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Evaluating the performance of large compute clusters requires benc
marks with representative workloads. At Google, performancetbenc
marks are used to obtain performance metrics such as task schedul-
ing delays and machine resource utilizations to assess changes in
application codes, machine configurations, and scheduling algo-1. |NTRODUCTION
rithms. Existing approaches to workload characterization for high
performance computing and grids focus on task resource require-Building compute clusters at Google scale requires having real-
ments for CPU, memory, disk, I/O, network, etc. Such resource istic performance benchmarks to evaluate the impact of changes
requirements addres®ow muchresource is consumed by a task. in scheduling algorithms, machine configurations, and application
However, in addition to resource requirements, Google workloads codes. Providing such benchmarks requires constructing workload
commonly include task placement constraints that determimieh characterizations that are sufficient to reproduce key performance
machine resources are consumed by tasks. Task placement concharacteristics of compute clusters. Existing workload characteri-
straints arise because of task dependencies such as those related &tions for high performance computing and grids focus on task re-
hardware architecture and kernel version. source requirements such as CPU, RAM, disk, and network. How-
ever, in addition to resource requirements, Google tasks frequently
This paper develops methodologies for incorporating task place- havetask placement constrainfsereafter, justonstraint$ similar
ment constraints and machine properties into performance bench-to the Condor ClassAds mechanisml[26]. Examples of constraints
marks of large compute clusters. Our studies of Google compute are restrictions on task placement due to hardware architecture and
clusters show that constraints increase average task scheduling dekernel version. Constraints limit the machines on which a task can
lays by a factor of 2 to 6, which often results in tens of minutes run, and this in turn can increase task scheduling delays. This pa-
of additional task wait time. To understand why, we extend the per develops methodologies that quantify the performance impact
concept of resource utilization to include constraints by introduc- Of task placement constraints, and applies these methodologies to
ing a new metric, thaJtilization Multiplier (UM). UM is the ratio Google compute clusters. In particular, we develop a methodology
of the resource utilization seen by tasks with a constraint to the for synthesizing task placement constraints and machine properties
average utilization of the resource. UM provides a simple model to provide more realistic performance benchmarks.
of the performance impact of constraints in that task scheduling
delays increase with UM. Last, we describe how to synthesize rep- Herein, task scheduling refers to the assignment of tasks to ma-
resentative task constraints and machine properties, and how to in-chines. We do not consider delays that occur once a task is assigned
corporate this synthesis into existing performance benchmarks.to a machine (e.g., delays due to operating system schedulers) since
Using synthetic task constraints and machine properties generatedPur experience is that these delays are much shorter than the delays
by our methodology, we accurately reproduce performance metrics for machine assignment.
for benchmarks of Google compute clusters with a discrepancy of
only 13% in task scheduling delay and 5% in resource utilization. We elaborate on the difference between task resource requirements
and task placement constraints. Task resource requirements de-
scribe how muchresource a task consumes. For example, a task
may require 1.2 cores per second, 2.1 GB of RAM per second, and
100 MB of disk space. In contrast, task placement constraints
addresswvhich resources are consumed. For example, a common
constraint in Google compute clusters is requiring a particular ver-

ation.

Categories and Subject Descriptors
C.4 [Performance of Systemp Miscellaneous; D.4.8ferformance:
Metrics—modeling techniques, performance measures.

General Terms sion of the kernel (e.g., because of task dependencies on particular
Performance, modeling, benchmarking. APIs). This constraint has no impact on the quantities of resource

consumed. However, the constraint does affect the machines on
*This work was done while the author was an intern at Google in summer 2010 which tasks can schedule.
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chine. In practice, it is more complicated to compute the effect of
constraints on resource utilization because: (a) tasks often request
multiple constraints; (b) machines commonly satisfy multiple con-
straints; and (c) machine utilization is a poor way to quantify the
effect of constraints in compute clusters with heterogeneous ma-
chine configurations.

Figure 1: lllustration of the impact of constraints on machine
utilization in a compute cluster. Constraints are indicated by
a combination of line thickness and style. Tasks can schedule
only on machines that have the corresponding line thickness
and style.

The constraints herein addressed are simple predicates on machingVe use two metrics to quantify the performance impact of task
properties. Such constraints can be expressed as a triple of: maplacement constraints. The first metri¢ask scheduling delayhe
chine attribute, relational operator, and a constant. An example istime that a task waits until it is assigned to a machine that satisfies
“kernel version is greater than 1.2.7". the task constraints. Task scheduling delay is the primary metric
by which performance assessments are done in Google compute
Why do Google tasks specify constraints? One reason is machineclusters because most resources are consumed by tasks that run
heterogeneity. Machine heterogeneity arises because financial andor weeks or monthd [24]. An example is a long running search
logistical considerations make it almost impossible to have identi- task that alternates between waiting for and processing user search
cal machine configurations in large compute clusters. As a result, terms. A cluster typically schedules 5 to 10 long-running tasks per
there can be incompatibilities between the pre-requisites for run- hour, but there are bursts in which a hundred or more tasks must be
ning an application and the configuration of some machines in the scheduled within minutes. For long-running tasks, metrics such as
compute cluster (e.g., kernel version). To address these cancern response time and throughput have little meaning. Instead, the con-
Google tasks may request specific hardware architectures and kereern is minimizing task scheduling delays when tasks are scheduled
nel versions. A second reason for task placement constraints isinitially and when running tasks are rescheduled (e.g., due to ma-
application optimization, such as making CPU/memory/disk trade- chine failures). Our second metricrizachine resource utilizatign
offs that result in tasks preferring specific machine configurations. the fraction of machine resources that are consumed by scheduled
For these reasons, Google tasks will often request machine config-tasks. In general, we want high resource utilizations to achieve a
urations with a minimum number of CPUs or disks. A third reason better return on the investment in compute clusters.
for task constraints is problem avoidance. For example, adminis-
trators might use a clock speed constraint for a task that is observedMuch of our focus is on developing realistic performance bench-
to have errors less frequently if the task avoids machines that havemarks. As depicted in Figufé 2, a benchmark has a workload gen-
slow clock speeds. eration component that generates synthetic tasks that are scheduled
by the Cluster Scheduler and executed on Serving Machines. In-
Figure[1 illustrates the impact of constraints on machine utilization corporating task placement constraints into a performance bench-
in a compute cluster. There are six machines-M ,Mg (depicted mark requires changes to: (a) the Workload Generators to synthe-
by squares) and ten tasks,T-- , Ty (depicted by circles). There  size tasks so that they request representative constraints and (b) the
are four constraints ¢---,c4. Constraints are indicated by the properties of Serving Machines so that they are representative of
combinations of line thickness and line styles. In this example, each machines in production compute clusters.
task requests a single constraint, and each machine satisfies a single
constraint. A task can only be assigned to a machine that satisfiesThus far, our discussion has focused on task placement constraints
its constraint; that is, the line style and thickness of a circle must related to machine properties. However, there are more complex
be the same as its containing square. One way to quantify machineconstraints as well. For example, a job may request that no more
utilization is the ratio of tasks to machines. In the example, the av- than two of its tasks run on the same machine (e.g., for fault toler-
erage machine utilization is 10 task® machines= 1.66 tasks per ance). Although we plan to address the full range of constraints in
machine. However, tasks with constraigtaan be scheduled only  the future, our initial efforts are more modest. Another justification
on machineMy where there are 4 tasks. So, the utilization seen by for our limited scope is that complex constraints are less common
a newly arriving task that requests is 4 tasks- 1 machine= 4 in Google workloads. Typically, only 11% of the production jobs
tasks per machine. Now consider. cThere are four tasks that re-  use complex constraints. However, approximately 50% of the pro-
guest constraint,g and these tasks can run on three machilgs ( duction jobs have constraints on machine properties.
M2, Mg). So, the average utilization experienced by a newly arriv-
ing task that requests ¢s 4 tasks:- 3 machine= 1.33 tasks per ma- To the best of our knowledge, this is the first paper to study the



performance impact of task placement constraints. It is also the that: (a) there is no dominant application; (b) there are thousands
first paper to construct performance benchmarks that incorporateof machines; and (c) the cluster runs hundreds of thousands of tasks
task placement constraints. The specifics of our contributions arein a day.
best described as answers to a series of related questions.

There are four task types. Tasks of type 1 are high priority pro-
Q1: Do task placement constraints have a significant impact duction tasks; tasks of type 4 are low priority, and are not critical to
on task scheduling delays?Ve answer this question using bench- end-user interactions; tasks of type 2 and 3 have characteristics that
marks of Google compute clusters. The results indicate that the blend elements of task types 1 and 4. Fiddre 3 displays the fraction
presence of constraints increases task scheduling delays by a factoof tasks by type in the Google compute clusters. These fractions
of 2 to 6, which often means tens of minutes of additional task wait are used in Sectio] 5 to construct workloads with representative
time. task placement constraints.

Q2: Is there a model of constraints that predicts their impact 21 Google Task Scheduling
on task scheduling delays?Such a model can provide a system- )

atic approach to re-engineering tasks to reduce scheduling delays\ext, we describe how scheduling works in Google compute clus-
and to configuring machines in a cost-effective manner. We argue ters. Users submit jobs to the Google cluster scheduler. A job
that task scheduling delays can be explained by extending the con-describes one or more tasks [24]. The cluster scheduler assigns
cept of resource utilization to include constraints. To this end, we t@sks to machines. A task specifies (possibly implicitly) resource

develop a new metric, thetilization Multiplier (UM) . UM is the requirements (e.g., CPU, memory, and disk resources). A task may
ratio of the resource utilizations seen by tasks with a constraint to S0 have task placement constraints (e.g., kernel version).

the average utilization of the resource. For example, in Figlire 1 e o ) o
the UM for constraint g is 1;%6 = 2.4 (assuming that there is a In principle, scheduling is done in order by task type, and is first-

single machine resource, machines have identical configurations,come-first-serve for.tasks with the same type. Scheduling a task
and tasks have identical resource demands). As discussed in Sed?roceeds as follows:
tion[d, UM provides a simple model of the performance impact of

constraints in that task scheduling delays increase with UM. e determine which machines satisfy the task’s constraints,

e compute the subset of machines that also have sufficient free re-
Q3: How can task placement constraints be incorporated into source capacity to satisfy the task’s resource requirements (called
existing performance benchmarks? We describe how to syn- thefeasible se,

thesize representative task constraints and machine properties, and select the “best” machine in the feasible set on which to run the
how to incorporate this synthesis into existing performance bench- task (assuming that the feasible set is not empty).

marks. We find that our approach accurately reproduces perfor-

mance metrics for benchmarks of Google compute clusters with a

source utilization. timizations such as balancing resource demands across machines
and minimizing peak demands within the power distribution infras-
10 B Tasknypel tructure. Machines notify the scheduler when a job terminates, and

081 = I::ggzg machines periodically provide statistics so that the cluster sched-

% O TaskType 4 uler has current information on machine resource consumption.

[—“_S 0.6 |

s . 2.2 Methodology

] We now describe our methodology for conducting empirical stud-

L o0.2 ies. A study is two or more experiments whose results are com-
pared to investigate the effects of constraints on task scheduling

delays and/or machine resource utilizations. Figure 4 depicts the
workflow used in our studies. There are four sub-workflows. The
data preparation sub-workflowcquires raw trace data from pro-
Figure 3: Fraction of tasks by type in Google compute clusters.  duction Google compute clusters. A raw trace is a kind of sched-

The remainder of this paper is organized as follows: Seffion 2 de- uler checkpoint (e.g.. [31]) that contains the history of all schedul-
scribes our experimental methodology. Seciibn 3 assesses the iming events along with task resource requirements and placement
pact of constraints on task scheduling delays. SeElion 4 constructsconstraints. Théaseline sub-workflowns experiments in which

a simple model of the impact of constraints on task scheduling there is no modification to the raw trace. This sub-workflow makes
delays. Sectiof]5 describes how to extend existing performanceuse of benchmarks that have been developed for Google compute
benchmarks to incorporate constraints. Sedflon 6 discusses relate@lusters. The benchmarks are structured as in Flgure 2. Workload

A B c
Compute Cluster

work. Sectioll7 contains our conclusions and future work. Generation is done by synthesizing tasks from traces of Google
compute clusters. Then, the real Google cluster scheduler makes
2. EXPERIMENTAL METHODOLOGY scheduling decisions. One version of the benchmark runs with real

Serving Machines. In a second version of the benchmark, there are
This section describes the Google task scheduling mechanism ancho Serving Machines; instead, the Serving Machines are mocked
our experimental methodology. using trace data to provide statistics of task executions on Serving

Machines.  Our studies use the latter benchmark for two rea-
Our experiments use data from three Google compute clusters. Wesons. First, it is unnecessary to use real Serving Machines. This is
refer to these clusters as A, B and C. The clusters are typical in because once task assignments are known, task scheduling delays



data preparation :— - _ﬁ T treatment sub-workflow Short Description # of
supworkfow [ L EES T Name values
| 3 : arch architecture 2
| [_reament speciticaion | | num_cores | number of cores 8
! 1 num_disks | number of disks 21
baseline sub-workflow : Treatment Trace : num_cpus number of CPUs 8
F- -y | | kernel kernel version 7
| ! ! clock_speed| CPU clock speed 19
: : : eth_speed | Ethernet speed 7
Baseine | | | platform Platform family 8
| | |

Benchmark Results

Benchmark Results
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| Results Analyzer
|

Table 1:

Machine attributes that are commonly used in
scheduling decisions. The table displays the number of possible
values for each attribute in Google compute clusters.

7777777777777777777777 Constraint Constraint | Relational
Figure 4: Workflow used for empirical studies. The Treatment Names Type Operator
Specificationblock is customized to perform different bench- cI{1}{1} arch =
mark studies. c2{1-5}.{1-2} | num_cores = >

c3.{1-3}.{1-2} | max_disks = >
and machine resource utilizations can be accurately estimated from c4.{1-2}.{1-2} | min_disks =>
the task execution statistics in the traces. Second, and more impor- c5.{1-4}{1-2} | num_cpus =>
tantly, it is cumbersome at best to use real Serving Machines in our c6{1-2}{1} kernel =
studies since evaluating the impact of task constraints requires an c7{1-2}{1} clock_speed =
ability to modify machine properties. The baseline sub-workflow c8{LI{1} eth s?)eed p
produces Baseline Benchmark Results. o1 plat_form

The treatment sub-workfloywerforms experiments in which ma-
chine properties and/or task constraints are modified from those
in the raw trace resulting in a Treatment Trace. The block la-
beledTreatment Specification performs the modifications to the
raw trace for an experiment. For example, in the next section, the
Treatment Specification removes all constraints from tasks in the
raw trace. This sub-workflow produces Treatment Benchmark Re-
sults.

Table 2: Popular task constraints in Google compute clusters.
The constraint name encodes the machine attribute, property
value, and relational operator.

of Google machine configurations, we do not list #aduesof the
machine attributes.

We use TablE]1 to infer the number of possible constraints. Recall

These computations use the Results Analyzer, which inputs thethat a constraint is a triple of machine a_ttribute, relationgl opera-
Baseline Benchmark Results and Treatment Benchmark Results tgi©": @nd value. We only consider constraints that use attribute val-
compute evaluation metrics for task scheduling delays and machineU€S ©f machine properties since constraints that use other values
resource utilizations. Our studies employ raw traces from the above '€ equivalent to constraints that use values of machine proper-
mentioned three Google compute clusters. (Although many tasks {i€S: For example, “num_cores > 9" is equivalent to “num_cores >
are scheduled in a day, most consume few resources.) We use & I the maximum value of num_cores is 8. It remains to count
total of 15 raw traces, with 5 traces from each of the three compute the combinations of relational operators and machine properties.
clusters. The raw traces are obtained at the same time on succesEOr categorical variables, there are two possible relational opera-
sive days during a work week. Because scheduling considerationsto's (=,7#}), and for numeric variables there are 6 possible rela-

are more important when resources are scarce, we select traces thdional operators{(=, #, <, <,>,>}). Thus, the number of feasible
have higher resource utilizations. constraints iy; viri ~ 400, wherey; is the number of values of the

i-th machine attribute and is the number of relational operators
that can be used with the machine attribute.
3. PERFORMANCE IMPACT OF
CONSTRAINTS Not surprisingly, it turns out that only a subset of the possible con-
straints are used in practice. Table 2 lists the thirty-five constraints
This section addresses the questi@h Do task placement con- that are commonly requested by tasks. The constraint type refers to
straints have a significant impact on task scheduling delays?  a group of constraints with similar semantics. With two exceptions,
Answering this question requires considering two factors in combi- the constraint type is the same as the machine attribute. The two
nation: (1) the supply of machine resources that satisfy constraintsexceptions are max_disks and min_disks, both of which use the
and (2) the resources demanded by tasks requesting constraints. num_disks machine attribute. For the commonly requested con-
straints, the relational operator is eitheror >. Note that> is
The constraints satisfied by a machine are determined by the ma-used with max_disks and min_disks, although the intended seman-
chine’s properties. We express machine properties as attribute-tics is unclear. One explanation is that these are mistakes in job
value pairs. TablE]1 displays machine attributes, the short namesconfigurations.
of attributes that are used in this paper, and the number of possi-
ble values for each machine attribute To avoid revealing details The constraint names in Taljle 2 correspond to the structure of con-



straints. Our notation isc <constraint type-.<attribute value ing decisions depend aall constraints requested by the task, not
index>.<relational operator index-. For example, “c2.4.2" isa  just the presence of individual constraints. The constraint charac-
num_cores constraint, and so it begins with “c2” since num_cores terizations described in Sectibh 5 address this issue in a systematic
is the second constraint type listed in Table 2. The “4” specifies manner.

the index of the value of number of cores used in the constraint

(but 4 is not necessarily the value of the attribute that is used in Returning to Q1, we assess the impact of constraints on task schedul-

the constraint). The final “2” encodes therelational operator. ing delays. Our approach is to have the Treatment Specification in
In general, we encode the relational operators using the indexes 1Figurel4 be “remove all constraints”. Our evaluation metricos
and 2 to represent and>, respectively. malized scheduling delay the ratio of the task scheduling delay

in the baseline sub-workflow in which constraints are present to
We provide more insights into the constraints in Tdbdle 2. The the task scheduling delay in the treatment sub-workflow in which
num_cores constraint requests a number of physical cores, whichall constraints are removed. Thus, a normalized scheduling delay
is often done to ensure sufficient parallelism for application codes. of 1 means that there is no change from the baseline and hence
The max_disks constraint requests an upper bound on the num-constraints have no impact on task scheduling delays.
ber of disks on the machine, typically to avoid being co-located
with I/O intensive workloads. The min_disks constraint requests a FigurelT plots normalized scheduling delays for the three compute
minimum number of disks on the machine, a common request for clusters. The horizontal axis is the raw trace file used as input for
I/0 intensive applications. The kernel constraint requests a partic- the experiment (see Figure 4). The vertical axis is the normalized
ular kernel version, typically because the application codes dependscheduling delay, and there are separate bars for each task type.
on certain kernel APIs. The eth_speed constraint requests a net-Observe thathe presence of constraints increases task schedul-
work interface of a certain bandwidth, an important consideration ing delay by a factor of 2 to 6 In absolute units, this often means
for network-intensive applications. The remaining constraints are tens of minutes of additional task wait time. The reason for this
largely used to identify characteristics of the hardware architecture. additional wait time is readily explained by examining the supply
The constraints included here are: arch, clock_speed, hum_cpuspf machine resources that satisfy constraints and the task demand
and platform. for these resources. For example, scheduling delays are smaller
for tasks that request the first two num_cpus constraints (c5.[1-
We now describe the supply of machine resources that satisfy con-2].*) compared with tasks that request the clock_speed constraints
straints. Figur€l5 plots the supply of compute cluster CPU, mem- (c7.*.*). This is because: (a) there are more machine resources
ory, and disk resources on machines that satisfy constraints. Thethat satisfy ¢5.[1-2].* than those that satisfy c7.*.* (see Fidure 5);
horizontal axis is the constraint using the naming convention in Ta- and (b) the task demand for c7.*.* is much greater than that for
ble[2. Hereafter, we focus on the 21 constraints (of the 35 con- c5.[1-2].* (see Figurgl6).
straints in Tabl€]2) that are most commonly specified by Google
tasks. These constraints are the labels of the x-axis of Figure 5.From the foregoing, we conclude that the presence of constraints
The vertical axis of that figure is the fraction of the compute clus- dramatically increases task scheduling delays in the compute clus-
ter resources that satisfy the constraint, with a separate bar for eactiers we study. The degree of impact does, however, depend on the
resource for each constraint. There is much evidence of machineload on the compute cluster. Our analysis focuses on periods of
heterogeneity in these data. For example, constraint c3.1.2 is satisheavy load since it is during these times that problems arise. Dur-
fied by machines accounting for 85% of the CPU of compute clus- ing light loads, constraints may have little impact on task schedul-
ter A, but these machines account for only 60% of the memory of ing delays. However, our experience has been that if compute clus-
compute cluster A. On the other hand, constraint ¢6.2.1 is satis- ters are lightly loaded, then administrators remove machines to re-
fied by machines that account for only 52% of the CPU of compute duce costs. This results in much heavier loads on the remaining
cluster A but 75% of the memory. machines, and hence a much greater impact of constraints on task
scheduling delays.
Next, we consider task demands for constraints. Figlre 6 displays
the demand by task type for compute cluster resources that sat-In this and the next section, we do not report results for resource uti-
isfy the constraints in Tablgl 2. These data are organized by tasklizations because our experiments do not reveal significant changes
type. The horizontal axis is the constraint, and the vertical axis is in resource utilizations due to constraints. This is likely because
the fraction of the tasks (by type) that request the constraint. Note only a small fraction of tasks are unable to schedule due to task
that it is very common for tasks to request the machine architec- placement constraints, and the impact of constraints on utilization
ture constraint (c1.1.1). This seems strange since from Higure 5 weis modest. However, the delays encountered by tasks with con-
see that all machines satisfy ¢1.1.1 in the compute clusters that westraints can be quite large, and so the presence of constraints on
study. One reason may be that historically there has been a diver-task average scheduling delays can be large.
sity of machine architectures. Another possible explanation is that
the same task may run in other compute clusters, where constraint
c1.1.1 does affect scheduling. Other popular constraints are: the4' MODELING PERFORMANCE WITH CON-
number of cores (c2.*.*), the kernel release (c6.*.*), and tfRJC STRAINTS

* %
clock speed (C7.%.%). This section provides insight into how constraints impact task schedul-

. . I . _ing delays. Our approach is motivated by insights from queuing
We r_10te In passmg_that even more insight can be provided by ex theory [21], in particular, that scheduling delays increase with re-
tending Figurél to include the resources requested by tasks. How-Source Utilizations

ever, these are high dimension data, and so they are challenging to
present. Further, these data do not provide a complete picture of

the impact of constraints on task scheduling delays in that schedul-our initial hypothesis is that task scheduling delays can be ex-

plained by average resource utilizations without considering con-
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Figure 7: Normalized task scheduling delay, the ratio of the task sabduling delays with constraints to task scheduling delays when
constraints are removed.

straints. To test this hypothesis, we conduct studies in which we average the delays observed in the five benchmarks of the compute
add to the raw trace 10,000 Type 1 tasks with small resource re- cluster. From this, we calculate normalized task scheduling delays
quirements. We restrict ourselves to task type 1 because of theirin the same way as is described in Secfibn 3.

importance. The added tasks have small resource requirements to

ensure that they would schedule if there are no task placement con+igure[8 plots the results for each compute cluster. Recall, that the
straints. Also, since the tasks have minimal resource requirements experiments are structured so that tasks scheduled on a compute
they do not affect resource utilizations; hence, for a single compute cluster see the same average resource utilizations regardless of the
cluster, tasks with different constraints see the same average retask constraint. Thus, if resource utilization without constraints is
source utilization. We conduct a total of 315 studies, one study for sufficient to explain task scheduling delays, then the points for a
each of the 15 raw trace files and each of the 21 constraints that wecompute cluster should be grouped closely around a single value of
consider. Then, for each constragend each compute cluster, we task scheduling delay. However, this is not the case. Instead, we
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Figure 8: Scheduling delays for tasks with a single constraint.
Each point is the average task scheduling delay for 10,000 type
1 tasks with one of the 21 constraints we study.

see a wide dispersion of points for each of the compute clusters.
We conclude that resource utilization by itself cannot explain task
scheduling delays if there are task placement constraints.

The foregoing motivates the need to extend the concept of resource

utilization to include constraints. We use the tesffective utiliza-

tion to refer to the resource utilizations seen by a task with con-
sideration for its constraints. Modeling effective resource utiliza-
tion allows us to answer questi@?2: “Which constraints most
impact task scheduling delays?” And, answering this question

is crucial to determine actions to take to reduce task scheduling
delays by modifying applications codes and/or changing machine
configurations.

We proceed based on insights obtained from Figure 1. Rather
than computing effective utilization directly, we compute the ra-
tio of effective utilization to average utilization. Our metric is
the Utilization Multiplier (UM) . UM is computed for a particu-

lar constraintc and a resource. In our analysisy is in the set
{CPU, memory disk}. Computing separate values of UM for each

r allows us to address heterogeneous machine configurations.

We construct UM by considering both the task demand imposed by
requests for constrairt and the supply of machine resources for
which c is satisfied. We begin with task demand. ldgt be the
demand for resourcethat is seen by tasks that request constraint
¢, and letd; be the total demand for resourceacross all tasks.
We use the superscrifit to indicate a demand metric. SEf is
the fraction of the demand for resourcelue to tasks requesting
constraintc:
g = G

dr
Next, we analyze the supply of machine resources.skebbe the
capacity of resource on machines that satisfy constramt(Note
that machine capacity is the “raw” supply without consideration
for demands from other tasks.) Lgtdenote the total capacity of
resourcer on all machines. We use the superscb denote a
supply metric. Sofg is the fraction of total resourceghat satisfy
c
Ser

S
fcr =

resources individually. Thus, we define foresources,
dc = (de1,- -+, den)s S = (o1, »Sen)s

d=(dg,---,dn), S= (S, , %),
fCD = (fCDl,m , chn) andf?: (fcs:’L,n , fcsﬁ).

Note thatfS f2 < 1, wherel is the unit vector with dimension

UM is the ratio of the fraction of the resource demand for a con-
straint to its supply. That is:
1
Uer = 75
f&

1)

. - - D . . . -
In vector notation, this isic = ';% where the division is done ele-

[ .
ment by element. In what follows, all vector operations are done
element by element.

uc provides a number of insights. First, consider a constratinat

is requested by all tasks and is satisfied by all machines. Tﬁen,
1= fCD, and sauc = 1. Thatis, if UM is 1, then the constraint has no
impact on the resource utilizations seen by tasks with the constraint.
In general, we expect that constraints limit the machines on which
a task can run. This implies thi < 1. There are some Google
compute clusters in which most resource demands come from tasks
that request constraints. For these compute clusters it is likely that
for one or morec 2 > 3, and souc > 1. That is, in this case, a
task requesting sees larger than average resource utilizations. On
the other hand, in some Google compute clusters, tasks request a
constraintc that will place the tasks on less desirable (e.g., older)
machines thereby reducing effective resource utilization. Such a
strategy works ifS > f2 so thatue < 1.

Uc can also be interpreted as an adjusted resource utilization, which
motivates our phrase “effective resource utilization.” pgtbe the
vector of resource utilizations for machines that satisfy constraint
c. Thatis,pc = %. Let p be the vector resource utilizations for all

machines, and sp= ¢. So,

2 des decs  pe
S ds sd p’

That is, the utilization of resouraeseen by tasks that request con-
straintc is a factor ofug, larger than the average utilization of re-
sourcer.

Uc

Often, task scheduling delays are determined by the bottleneck re-
source rather than the entire resource vector. The bottleneck re-
source is the resource that has the largest utilization. Thus, we
define themaximum UM, denoted by, to be the scalar

ug = ma (Ugr).

)

Figure[9 displaysic by CPU, memory, and disk for Type 1 tasks.
Although the values ofic vary from compute cluster to cluster,
there is a general consistency in the relative magnitude.ofor
exampleUc.1.1.1 is consistently smaller than the other constraints,
anduc1.2 is consistently one of the largest values. For the most
part, uc > 1. The one exception is ¢1.1.1 where there are a few
instances in whicluc ~ 1. At a first glance, this is surprising since
Figure[® shows that a large fraction of tasks request ¢1.1.1. How-
ever, UM is the ratio of the demand for resources with the sup-

ply of these resources. From Figlite 5, we know that there is a large
supply of machine resources that satisfy c1.1.1. Heungej 1 is
small.

It is more convenient to consider the vector of resources rather thanWe return to the experiment described earlier in this section to see



—_—
.
L
(=]
=] .
= —————————
o
=
(<%}
=
———
O
)
o
(&}
[ |
—_—
S b S b S
< A S ] 2

& S ——

L

o

m c

WJ _“

o

=

D,

=
o ——

[}

>

o

o

u
e
S b = b =
~ — < = =]

(°n) sandniny uonezinn

——————————

>
] S ——

[=]
=] S ——
= S —

o

=

L

=
S —

[}

> ;

o

o

u
——
S B S b =
~ - - = =]

(°n) 1andnin uonezinn

TTe2
TT82
VA
TT22
1292
T 192
Zv'go
T eSO

Sﬁw
zZ Vo
TTV S
TEED
TZz'ed
zTed
z'g'2o
zveo
TEEZD
zzed
zTeo
TTTO

C
(c) Compute Cluster C

TT6°
TT8°
Tz Lo
TT Lo
T'2'90
TT90
Zv'5o
TeSo
z'z'so
Nﬂgm
zezvo
TTYO S
TeEed
T'Zz'ed
z'TEd
z'szo
zved
Teezo
zzeo
2 Teo
TTTo

TT62
TT'8°2
T2LD
TTLD
1292
TT92
zv'so
Tes2
zeso
El -ER=
zZ Yo
TIPS
TEed
TZ'ed
cTED
z's'ed
zveo
TEZD
zz'eo
EREA]
TTI2

C
(a) Compute Cluster A

(b) Compute Cluster B

Figure 9: Utilization Multiplier by resource for constraints.
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Figure 10: Impact of maximum utilization multiplier on normalized task scheduling delay.
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Figure 11: Constraint frequency vectors for machine statisticaklusters for compute clusters A and B. The numbers are the percg-

age of machines in the statistical cluster that satisfy the constiat.
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Figure 12: Resource distribution for machine statistical clusters.

if UM provides a better explanation of task scheduling delays than To characterize task placement constraints, we must address both
average resource utilization. Figurel 10 displays the relationship tasks and machines. We use statistical clust@rimgconstruct
betweenu{ and normalized task scheduling delay. Note that for groups of tasks and machines, a commonly used approach in work-
the most partUM provides a simple model of the performance load characterization [4]. Aask statistical clusteris a group of
impact of constraints in that task scheduling delays increase tasks that are similar in terms of constraints that the tasks request.
with maximum UM (ug). The relationship is linear for smaller A machine statistical clusteris a group of machines that are sim-
values ofug, but increases faster than linearly for largér Such ilar in terms of constraints that the machines satisfy. Tasks and
curves are common in queuing analysis|[21]. machines belong to exactly one statistical cluster.

Figure[10 indicates that if we order constraints by UM, then we Task and machine statistical clusters have a common structure, and
have also ordered constraints by their impact on task schedulingso the following definitions apply to both. To this end, we use the
delays. From FigurE]9, we see that in all three compute clusters,term entity to refer to both task and machine. A statistical cluster
the constraint with the largest UM (and hence the largest impact has two metrics. The first metric is the scatauster occurrence
on task scheduling delay) is c2.1.2, the first num_cores constraint.fraction. This is the fraction of all entities (of the same type in the
For compute cluster A, the constraints with the second and third same compute cluster) that are members of the statistical cluster.
largest impact on scheduling delays are clock_speed (c7.1.1) andThe second metric is theonstraint frequency vector. This vector
min_disks (c4.2.2) constraints respectively. The situation is a bit has one element for each constrainfThe vector element far is
different for compute cluster B. Here, the second and third largest the scalaconstraint occurrence fraction, which is the fraction of
scheduling delays are due to max_disks (c3.2.1) and min_disksentities in the statistical cluster that “have” the constraint~or
(c4.2.2) constraints. tasks, “have” means that the task requests the constraint, and for
machines “have” means that the machine satisfies the constraint.
Much insight can be obtained from the simple model that task
scheduling delays increase with UM. For example, consider the We use the terrmachine constraint characterizationto refer to
problem of resolving large scheduling delays for a task that has the set of machine statistical clusters. Tagk constraint charac-
small resource requirements and many task placement constraintsterization is defined analogously. Aonstraint characterization
We first compute the UM of the task’s constraints in the compute is the combination of the machine constraint characterization and
cluster in which the task has long scheduling delays. We focus on the task constraint characterization.
the constraints with the largest. It may be that some of these
constraints can be eliminated from the task’s request, especially if We construct machine statistical clusters by using a binary feature
the constraints are actually preferences rather than requirementsvector. For each machine, thi¢h element of its feature vector

However, if constraints with large: cannot be eliminated, an al- is 1 if the machine satisfies theh constraint; otherwise, the ele-
ternative is to find another compute cluster in whighis smaller. ment is 0. The elements of the feature vector are indexed by de-
Such a cluster will either have less demand for machine resourcesscending value of the maximum UM of the constraint. That is,
that satisfyc or a larger supply of such resources. ug > U, Initially, we used k-means [17] to construct machine

statistical clusters. However, this proved to be unnecessarily com-
plex for our data. Rather, it turns out that a simple approach based

5. BENCHMARKING WITH CONSTRAINTS on sorting works extremely well. Our approach starts by sorting the

This section investigates how to synthesize constraints to producemachinefeature vectors lexicographically. We form machine statis-

representative performance benchmarks. There are two parts tdic@l clusters by placing together machines that are adjacent in the
this: (1) characterizing task constraints and machine properties;sorted sequence as long as no element in their constraint frequency

and (2) incorporating synthetic constraints and properties into per- Vector differs by more than 0.05. The choice of 0.05 is empirical it
formance benchmarks. is based on the trade-off between the goals of having few statistical

lUnfortunately, the statistics and cloud computing communities boththeséerm
cluster but with very different semantics. We distinguish between these sesnlayt

5.1 Constraint Characterization using the phrases "statistical cluster” and "compute cluster".



clusters and having statistical clusters with homogeneous machineAlgorithm 2 : Assign properties to a machine.

properties. The result is four machine statistical clusters for each
of the three compute clusters that we study.

For task statistical clusters, we also use a binary feature vector.

Here, elemenitis 1 if the task requests constragt otherwise, the

vector value is 0. Task statistical clusters are constructed using k- 3:
means|[17] on the task feature vector. K-means is used to construct 4:
task statistical clusters because many values in the task constraint

frequency vectors are close to 0.5 and this precludes using simple 5:

clustering algorithms as we did with constructing machine statisti-

cal clusters.
1.0
W Compute Cluster A
$0 . O Compute Cluster B
£ B Compute Cluster C
5
s 0.6
5
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2 3
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Figure 13: Occurrence fraction for machine statistical clusters.

Algorithm 1 : Extend an existing benchmark to include task
placement constraints.

Require: Existing benchmark that generates machine resource ca-

pacities and task resource requirements.

1: if event = benchmark initializatiotihen

2:  Assign properties to machines using Algorithim 2.

3: end if

4: if event = task arrivathen

5:  Assign constraints to the task using Algorithin 3.

6: end if

7. if event =task is a candidate to run on a mactiresn

8: Determine if the machine satisfies the constraints required
by the task using Algorithinl 4.

9: end if

Figure[11 displays the constraint frequency vector for machine sta-
tistical clusters A and B. The results for compute cluster C are
similar to those for A and B. More complete data can be found
in [28]. The horizontal axis is the machine statistical cluster, and
the vertical axis is the constraint. Each point is sized in proportion
to the fraction of machines in the statistical cluster that satisfy the
constraint (with the actual value marked alongside). For example,
in Figure[11(d), about 74.2% of the machines that belong to statis-
tical cluster 1 satisfy constraint ¢5.1.2. We see that the machine

statistical clusters are fairly consistent between the compute clus-
ters. Indeed, even though there are thousands of machines in eac

compute cluster, the variation in machine properties can largely be
explained by four statistical clusters.

Figure[I2 displays the fraction of resources supplied by the ma-
chine statistical clusters. The horizontal axis is the machine sta-

Require: MachineOccurrenceFraction (Figurel 13), MachineCon-
straintFrequencyVector (Figutel11), Machine
cluster = randomly choose cluster weighted by MachineOccur-
renceFraction
mcfv = MachineConstraintFrequencyVector for cluster
for constraint in mchiwdo

if random(0,1X mcfv[constraint].ConstraintOccurrenceFraction

1:

2:

then
Machine.add(property that satisfies the constraint)

6: endif

7: end for

Algorithm 3 : Assign task placement constraints to a task.

Require: TaskOccurrenceFraction(Figlré15), TaskConstraintFre-
guencyVector(Figutel4), Task
cluster = randomly choose cluster weighted by TaskOccur-
renceFraction
. tcfv = TaskConstraintFrequencyVector for cluster
: for constraint in tcfvdo
if random(0,1X tcfv[constraint].ConstraintOccurrenceFraction
then
Task.add(constraint)
end if
: end for

1:

~rwWN

of the memory capacity in compute cluster A is on machines be-
longing to statistical cluster 1.

Figure[ T3 shows the occurrence fractions of the machine statistical
clusters in the three Google compute clusters. The horizontal axis
is the machine statistical cluster and the vertical axis is the fraction
of machines that belong to the statistical cluster. For example, in
Figurd IBapproximately 20% of the machines in compute cluster A
belong to machine statistical cluster 1.

Figure[14 displays the constraint frequency vectors of the task sta-
tistical clusters for compute clusters A and B. The figure is struc-
tured in the same way as for the machine statistical clusters in Fig-
ure[11. The horizontal axis is the task statistical cluster; the vertical
axis is the constraint; each point is sized in proportion to the frac-
tion of tasks in the statistical cluster that request the constraint (with
the actual value marked alongside). The task statistical clusters are
more difficult to interpret than the machine statistical clusters be-
cause: (a) many constraints have values closer to 0.5; (b) there is
more similarity between the statistical clusters; and (c) it is difficult
to relate task clusters in one compute cluster to task clusters in an-
other compute cluster. Figurel15 displays the occurrence fractions
of the task statistical clusters by task type. The horizontal axis is
the task statistical cluster, and the vertical axis is the fraction of
tasks (by type) that belong to the statistical cluster. For instance, in
Figure 5 (a), approximately 4% of Type 1 tasks belong to task sta-
tistical cluster 1. To provide further insight into the nature of tasks
in clusters, Figurg_16 shows the distribution of resources demanded

y task type) for the 10 task statistical clusters. These data can be
used in performance benchmarks to specify resource requirements
that are representative of Google compute clusters.

5.2 Extending Performance Benchmarks

tistical cluster, and the vertical axis is the fraction of resources by Next, we show how to extend existing performance benchmarks
resource type. For instance, in Figliré 12 (a), approximately 25% to incorporate task constraints and machine properties. First, we
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Figure 16: Resource distribution for task statistical clusters.

detail how to characterize and synthesize representative task conporate this synthesis into existing performance benchmarks such
straints and machine properties. Then, we show that how to incor- as those described in [13.16].
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Algorithm 4 : Determine if a task can be run on a machine. Figure[TT shows the results of our evaluation of the workload char-

Returns TRUE if Task can run on Machine. acterizations for task scheduling delays. Fidure 17(a) displays the

Require: Task, Machine errors introduced if we use synthetic constraints for tasks and the
1: for constraint in Task.constraints{p actual machine properties. We see that synthesizing task constraints
2: if constraint is not in Machine.constraintfifen introduces an error of approximately 8%. Figliré 17(b) displays the
3 return FALSE errors in task scheduling delays if only machines constraints are
4: endif synthesized. Here, we see an average error of around 5%. Fig-
5: end for ure[17(c) displays the errors if both task and machine constraints
6: return TRUE are synthesized. The average error is approximately 13%.

Figure[I8 analyzes the errors in compute cluster resource (CPU,
memory and disk) utilization introduced by using synthetically gen-
erated constraints. Figurel18(a) displays the results when we syn-
thesize task constraints and use the actual machine properties. We
see that this introduces an error of around 6%. Fifjure 18(b) shows
the errors resulting from synthesizing machines constraints and us-
ing the actual tasks constraints. Here, we see an average error of

0, i i -
Algorithm[2 details how to assign properties to a machine. In step arou_nd 3%. (!n _FlgurEl8(c), we see that the average error IS ap
1, a machine statistical cluster is chosen randomly based on the OC_proxmater 5% if both task and machine consraints are synthe-

currence fractions of machine statistical clusters (e.g., Figdre 13). sized.

The algorithm uses the constraint frequency vector of the chosen From these results, we conclude that constraint synthesis pro-

machine statistical cluster (e.g., Figlird 11) and a random numberduces representative workloads for Google compute clusters
generator to select constraints that the machine must satisfy. TheS ecificaFI)I svnthetic workloads enera?ed usinp our constraint
structure of constraints in Figufd 2 makes it trivial to specify a P Y, SY 9 9

property that satisfies a constraint. For example, if the constraint characterizations result in task scheduling delays that differ by an
is “num_cores> 2", then the machine is assigned the value of 2 average of 13% from what is produced by using t_he product|on_
for its num_cores attribute. In general, there can be logical incon- machines/tasks. And, our approach produces machine resource uti-
— i ! izati i 0 -
sistencies in the properties inferred in this manner. However, this lizations that differ by an average of average of 5% from the pro

problem does not arise for the set of constraints of the four machine duction machines/tasks.
statistical clusters for the compute clusters that we study.

Algorithm[1] describes the logic added to such an existing bench-
mark in order to incorporate representative constraints. This logic
is event-based, with processing done when the following events oc-
cur: (a) the benchmark is initialized; (b) a task arrives; and (c) a
task is a candidate to be placed on a machine.

Although our methodology for building performance benchmarks
that incorporate constraints is illustrated using data from Google
compute clusters, the methodology is not specific to Google. Our
’ e characterization of constraints for machines and tasks is done in
randomly based on the occurrence fractions of task statistical clus- . . ;

a general way using clustering, cluster occurrence fractions, and

ters (e.g., Figure15). Then, the constraint frequency vector of the cluster constraint frequency vectors. Our approach to incorporatin
chosen task statistical cluster (e.g., Fidurke 14) is used to assign con- q y : pp P 9

straints. Note that the logic assumes that the task type is known. If theens;;hgrsag;esrézriabt&n; |R:ooprietlr1f§1rrf_incgrit;%11c2marks Is also quite
this is not the case, a task type can be chosen randomly using the? ' 9 9 '
distributions in Figurgl3.

Algorithm[3 assigns constraints to tasks in a manner similar to what
Algorithm[2 does for machines. A task statistical cluster is chosen

6. RELATED WORK

Algorithm[4 describes the logic added to an existing compute clus-

ter scheduler to take into account task constraints. Before a taskMany compute clusters incorporate task placement constraints. Ex-
is assigned to a machine, the cluster scheduler calls Algofithm 4. amples include: the Condor system1[10] that uses the ClassAds
The algorithm returns true only if the machine satisfies all of the mechanisni[31], IBM’s load balancér [18], the Utopia system [32],
constraints required by the task. and grid toolkits[[15].

How accurately do the foregoing algorithms reproduce the per- Other related work includes predicting the queuing delay [29], ad-
formance characteristics of Google compute clusters? To answervance reservation and queue bounds estimatidn [3, 25] for jobs in
this question, we construct experiments by changing the TreatmentGrid computing and parallel supercomputers context. Although
Specification block in FigurEl4 to synthesize constraints for ma- these studies address the performance impact of resource require-
chines and tasks using AlgoritHh 1. Specifically, for all machines ments, they do not consider task placement constraints. A central
in the trace, we remove the machine’s properties and then apply part of our contribution is the characterization of task placement
Algorithm[2 to generate synthetic constraints that in turn determine constraints in terms of task and machine statistical clusters and their
the properties that are assigned to the machines. Similarly, for all properties (e.g., occurrence fractions and frequency vecténsiy:
tasks in the trace, we remove its constraints and then apply Al- ther, we introduce a new metric, Utilization Multiplier (UM), that
gorithm[3 to generate synthetic constraints that replace the task’'sextends resource utilization to include constraints. UM provides
constraints in the raw trace. Each study produces two metrics: av-a simple model of task scheduling delays in the presence of con-
erage error in task scheduling delay and average error in machinestraints in that task scheduling delays increase with UM.

resource utilization. The error in task scheduling delays is com-

puted as the percent deviation of the average task scheduling delayThere is a vast literature on workload characterization for distributed
in the treatment (synthesized constraints) from the average schedulsystems in general and compute clouds in particular. Examples in-
ing delay in the baseline (constraints in the raw trace). The error in clude: web server workload characterization|1,2,14], scientific and
compute cluster resource utilization is computed similarly. high performance computing workloads|[5. 9} 23], chip-level char-

12



B TaskType 1 [0 TaskType2 M TaskType 3 O TaskType 4 B TaskType 1 O TaskType2 M TaskType 3 O TaskType 4 B TaskType 1 O TaskType 2 M TaskType 3 O TaskType 4

=

3]
I

=

o
I

=

[$)]
I

=
o
I

o
I
(52
I

% Error in Scheduling Delay
o S
1 1

% Error in Scheduling Delay
s
Il

% Error in Scheduling Delay

o
i
o
I
o
i

A B o A B C A B C
Compute Cluster Compute Cluster Compute Cluster

(a) Synthetic Task Constraints (b) Synthetic Machine Prtigee (c) Synthetic Constraints and Properties

Figure 17: Percent error in task scheduling delay resulting from usimg synthetic task constraints and/or machine properties.
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Figure 18: Percent error in compute cluster resource utilizations esulting from using synthetic task constraints and/or machine
properties.

acteristics[[22, 27], resource consumption of Google compute clus- tends the concept of resource utilization to include constraints. We
ters [6,.24], and characterizations of MapRedude [7,.12,19]. Byrth  show that task scheduling delays increase with UM for the tasks
there has been work in the area of workload generation and bench-that we study. We also show how to characterize and generate rep-
marking including: MapReduce workload generatidbh [8]16, 20], resentative task constraints and machine properties, and how to
Web 1.0 benchmark tools such ab, httpperf Web 2.0 bench- incorporate synthetic constraints and properties into existing per-
marks [30], and the Yahoo! Cloud Servicing Benchmarki [11]. formance benchmarks. Applying our approach to Google compute
However, none of the foregoing provide characterizations of task clusters, we find that our constraint characterizations accurately re-
placement constraints and machine properties, nor does the existproduce production performance characteristics. Specifically, our
ing literature consider how to incorporate constraints into perfor- constraint synthesis produces benchmark results that differ from

mance benchmarks. production workloads by an average of 13% in task scheduling de-
lays and by an average of 5% in machine resource utilizations.
7. CONCLUSIONS AND FUTURE WORK Although our data is obtained from Google compute clusters, the

. . ., methodology that we develop is general. In particular, the UM
There has been much prior work on task scheduling that consid- metric applies to any compute cluster that employs a ClassAds style

g,snéﬁffgrcihﬁqUgeé?e:éf,r?sa;eidﬁ:eleeZ&fﬁgﬁiiﬁe;ffﬁ taskOf constraint mechanism. We look forward to seeing data that pro-
: pap P IC€ Impac Vides insights into the performance impact of task placement con-
placement constraints. Task placement constraints imphicth A
. straints in other compute clusters.
resources tasks consume. Task placement constraints, suchras cha

acteristics specified by the Condor ClassAds mechanism, provide

a way to deal with machine heterageneity and diverse software re- constraints that are preferences rather than requirements. For ex-

quirements in compute clusters. Our experience at Google SUG-2mole, in some situations, a task may prefer to run on a machine

?;Slfsséﬂztdb?iiz %I:I(;i/r;em consiraints can have a large impact OMvith 4 cores, but the task may not require this. We expect that UM

will be a useful tool in these studies since it allows us to under-

This paper is the first to develop a methodology that addresses theStand effective task utilizations with and without satisfying a pref-

. : erential constraint. A second extension is to study constraints that
performance impact of task placement constraints. We show that y

in Google compute clusters, constraints can increase average tas pply to collections of tasks. For example, there may be a require-
9 P ' ) 9 ent that tasks be assigned to the same machine because of shared
scheduling delays by a factor of 2 to 6, which often means tens

. . o . Char rizing an nchmarking with inter-task constrain
of minutes of additional task wait time. To understand why, we data. Characte g and benchmarking with inter-task constraints

introduce a new metric, the Utilization Multiplier (UM), that ex-

We are pursuing two extensions to this work. The firstis to address

13



is complicated because tasks and machines cannot be addressed in

isolation.
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