
throughput degrades. Alternative systems such as Cassaimoh
ply cease to operate when exceedin@ of the storage space. We
believe that GTSSL's gradual degradation of performangee
50% space utilization is a sufficient compromise.

4.2 Committing and Stacked Caching

We showed how the MTSAMT extends the typical SAMT to op-
erate efficiently in a multi-tier environment. In additianefficient
compaction, reclamation, and caching as discussed altwvefft-
ciency of the memtable ary (Section 2) as well as how efficiently
it can be serialized to storage as an SSTable is also extyemel
portant. As we evaluate in Section 5, the architecture ofrdnes-
action manager and caching infrastructure is the most itapor
determiner of insertion throughput for small key-valuerpak
1KB). GTSSL's architecture is mindful of cache efficiencyhile
supporting new transactional features (asynchronous ¢tanamd
complex multi-operation transactions.

Cache Stacking.

The transactional design of GTSSL is implemented in terms of
GTSSL’s concise cache-stacking feature. Like other TSGISSL
maintains a memtable to store key-value pairs. GTSSL used-ar
black tree with an LRU implementation, amdrTY flags for each
pair. An instance of this cache for caching pairs in a paldiccol-
umn family or tree is called acan cache Unlike other TSSL ar-
chitectures, this scan cache can be stacked on top of aruatbiee
holding pairs from the same tree or MTSAMT. In this scenahi® t
cache on top or thepper cachevicts into thdower cachewhen it
becomes full by locking the lower cache and moving its painsrd
into the lower cache. This feature simplifies much of GTSSL’s
transactional design, which we explore further in Sectidgh 4n
addition to the memtable cache, like other TSSLs, GTSSLiregu
a buffer cache, but as we discuss in the next paragraph, we do
not need to fully implement a user-level buffer cache asticasl
DBMSes typically do.

Buffer Caching.

We offload to the Linux kernel all caching of pages read from
128MB blocks, bymmAPing all storage in 1GBslabs This sim-
plifies our design as we avoid implementing a buffer cachebit4
machines’ address spaces are sufficient and the cost of amand
read I/O far exceeds the time spent on a TLB miss. Cassandra’s
default mode is to useiMAP within the Java API to also per-
form buffer caching. However, serial writes to a mappinguinc
reads as the underlying Linux kernel always reads the pagéhia
cache, even on a write fault. This can cause overheads a seri
writes of up to 40% in our experiments. Other TSSL architestu
such as Cassandra do not address this issue. To avoid this pro
lem, we PWRITE during merges, compactions, and serializations,
and then we invalidate only the affected mapping uswgyNC
with MS_INVALIDATE . As the original slots are in place during the
merge, reads can continue while a merge takes place, untriy-
inal list must be deallocated. Once deallocated, reads carbe
directed to the newly created slot. The result is that thg cathe
which must be manually maintained for write-ordering psgmis
the journal cache, which is an append-only cache similah#o t
implemented by the POSIKXLE C API, which is light-weight, and
simple.

All TSSLs that employmmAP, even without additionally op-
timizing for serial writes like GTSSL, typically avoid reasVer-
heads incurred by a user-space buffer cache. On the othdr han
traditional DBMSes can not usemAP as provided by commod-
ity OSes. This is because standard kernels (e.g., Linux@ hav
portable method of pinning dirty pages in the system paghecac
Without this, or some other write-ordering mechanism, itrawial
DBMSes that require overwrites (e.g., due to using B+-Jremm
violate write-ordering and break their recoverability. eféfore
they are forced to rely on complex page cache implemengtion
based omaLLOC [24,55,64] or use complex kernel-communication
mechanisms [62—-64]. TSSLs utilized in cloud based datestor
such as Cassandra, HBase, or GTSSL never overwrite datagduri
the serialization of a memtable to storage, and therefoee net
pin buffer-cache pages, greatly simplifying these designs

4.3 Transactional Support

Pavlo et. al [47] and Abouzeid et. al [1] use traditional fiata
DBMS architectures for clustered structured data workdodmht
these still rely on distributed transaction support. GTS$tans-
actional architecture permits for atomic durable insegijdatched
insertions for higher insertion-throughput, and largangactions
that can be either asynchronous or durable. This lets the sam
TSSL architecture to be used in a cluster operating undkereit
consistency model.

We described MTSAMT’s design and operation and its asso-
ciated cache or memtabl€’{). As mentioned before, each MT-
SAMT corresponds to a tree or column family in a cloud storage
center. GTSSL operates on multiple MTSAMTS to support row in
sertions across multiple column families, and more compiaki-
operation transactions as required by stronger consistandels.
Applications interact with the MTSAMTSs through a transangl
API: BEGIN, COMMIT_DURABLE, andCOMMIT_ASYNC.

GTSSL's transaction manager (TM) manages all transacfans
all threads. As shown in Figure 3, the TM maintains a stacked s
cache (Section 4.2) called tetaged cachen top of each tree’§’y
(also a scan cache). When an application begins a transauitio
BEGIN, the TM creates a handler for that transaction, and gives the
application a reference to it. At any time, when a thread rfiexla
tree, a new scan cache is created if one does not alreadyandst
is stacked on top of that tree’s staged cache. The new sche tzac

Caches

AN
\

RAM

STORAGE

MTSAMT 0 MTSAMT 1 MTSAMT 5

Figure 3: Three processespy...p2, €ach maintain an ongoing
transaction that has modified all 3 MTSAMTSs so far.

placed in that transaction’s handler. This new scan cacballisd
aprivate cache In Figure 3 we see three handlers, each in use by
three separate thread® through P,. Each thread has modified
each of the three trees (MTSAMThrough MTSAMT,).
Transactions managed by GTSSL's TM are in one of three states
(1) they are uncommitted and still exist only with the handlpri-
vate caches; (2) they are committed either durably or asgnclusly
and are in either the staged cache’rof the trees they effect; or
(3) they are entirely written to disk. Transactions begistate (1),
move to state (2) when committed by a thread, and when GTSSL
performs a snapshot of the system, they move to state (3)rand a
atomically written to storage as part of taking the snapshot
Durable and asynchronous transactions can both be cordmitte
We commit transactions durably by moving their transaction
state (2), and thescheduling and waitinépr the system to perform
a snapshot. While the system is writing a snapshot to stpthge
staged cache is left unlocked so other threads can commmiilgsi
to ExT3[9]). A group commit of durable transactions occurs when
multiple threads commit to the staged cache while the ctismap-
shot is being written, and subsequently wait on the nextsmap
together as a group before returning frammmiT. Asynchronous
transactions can safely commit to the staged cache andhrietur
mediately fromcommIT. After a snapshot the staged cache and
the Cp cache swap roles: the staged cache becomeSgtivache.
Next we discuss how we efficiently record snapshots in the jou
nal, and how we eventually remove or garbage-collect srap$ly
truncating the journal.

Snapshot, Truncate, and Recovery.

Unlike other BigTable based cluster TSSL architecturesSSI
manages blocks directly, not using separate files for eadal8&.
A block allocator manages each storage device. Every blthak a
cator uses a bitmap to track which blocks are in use. The block
size used is 128MB to prevent excessive fragmentation heudiS
page cache still uses 4KB pages for reads into the bufferecach

Each tree (column family) maintains a cluster of offsets raeda-
data information that points to the location of all SSTaliéek off-
sets, secondary index block offsets, and Bloom filter bldtsets.
This cluster is called theeader When a snapshot is performed, all
data referred to by all headers, including blocks contaig8Table
information, and the bitmaps, are flushed to storage uggnC.
Afterward, the append-only cache of the journal is flushedord-
ing all headers to the journal within a single atomic tratisac
During recovery, the most recent set of headers are readitack
RAM, and we recover the state of the system at the time thatdea
was committed to the journal.

Traditional TSSLs implement a limited transaction featse¢
that only allows for atomic insertion. Chang et. al [10] m&la

basic architecture that implements this. Their architecaiways
appends insertions to the journal durably before adding ttethe
memtable. Cassandra and HBase implement this transdctiona
chitecture as well. By contrast Pavlo et. al [47] and Abodzi

al [1] make the case for distributed transactions in datlohss-
ters. GTSSL's architecture does not exclude distributadsic-
tions, and is as fast as traditional TSSLs like CassandraBask,

or a factor of 2 faster when all three systems use asynchsonou
commits. One important feature of GTSSL is that high-ineart
throughput workloads that can tolerate partial durabf{kty., snap-
shotting every 3-5 seconds) need not write the majority tf ohdo

the journal. Although Cassandra and HBase support thisrie&tr
many of their use cases as well, they only delay writing tqdioe

nal, rather than avoid it. GTSSL can avoid this write becalige

C\ cache evicts its memtable as an SSTable between snapsieots, t
cache is marked clean, and only the header need be seritadittesl
journal, avoiding double writing. This design improves GL3
performance over other TSSLs.

5. EVALUATION

We evaluated GTSSL, Cassandra, and HBase along with some

traditional DBMSes for various workloads. However, we fecu
here on their four most important properties relevant te tiork:

(1) the flexibility and efficiency of their compaction mettspd2)

the efficiency of their serialization and caching designssfoaller
key-value pairs, (3) the multi-tier capabilities of GTSSind (4)
the transactional performance of GTSSL and potentiallgioftsSLs
with respect to traditional DBMSes for processing distréoltrans-
actions in a cluster. As laid out in Sections 3 and 4, we belibese
are key areas where GTSSL improves on the performance @f exis
ing TSSL architectures.

5.1 Experimental Setup

Our evaluation ran on three identically configured machinas
ning Linux CentOS 5.4. The client machines each have a qaesl-c
Xeon CPU running at 2.4GHz with 8MB of cache, and 24GB of
RAM; the machines were booted with kernel parameters ta limi
the amount of RAM used to either 4.84GB, or 0.95GB of RAM
to test out-of-RAM performance, and we noted with each test h
much RAM was used. Each machine has two 146.1GB 15KRPM
SAS disks (one used as system disk), a 159.4GB Intel X-25&h-la
SSD (24 generation), and two 249.5GB 10KRPM SATA disks.
Our tests used pre-allocated and zeroed out files for all grorafi
tions. We cleared all caches on each machine before running a
benchmark. To minimize internal Flash SSD firmware intenfiee
due to physical media degradation and caching, we focusrag lo
running throughput benchmarks in this evaluation. Thesefoe
reset all Flash SSD wear-leveling tables prior to evalmaficsing
the TRIM command), and we also confined all tests utilizing Flash
SSD to a 90GB partition of the 159.4GB disk, or 58% of the disk.
To control for variance, all benchmarks are run over longquoisr
of time (e.g., one half to two hours or longer) until throughpon-
verges.

In tests involving HBase and Cassandra, we configured bgth sy
tems to run directly on top of the file system. That is, HBasendit
use HDFS, but ran directly on top of Ext3, the same file systesalu
by all the other systems. This was to isolate performancestdie
TSSL layer of HBase, and not penalize HBase for HDFS-related
activities. This is the default behavior for Cassandra, HBase
had to be specially configured. Both systems were configused a
efficient single-node systems according to their docuntiemido
avoid network layer overheads [15,16]. We gave both sys8&ais
of JVM heap, and we used the remaining 1.84GB as a file cache.

120000
100000
80000
60000

cassandra ——
flash-ssd-reference-point
gtssl

hbase

40000
20000
0

-

Write Throughput in ops/sec

0 500 1000 1500 2000 2500

Read Throughput in ops/sec

3000 3500 4000

Figure 4: Cassandra has comparable insertion performanceat

GTSSL when both systems retain as much lookup throughput
as possible. GTSSL reaches much further into the trade-off
space. HBase is already optimally configured, and cannot fur
ther specialize for insertions.

We configured GTSSL to use upwards of 3GB for non-file cache in-
formation, including secondary indexes and Bloom filtersdfach
slot in each tree, and the tuple cacli&) for each tree. GTSSL
often used much less than 3GB, depending on the size of the pai
but never more. We disabled compression for all systemsuiseca
measurements of its effectiveness and for which data-setsra
thogonal to efficient TSSL operation. To prevent swappingphe
contents when the file cache was under memory pressure due to
MMAP faults, we set thewAPPINESparameter to O for all systems
and monitored swap-ins and swap-outs to ensure no swapkg t
place. All tests, except the multi-tier storage tests inti8ac5.4
were run on the Intel X25-M Flash SSD described above.

5.2 Read-Write Trade-off

We evaluated the performance of Cassandra, HBase, and GTSSL
when inserting 1KB pairs into 4 trees, to exercise multéti@ans-
actions. 1KB is the pair size used by YCSB [13]. In this par-
ticular experiment, keys and values were generated witfoumi
distribution across the key space. Lookups are randomffpumi
For each system we varied its configuration to either favadse
or writes. HBase supported only one optimal configuratianit s
was not varied. Cassandra and GTSSL can trade off lookup for
insertion performance by increasitg (see Section 3). Our con-
figuration namedALANCED setsK = 4, the default; configura-
tion MEDIUM setsK = 8; configurationFAST setsK = 80. We
measured insertion throughput and lookup separately tamiza
interference, but both tests utilized 10 writers or readers

Configuration.

In addition to the configuration parameters listed in Sechd.,,
to utilize 4 trees in Cassandra and HBase, we configured 4mrolu
families. We computed the on-disk footprint of one of Cassan
dra’s pairs based on igzE routine in its TSSL sources (which we
analyzed manually), and we reduced the size of the 1KB key ac-
cordingly so that each on-disk tuple would actually be 1Kigj¢a
We did this to eliminate any overhead from tracking colummme
bership in each pair. We did the same for HBase, and usedstuple
with no column membership fields for GTSSL, while also ac¢oun
ing for the 4 byte size field used for variable length valuekisT
minimized differences in performance across implemematdue
to different feature sets that require more or less metatatse
stored with the tuple on disk. Overall, we aimed to configdte a
systems as uniformly as possible, to isolate only the TS$érja
and to configure Cassandra and HBase in the best possihie ligh

Results.
Figure 4 is a parametric function, where each point reptasen

i
5]
S

et —— an insertion throughput test, where each system was coetigur
s to insert sizes of pairs varying from 64B to 512KB as rapidly a
possible, using 10 parallel threads. In this particularegixpent,
keys were generated with uniform distribution across thyeskace.
Lookups are randomly uniform. Cassandra, HBase, and GTSSL
i were all configured to commit asynchronously, but still nbaim
100 1000 T 100000 o406 atomicity and consistency (tisT configuration). Furthermore,
KV size in Bytes (log) Cassandra’s compaction thresholds were both set to 8@(ldrgn
the number of SSTables created by the test); HBase’s coiapact
Figure 5: Neither Cassandra nor HBase improve beyond an (and compaction time-outs) were simply disabled, leavivit) Bys-
overhead of 2.0« for large pairs, or 76.3x for small pairs. tems to insert freely witho compactionsluring this test. The ideal
throughput for this workload is the serial append bandwadtthe
Flash SSD (110MBY/s), divided by the size of the pair used &t th
run. Figure 5 shows these results. Each point representstiaze e
run of a system. The y-axis represents how many times slower a
system is compared to the ideal, and the x-axis representza
of the pair used for that run. All three systems have the samec
shape: a steep CPU-bound portion ranging from 64B to 1KB, and
a shallower 10-bound portion from 1KB to 512KB.
For the 10-bound portion, HBase and Cassandra both perform a
SSDREFERENCE POINT For theBALANCED configuration, Cas- ~ 0€St 2.0< worse than the ideal, whereas GTSSL performs<1.1

sandra and GTSSL have similar insertion throughputs of706,9 WOrse than the ideal, so GTSSL iscZaster than Cassandra and
ops/s and 22,780 ops/s, respectively. However, GTSSL has a 3 HBase in the I0-bound portion. Cassandra and HBase both log

higher lookup throughput than Cassandra, and & bigher than writes into their log on commit, even ifthe commitis asymﬂrmus, '
HBase. GTSSL utilizes aggressive Bloom filtering to reduee t whereas GTSSL behaves more like a file-system and avoidagvrit

number of lookups to effectively O for any slot that does ra-c into the log if the memtable can be populated and flushed to dis

tain the sought-after key. The random read throughput oFthsh before the next flush to the journal. This allows GTSSL to dvoi
SSD drive tested here is 3,768 reads/s, closely matchinggttier- the double-write to disk that Cassandra and HBase perfosig-a

mance of GTSSL. Cassandra uses 256KB blocks instead of 4KkB Nificant savings for 10-bound insertion-heavy workloadat tean
blocks, but uses the metadata to read in only the page witein t tolerate a S5-second asynchronous commit. For configusation
256KB block containing the key. We observed that block read @Ple to tolerate this delay, GTSSL still outperforms in CBiind
rates were at the maximum bandwidth of the disk, but Casaandr Workloads (additionally we perform durable commit expesitts

requires 3 10s per lookup [20] when memory is limited, réagit 1" Section 5.5).

in a lookup throughput that is only/3 the random read through- For the CPU-bound portion, we see that GTSSL is a constant
put of the Flash SSD. Both HBase and Cassandra utilize Bloom factor of 4x faster than both HBase and Cassandra, and addition-

filtering, but Bloom filtering is a new feature for HBase thaagy @l that HBase and Cassandra have very similar performahee
recently added. HBase caches these Bloom filters in an LRhkcac ~ ratio of Cassandra's overhead to HBase's is always withiaca
So although HBase can swap in different Bloom filters, fofamn tor of 0.86 and 1.3 for all runs. When running Cassandra and it
or Zipfian lookup distributions, HBase has to page in Blootefil journal entirely in RAM, their insertion throughput of théB pair
data pages to perform lookups, causing & Howdown compared ~ Improved by only 50%, dropping from 99:2to 66.1x, which is

to Cassandra and GTSSL. However if we perform a major com- Still 4 slower than GTSSL which wasot running in RAM. The
paction (which can take upwards of an hour) we notice that wit Meager change in performance for running entirely in RAM fur
4KB blocks, HBase lookups can be as high as 910 lookups/s put ther confirms that these workloads were CPU-bound for smalle
for the same block size before major compaction, lookuputthe pairs (< 1KB), and that the typically acceptqble overheads intr.o-
put is 200 lookups/s, lower than with the default 64KB bloges ~ duced by the JVM—such as garbage collection, bounds-chgcki

Performing major compactions with high frequency is notsitaie copying of file caches across the JVM boundary—are not accept
as it starves clients. For the more write-optimized confijons, able for these CPU-bound pair sizes. GTSSL's design mirisniz
GTSSL increased its available bandwidth for insertionssiter- memory copies by addressing directly throughiAP during se-
ably: forMIDDLE, GTSSL achieved 32,240 ops/s and 3,150 ops/s, Malization, and only copying once into its scan cache foklgps
whereas Cassandra reached only 20,306 ops/s and 960 @ps/s, r 21d updates. Objects are never copied but always moved &etwe
spectively. We expected a considerable increase in insdtifough- Stacked caches. These results corroborate the reportidiere

put and sustained lookup performance for both CassandraéasgL ~ Use of CPU and RAM in HBase by others as well [4]. _

as they both use variants of the SAMT. However, Cassandeg’s p Future TSSL architectures must seriously consider CP Uexfiy
formance could not be improved beyond 21,780 ops/s forAlse as the cost of a random write drops significantly for 1KB block
configuration, whereas GTSSL achieved 83,050 ops/s. GESSL’ Sizes on Flash SSD.

insertion throughput was higher thanks to its more efficganmtal- . .

ization of memtables to SSTables on storage. To focus ontie 9.3 Deduplication

Overhead in factors (log)
5

-
[
S)

a run, and the parameter varied is the system configuratitve. T
x-axis measures that configuration’s insertion (writeptighput,
and the y-axis measures its random lookup (read) througHjinet
maximum lookup throughput of each structure can not exceed t
random read performance of the drive; similarly, the maximn-
sertion throughput can not exceed the serial write throutlop
the drive. These two numbers are shown as one pointasiF

cause of these performance differences, we configuredad ys- To evaluate the performance of Cassandra, HBase, and GTSSL
tems (HBase, Cassandra, and GTSSL) to perform insertidmeobu when processing a real-world workload, we built a dedufitica
compaction of any sort. We explore those results next. index. We checksummed every 4KB block of every file in a re-
search lab network of 82 clients of home directory files amelato-
Cassandra and HBase limiting factors. ries, with a total of 1.6TB hashes for each chunk. Chunkifgga]

To identify the key performance bottlenecks for a TSSL, we ra was done on a 4KB boundary, with no variable chunking. This ge

3000

120000 -Insertion- -Lookup- 3000
100000 2500

o - e

2500
2000

2 il
=D

0
0 2000 4000 6000 8000 10000 12000 14000
Time in Secs

20000 500

Throughput (ops/sec)

S

Num KVs looked up per sec

Figure 6: Deduplication insertion and lookup performance d Figure 7: Multi-tier results: initially throughput is disk -bound,
the Cassandra and HBase TSSLs, and GTSSL. but as the hot-set is populated, it becomes Flash SSD-bound,
and is periodically evicted and reclaimed.

erated over 1 hillion hashes. In our analysis of the hashe$ound

a typical Zipfian shape [13] where after the first 100 uniqughles,
there was effectively a uniform distribution. We measuteslttme
taken to insert these hashes with 10 parallel insertioratig éor all
systems. We then measured the time to perform random lookups
on these hashes for a uniformly randomly selected subset.

100000

ram-sas ——

\ ram-ssd-sas e
2 e

10000

v
e

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06
Number of KVs present before the one being lookedup

e
S
3

Instantaneous lookup thrpt (log)

Configuration.

We generated the deduplication hashes by chunking all files i
our corpus into 4KB chunks, which were hashed with SHA256. Figure 8: Multi-tier insertion caching allows for lookups of re-
We appended these 32B hashes to a file in the order they werecently inserted data to happen rapidly, while still allowing for
chunked (depth-first traversal of the corpus file systeme)cdn- very large data-sets that can be cheaply stored mainly on dis
trol the source of random read 10, we did not want to randomly
select hashes to query from the corpus during lookup. ldstea

wanted to serially traverse a pre-built list of lookups tafpen. the first level is 256MB, and on the second level is 1GB. The SAS
Therefore, to test lookups, we shuffled the hashes in advat@e tier holds one level, with a maximum of 4 SSTables, each rgefar
a separate lookup list. During insertion and lookup, weerssd than 4GB. For LRU caching, the size of the hot-set is 1GB, ite s

the hashes serially, introducing little overhead duringeation of of available cache is 256MB. The size of the pairs was 4KB.
each system.

Results.

Results. o _ LRU-Caching: As shown in Figure 7, initial lookup throughput

As seen in Figure 6 we found that performance is analogous 1o yas 243 lookups/s, which corresponds to the random readghto
the 64B case in Section 5.2, which used randomly generatBd 64yt of the disk, 251 reads/s. Pairs are read into the scarecach
numbers instead of a stream of 32B hashes. Cassandra, HBase(CO)' and once 256MB have been read, as described in Section 4.1,
and GTSSL were able to perform 22,920 ops/s, 23,140 0psiS, an data in C; is flushed into the Flash SSD to facilitate multi-tier
109,511 ops/s, respectively. For lookup performance tieyesi read caching. This corresponds to the 20 sudden drops imook
967 ops/s, 398 ops/s, and 2,673 ops/s, respectively. As we ha nroughput. Once the entire 1GB of hot-set has been eviated i
seen earlier, the performance gap between Cassandra argeHBa the Flash SSD tier, subsequent reads, even from the Flash SSD
compared to GTSSL are due to CPU and I/O inefficiency, as the gre re-inserted. These reads cause the contents of the $Bi3h
workload is comparable to a small-pair workload, as disetis®ove. g flush into the SAS tier, where they are dropped while merg-
Real-world workloads can often have pairs of 1KB or smalfer i ing as the SAS tier is the lowest level. However, as the hbt-se

size, such as this deduplication workload. An efficient T$8h is small enough to fit into a single slot, it is reclaimed bactoi
provide up to 5 performance improvement without any changes the Flash SSD tier via a copy. The mean lookup throughput is
to other layers in the cluster architecture. 1,815 lookups/s, an 7:4 speedup over the disk read throughput,

— and 48% the Flash SSD random read throughput. The suddes drop
5.4 Mu_l_t"Tler Storage) _ in lookup throughput are due to evictions, now being caused b
We modified the SAMT compaction method so that multiple reads which actually result in writes. Latency spikes arerarnon

tiers in a multi-tier storage hierarchy would be naturalsed for problem with compaction based TSSLs. HBase and Cassareira us
faster insertion throughputs and better caching behavitese we load-balancing at higher layers and schedule daily corigrasto
explore the effectiveness of caching a working set thatadame reduce their effect. For these tests their effects on pedoce

to fit in RAM, but small enough to fit in our Flash SSD. We ana- were minimized through configuration, and these technigeesr
lyze two caching policies, namely: (1) LRU caching in a FISSD at higher layers, or are easily adaptable to GTSSL.

with a hot-set, and (2) Recent-insert caching. Recent-insert Caching:For hotsets that are queried over a long
]] period of time, read-caching for random reads from lower-sto
Conflguratlon. age tiers can be beneficial, as we have shown above. Addliona

As mentioned above, in the previous tests we used only ttelFla caching of recently inserted values in higher tiers is aomatic
SSD. In this test we also use the SAS disk. We configured GTSSL effect of the MTSAMT. We re-run the above experiment with a
with the first tier as RAM, the second on Flash SSD, and the thir data-set of 16GB of randomly inserted 1KB keys with read cagrh
on the SAS disk. The Flash SSD tier holds two levels, each with disabled. After all values are inserted, we search for eaatfjom
a maximum of 4 SSTables (slots): the maximum SSTable size on most recently inserted to least. Figure 8 shows our reslritser-

tion of the pairs was 33% faster for tiRaM-SSD-SAS configura-
tion as the more frequent merging compactions of the higbhes t
took place on a Flash SSD device, and merges across tiersdid n

so MySQL and BDB begin converging on their B-Tree insertion
throughput as they write-back their updates. GTSSL, on thero
hand, avoids random writes entirely, and pays only mergirgg-o

have to read and write to the same device at once. The pairs areheads periodically due to merging compactions.

inserted randomly, but the SSTables on storage are sodede s
see a series of random reads within each SSTable. Aftetimsgr
the scan cache of 256MB was full, there were 3 256MB SSTa-

Despite the stark difference in throughput for the whole kwor
load, we also found that BDB, GTSSL, and MySQL had equiva-
lent insertion throughput. As transactions are submitezialy,

bles, and 3 1GB SSTables in the first tier, and 3 4GB SSTables the current transaction must wait for the disk to sync itsevbe-

in the second tier. FORAM-SSD-SAS only the 3 4GB SSTables
were on SAS, foraM-SASthey all were. Although each SSTable
is guarded by an in-RAM bloom filter, false positives can eaus
lookups to check these tables regardless. Furthermoreatie r
of buffer cache to SSTable size shrinks exponentially astebe
performs lookups on lower levels. This causes the stajr-gta-
tern seen in Figure 8. Initial spikes in lookup throughputwcas
the buffer cache is extremely effective for the 256MB SS@&abl
but mixing cache hits with the faster cache-populating iF&SD
(14,118 lookups/s) provides higher lookup throughput ttatin
the SAS (1,385 lookups/s). Total lookup throughput of thet fir
3,000,000 pairs, or the first 27% of the data-set was 2,33&iusJs
for RAM-SSD-SAS, and 316 lookups/s fakAM-SAS, a 7.4x perfor-
mance improvement.

5.5 Cross-Tree Transactions

We designhed GTSSL to efficiently process small transactass
well as high-throughput insertion workloads. We evalu&&®SL's
transaction throughput when processing many small and tesgs-
actions. We ran two tests: (IXN-SizE, and (2) GROUP-COMMIT.

In TXN-SIZE, the number of executing threads is fixed at one, but
each commit is asynchronous, so this thread need not watitiéor
commit to hit storage. Each run of the benchmark performarsstr
action that inserts four pairs, each into a separate treeh Em
uses a different size for the four pairs, which is either 3@8B,
256B, or 4096B. INnGROUR-COMMIT, each transaction inserts a
random 1KB pair into 4 separate trees, and then commits Qurab
We ran the benchmark with 512 threads executing in parallelst
scalability on our 4-core machine.

Configuration.

We configured 3 systems for comparison in this test: GTSSL,
MySQL (using InnoDB), and Berkeley DB (BDB). We configured
each system identically to have 1GB of cache. We did not @elu
HBase or Cassandra in these results as they do not implesyent a
chronous transactions. We configured BDB as favorably asipos
ble through a process of reconfiguration and testing: 1GBiofie
and 32MB of log buffer. We verified that BDB never swapped or
thrashed during these tests. We configured BDB with a led&no
size of 4096B. We configured InnoDB favorably with a 1GB of
cache and 32MB of log buffer. We configured GTSSL with 1GB of
cache (four 256MB caches).

Results.

GTSSL outperformed MySQL and BDB on the whole by a factor
of about 6-&. We inserted 1,220MB of transactions (9,994,240
transactions of four 32-byte insertions). For 32-byte Iitisas,
overall insertion performance for BDB, MySQL, and GTSSL is
683, 732, and 8,203 commits/s, respectively. For 256 byerin
tions it is 294, 375, and 3,140 commits/s, respectively. KB4n-
sertions, MySQL does not permit 4K columns, and so we onst thi
result. However, GTSSL and BDB each have throughputs of 804
and 129, respectively. GTSSL is 6.23aster than BDB. We found
that the difference in performance was because synchroapus
pends are much faster on our Flash SSD drive than randonswrite

10

fore the next transaction can proceed. On magnetic diskyuvel

that synchronous appends and random writes were bothy &0l
commits/s for direct updates to a file on Ext3. However, orsiftla
SSD, due to a sophisticated FTL, witlurable transactions, our
Intel X-25M Flash SSD was able to sustain 15,000 synchronous
serial appends of 32 bytes/s. Consequently, MySQL, BDB, and
GTSSL each attaineditial insertion throughputs of 2,281, 5,474,
and 9,908 transactions/s, respectively, when just upglétieir own
journals. GTSSL is able to keep the total amount written per-
commit small—as it must only flush the dirty pairs in {f§ cache
plus book-keeping data for the flush (111 bytes). This aooki
amount written per transaction gives direct synchronoyeagp an
advantage of 66% over GTSSL; however, as GTSSL logs only redo
information, its records require no reads to be performebtbdo
undo information, and its records are smaller. This meaasah
BDB and MySQL must routinely perform random IOs as they in-
teract with a larger-than-RAM B+-tree, GTSSL need only perf
mostly serial 10s, which is why GTSSL and other TSSL architec
tures are better suited for high insertion-throughput \aaés.

When testing peak Flash SSD-bandwidtkoupr-commIT through-
put, we found that GTSSL could perform 26,368 commits/s for
transactions, updating 4 trees with 1KB values, at a baritiva€l
103MB/s. The high commit throughput was due to the Flash SSD
being able to perform serial durable writes much more quittkn
random durable writes.

Evaluation summary.

TSSL architectures have traditionally optimized for 1Q4hd
workloads for pairs 1KB or larger on traditional magnetiskdi.

For 1KB pairs, GTSSL has a demonstrably more flexible com-
paction method. For the read-optimized configuration, GTI88kups
are near optimal: 88% the maximum random-read throughput of
the Flash SSD, yet our insertions are still 34% faster thass@a

dra and 14% faster than HBase. For the write-optimized config
uration, GTSSL achieves 76% of the maximum write throughput
of the Flash SSD, yet our lookups are 2.&nd 7.2 faster than
Cassandra and HBase, respectively. This performanceadiiffe
was due to Cassandra and HBase being CPU-bound for pairs 1KB
or smaller. When we varied the pair size, we discovered tat f
smaller pairs, even when performing no compaction and nceepe
tions other than flushing pairs to storage, all TSSLs becaRld-C
bound, but GTSSL was still’6 faster than the others.

For larger pairs, all TSSLs eventually became 10-bound. &ITS
achieved 91% of the maximum serial write throughput of treskl
SSD. Cassandra and HBase achieved only 50% of the maximum
Flash SSD throughput, due to double-writing insertionsievien
transactions were asynchronous. Cassandra’'s and HBasimd
were geared for traditional hard-disks whose latenciesnaweh
slower than RAM; but as modern Flash SSD's get faster, thiéebot
neck in such designs shifts from 1/0 to CPU. By contrast, GT'SS
design explicitly incorporates Flash SSD into a multi-tieararchy.
When we insert a Flash SSD into a traditional RAM+HDD stor-
age stack, GTSSL'’s insertion throughput increased by 33%, a
our lookup throughput increased by %.4This allows the bulk of

colder data to reside on inexpensive media, while most htat da
automatically benefits from faster devices.

Based on our current experiments, we predict that caching at
higher layers will not significantly alter our current parftance
results because the task of sorting and compaction sslidiethe
shoulders of the TSSL layer. Constraints on throughput fte
ing TSSL designs are not due to latency in servicing read gewr
requests into the cache, but due to the overall inefficiefigyeo
forming serialization of the cache, compaction, and lackas&ful
integration with the operating system caches. Furtheroeapbn
of this question is a subject of future work.

Lastly, supporting distributed transactions in clustesgesinot
necessarily require a different TSSL layer as suggesteelbyed
research [47] (i.e., a read-optimized approach). GTSSaissac-
tions are light-weight yet versatile, and achieve 20.&nd 8.3«
faster insertion throughputs than BDB and MySQL InnoDB, re-
spectively.

6. RELATED WORK

We discuss cluster evaluation (1), multi-tier and hieraalsys-
tems (2-4), followed by alternative datastructures for agamng
trees or column families in a TSSL architecture (5-7).

(1) Cluster Evaluation.

Super computing researchers recognize the need to altef-out
the-box cluster systems, but there is little research orpéréor-
mance of individual layers in these cluster systems, andthew
interact with the underlying hardware. Pavlo et al. have-mea
sured the performance of a Hadoop HBase system againstywidel
used parallel DBMSes [47]. Cooper et al. have compared Hadoo
HBase to Cassandra [33] and a cluster of MySQL servers @imil
to HadoopDB and Perlman and Burns’ Turbulence Database Clus
ter). The authors of HadoopDB include a similar whole-gyste
evaluation in their paper [1]. We evaluate the performaruéiés
necks of a single node’s storage interaction, and providetatype
architecture that alleviates those bottlenecks.

Some supercomputing researchers develop custom cluster de
signs for a particular application that avoids logical lageerheads
(such as SQL) when necessary [14, 37,41]. These reseasthiers
want to understand the performance characteristics ofdah®o-
nents they alter or replace, ardpeciallyif those components are
storage-performance bottlenecks. In addition to its rtidti con-
tributions, this paper outlines many of the critical aspeaxtarchi-
tecting an efficient TSSL layer for these researchers.

(2) Multi-tier storage.

Flash SSD is becoming popular [25]. Solaris ZFS can use-inter
mediate SSDs to improve performance [34]. ZFS uses an Flash
SSD as a DBMS log to speed transaction performance, or as
cache to decrease read latency. But this provides only tempo
relief.: when the DBMS ultimately writes to its on-disk treig,
bottlenecks on B-tree throughput. ZFS has no explicit stifjpo
very large indexes or trees, nor does it utilize its threedichitec-
ture to improve indexing performance. GTSSL, conversedgsu
a compaction method whose performance is bound by disk band-
width, and can sustain high-throughput insertions acréashFSSD
flushes to lower tiers with lower latencies. Others usedF&8D’s
to replace swap devices. FlashVM uses an in-RAM log-strectu
index for large pages [53]. FASS implements this in Linux][30
Payer [48] describes using a Flash SSD hybrid disk. Condé@épt
uses persistent RAM to hold all small file system structulsier
ones go to disk. These systems use key-value pairs with kel

11

that can fit entirely in RAM. GTSSL is more general and canestor
large amounts of highly granular structured data on any ¢oanb
tion of RAM and storage devices.

(3) Hierarchical Storage Management.
HSM systems provide disk backup and save disk space by mov-

ing old files to slower disks or tapes. Migrated files are agibés

via search software or by replacing migrated files with littkheir

new location [28, 46]. HSMs use multilevel storage hierasho
reduce overall costs, but pay a large performance penalétrieve
migrated files. GTSSL, however, was designed for alwaysenl
access as it must operate as a TSSL within a cluster, andefoous
maximum performance across all storage tiers.

(4) Multi-level caching.

These systems address out-of-sync multiple RAM caches that
are often of the same speed and are all volatile: L2 vs. RANL[19
database cache vs. file system page cache [22], or locateif-on d
ferent networked machines [36,59]. These are not easillicapp
ble to general-purpose multi-tier structure data storagetd large
performance disparities among the storage devices at thartd
bottom of the hierarchy.

(5) Write-optimized trees.

The COLAmaintainsO (log (V)) cache lines fotV key-value
pairs. The amortized asymptotic cost of insertion, detetar up-
dates into a COLA i© (log (N) /B) for N inserted elements [7].
With fractional cascading, queries requdélog (N)) random reads [11].
GTSSL’s SAMT has identical asymptotic insertion, deletiand
update performance; however, lookup with SAMDiglog® (IV)).

In practice GTSSL'’s secondary indexes easily fit in RAM thoug
and so lookup is actually equivalent for trees several ThBgela
Furthermore, as we show in our evaluation, GTSSL’s Bloom fil-
ters permit 10—38 faster lookups for datasets on Flash SSD than
what the COLA (used by HBase) can affotabg-Structured Merge
(LSM) trees [44] use an in-RAM cache and two on-disk B-Trees
that areR and R* times larger than cache, whefe+ R + R” is

the size of the tree. LSM tree insertions are asymptotidaiyer
than B-TreesO %) [56] compared t® (log ., N), but
asymptotically slower than GTSSL's SAMT. LSM tree queryéin
are more comparable to B-Tree’s times. Rose is a variant of an
LSM tree that compresses columns to improve disk write tinou
put [56]. Anvil [38] is a library of storage components for-as
sembling custom 2-tier systems and focuses on developrineat t
and modularity. Anvil describes a 2-COLA based structurd an
compares performance with traditional DBMSes in TPC-Cqerf
mance. GTSSL's uses the multi-tier MTSAMT structure, ardeis
signed for high-throughput insertion and lookups as a carapb

of a cluster node. We evaluate against existing industnydstal

aWrite-op'[imized systems and not random-write-bound My3:@i-

oDB. Data Domain’s deduplicating SegStore uses Bloom $ifi@f
to avoid lookups to its on-disk hash table, boosting thrquugho
12,000 inserts/s. GTSSL solves a different problem: the be®r-
tion throughput to an on-disk structured data store (e.gtao-
main’s Segment Index, for which insertion is a bottlene€).SSL
is complimentary to, and could significantly improve thefper
mance of similar deduplication technology.

(6) Log-structured data storage.

Log-structured file systems [51] append dirtied blocks tooavg
ing log that must be compacted when full. Graefe’s log-s$tmex
B-trees [23] and FlashDB [42] operate similarly to WAFL [28}

rippling up changes to leaf pointers. Goetz uses fencetkegoid
expensive rippling, and uses tree-walks during scans toirgdite
leaf pointers. FAWN [3] is a distributed 2-tier key-values de-
signed for energy savings. It uses a secondary index in RAM an
hash tables in Flash SSD. FAWN claims that compressiondgfth
onal to this work) allows large indexes to fit into 2GB of RAMy B
contrast, GTSSL has been tested with 1-2TB size indexesion a s
gle node. Log-structured systems assume that the enties fitd

in RAM, and must read in out-of-RAM portions before updating
them. This assumption breaks down for smaller (64B) pairsresh
the size of the index is fairly large; then, compaction mdthem-
ployed by modern TSSLs become vital.

(7) Flash SSD-optimized trees.

Flash SSD has high throughput writes and low latency reads,

ideal for write-optimized structured data storage. FDeEfe au-
thors admit similarity to LSM trees [35]. Their writes are nge
than an LSM-tree for 8GB workloads; their read performahogy-
ever, matches a B-tree. GTSSL’s insertions are asympligtfeater
than LSM trees. LA-Tree [2] is another Flash SSD-optimizeg t
similar to a Buffer Tree [6]. LA-Trees and FlashDB can adagi
reorganize the tree to improve read performance. BuffezsThave
asymptotic bound equal to COLA. However, it is not clear @&-di
cussed how to efficiently extend Buffer Trees, LA-Trees, br F
Trees for multiple storage tiers or transactions as GTS®is.do

7. CONCLUSIONS

We introduced GTSSL, an efficient tablet server storagei-arch
tecture that is capable of exploiting Flash SSD and otheage
devices using a novel multi-tier compaction algorithm. @uuti-
tier extensions have 33% faster insertions and & Tagter lookup
throughput than traditional RAM+HDD tiers—while storin§%
of the data (i.e., colder data) on cheaper magnetic disksmiBy
imizing the number of 10s per-lookup, and aggressively gigif
Bloom filters, GTSSL achieves 23and 7.2 faster lookups than
Cassandra and HBase, respectively—while maintaining 8a8ter
insertions for standard sized inputs. We demonstrated GFSS
much wider range of support for either lookup-heavy or iiser

heavy workloads, compared to Cassandra and HBase. We have
shown how the existing TSSL layer can be extended to support

more versatile transactions capable of performing matiglads
and writes in full isolation without compromising perforneae.
GTSSL achieved 107 and 8.3« faster insertion throughputs than
BDB and MySQL's InnoDB, respectively.

Our analysis shows that the SAMT structure is better suibed f
newer storage technologies such as Flash SSD that nathealéy
a smaller DAM block size, however we have shown in Section 5.4
that significant performance gains can be made while stépke
ing the majority of data stored on a magnetic disk by extepndin
the SAMT to support multi-tier workloads. These extensians
outlined in Section 4.1. Furthermore, our performanceuatan
of existing TSSL architectures show that, faced with insiegly
faster random 1/O from Flash SSD’s, CPU and memory efficiency
are paramount for increasingly more complex and granula. da

From our evaluation we learned several key lessons: (1)i-mult
tier support is critical for better performance to costoati TSSLs,
(2) more complex transaction support requires a more tosdit
DBMS/file system cache architecture tuned for fast inseréind
exploiting the log-structured nature of the TSSL comparctityo-
rithms, and (3) efficiency of key-value pairs below 1KB inesgde-
pends on the cache implementation and general CPU-bouesiedn
of the design more than the specific compaction algorithrad.us

Most importantly, integrating modern storage devicesnt&GSL

12

requires a more general approach to storage than currerglly a
able, and one that operates in a generic fashion acrosptauiérs.
GTSSL offers just that.

Future Work.

We will explore measuring the performance effect of muéi-t
TSSLs on a larger cluster to demonstrate design transfigyabid
improved performance. Currently our Bloom filters lie coetply
in RAM, however we are actively exploring ways of efficiently
inserting and searching within Bloom filter-like structsiracross
multiple tiers.

We are planning to release the GTSSL system, sources, and all

benchmarks and data-sets later this year.

8. REFERENCES

[1] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadiyi
Silberschatz, and Alexander Rasin. Hadoopdb: an architdct
hybrid of mapreduce and dbms technologies for analytical
workloads.Proc. VLDB Endow.2:922-933, August 2009.
D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao, and S. I8ing
Lazy-adaptive tree: an optimized index structure for flasbhiaks.
Proc. VLDB Endow.2(1):361-372, 2009.
D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayle€eTan,
and V. Vasudevan. FAWN: A Fast Array of Wimpy Nodes. In
Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP '2009pages 1-14. ACM SIGOPS, October 2009.
[4] Eric Anderson and Joseph Tucek. Efficiency matt&&EOPS Oper.
Syst. Rey44:40-45, March 2010.
[5] The Apache Foundation. Hadoop, January 2010.
http://hadoop. apache. org.
[6] L. Arge. The buffer tree: A new technique for optimal égorithms
(extended abstract). Mniversity of Aarhuspages 334-345.
Springer-Verlag, 1995.
M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. FodgIC.
Kuszmaul, and J.Nelson. Cache-oblivious streaming Istiee
SPAA'07: Proceedings of the nineteenth annual ACM symposiu
Parallel algorithms and architecturepages 81-92, New York, NY,
USA, 2007. ACM.
B. H. Bloom. Space/time trade-offs in hash coding wittewhble
errors.Commun. ACM13(7):422-426, 1970.
M. Cao, T. Y. Ts@Zo, B. Pulavarty, S. Bhattacharya, A. Dilger, and
A. Tomas. State of the Art: Where we are with the Ext3 filegyste
In Proceedings of the Linux Symposiudttawa, ON, Canada, July
2005.
F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:
distributed storage system for structured dataD8DI '06:
Proceedings of the 7th USENIX Symposium on Operating System
Design and Implementatiopages 15-15, Berkeley, CA, USA,
2006. USENIX Association.
B. Chazelle and L. J. Guibas. Fractional cascading: ta da
structuring technique with geometric applicationsPhoceedings of
the 12th Colloquium on Automata, Languages and Programming
pages 90-100, London, UK, 1985. Springer-Verlag.
D. Comer. The Ubiquitous B-TreACM Computing Surveys
11(2):121-137, June 1979.
Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking clouchservi
systems with ycsb. IRroceedings of the 1st ACM symposium on
Cloud computingSoCC '10, pages 143-154, New York, NY, USA,
2010. ACM.
Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berrimand
John Good. The cost of doing science on the cloud: the montage
example. InProceedings of the 2008 ACM/IEEE conference on
SupercomputingSC '08, pages 50:1-50:12, Piscataway, NJ, USA,
2008. IEEE Press.
Cassandra Documentation. Getting started. p:
//wi ki . apache. or g/ cassandra/ Getti ngStarteda,
2011.
HBase Documentation. Hbase: Bigtable-like strudwstrage for
hadoop hdfsht t p: // wi ki . apache. or g/ hadoop/ Hbasea,
2011.

(2]

(3]

(7]

(8]
El

[10]

[11]

[12]
(23]

[14]

[15]

[16]

[17]

(18]
[19]
[20]

[21]
[22]

[23]

[24]
[25]

[26]

[27]
(28]

[29]

[30]

(31]

[32]

(33]

[34]
(35]

[36]

[37]

(38]

W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, an&FRilane.
Tradeoffs in scalable data routing for deduplication @tstin
Proceedings of the 9th USENIX Conference on File and Storage
TechnologiesSan Jose, California, USA, 2011.

Bruno Dumon. Visualizing hbase flushes and compaction.
http://outerthought.org/blog/465-ot.html, February 20

E. D. Demaine. Cache-Oblivious Algorithms and DatauStures,
1999.

J. Ellis. Re: Worst case iops to read a row, April 2010.
http://cassandra- user-incubat or - apache- or g.
3065146. n2. nabbl e. com Wor st - case- i ops-to-

read- a- row t d4874216. htm .

FusionlO. I0ODrive octal datasheditt t p:

/ [www. f usi oni 0. conl dat a- sheets/i odrive-octal/.
B. S. Gill. On Multi-level Exclusive Caching: Offline Gimality and
Why promotions are better than demotionsFAST '08:
Proccedings of the 6th conference on File and storage tdojies
Berkeley, CA, USA, 2008. USENIX Association.

G. Graefe. Write-optimized b-trees. \LDB '04: Proceedings of
the Thirtieth international conference on Very large dateses
pages 672-683. VLDB Endowment, 2004.

J. Gray and A. Reuteilransaction Processing: Concepts and
TechniquesMorgan Kaufmann, San Mateo, CA, 1993.

F. Hady. Integrating NAND Flash into the Storage Hieteyr ...
Research or Product Design?, 20091 p:

//csl.cse. psu. edu/ wi sh2009_invitetal k1. htm .

D. Hitz, J. Lau, and M. Malcolm. File System Design for MRS
File Server Appliance. IProceedings of the USENIX Winter
Technical Conferenggages 235-245, San Francisco, CA, January
1994. USENIX Association.

Hypertable. Hypertabléht t p: / / ww. hypert abl e. or g,
2011.

IBM. Hierarchical Storage Management.

www. i bm coni servers/ eserver/iseries/ hsnconp/,
2004.

Intel Inc. Over-provisioning an intel ssd. Technicagort
324441-001, Intel Inc., October 201®0ache- www. i nt el . com
cd/ 00/ 00/ 45/ 95/ 459555_459555. pdf .

D. Jung, J. Kim, S. Park, J. Kang, and J. Lee. FASS: A Flaghre
Swap System. IfProc. of International Workshop on Software
Support for Portable Storage (IWSSP3)05.

R. Kothiyal, V. Tarasov, P. Sehgal, and E. Zadok. Enenggl
Performance Evaluation of Lossless File Data Compression o
Server Systems. IRroceedings of the 2nd Israeli Experimental
Systems Conference (ACM SYSTOR, 'B@)fa, Israel, May 2009.
ACM.

Hans-Peter Kriegel, Peer Kroger, Christiaan HendriKan

Der Meijden, Henriette Obermaier, Joris Peters, and MagtRienz.
Towards archaeo-informatics: scientific data managenuent f
archaeobiology. IfProceedings of the 22nd international conference
on Scientific and statistical database managem88DBM'10,
pages 169-177, Berlin, Heidelberg, 2010. Springer-Verlag
Avinash Lakshman and Prashant Malik. Cassandra: tsireat
storage system on a p2p network.Rroceedings of the 28th ACM
symposium on Principles of distributed computiR@DC '09,
pages 5-5, New York, NY, USA, 2009. ACM.

A. Leventhal. Flash storage memo@Gommunications of the ACM
51(7):47-51, 2008.

Y. Li, B. He, Q. Luo, and K. Yi. Tree indexing on flash diska
ICDE '09: Proceedings of the 2009 IEEE International Coefece
on Data Engineeringpages 1303-1306, Washington, DC, USA,
2009. IEEE Computer Society.

B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber,

U. Maheshwari, A. C. Myers, M. Day, and L. Shrira. Safe and
efficient sharing of persistent objects in thorSlGMOD '96:
Proceedings of the 1996 ACM SIGMOD international confeeenic
Management of daigpages 318-329, New York, NY, USA, 1996.
ACM.

Wei Lu, Jared Jackson, and Roger Barga. Azureblastsa stady of
developing science applications on the cloudPtaceedings of the
19th ACM International Symposium on High Performance
Distributed ComputingHPDC '10, pages 413-420, New York, NY,
USA, 2010. ACM.

M. Mammarella, S. Hovsepian, and E. Kohler. Modularadstorage
with anvil. In SOSP '09: Proceedings of the ACM SIGOPS 22nd

13

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

(48]

[49]

[50]
[51]

[52]

(53]
[54]
[55]

[56]

[57]

(58]

[59]

[60]

symposium on Operating systems principfesges 147-160, New
York, NY, USA, 2009. ACM.

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. #sf file
system for UNIX.ACM Transactions on Computer Systems
2(3):181-197, August 1984.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and Pwgch.
ARIES: a transaction recovery method supporting fine-deaity
locking and partial rollbacks using write-ahead loggiAGM Trans.
Database Syst17(1):94-162, 1992.

Beomseok Nam, Henrique Andrade, and Alan Sussmaniplailt
range query optimization with distributed cache indexiing.
Proceedings of the 2006 ACM/IEEE conference on Supercamgput
SC '06, New York, NY, USA, 2006. ACM.

S. Nath and A. Kansal. FlashDB: Dynamic Self-tuning &btse for
NAND Flash. Technical Report MSR-TR-2006-168, Microsoft
Research, November 2006.

National Radio Astronomy Observatory. Innovations in
data-intensive astronomy. http://www.nrao.edu/mestinigdata/,
April 2011.

P. O'Neil, E. Cheng, D. Gawlick, and E. O’'Neil. The logsctured
merge-tree (LSM-tree)Acta Inf, 33(4):351-385, 1996.

Oracle. Database administrator’s reference.

http://downl oad. or acl e. coni docs/ cd/ B19306_01/
server. 102/ b15658/ t uni ng. ht m March 2009.

R. Orlandic. Effective management of hierarchicatat®@ using two
levels of data clusteringvlass Storage Systems, IEEE Symposium
on, 0:270, 2003.

Andrew Pavlo, Erik Paulson, Alexander Rasin, Danié\dadi,
David J. DeWitt, Samuel Madden, and Michael Stonebraker. A
comparison of approaches to large-scale data analysis. In
Proceedings of the 35th SIGMOD international conference on
Management of dajis5IGMOD '09, pages 165-178, New York, NY,
USA, 2009. ACM.

H. Payer, M. A. A. Sanvido, Z. Z. Bandic, and C. M. Kirs€dombo
Drive: Optimizing Cost and Performance in a Heterogeneous
Storage Device. IfProc. Workshop on Integrating Solid-state
Memory into the Storage Hierarchy (WISH009.ht t p:
//csl.cse. psu. edu/ wi sh2009_paper s/ Payer . pdf .
Eric Periman, Randal Burns, Yi Li, and Charles Menevdzata
exploration of turbulence simulations using a databasgteluln
Proceedings of the 2007 ACM/IEEE conference on Supercamgput
SC '07, pages 23:1-23:11, New York, NY, USA, 2007. ACM.
PostgreSQL Global Development Team. PostgreSQL.
http://ww. post gresql . org,2011.

M. Rosenblum and J. K. Ousterhout. The design and imeigation
of a log-structured file system. Proceedings of 13th ACM
Symposium on Operating Systems Princippesges 1-15, Asilomar
Conference Center, Pacific Grove, CA, October 1991. Astonia
for Computing Machinery SIGOPS.

J. Rydningcom and M. Shirer. Worldwide hard disk dri12-2014
forecast: Sowing the seeds of change for enterprise afiplica
IDC Study 222797ywwv. i dc. com May 2010.

M. Saxena and M. M. Swift. Flashvm: Revisiting the vatu
memory hierarchy, 2009.

Michael C. Schatz. Cloud computing and the dna data fdature
Biotechnology 28:691-693, 2010.

R. Sears and E. Brewer. Stasis: Flexible TransactiSialage. In
Proceedings of the 7th Symposium on Operating SystemsrDaasig
Implementation (OSDI 2006%eattle, WA, November 2006. ACM
SIGOPS.

R. Sears, M. Callaghan, and E. Brewer. Rose: Compressed
log-structured replication. IRroceedings of the VLDB Endowment
volume 1, Auckland, New Zealand, 2008.

P. Sehgal, V. Tarasov, and E. Zadok. Evaluating Perdmce and
Energy in File System Server Workloads extension®rivceedings
of the Eighth USENIX Conference on File and Storage Teclgiedo

(FAST '10) pages 253-266, San Jose, CA, February 2010. USENIX

Association.

P. Sehgal, V. Tarasov, and E. Zadok. Optimizing Energy a
Performance for Server-Class File System WorkloAdiV
Transactions on Storage (TQ%$)3), September 2010.

L. Shrira, B. Liskov, M. Castro, and A. Adya. How to scale
transactional storage systemsBW 7: Proceedings of the 7th
workshop on ACM SIGOPS European workshmgges 121-127,
New York, NY, USA, 1996. ACM.

Sleepycat Software, In8erkeley DB Reference Guide3.27

[61]

[62]

[63]

[64]

[65]

[66]
[67]

[68]

edition, December 2004ww. or acl e. coni t echnol ogy/
docunent at i on/ ber kel ey- db/ db/ api _c/frame. htm .
Keith A. Smith. File system benchmarks.

http://ww. eecs. harvar d. edu/ ~kei t h/ useni x96/,
1996.

R. Spillane, S. Dixit, S. Archak, S. Bhanage, and E. Zado
Exporting kernel page caching for efficient user-level l®.
Proceedings of the 26th International IEEE Symposium onsMas
Storage Systems and Technologiesline Village, Nevada, May
2010. IEEE.

R. Spillane, R. Sears, C. Yalamanchili, S. Gaikwad, Mir@i, and
E. Zadok. Story Book: An Efficient Extensible Provenance
Framework. InProceedings of the first USENIX workshop on the
Theory and Practice of Provenance (TAPP '08an Francisco, CA,
February 2009. USENIX Association.

R. P. Spillane, S. Gaikwad, E. Zadok, C. P. Wright, andd¥inni.
Enabling transactional file access via lightweight kermxétesions.
In Proceedings of the Seventh USENIX Conference on File and
Storage Technologies (FAST '0®gages 29—-42, San Francisco, CA,
February 2009. USENIX Association.

A. Traeger, N. Joukov, C. P. Wright, and E. Zadok. A NireaV
Study of File System and Storage Benchmark#gM Transactions
on Storage (TOS$Y(2):25-80, May 2008.

Vertica. The Vertica Analytic Databadet t p: / / verti ca. com
March 2010.

A. Wang, G. Kuenning, P. Reiher, and G. Popek. The cositfile
system: Better performance through a disk/persistentirgonid
design.Trans. Storage?(3):309-348, 2006.

B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottézk in the
data domain deduplication file system.Rroceedings of the 6th
USENIX Conference on File and Storage Technolodies Jose,
California, USA, 2008.

14

