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On Contract Satisfaction in a Higher-Order World
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Behavioral software contracts have become a popular mechanism for specifying and ensuring logical claims
about a program’s flow of values. While contracts for first-order functions come with a natural interpretation
and are well understood, the various incarnations of higher-order contracts adopt, implicitly or explicitly,
different views concerning the meaning of contract satisfaction. In this article, we define various notions of
contract satisfaction in terms of observational equivalence and compare them with each other and notions
in the literature. Specifically, we introduce a small model language with higher-order contracts and use it to
formalize different notions of contract satisfaction. Each of them demands that the contract parties satisfy
certain observational equivalences.
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1. ASSERTIONS, CONTRACTS, AND MEANING

An assert statement captures a logical claim concerning the values of program vari-
ables as an executable Boolean expression. When the evaluation of the expression
produces false, something is wrong and the evaluation is aborted. This point is easy to
understand for every working programmer, and it explains the widespread use of as-
sertions [Rosenblum 1995]. Programmers realize that assertions ensure basic program
invariants; assertions assist with debugging when failures do happen; and assertions
help reason about code.

Likewise, the behavioral1 software contracts of Eiffel are assertions that govern the
flow of values across component2 interfaces [Meyer 1988, 1991, 1992b]. A program-
mer writes down Boolean expressions, and the compiler and the execution system
enforce contracts at run-time. A failure of these run-time checks triggers a report

1We use the terminology of Beugnard et al. [1999] for software contracts.
2We use the neutral word component to refer to the pieces of a software system. Think module, class,
procedure, function, or similar units of code.
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16:2 C. Dimoulas and M. Felleisen

about a contract violation, pinpointing the violator and explaining the nature of the
violation [Findler et al. 2001].

Over the past decade, contracts have received significant attention in the research
community. Projects on extended static checking [Detlefs et al. 1998; Barnett et al.
2004] exploit contracts to statically predict program errors. Similarly, Findler and
Felleisen [2002] introduce contracts for higher-order values (closures, objects, streams),
a theme that numerous researchers have expanded on [Blume and McAllester 2006;
Findler et al. 2004; Findler and Blume 2006; Gronski and Flanagan 2007; Hinze et al.
2006; Xu et al. 2009; Greenberg et al. 2010].

While Findler and Felleisen [2002] introduce higher-order contracts as a monitor-
ing and blame-assignment problem, they do not provide an independent definition of
what it means for a component to satisfy its contract. Blume and McAllester [2006]
introduce a quotient model for a contract language and provide the first definition of
contract satisfaction, which resembles the standard semantics for type refinements.
This work also points out that the original proposal by Findler and Felleisen seems
to miss contract violations. Findler et al. [2004] and Findler and Blume [2006] ex-
plain this discrepancy with a “contracts as projections” approach [Scott 1976]. Gronski
and Flanagan [2007] relate Findler and Felleisen’s higher-order contract to type casts.
Their result serves as the basis for a type-oriented form of extended static checking
[Knowles et al. 2006]. While the latter consider only one direction of the relation-
ship, Greenberg et al. [2010] investigate both directions and explain how the addition
of dependent higher-order contracts vastly complicates the picture. Xu et al. [2009]
transplant Blume and McAllester’s ideas to a lazy setting, though with the goal of us-
ing contracts for theorem-proving purposes. Hinze et al. [2006] and Chitil et al. [2003]
add contracts to lazy languages and end up with two different systems in terms of
contract satisfaction.

Our article introduces the novel idea of using the observational equivalence re-
lation of Plotkin’s PCF [1977] to study contracts. Observational equivalence is the
most fundamental model of reasoning about programs, subsuming equational (λ) cal-
culi, operational quotient models, and equivalences based on denotational semantics
[Morris 1968]. Using observational equivalence, we can define different notions of
contract satisfaction as solutions of observational equations. The simplicity of the def-
inition allows us to examine the relationships among the definitions and to illuminate
various contract-related phenomena.

2. THE IDEAS

Higher-order contract systems borrow notation from type systems to express assertions
for functions. Consider this example adapted from the Racket [Flatt and PLT 2010] code
base.

(provide/contract ...
[encode

(-> valid-string? code-string?)] ...

This interface fragment specifies an export called encode, whose contract says it is a
function from a valid string to a code string. The valid-string? and code-string?
predicates can perform any arbitrary computation and are in general impossible to
check statically.

Figure 1 illustrates one way to monitor such contracts. A service-providing compo-
nent, dubbed SerM, creates a link with a service-consuming component, called CliM.
The link represents the export of the encode function, and the contract is depicted as a
monitoring system that watches the communication on this link.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 16, Publication date: November 2011.
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SerM

contract:
(-> valid-string? code-string?)

  encode

CliM

Fig. 1.

SerM

valid-string?

code-string?

CliM

  encode

Fig. 2.

The nature of this link is bidirectional in the sense that the client provides a string
to be encoded and the server returns the encoded string of the given argument to the
client. According to the contract, the argument has to be a valid string and the result
of encode has to be a code string. Pictorially speaking, we can rearrange Figure 1 into
a second figure that shows how software contracts impose obligations on both parties.

Figure 2 reveals that the creators of components will not be able to program to the
expectations of a common contract unless they can tease out the respective obligations
by reading the contract text [Meyer 1992a].

While a contract system must allow the separation of a contract into obligations for
the service provider and obligations for the client of the contract, the client and server
pieces must contain enough information to reconstruct the entire contract. The contract
system is responsible for checking that the strings that cross the channels satisfy the
corresponding predicate and if not, blame the party that failed its obligations.

In a first-order world, distributing obligations is easy: the client is responsible for
the function argument that is checked against the domain contract and the server is
responsible for the result that is checked against the range contract. In a higher-order
world, though, things get complicated. Consider the following example.

(provide/contract ...
[generator

(-> (-> nat? prime?)
(-> valid-string? code-string?))] ...

This interface fragment exports a service called generator that, when provided with a
prime numbers stream, returns an encode function similar to the one from the previous
example. The contract says that generator expects a function from natural numbers
to prime numbers and returns another function from valid strings to code strings. (see
Figure 3.)

The simplistic approach to separate client and server obligations that we followed
in the first-order world does not apply here because both the argument and the result
are functions, that is, new services that come with their own postconditions and
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SerM

contract:
(->
  (-> nat? prime?)
  (-> valid-string? code-string?))

  generator

CliM

Fig. 3.

SerM

nat?

prime?

valid-string?

code-string?

CliM

  generator

Fig. 4.

preconditions. We can observe, however, that the argument values of the argument
function are provided by the server and the argument values of the result function
are provided by the client. With a similar reasoning about the result values of the
argument and result functions, we conclude that Figure 4 depicts a realistic separation
of the obligations of the server and the client for the higher-order example.

Our separation analysis—an informal reformulation of the contracts as projections
perspective [Findler et al. 2004; Findler and Blume 2006]—implies one obvious criteria
for what it means for a component such as SerM or CliM to meet the obligations of
a contract. Let mon(c, m) be the expression that uses contract c to monitor the flow
of values from component m to its clients and back. Then, the separation suggests
that m satisfies c if monitoring the component with c is observationally equivalent to
monitoring just the obligations for the other party:

mon(c, SerM) � mon(oblClient [[c]], SerM) (†)
mon(c, CliM) � mon(oblServer [[c]], CliM) (‡).

After all, the code for the server component is responsible for meeting the obligations
on the server, and if the server-side contract is removable without visible effect in any
context, the code must be correct as far as those obligations are concerned (eq. (†)).
Similarly, satisfying a client contract must be equivalent to monitoring just the server
contract (eq. (‡)).

Of course, a software engineer may argue that it is the composition of the server com-
ponent and the client component, that is, the composite program, that must meet the
contract and that considering components in isolation is futile. Pragmatically speaking,
this engineering perspective says errors are only errors when there is evidence of their
existence. In a different but related context, de Alfaro and Henzinger [2001] label this
approach “optimistic.”

In order to formulate this second notion of contract satisfaction, we need a notion
of component composition. Lacking a concrete syntax for now, we write SerM ◦m CliM
for the composition of server component SerM with client CliM. Equipped with this
notation, we say that a server component SerM optimistically satisfies a contract c in

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 16, Publication date: November 2011.
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composition with client CliM if

mon(c, SerM) ◦m CliM � mon(oblClient [[c]], SerM) ◦m CliM

and conversely, the CliM component satisfies c in conjunction with server SerM if

mon(c, CliM) ◦m SerM � mon(oblServer [[c]], CliM) ◦m SerM.

Note how this second notion of contract satisfaction uses ternary relations among
three items: server, client, and contract. In contrast, the first notion is expressed with
just binary relations between components and contracts. The second notion describes
contract satisfaction for a composition of a client and a server while the first notion
defines contract satisfaction for a server or a client in isolation. In addition, the first
notion implies the second while the reverse does not hold.

The rest of the article translates these informal ideas about contract satisfaction
into the concrete syntax of a minimal programming language, specifically, a call-by-
value variant of PCF [Plotkin 1977] equipped with contracts, which we call CPCF.
Section 3 recalls the relevant bits about PCF, extends it with contracts, and introduces
observational equivalence; Section 4 shows how to tease apart higher-order contracts.
In this setting, we explore formally the two notions of contract satisfaction of this
section: Sections 5 and 6 and their relation. Lastly, in Section 7, we develop a meaning
for contract checking à la Chitil et al. [2003].

3. CONTRACT PCF

PCF is a programming language derived from the simply-typed λ calculus [Plotkin
1977].

Types τ ::= o | τ → τ

o ::= num | bool
Terms e ::= 0 | − 1 | + 1 | . . . | tt | ff | (λx : τ.e) | x | e + e | e − e

| e∧e | e∨e | zero?(e) | if e then e else e | μx : τ.e | (e e)

We assume a simple3 type system for the language; the details are omitted and types
are omitted in examples unless needed for disambiguation. As usual, programs are
closed terms and contexts C are terms with holes in the position of an e.

Next, we equip the language with a by-value semantics. While any formalization of
the semantics should work, we rely on reduction semantics [Plotkin 1975; Felleisen
et al. 2009]. For conciseness, we focus on the absolutely necessary elements and skip
the rest of the standard formalization. A value is a numeric constant, a Boolean, or a
function.

Values v ::= 0 | − 1 | + 1 | . . . | tt | ff | (λx : τ.e)
Ev. Ctxt. F ::= [ ] | F + e | v + F | F − e | v − F | F∧e | F∨e

| zero?(F) | if F then e else e | (F e) | (v F) |
An evaluation context F is a context with the hole in a leftmost-outermost position. The
notions of reduction generate the compatible closure with evaluation contexts, which
is the standard reduction relation of the CPCF calculus. For example,

F[((λx : τ.e) v)] �−→ F[{v/x}e]
F[μx : τ.e] �−→ F[{μx : τ.e/x}e]

are the standard reduction relations for function application and recursion.

3We conjecture that type polymorphism and type inference are entirely orthogonal to our goal.
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3.1. CPCF: PCF with Contracts

Adding contracts to PCF requires extensions to the language of types and terms:

Types τ ::= ... | con(τ )

Terms e ::= ... | monl(κ, e) | lerrorp

κ ::= flat(e) | κ �→ κ | κ
d�→ (λx : τ.κ)

p ::= s | c
where l ∈ N. The result is CPCF, PCF with contracts.

CPCF integrates contracts and terms with a contract monitor form: monl(κ, e). Its
purpose is to observe the values that flow from e to its context and back and to make
sure they satisfy contract κ. The label on the statement uniquely identifies the monitor4

so that in the case of a contract violation the monitor can issue an error report that
pinpoints the problem source.

Here are the typing rules for this language extension.

� 	 lerrors : τ

� 	 κ : con(τ ) � 	 e : τ

� 	 monl(κ, e) : τ

� 	 e : o → bool
� 	 flat(e) : con(o)

� 	 κ1 : con(τ1) � 	 κ2 : con(τ2)
� 	 κ1 �→ κ2 : con(τ1 → τ2)

� 	 κ1 : con(τ1) �; x : τ1 	 κ2 : con(τ2)

� 	 κ1
d�→ (λx : τ1.κ2) : con(τ1 → τ2)

Errors are available at all types. A monitoring term demands that the first position is a
contract for a certain type and that the second term is a term at that type. Next, a flat
contract is just a predicate on base types. In contrast, a functional contract combines
two existing contracts and creates a contract for a function type, restricting both its
domain type and range type. Because contracts can relate arguments and results, CPCF
also comes with dependent functional contracts, which supply the function argument
to the range contract so that it can monitor the desired relationship.

A program is a term of ground type. Furthermore, we assume that a program contains
each label at most once. An appropriate set of rules for checking uniqueness of labels
is straightforward and omitted. Of course, as the program is reduced to a value, labels
are copied and occur multiple times in intermediate execution states.

Our syntax ensures that contracts show up in monl(κ, e) terms only. Intuitively, this
term enforces the contract κ between the “server component” e and the context of
the term, which plays the role of a “client component.” For flat, first-order values,
this just means checking that the value of e has the desired property. For functions, it
requires checking the arguments to the function and its result. Finally, for higher-order
functional values, the monitoring requires additional checks on the use of functions as
arguments. If this monitoring process discovers that a predicate from an embedded
flat contract does not hold, it raises the exception lerrorp. The label l identifies the
original location of the contract and the subscript p indicates which of the two parties
has violated the contract: s means e broke the contract and c blames the context.

Our formal semantics adapts the system of Findler and Felleisen [2002] to the syntax
of CPCF. We start with some additional terms and evaluation contexts.

Terms e ::= . . . | monl
p(κ, e)

Ev. Ctxt. F ::= . . . | monl
p(κ, F)

p ∈ {s, c}

4In an implementation, this label is the source location of the monitor.
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The additional contract terms carry a “blame subscript”, which determines whose fault
it is when a run-time check fails. The new terms satisfy appropriate typing constraints.

Here are the relevant notions of reduction.

F[· · · ] �−→ F[· · · ]
monl(κ, v) · monl

s(κ, v) [mon]
monl

p(flat(e), v) · if (e v) then v else lerrorp [ f lat]
monl

p(κ1 �→ κ2, v) · (λx.monl
p(κ2, (v monl

p̄(κ1, x)))) [ho]
monl

p(κ1
d�→ (λx.κ2), v) · (λx.monl

p(κ2, (v monl
p̄(κ1, x)))) [lax]

While the first relation rewrites a monitoring term to one with a blame subscript, the
remaining three use it to enforce contracts.

(1) A flat contract applies the given predicate to the given value. If this reduces to ff,
the exception blames party p at location l.

(2) A contract for a function v rewrites into a function that checks the domain contract
for the parameter of this function and the range contract for the result of applying
v to it.

(3) A dependent contract for a function works like a functional contract, but it substi-
tutes the argument for v also into the range contract.5

The two last rules use p̄, which denotes the complement of p, meaning if p = s
then p̄ = c and vice versa. For first-order functions, this implies that the monitoring
system blames the context if something is wrong with the argument and the function
body if the result does not pass the range check. In general, for higher-order functions,
negative positions in the contract come with a client blame label and positive positions
with a server label.6

As previously mentioned, these notions of reduction generate the compatible closure
with evaluation contexts, which in turn represents the standard reduction relation of
the CPCF calculus. In addition, we need this relation:

F[lerrorp] �−→ lerrorp.

That is, if an error shows up in the hole of an evaluation context, the program stops.
From here we get a semantics, that is, a function mapping programs to answers:

Answers a ::= v | lerrorp.

We say that a program converges (e ⇓ a) iff e ∗�−→ a; if the answer does not matter, we
write (e ⇓). Conversely, a program diverges (e ⇑) iff for all e′, there exists e′′ such that
when e ∗�−→ e′, e′ �−→ e′′.

5Some authors [Blume and McAllester 2006; Hinze et al. 2006; Xu et al. 2009] use a different reduction rule
for dependent contracts:

monl
p(κ1

d�→ (λx.κ2), v) �−→picky (λx.monl
p({monl

p̄(κ1, x)/x}κ2, (v monl
p̄(κ1, x)))) [picky].

In this variant of the contract monitoring system, the argument of a function guarded by a dependent
function contract is passed to the postcondition contract wrapped with the precondition contract. Doing so
makes the contract monitoring system enforce contracts while evaluating contract predicates and may catch
additional violations of the assertions by the predicates.

This article sticks to the lax reduction rules for dependent contracts, and the contract satisfaction criteria
in the following sections are capturing the philosophy of a lax system. None of the theorems of this article
fails for the picky semantics, however. This is not a surprise as the notion of contract satisfaction is much
more relaxed in a lax world than in a picky world.
6The terms “negative” and “positive” are used for contracts as if they were types.
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16:8 C. Dimoulas and M. Felleisen

3.2. Pragmatics of Contracts

Before delving into our explorations of contract satisfaction, we illustrate CPCF with
a few examples. While this purely expression-oriented language lacks modules and
contract boundaries, it can mimic them with terms in the role of server components and
contexts for client components. To link a server component e with a client component C,
we just plug the former into the hole of the latter: C[e]. Or, if the component composition
is to respect a contract κ, we fill the hole with a monitoring term:

C[monl(κ, e)].

Monitoring means that the predicate portions of the contract are applied to the ap-
propriate base-type arguments and results of functions. When these run-time checks
fail, errors are raised that indicate which party violates which (uniquely labeled) con-
tract. By implication, the monitoring semantics of Findler and Felleisen [2002] says
that a component does not satisfy a contract if the monitoring semantics signals an
appropriately labeled error.

The following example is loosely adapted from Blume and McAllester [2006].7

SerM κ CliM
λ f.if zero?( f 1) then f else f κ0 (([ ] (λy.y)) 2)

where κ0 = (flat(O?) �→ flat(O?)) �→ (Any �→ Any)
and O? checks if a number is odd and Any is flat(λx.tt)

The example shows that higher-order contract monitoring may yield unexpected re-
sults. The surprise is due to the Any �→ Any result contract, which any function should
satisfy, yet the monitoring system seems to disagree. Many programmers would expect
that since the server does not explicitly abuse its argument and promises little about
its result, the server cannot be held responsible for anything. But, as the client receives
the result of the server and applies it to 2, the monitoring system recognizes a contract
failure and raises an exception blaming the server. As far as the latter is concerned, it
must ensure that the identity function that flows from the client to the server is always
applied to odd numbers. Even though the server hands this function back to the client
as part of the result, it remains responsible for the function’s domain. In other words,
the server lets its argument flow unprotected into the context and therefore takes the
blame for failing to keep its promise to its client that it will always apply its argument
to odd numbers.

Similarly, Xu et al. [2009, p. 2] describe a situation with two contract violations where
the monitor discovers only one:

SerM κ CliM
λ f.( f 1) − 1 (Any �→ flat(PZ?)) �→ flat(PZ?) ([ ] (λx.x − 1))

where PZ? checks that a number is ≥ 0.

First, they agree with the monitoring semantics in that this example should signal an
error blaming the server for producing −1, even though its result contract promises
numbers that are greater or equal to 0. Second, they claim a violation on the client
side, namely, that the function (λx.x − 1) does not map arbitrary integers to positive
ones.

7The differences between the original example and the one given here are due to the statically typed nature
of our language. More precisely Blume and McAllester [2006] use an untyped Any predicate that accepts any
value as the postcondition contract of the server instead of the Any �→ Any function contract. We follow the
analysis of Findler and Blume [2006] who show that, in this setting, the most interesting interpretation of
Any is Any �→ Any.
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Here is a modification of the same example without the distracting server-side
violation:

SerM κ CliM
λ f.( f 1) + 1 (Any �→ flat(PZ?)) �→ flat(PZ?) ([ ] (λx.x − 1)) .

Xu et al. [2009] insist that the client violates the contract when it hands the server a
function that returns the value −1 when given the value 0. They justify their claim
with an explicit reference to the SAGE contract checking approach [Knowles et al. 2006;
Gronski and Flanagan 2007]. The CPCF monitoring semantics, however, reduces this
program to 1 and does not signal a violation.

Finally, Xu et al.’s addition of contracts to Haskell raises the question of how to deal
with laziness. One obvious question is whether the monitoring system should signal an
error if an element in a lazy stream fails its contract yet the program never evaluates
the element. Laziness, though, also highlights the problem of contracts that force more
stream elements than the function they are to protect, something that plain CPCF
exhibits too.

Although CPCF does not come with lazy streams, we can mimic lazy streams with
functions on the natural numbers. In this context, consider one last example:

SerM κ CliM
λs.(fst s) κ1 ([ ] (λi. − i))

where κ1 = (Any �→ Any) d�→ λs.flat(λr.(PZ? (fst s))∧(PZ? (fst (rst s))))
and fst is λs.(s 0) and rst is λs.λi.(s (i + 1)).

While this contract forces the first two elements of the stream and triggers a contract
violation error because the second one is less than 0, the function itself uses only
one element and as such would not have raised an error. Because the contract is
overly eager, monitoring the contract adds behavior above and beyond the function
itself. This implies that in a lazy setting a dependent contract should not explore
the function argument more than the function does. Again, the literature differs on
this view, with Xu et al. [2009] suggesting that the above example should trigger an
error and with Chitil et al. [2003] arguing that the contract should be ignored for
being too strict. Degen et al. [2010] study the different approaches to contract checking
for lazy languages: they formulate and implement an eager and a delayed contract
checking system for a lazy language and compare them using monadic semantics. On
this basis, they show that eager contract checking does not satisfy contract idempotence
unless severe restrictions are imposed on contracts. They also demonstrate that even
though lazy contract checking does not demand such restrictions, it gives rise to weird
phenomena because less contract predicates than expected are checked. We show in
Section 7 that even if we accept the idea of lazy8 contract checking, there is a still wide
spectrum of possibilities. For the rest of the paper we refer to this kind of contract
checking as shy to avoid associating this idea exclusively with lazy languages.9

3.3. CPCF and Observational Equivalence

At this point we are ready to introduce the key relation of our framework: observational
equivalence. We consider a term e1 observationally equivalent to a term e2 if the two
are indistinguishable with respect to answers for all program contexts.

8This notion of lazy contract checking is distinct from the one of Findler et al. [2007]. For them, lazy checking
is a device for checking contracts on data structures only when needed.
9All linguistic phenomena observed in lazy languages are also present in eager languages but with a type
one order higher. Consider for instance how lazy streams can be represented as first-order functions.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 16, Publication date: November 2011.



16:10 C. Dimoulas and M. Felleisen

Definition 3.1 (Observational Equivalence in CPCF, �). Two terms, e1 and e2, are
observational equivalent in CPCF, e1 � e2, if for all contexts C,

—C[e1] ⇓ lerrorp if and only if C[e2] ⇓ lerrorp, and
—C[e1] ⇓ v if and only if C[e2] ⇓ v′.

That is, if either program converges to a contract error, the other one must reduce
to the same contract error. Otherwise, they are equivalent if both terminate or both
diverge. For our proofs, we also need a value-termination preorder on terms.

Definition 3.2 (Value Approximation in CPCF, �). A term e1 is below a term e2 in
the term value-termination preorder in CPCF, written e1 � e2, if for all contexts C,
C[e1] ⇓ v implies C[e2] ⇓ v′.

While in the context of pure PCF, this preorder coincides with observational ap-
proximation (whose symmetric closure is observational equivalence), in CPCF the two
relations differ due the presence of errors.

Proving contextual equivalence and value approximation for CPCF is at the core of
the development of our theory. Koutavas [2008, ch. 2] introduces a technique to prove
contextual equivalence for a by-value language based on the untyped λ calculus, where
observational equivalence is defined via co-termination. The additions of contracts,
errors, and types to the language are conservative extensions. Thus their result can be
also transferred to CPCF and we use it for establishing our theorems.10

To keep this article self-contained, we briefly present the technique of Koutavas
[2008, ch. 2] as adapted to CPCF. The goal of the method is to define a binary relation
R that includes the two terms in question and to demonstrate that R satisfies ADEQUACY.
If so, its COMPATIBLE closure, called Rctx, is a bi-simulation and as such is closed under
evaluation and relates only terms that co-terminate. From this we conclude that the bi-
simulation is identical to observational equivalence [Morris 1968] and that in particular
the two terms in question are observationally equivalent.

Definition 3.3 (Compatible Closure). If R is a binary relation over closed terms of
the same type, Rctx is defined as C[e] Rctx C[e′ ] if 	 e : τ,	 e′ : τ , and e Re′ .

Definition 3.4 (Adequate Relations). A binary relation R on closed terms of the same
type is adequate if for all closed expression e, e′ such that e Rctx e′ if e ⇓ a for some
answer a there exists some answer a′ such that e′ ⇓ a′ and a Rctx a′, and if e′ ⇓ a′ there
exists a such that e ⇓ a and a Rctx a′.

In general, we prove adequacy for R by showing that IHR(k) if IHR(k − 1) and that
IHR−1 (k) if IHR−1 (k − 1), where R−1 is the inverse of R. The claim IHR(k) is the following
induction hypothesis:

IHR(k): for all i ≤ k, if e Rctx e′ and e i�−→ a, then there exists a′ such that
e′ ∗�−→ a′ and a Rctx a′.

The key insight is that this induction can be simplified. A proof based on the induction
hypothesis demands considering all appropriate e Rctx e′. The following theorem allows
us to use smaller proof obligations and restrict the proof only to e Re′.

THEOREM 3.5 (SIMPLIFIED ADEQUACY FOR CPCF). A binary relation R on closed terms
of the same type is adequate iff for all k,

10Our results are not tied to the method of Koutavas. Any method for proving contextual equivalence, for
instance, the one of Ahmed [2006], could be used instead.
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—for all i ≤ k, if 	 e : o, 	 e′ : o, e Re′, e i�−→ ar, then there exists a′
r such that e′ ∗�−→ a′

r
and ar Rctx a′

r;
—for all i ≤ k, if 	 e : τ1 → τ2, 	 e′ : τ1 → τ2, 	 va : τ1, 	 v′

a : τ2, e Re′, va Rctx v′
a and

(e va) i�−→ ar, then there exists a′
r such that (e′ v′

a) ∗�−→ a′
r and ar Rctx a′

r;
—these two claims also hold for R−1

when IHR(k − 1) is assumed.

PROOF SKETCH. The proof is a mild modification of the corresponding proof of Koutavas
[2008, ch. 2, sec. 2.5]. �

The method is usually applied as follows:

(1) create an R that relates the terms in question;
(2) execute the computations described in the theorem;
(3) look for a synchronization point after one or more reduction steps;
(4) and apply the induction hypothesis IHR(k − 1).

If this fails, the “stuck state” tends to suggest additional elements to be added to R.
After modifying R appropriately, repeat steps 2 and 3 for the newly added elements of
R.

The same method can also be adapted to prove that a CPCF term value approximates
another one.

Definition 3.6 (Adequate Approximation Relations). A binary relation R on terms of
the same type is adequate iff for all terms e, e′ such that e Rctx e′ if e ⇓ v there exists v′
such that e′ ⇓ v′ and v Rctx v′.

Based on the definition of adequacy we give the appropriate induction hypothesis:

IHR(k): for all i ≤ k, if e Rctx e′ and e i�−→ v, then there exists v′ such that
e′ ∗�−→ v′ and v Rctx v′.

Due to the directional nature of the approximation relation, it suffices to show that if
IHR(k − 1) then IHR(k).

As with contextual equivalence, we can simplify the induction hypothesis.

THEOREM 3.7 (SIMPLIFIED ADEQUACY FOR APPROXIMATION). A binary relation R on
closed terms of the same type is adequate iff for all k,

—for all i ≤ k, if 	 e : o, 	 e′ : o, e Re′, e i�−→ vr, then there exists v′
r such that e′ ∗�−→ v′

r
and vr Rctx v′

r;
—for all i ≤ k, if 	 e : τ1 → τ2, 	 e′ : τ1 → τ2, 	 va : τ1, 	 v′

a : τ2, e Re′, va Rctx v′
a and

(e va) i�−→ vr, then there exists v′
r such that (e′ v′

a) ∗�−→ v′
r and vr Rctx v′

r

when IHR(k − 1) is assumed.

PROOF SKETCH. The proof is a mild modification of the forward direction of the corre-
sponding proof of Koutavas [2008, ch. 2, sec. 2.5]. �

To demonstrate the proof method, we prove a simple approximation for CPCF. With
the value-termination preorder, we can confirm that monitoring a contract for a value
changes the observable behavior in a predictable manner. That is, if the program with a
contract terminates normally, the program without contracts produces the same value;
otherwise the effects of the contract (divergence, extra errors) or a contract error may
show up.
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16:12 C. Dimoulas and M. Felleisen

PROPOSITION 3.8. monl(κ, e) � e

PROOF SKETCH. According to the method, it suffices to define a binary relation R on
terms that relates at least the two terms from the proposition’s statement. Then, we
show that the following proof obligation P(k) holds for all k:

P(k): if for all i ≤ k, if e Rctx e′ and e i�−→ v, then there exists v′ such that
e′ ∗�−→ v′ and v Rctx v′.

where Rctx is the compatible closure of R.
Here is a relation R, generated from the proposition’s claim:

e Rctx e′

monl(κ, e) Re′
e Rctx e′

monl
p(κ, e) Re′ .

The standard way to show that the proof obligation holds is to proceed by induction on
k. By Theorem 3.7, it is sufficient to consider only pairs e, e′ such that e Re′. We show
one case of the inductive step of the proof for the second clause of Theorem 3.7. In this
case, we focus on terms monl

p(κ1 �→ κ2, eo) and e′
o such that monl

p(κ1 �→ κ2, eo) Re′
o.

Based on the antecedent of the second clause of 3.7, we pick va and v′
a, calculate the

terms (monl
p(κ1 �→ κ2, e) va) and (e′

o v′
a) and show that if the first term converges to a

value then the second term also converges to a value and the two values are related
under Rctx.

We focus on the sub-case where eo
∗�−→ vo and we compute for the first term:

(monl
p(κ1 �→ κ2, e) va) ≥n+1�−→ monl

p(κ2, (vo monl
p̄(κ1, va))).

By the definition of R, we know that since monl
p(κ1 �→ κ2, eo) Re′

o, eo Rctx e′
o holds too. By

applying the induction hypothesis on terms eo, e′
o we conclude that if eo

∗�−→ vo, then
e′

o
∗�−→ v′

o and vo Rctxv′
o.

Thus, we can now compute for (e′
o v′

a):

(e′
o v′

a) ∗�−→ (v′
o v′

a).

We know that vo Rctxv′
o. By the definition of R, we conclude that monl

p̄(κ1, va) Rctx v′
a.

and also monl
p(κ2, (vo monl

−p(κ1, va))) Rctx(v′
o v′

a). Now the desired conclusion that (v′
o v′

a)
converges to a value if monl

p(κ2, (vo monl
p̄(κ1, va))) converges to a value and the two values

are related under Rctx follows from another use of the induction hypothesis. �

4. SEPARATING CONTRACTS

Every contract has two parties: a client and a server. Like in real life, conformance with
a contract is only possible if a contract party can read a contract’s text before executing
it and extract its obligations.

In CPCF, contracts are trees with flat contracts at the leaves. Each of these leaves
applies to either the server or the client component of a contract monitoring boundary,
but not both. To tease out the server or client obligations from a contract, it suffices
to leave the tree structure intact and to replace the inapplicable flat contracts with
predicates that accept all values. The following definition expresses this idea as a
meta-function oblp[[ · · · ]] from contracts to contracts.
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Definition 4.1 (Contract Splitting, oblp[[ · · · ]]).

oblp[[κ]] =
{

oblss[[κ]] if p = s
oblcs[[κ]] if p = c,

where oblp1
p2

[[κ1 �→ κ2]] = oblp1
p̄2

[[κ1]] �→ oblp1
p2

[[κ2]]
oblp1

p2
[[κ1

d�→ (λx.κ2)]] = oblp1
p̄2

[[κ1]] d�→ (λx.oblp1
p2

[[κ2]])
oblpp[[flat(e)]] = flat(e)
oblpp̄[[flat(e)]] = flat(λx.tt)

p ∈ {s, c}.
The converse is to take two homologous contract trees and compose them.

Definition 4.2 (Contract Composition, ◦).

flat(e) ◦ flat(e′) = flat((λx.(e′ x)∧(e x)))
κ1 �→ κ ′

1 ◦ κ2 �→ κ ′
2 = κ1 ◦ κ2 �→ κ ′

1 ◦ κ ′
2

κ1
d�→ (λx.κ ′

1) ◦ κ2
d�→ (λx.κ ′

2) = κ1 ◦ κ2
d�→ (λx.κ ′

1 ◦ κ ′
2).

Special care is taken to make sure that the dependent variables of the two parts are
identical.

The composition of the server and client obligations of a contract is observationally
equivalent to the contract.

PROPOSITION 4.3. monl(κ, e) � monl(oblp[[κ]] ◦ obl p̄[[κ]], e)

PROOF SKETCH. The proof proceeds along the lines of the proof of Proposition 3.8.
Here is a binary relation R that expresses our proposition:

κ Rctx κ ′ e Rctx e′

monl(κ, e) Rmonl(oblp[[κ ′]] ◦ obl p̄[[κ ′]], e′)
κ Rctx κ ′ e Rctx e′

monl
p′(κ, e) Rmonl

p′ (oblpp′ [[κ ′]] ◦ obl p̄p′ [[κ ′]], e′)
.

We use again the proof obligation:

P(k): if for all i ≤ k, if e Rctx e′ and e i�−→ a, then there exists a′ such that
e′ ∗�−→ a′ and a Rctx a′.

However, due to the bidirectional nature of observational equivalence, we need to
prove that P(k) holds for all k both for R and its inverse relation R−1.

We show the most interesting case of the inductive step of the proof for the second
clause of 3.5. We focus on terms with dependent contracts monl

p′ (κ1
d�→ (λx.κ2), e) and

monl
p′ (oblpp′[[κ ′

1
d�→ (λx.κ ′

2)]] ◦ obl p̄p′ [[κ ′
1

d�→ (λx.κ ′
2)]], e′

o) that are related under this relation R:
monl

p′ (κ1
d�→ (λx.κ2), eo) Rmonl

p′ (oblpp′[[κ ′
1

d�→ (λx.κ ′
2)]] ◦ obl p̄p′ [[κ ′

1
d�→ (λx.κ ′

2)]], e′
o).

Based on the antecedent of the second clause of Theorem 3.5, we pick va and v′
a such

that va Rctx v′
a and then we proceed by calculating terms (monl

p′ (κ1
d�→ (λx.κ2), eo) va) and

(monl
p′ (oblpp′ [[κ ′

1
d�→ (λx.κ ′

2)]] ◦ obl p̄p′[[κ ′
1

d�→ (λx.κ ′
2)]], e′

o) v′
a) and showing that either the two

terms diverge or they both converge to answers related under Rctx.
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We split the proof into two cases, one per direction.

—From left to right, we pick the subcase where eo
n�−→ vo and proceed by calculating

(monl
p′ (κ1

d�→ (λx.κ2), eo) va):

(monl
p′ (κ1

d�→ (λx.κ2), eo) va) n≥1�−→ monl
p′ ({va/x}κ2, (vo monl

p̄′ (κ1, va)))

By the definition of R, we know that since the two terms monl
p′ (κ1

d�→ (λx.κ2), eo) and
monl

p′ (oblpp′ [[κ ′
1

d�→ (λx.κ ′
2)]] ◦ obl p̄p′ [[κ ′

1
d�→ (λx.κ ′

2)]], e′
o) are related under R, we can infer

that eo Rctx e′
o. By applying the induction hypothesis on terms eo and e′

o, we conclude
that if eo

∗�−→ vo then e′
o

∗�−→ v′
o and vo Rctxv′

o.
Now, we can calculate (monl

p′(oblpp′[[κ ′
1

d�→ (λx.κ ′
2)]] ◦ obl p̄p′ [[κ ′

1
d�→ (λx.κ ′

2)]], e′
o) v′

a):

(monl
p′(oblpp′[[κ ′

1
d�→ (λx.κ ′

2)]] ◦ obl p̄p′ [[κ ′
1

d�→ (λx.κ ′
2)]], e′

o) v′
a)

∗�−→ (λx.monl
p′ (oblpp′ [[κ ′

2]] ◦ obl p̄p′ [[κ ′
2]], (v′

o monl
p̄′ (oblpp̄′[[κ ′

1]] ◦ obl p̄p̄′[[κ ′
1]], x))) v′

a)
�−→ monl

p′({v′
a/x}(oblpp′ [[v′

a]] ◦ obl p̄p′ [[v′
a]]),

(v′
o monl

p̄′ (oblpp̄′ [[κ ′
1]] ◦ obl p̄p̄′ [[κ ′

1]], v′
a)))

= monl
p′({v′

a/x}oblpp′[[κ ′
2]] ◦{v′

a/x}obl p̄p′ [[κ ′
2]],

(v′
o monl

p̄′ (oblpp̄′ [[κ ′
1]] ◦ obl p̄p̄′ [[κ ′

1]], v′
a)))

= monl
p′(oblpp′[[{v′

a/x}κ ′
2]] ◦ obl p̄p′[[{v′

a/x}κ ′
2]],

(v′
o monl

p̄′ (oblpp̄′ [[κ ′
1]] ◦ obl p̄p̄′ [[κ ′

1]], v′
a)))

The two syntactic equalities are derived by two simple lemmas regarding substitution
and the obligation separation and composition functions. Both lemmas can be easily
proved by structural induction on contracts.

Now, the desired conclusion that if monl
p′ ({va/x}κ2, (vo monl

p̄′(κ1, va))) ⇓ ar then also

monl
p′ (oblpp′ [[{v′

a/x}κ ′
2]] ◦ obl p̄p′ [[{v′

a/x}κ ′
2]], (v′

o monl
p̄′(oblpp̄′[[κ ′

1]] ◦ obl p̄p̄′[[κ ′
1]], v′

a)))
returns answer a′

r and ar Rctx a′
r, and similarly for divergence, follows from another

use of the induction hypothesis.
—The right-to-left direction follows an analogous argument. �

The idea of separating contracts into obligations for servers and clients is implicit
in Meyer’s writing and is adapted to a higher-order setting by Blume and McAllester
[2006] and Findler and Blume [2006]. The latter treat obligations as error projections
and attempts to compose them are defined in terms of function composition. This ap-
proach does not work for dependent contracts, however. More specifically Findler et al.
[2004] show that dependent contracts and their obligations are not error projections.

Function composition of our obligations also does not give the expected outcome.
In more detail, we can demonstrate that monl(κ, e) �� monl(obls[[κ]], monl(oblc[[κ]], e)) and
monl(κ, e) �� monl(oblc[[κ]], monl(obls[[κ]], e)). Consider the following composition where
κ0 = (flat(PZ?) �→ flat(PZ?)) d�→ (λ f.flat(λx.( f 0) < 0)):

SerM κ CliM
λ f.( f 2) κ0 ([ ] (λy.y − 1)) .

In this case, obls[[κ0]] = (flat(PZ?) �→ Any) d�→ (λ f.flat(λx.( f 0) < 0)) and oblc[[κ0]] =
(Any �→ flat(PZ?)) d�→ (λ f.Any). Calculating (monl(κ0, (λ f.( f 2))) (λy.y − 1)) returns the
value 1 while (monl(obls[[κ0]], monl(oblc[[κ0]], (λ f.( f 2)))) (λy.y − 1)) raises lerrors and
(monl(oblc[[κ0]], monl(obls[[κ0]], (λ f.( f 2)))) (λy.y − 1)) raises lerrorc.
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In contrast, our approach to treat separation and composition of obligations as syn-
tactic operations on contracts handles all kinds of contracts, as Proposition 4.3 shows.
We therefore choose this syntactic approach over the semantic one of Findler et al.
[2004] and Blume and McAllester [2006].

Before we end the section, let us prove two useful lemmas about obligations. First,
the client-side and server-side obligations of a contract have fewer effects (contract
errors or divergence) than the complete contract when used to monitor a component.

LEMMA 4.4. monl(κ, e) � monl(oblp[[κ]], e)

PROOF SKETCH. Here is a relation that brings together the critical elements:

κ Rctx κ ′ e Rctx e′

monl(κ, e) Rmonl(oblp[[κ ′]], e′)
κ Rctx κ ′ e Rctx e′

monl
p′(κ, e) Rmonl

p′ (oblpp′ [[κ ′]], e′)
.

The rest of the proof is a standard application from the strategy in Section 3.3. �
Second, using only a client-side or server-side contract in place of the full contract

imposes fewer restrictions. Technically, imposing just the server-side obligations means
client-side errors cannot show up and vice-versa.

LEMMA 4.5. For all program contexts C, C[monl(oblp[[κ]], v)] �⇓ lerror p̄.

PROOF SKETCH. Recall that programs have unique labels on all contracts and errors.
The proof uses a Curry-Feys subject reduction strategy to prove that lerror p̄ doesn’t
show up as a redex. The core of the subject is S:

lerrorp ∈ S
monl(oblp[[κ]], e) ∈ S if κ, e ∈ Sctx

/l
monl

p(oblp[[κ]], e) ∈ S if κ, e ∈ Sctx
/l

monl
p̄(oblp[[κ]], e) ∈ S if κ, e ∈ Sctx

/l
if ((λx.tt) v) then v else lerror p̄ ∈ S if v ∈ Sctx

/l
if tt then v else lerror p̄ ∈ S if v ∈ Sctx

/l
for p, l from theorem’s statement.

The subject itself is the “mostly compatible” closure of S, dubbed Sctx
/l , which we

define as C[ē] ∈ Sctx
/l if ē ∈ S and l does not occur in C. The subject reduction step shows

that the standard reduction relation preserves membership in Sctx
/l . �

5. TIGHT CONTRACT SATISFACTION

Recent research efforts have focused on the verification of components independent of
their deployment context [Flanagan et al. 2002; Barnett et al. 2004]. Specifically, their
efforts aim to prove that a component lives up to its behavioral software contracts.
One way to formulate this notion of contract satisfaction is to say that connecting the
verified server component with any client component never triggers a contract error
that blames the server. With CPCF notation, v satisfies κ if and only if for all contexts
C, C[monl(κ, v)] does not evaluate to lerrors.

Exactly along these lines, we propose a definition of contract satisfaction that uses
only CPCF’s notion of observational equivalence. Specifically, we say that a server
component v satisfies a contract κ if the server’s part of the contract, obls[[κ]], is never
observable for any client. Conversely, a client component C satisfies a contract κ if the
client’s part of the contract, oblc[[κ]], is never observable for any server.
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Definition 5.1 (Tight Contract Satisfaction).

—v �T κ if monl(κ, v) � monl(oblc[[κ]], v)
—C �T κ if C[monl(κ, x)] � C[monl(obls[[κ]], x)].

In a world of first-order functions, a world where function types look like o → · · · →
o, a programmer can ensure tight contract satisfaction with a simple if expression.
Assume we are given

κ∗ = flat(ec) �→ flat(es) : con(o → o).

Then, for a function v : o → o, the following alternative v∗

(λx.let y = (v x) in if (es y) then y else lerrors)

tightly guarantees the contract κ∗, as a straightforward calculation shows. First, ob-
serve that v∗ is equivalent to

(λx.((λy.monl
s(flat(es), y)) (v x))),

which is indistinguishable from

(λx.monl
s(flat(es), (v x))).

For the rest of the development of our argument, we use the latter term when we refer
to the definition of v∗.

Second, we can show for CPCF that �−→⊂�. This allows us to consider terms produced
by reduction steps as observationally equivalent.

Third, it is easy to prove, now, that

monl
p(flat(λx.tt), e) � e [ttintro]

and

monl
p(flat(λx.ec), e) � monl

p(flat(λx.ec), monl
p(flat(λx.ec), e)) [flatelim].

Fourth, we know that

((λx.F[x]) e) � F[e] [β�] [Sabry and Felleisen 1993].

Finally, these equations imply v∗ �T κ∗ as follows:

monl(κ∗, v∗)
� monl

s(κ
∗, v∗) [red. rule mon]

� (λx.monl
s(flat(es), (v∗ monl

c(flat(ec), x)))) [red. rule ho]
� (λx.monl

s(flat(es), monl
s(flat(es), (v monl

c(flat(ec), x))))) [v∗ def., β�]
� (λx.monl

s(flat(es), (v monl
c(flat(ec), x)))) [flatelim]

� (λx.monl
s(flat(λx.tt), monl

s(flat(es), (v monl
c(flat(ec), x))))) [ttintro]

� (λx.monl
s(flat(λx.tt), monl

s(flat(es), (v monl
c(flat(ec), x))))) [v∗ def., β�]

� monl(flat(λx.tt) �→ flat(es), v∗) [red. rule ho]
� monl(oblc[[κ∗]], v∗) [κ∗, oblc def.].

The simplicity of v∗ may explain why contract satisfaction is easily dismissed as trivial
even though the higher-order version is surprisingly complex and does not allow such
trivial protection.

For a higher-order world, tight contract satisfaction promotes a stringent and ba-
sically pessimistic view. In a sense, it forces component creators to defend against
all possible—malicious and unintentional—problems in the clients with which their
components might collaborate. While section 3 already spells out an example that
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illustrates the severity of this notion of contract satisfaction, let us explore another
example as a reminder. Consider these pieces:

C† = let g = [ ] in let f = (λx.x − 1) in (g f )
v† = (λ f.( f 2) − 1)
κ† = (flat(PZ?) �→ flat(PZ?)) �→ flat(PZ?),

where PZ? checks whether a number is greater or equal to 0.
Connecting the two components via the contract produces a plain CPCF program:

let g=monl((flat(PZ?) �→ flat(PZ?)) �→ flat(PZ?), (λ f.( f 2) − 1))
in let f = (λx.x − 1) in (g f ).

.

According to the semantics of CPCF, this program evaluates to 0, that is, the contract
monitoring process does not observe any contract violation. It is straightforward to see,
however, that v† ��T κ†. To prove this point, we exhibit the context

C†
o = let g = [ ] in let f = (λx.0) in (g f )

as a witness for distinguishing the behavior of monl(κ†, v†) and monl(oblc[[κ†]], v†). Specif-
ically, the program

C†
o[monl(κ†, v†)]

reduces to lerror+, while

C†
o[monl(oblc[[κ†]], v†)]

produces −1 because oblc[[κ†]] is

(flat((λx.tt)) �→ flat(PZ?)) �→ flat((λx.tt))

and checks only that the client sends numbers greater or equal to 0 to the server while
the latter may send any value to the former.

In short, tight contract satisfaction expects components to provide universal guaran-
tees about their behavior. This idea shows up in both the work of Blume and McAllester
[2006] as well as Xu et al. [2009]. We can also characterize tight contract satisfaction
via two theorems that are similar to the result of their piece of research.

THEOREM 5.2. If v ��T κ, then there exists C such that
C[monl(κ, v)] �� C[monl(oblc[[κ]], v)] and for all v′, C[monl(κ, v)] �⇓ v′.

PROOF. First, by definition of tight contract satisfaction we know that there is at least
one whole program context C such that C[monl(κ, v)] �� C[monl(oblc[[κ]], v)]. Second, we
proceed with proof by contradiction. By Lemma 4.4, we show that if C[monl(κ, v)] ⇓ v′,
then C[monl(oblc[[κ]], v)] ⇓ v′′. Since C is a whole program v′ and v′′ are values of base
types and thus v′ = v′′. Based on that, we conclude that for all v′, C[monl(κ, v)] �⇓ v′. �

THEOREM 5.3. If v �T κ, then C[monl(κ, v)] �⇓ lerrors for all contexts C.

PROOF. By definition of tight contract satisfaction and lemma 4.5. �
Blume and McAllester [2006, p. 3] start their investigation of contract satisfaction

from the implied notion of the Findler-Felleisen contracts. More specifically, they define
that a server satisfies its contract if the composition with any client never triggers a
contract error that blames the server, just like we did at the opening paragraph of
this section. They give an alternative definition of this notion of contract satisfaction
based on set theory and prove the equivalence of the two definitions via soundness
and completeness theorems. Taken together the theorems of this section establish that
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tight contract satisfaction defines a relationship that is analogous to the one of Blume
and McAllester [2006]. Any remaining differences are due to the latter’s requirements
that contracts do not signal errors on their own while our contracts are unrestricted,
allowing errors and divergence.

6. LOOSE CONTRACT SATISFACTION

Although tight contract satisfaction establishes universal guarantees, many component
programmers will happily accept the less ambitious standard of correct collaboration
between a specific server component and some specific client components. Put differ-
ently, it often suffices to link a client with a server via some contract and to merely
monitor the values that flow across the boundary whenever the program is run.

Following de Alfaro and Henzinger [2001], we refer to this approach as “optimistic”
and characterize it in the following definition with a ternary relation between a server,
a client, and a contract.

Definition 6.1 (Loose Contract Satisfaction).

—C, v �s
L

κ iff C[monl(κ, v)] � C[monl(oblc[[κ]], v)]
—C, v �c

L
κ iff C[monl(κ, v)] � C[monl(obls[[κ]], v)]

Note that C represents only the client, not the entire program context.
One way to ascertain loose contract satisfaction is to make the client context so

large that the rest of the program cannot possibly interfere with or observe the flow of
values between the server and the client. A different—and practical—way is to bake
enough checks into the client and the server so that the rest of the program cannot
observe problems with the contracts between the two. That is, the creators of the client
module and the server “conspire” so that the combination of the two appears to be
a single coherent component. In practice, this kind of reasoning motivates nested or
hierarchical component systems.

The next two theorems confirm that this definition coincides with the implied Findler-
Felleisen notion of contract satisfaction. First, if a component composition that forms a
whole program does not loosely satisfy its contract, it either diverges or raises an error.

THEOREM 6.2. Let 	 C[monl(κ, v)] : o. If C, v ��s
L

κ, C[monl(κ, v)] ⇑ or C[monl(κ, v)] ⇓
error. If C, v ��c

L
κ, then C[monl(κ, v)] ⇑ or C[monl(κ, v)] ⇓ error. (The label and subscript

on the resulting error are not necessarily related to the components.)

PROOF. By definition of loose contract satisfaction and Lemma 4.4. �
Second, if a component composition loosely satisfies its contract, an execution never

blames either of the two parties.

THEOREM 6.3. If C, v �s
L

κ, then for all contexts C ′, C ′[C[monl(κ, v)]] �⇓ lerrors.
Similarly, if C, v �c

L
κ, then for all contexts C ′, C ′[C[monl(κ, v)]] �⇓ lerrorc.

PROOF. By definition of loose contract satisfaction and Lemma 4.5. �
The introduction of a second notion of contract satisfaction raises the natural ques-

tion whether one implies the other. Given the names “tight” and “loose”, we should
expect that the former implies the later but not necessarily the inverse. The following
theorem formalizes this expectation.

THEOREM 6.4. Tight contract satisfaction implies loose contract satisfaction for all
possible contexts, but the converse doesn’t hold:

—v �T κ implies C, v �s
L

κ for all C; C �T κ implies C, v �c
L

κ for all v.
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—There exists κ, v, and C such that C, v �s
L

κ does not imply v �T κ and such that
C, v �c

L
κ does not imply C �T κ.

PROOF. The first statement follows from the definitions of contextual equivalence,
tight contract satisfaction, and loose contract satisfaction.

For the second statement, consider the example C†[monl(κ†, v†)] of Section 5. In this
example the server and the client satisfy their contract under loose contract satisfaction
but they don’t satisfy it under tight contract satisfaction. �

7. SHY CONTRACT SATISFACTION

A higher-order function consumes objects with infinite behavior. In practice, a higher-
order function may consume streams or a method may consume objects in the sense of
an object-oriented language. In CPCF, only functions have infinite behavior, so higher-
order functions are function-consuming functions.

As Chitil et al. [2003] observe, assertions for a higher-order function G may explore a
larger portion of the argument f than G does. The last concrete example in Section 3.2
demonstrates this observation, repeated here for convenience:

SerM κ CliM
(λs.(fst s)) κ1 ([ ] (λi. − i))

where κ1 = (Any �→ Any) d�→ λs.flat((PZ? (fst s))∧(PZ? (fst (rst s))))
and fst is λs.(s 0) and rst is λs.λi.(s (i + 1)).

In turn, Chitil et al. [2003] argue that the run-time system for a lazy language should
ignore overly eager assertions. More concretely, the very moment an assertion evaluates
more of an argument than the function itself, assertion checking is abandoned and the
assertion is considered satisfied. We call this notion “shy” contract satisfaction and
apply it to the by-value language CPCF.

In this section, we explore the relationship of shy checking to tight and loose contract
satisfaction. At least at first glance, a shy notion of contract satisfaction is even looser
than loose contract satisfaction but a moment’s reflection shows that this conclusion is
overly simplistic. To start with, the preceding sections should clarify that we can add
shyness to both tight and loose contract checking. Furthermore, we can apply the idea
to individual contract checks for each evaluation of a server or, following Chitil et al.
[2003], we can check all the assertions at the end of the program execution when it is
absolutely clear which part of every higher-order argument is explored. Yet another
alternative would be to consider overly eager contracts as errors.

Here we choose to focus on the combination of shy checking with loose and tight
contract satisfaction on a per contract basis to demonstrate the flexibility of our idea,
though, it could also be used to investigate the alternatives. We start from the obser-
vation that a terminating function application ( f v) explores only a finite part of its
argument, that is, a finite value v∗ that is “below” the given value v such that ( f v∗)
is still observationally equivalent to ( f v) with respect to the given program. The goal
is to change the contract satisfaction criteria so that they notice when a contract ex-
plores v beyond the extent of v∗. Inspired by Chitil et al. [2003], we create values
v∗ that raise exceptions when the contract over-explores the argument, and we turn
exceptions into approval.

The formal development of our idea requires two steps. The first subsection intro-
duces an extension of CPCF with exceptions and exception handling, dubbed CPCFx.
This language is only useful in describing the mechanisms of shy contract satisfaction;
exceptions and exception handlers are not added to the surface syntax. The second
subsection uses the semantic framework of the first subsection to define two additional
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notions of contact satisfaction on CPCF: shy tight and shy loose contract satisfaction.
The last two subsections deal with the implications of the new notions.

7.1. CPCF with Exceptions and Exception Handlers

The set of terms and answers of CPCFx are extensions of the corresponding sets of
CPCF.

Terms e ::= . . . | exn | catch(e)
Answers a ::= . . . | exn

Like errors, exn has all possible types. Exception handlers, though, work only for
Boolean-typed subterms:

� 	 e : bool
� 	 catch(e) : bool

.

As for the semantics of CPCFx, we formulate it via �−→x, an extension of the reduction
semantics for CPCF. In the context of a reduction semantics, exceptions erase portions
of the evaluation context:

Ev. Ctxt. F ::= . . . | catch(F)
Exn. Ctxt. E ::= all of F except for catch(F).

That is, the set of evaluation contexts from CPCF is extended with a catch(· · · ) construc-
tion so that evaluation may happen in the subterm of an exception handler. Exception
contexts, however, are all evaluation contexts without the catch(· · · ) construction and
it is those contexts that exceptions erase:

F[E[exn]] �−→x F[exn]
F[catch(v)] �−→x F[v]
F[catch(exn)] �−→x F[tt].

The exception handler doesn’t react when its body reduces to a (Boolean) value; other-
wise, its body reduces to an exception, and it is turned into a tt value.

Also, we modify the reduction relation for monitoring flat contracts so that it can
exploit exceptions handlers:

F[monl
p(flat(e), v)] �−→x F[let x = catch((e v)) in if x then v else lerrorp] [laxx].

That is, flat contract checking now runs predicates within the extent of an exception
handler. If checking the value for a property raises an exception, the contract check is
abandoned and considered successful.

CPCFx, like CPCF, is an eager language and we only use it as a target language for
CPCF. None of its extra constructs are available or visible to the programmer.

Note that since CPCF terms do not contain or raise exn, CPCFx does not change
the behavior of CPCF programs. More concretely, let Sctx

C PCF the compatible closure
of a relation S on CPCFx terms restricted to CPCF contexts. Consider the following
relation: e S catch(e′) where e Sctx

C PCF e′, which brings together CPCF terms that are
identical modulo the injection of catch frames. It is easy to prove the following theorem.

THEOREM 7.1. Let e in CPCF. If e ⇓ a, then e ⇓x a′ and a Sctx
C PCF a′.

PROOF SKETCH. The proof proceeds with a standard simulation argument using Sctx
CPCF

as the simulation relation. �
From this theorem and Theorems 6.2 and 6.3, we can also conclude that, despite the

extra infrastructure, CPCFx implements loose contract checking.
Finally, the additions to CPCF affect the notion of observational equivalence. We

introduce a new definition of observational equivalence for CPCFx.
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Definition 7.2 (Observational Equivalence in CPCFx, �x). Two terms, e1 and e2, are
observationally equivalent in CPCFx, written e1 �x e2, if for all contexts C,

—C[e1] ⇓x
lerrorp if and only if C[e2] ⇓x

lerrorp, and
—C[e1] ⇓x exn if and only if C[e2] ⇓x exn, and
—otherwise: if both programs diverge or both converge.

Similar modifications are also required for the definition of the value approximation.

Definition 7.3 (Value Approximation in CPCFx, �x). A term e1 is bellow a term e2
in the term value-termination preorder in CPCFx, written e1 �x e2, if for all program
contexts C,

—if C[e1] ⇓x exn, then C[e2] ⇓x exn, and
—if C[e1] ⇓x v, then C[e2] ⇓x v′.

The proof method of Section 3.3 cannot be adapted to CPCFx. In place of the shortcut,
we must manually build a bi-simulation. We demonstrate how to adapt the proof of
Proposition 3.8 of CPCF in this manner. Proofs of the all theorems about CPCF can be
lifted to CPCFx in an analogous manner.

PROPOSITION 7.4. For κ and e in CPCFx, monl(κ, e) �x e

PROOF SKETCH. The proposition can be proved by applying the following lemma to
the pair of terms of the C[monl(κ, e)] and C[e]. �

LEMMA 7.5. Let R a binary relation of pairs of terms of the form: monl(κ, ev) Re′
v

and monl
p(κ, ev) Re′

v if ev Rctx e′
v, where Rctx is the compatible closure of R. If e Rctx e′, if

e ⇓x exn, then e′ ⇓ exn, and if e ⇓x vr, then e′ ⇓ v′
r and vr Rctx v′

r.

PROOF SKETCH. We proceed by induction using the following hypothesis:

IH(k): for all i ≤ k, if e Rctx e′ and if e i�−→x exn then e′ ∗�−→x exn and if e i�−→x vr

then e′ ∗�−→x v′
r and vr Rctx v′

r.

The most interesting case is when e = F[monl
p(κ, vr)] and e′ = F ′[v′

r]. By the reduction
relation, we know that

F[monl
p(flat(ec), vr)]

�−→x F[if catch((ec vr)) then vr else lerrorp].

The result of this term depends on the evaluation of (ec vr). There are five cases:
(ec vr) ⇑, (ec vr) ⇓x error, (ec vr) ⇓x ff, (ec vr) ⇓x tt and (ec vr) ⇓x exn. The first three
are not possible cases since by assumption e ⇓x exn or e ⇓x v. For the last two cases, by
the reduction rules for if and catch, we conclude that

F[if catch((ec vr)) then vr else lerrorp] �−→x F[vr].

Since e Rctx e′, we conclude that F[vr] Rctx F ′[v′
r]. The desired result is obtained by

applying the induction hypothesis. �
The compilation of CPCF terms to CPCFx is trivial; programs are simply taken as-is.

7.2. Shy Contract Satisfaction: The Definition

The introduction of CPCFx enables us to define a notion of shy contract satisfaction.
Specifically, the machinery allows us to describe the “finite” value that is like va in a
terminating application (v f va) but raises exceptions if it is explored beyond the portion
that v f explores. First, we order values according to the exceptions that they can raise.
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Intuitively, a value v1 exception approximates value v2 if v1 behaves like v2 in any
context except that, in some case, it causes exn to be raised while v2 does not.

Definition 7.6 (Exception Approximation). A CPCFx value v1 of type τ exception ap-
proximates v2 of the same type—v1 �exn v2—iff:

—for τ a base type, v1 �x v2;
—for a function type τ → τ ′, for all va, v′

a such that va �ctx
exn v′

a
—if (v1 va) ⇓x exn, then (v2 v′

a) ⇓x a or (v2 v′
a) ⇑x, and

—if (v1 va) ⇓x a where a �= exn, then (v2 v′
a) ⇓x a′ and a�ctx

exn a′, and
—if (v1 va) ⇑x, then (v2 v′

a) ⇑x

where �ctx
exn is the compatible closure of �exn.

Second, we use the exception approximation to describe the portion of an argument
that is explored during a terminating function application.

Definition 7.7 (Weakened Argument). For function v f and argument va, the weak-
ened argument, W[v f , va], is a minimal element in {v∗|v∗ �exn va and (v f va) �x (v f v∗)},
that is, there is no w in the set such that w �exn W[v f , va] and w ��x W[v f , va].

The weakened argument is required to be minimal in order to hold the minimum
necessary information that is needed so that the corresponding application is not af-
fected by the weakening. This implies that the weakened argument captures only the
part of the original argument that the function explored.

In general, finding the weakened argument is not computable. It becomes computable
in some cases, like for functions that return flat values. Furthermore, even in these
cases, the weakened argument cannot be expressed in CPCFx. Additional features like
reflection or support baked into the runtime system is required to calculate it. For
example, an execution environment could keep track of arguments and results with a
hash table and feed the hash table approximation to the contract instead of the actual
argument. Since the definition of the weakened argument does not interfere with the
semantics of CPCFx and the question of computability is irrelevant for a specification
of contract satisfaction, we ignore it here.

Note. As mentioned previously, Chitil et al. [2003] do not just weaken the argument
with respect to a function application but with respect to the evaluation context of the
application. Thus, if

F[(v f va)] ∗�−→x F[v]

the weakened argument would be

W[(λx.F[(v f x)]), va],

according to our notation.
Their design choice makes the weakened argument always computable since they

restrict themselves to functions that return base values. However, in the general case,
they consider a bigger context than we do. Thus the weakened argument they produce
contains much more information than our weakened argument.

Now we are ready to develop a shy notion of contract satisfaction. The key is to
replace all arguments to a monitored function v f with a weakened argument. If κ ≡
κ1

d�→ (λx.κ2), then monl(κ, v f ) is equivalent to (λx.monl
s(κ2, (v f monl

c(κ1, x)))), assuming x is
not free in v f . We then use (λx.monl

s({W[v f , monl
c(κ1, x)]/x}κ2, (v f monl

c(κ1, x)))) to weaken
the argument visible to the post-condition contract κ2. Doing so guarantees that v f gets
to see everything it needs from the argument and that κ2 cannot inspect anything else.
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Since this form of weakening is orthogonal to contract satisfaction, we apply it to both
notions of contract satisfaction.

Definition 7.8 (Shy-Tight Contract Satisfaction). Let v, C and κ be in CPCF. Let v

be a function of type τ1 → τ2 and let κ ≡ κ1
d�→ (λx.κ2) be its contract.

—v �ST κ if and only if

monl
s({W[v, monl

c(κ1, x)]/x}κ2, (v monl
c(κ1, x)))

�x
monl

s({W[v, monl
c(oblcc[[κ1]], x)]/x}oblcs[[κ2]], (v monl

c(oblcc[[κ1]], x)))

—C �ST κ if and only if

C[(λx.monl
s({W[z, monl

c(κ1, x)]/x}κ2, (z monl
c(κ1, x))))]

�x
C[(λx. monl

s({W[z, monl
c(oblsc[[κ1]], x)]/y}oblss[[κ2]],

(z monl
c(oblsc[[κ1]], x)))

)]

Definition 7.9 (Shy-Loose Contract Satisfaction). Let v, C and κ be in CPCF. Let v

be a function of type τ1 → τ2 and let κ ≡ κ1
d�→ (λx.κ2) be its contract.

—C, v �s
SL

κ if and only if

C[(λx.monl
s({W[v, monl

c(κ1, x)]/x}κ2, (v monl
c(κ1, x))))] �x

C[(λx.monl
s({W[v, monl

c(oblcc[[κ1]], x)]/x}oblcs[[κ2]], (v monl
c(oblcc[[κ1]], x))))]

—C, v �c
SL

κ if and only if

C[(λx.monl
s({W[v, monl

c(κ1, x)]/x}κ2, (v monl
c(κ1, x))))] �x

C[(λx.monl
s({W[v, monl

c(oblsc[[κ1]], x)]/x}oblss[[κ2]], (v monl
c(oblsc[[κ1]], x))))]

7.3. Shy Contract Satisfaction: The Implications

While loose contract satisfaction is already permissive, shy-loose contract satisfaction
captures a yet more permissive contract interpretation than Findler and Felleisen’s
method of “execute and check.” The two following components and their contract
demonstrate a case where this is true:

C§ = let g = [ ] in let f = (λx.if x = 1 then 1 else − 1)in (g f )
v§ = (λ f.( f 1))
κ§ = κ1

d�→ (λ f.κ2)
where κ1 = flat(PZ?) �→ flat(PZ?) and κ2 = flat(λx.( f − 3) ≥ 0).

On the one hand,v§ and C§ satisfy κ§ under shy-loose contract satisfaction. For the three
given applications (g monl

c(κ1, v
§)), (g monl

c(oblcc[[κ1]], v§)), and (g monl
c(oblsc[[κ1]], v§)), the

weakened argument is

w§ = (λx.if x = 1 then 1 else exn).

because v§ is only explored at 1. No matter which part of the contract is neutralized—
server or client—the flat contract checking succeeds due to the exceptions raised by w§
and the composition itself runs to successful completion. As a result, the composition
satisfies the contract according to shy-loose contract satisfaction. Also, note that the
server in the above composition satisfies its contract according even to shy-tight
contract satisfaction.
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On the other hand, if the component composition C§[monl(κ§, v§)] is run, the
execution ends with lerrors. Hence, the previous composition is a counter-example for
the analogues of Theorems 5.3 and 6.3 for shy-tight contract satisfaction and shy-loose
contract satisfaction, respectively.

In addition, as stated before, CPCFx implements loose contract checking. Because
of that the server of the previous composition fails to satisfy the range contract κ2 of
g according to loose contract satisfaction.

A second implication of our examples is that shy-loose contract satisfaction does
not imply loose contract satisfaction and shy-tight contract satisfaction does not imply
tight contract satisfaction.

It is possible, though, to re-establish the analogues of Theorems 5.2 and 6.2 for shy
contract satisfaction. First, if the composition of a server with any client through a
contract always reduces to a value then the server satisfies the contract according to
shy-tight contract satisfaction.

THEOREM 7.10. Let v, κ1
d�→ (λx.κ2) and C be in CPCF. If v ��ST κ1

d�→ (λx.κ2), then
there exists C such that

C[(λx.monl
s({W[v, monl

c(κ1, x)]/x}κ2, (v monl
c(κ1, x))))] ��x

C[(λx.monl
c({W[v, monl

c(oblcc[[κ1]], x)]/x}oblcs[[κ2]], (v monl
s(oblcc[[κ1]], x))))]

and C[monl(κ1
d�→ (λx.κ2), v)] �⇓x v′ .

PROOF SKETCH. We proceed with a proof by contradiction. The proof is based on a
tedious but uninteresting simulation between a CPCFx term e and a CPCFx term e′
that differs from e in that some values v in contracts have been replaced with values
v′ such that v′ �exn v. We express that using a binary relation S.

monl(κ, e) S monl(κ ′, e′)
if κ T ctx

C PCF κ ′ and e Sctx
C PCF e′

monl
p(κ, e) S monl

p(κ ′, e′)
if κ T ctx

C PCF κ ′ and e Sctx
C PCF e′

let x = catch((e v)) in if x then v else lerrorp S
let x = catch((e′ v′)) in if x then v else lerrorp

if e Y ctx
C PCF e′ and v Sctx

C PCF v′
v T v′

if v′ �exn v

let x = catch((e v)) in if x then v else lerrors Y
let x = catch((e′ v′)) in if x then v else lerrors

if e T ctx
C PCF e′ and v T ctx

C PCF v′
v Y exn
v Y v′

if v′ �exn v

The simulation itself is the closure of S over CPCF contexts, dubbed Sctx
C PCF . We

prove, first, that if eSctx
C PCFe′ and e ⇓x vo, then e′ ⇓x v′

o and voSctx
C PCFv′

o. Second, we
show with a simple subject reduction that for all CPCF terms e, e �⇓x exn. Third,
by the properties of �x, we conclude that if C[monl(κ1

d�→ (λx.κ2), v)] ⇓x vo, then
C[monl(oblc[[κ1

d�→ (λx.κ2)]], v)] ⇓x v′′
o . A consequence of this is that if

Co[(λx.monl
s({W[v, monl

c(κ1, x)]/x}κ2, (v monl
c(κ1, x))))] ⇓x v′

o,

then

Co[(λx.monl
s({W[v, monl

c(oblcc[[κ1]], x)]/x}oblcs[[κ2]], (v monl
c(oblcc[[κ1]], x))))] ⇓x v′′′

o
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Fourth, based on the first step, we prove the following:
if C[monl(κ1

d�→ (λx.κ2), v)] ⇓x vo, then

C[(λx.monl
s({W[v, monl

c(κ1, x)]/x}κ2, (v monl
c(κ1, x))))] ⇓x v′

o

and if C[monl(oblc[[κ1
d�→ (λx.κ2)]], v)] ⇓x v′′

o , then

C[(λx.monl
s({W[v, monl

c(oblcc[[κ1]], x)]/x}oblcs[[κ2]], (v monl
c(oblcc[[κ1]], x))))] ⇓x v′′′

o .

Fifth, by the definition of shy-tight contract satisfaction, we know that there is at least a
whole program context Co such that Co[(λx.monl

s({W[v, monl
c(κ1, x)]/y}κ2, (v monl

c(κ1, x))))]
��x Co[(λx.monl

s({W[v, monl
c(oblcs[[κ1]], x)]/x}oblcs[[κ2]], (v monl

c(oblcc[[κ1]], x))))].
Sixth, for the program context Co we assume that Co[monl(κ1

d�→ (λx.κ2), v)] ⇓x vo.
Seventh, based on our assumption and by the second, third, and fourth step, we

prove that
if Co[monl(κ1

d�→ (λx.κ2), v)] ⇓x vo, then

Co[(λx.monl
s({W[v, monl

c(κ1, x)]/x}κ2, (v monl
c(κ1, x))))] ⇓x v′

o

and

Co[(λx.monl
s({W[v, monl

c(oblcc[[κ1]], x)]/x}oblcs[[κ2]], (v monl
c(oblcc[[κ1]], x))))] ⇓x v′′′

o

Since Co is a whole program v′
o and v′′

o are value of base types and thus v′
o = v′′

o . But
this conclusion contradicts the fact drawn by the theorem statement and stated in the
fifth step of our proof. Thus, we conclude that our assumption was invalid and because
of that Co[monl(κ1

d�→ (λx.κ2), v)] �⇓x v′ . �
THEOREM 7.11. Let v, C and κ be in CPCF. Let 	 C[monl(κ, v)] : o. If C, v ��s

SL
κ, then

C[monl(κ, v)] ⇑x or C[monl(κ, v)] ⇓x error. Similarly, if C, v ��c
SL

κ, then monl(κ, v) ⇑x

or C[monl(κ, v)] ⇓x error. (The label and subscript on the resulting error are not
necessarily related to the components.)

PROOF SKETCH. We proceed with a proof by contradiction and we re-use the simulation
S from the proof of Theorem 7.10. The first four steps are identical to the first four
steps of Theorem 7.10. For the fifth step, we assume that C[monl(κ, v)] ⇓x vo. Sixth,
based on our assumption and by the second, third and fourth step we prove that if
C[monl(κ, v)] ⇓x vo then C, v �s

SL
κ. But this contradicts the theorem’s statement that

assumes C, v ��s
SL

κ. Similarly for the second part of the theorem. �
Finally, the tight notion of shy contract satisfaction implies the loose one.

THEOREM 7.12. Let v, C and κ be in CPCF. Shy tight contract checking implies
shy-loose contract checking but not vice-versa.

—v �ST κ implies C, v �s
SL

κ for all contexts C; C �ST κ implies C, v �c
SL

κ for all values v.
—There exists κ, v, and C such that C, v �s

SL
κ but v �ST κ does not hold and neither

does C �ST κ.

PROOF SKETCH. The first part follows from the definitions of contextual equivalence
and tight and loose shy contract satisfaction.

For the second part, consider the example of Section 5. We use the weakened ar-
gument w† = (λx.if x = 2 then 1 else exn). In this example the server and the client
satisfy their contract in terms of shy-loose contract satisfaction but there are other
clients and servers that can trigger violations of the contract. For instance consider the
composition of the server v† with the client C†

o = let g = [ ] in let f = (λx.0) in (g f ).
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Thus the composition does not satisfy the contract according to shy-tight contract
satisfaction. �

7.4. The Landscape

The sheer existence of four notions of contract satisfaction for the same language
raises the question of how they relate to each other. We know from Sections 6 and 7
that tight contract satisfaction implies loose contract satisfaction in pure CPCF and
that shy-tight satisfaction implies shy-loose satisfaction. In this section, we shed some
light on the remaining relationships.

We can show that the relationship between shy-loose satisfaction and loose
satisfaction is not straightforward. For some examples—for example, the one in
Section 5—the two notions coincide. Also shy-loose contract satisfaction doesn’t imply
loose satisfaction as we demonstrate in Section 7.3. Unfortunately, the expected
converse doesn’t hold either. The problem is that contracts may have computational
effects of their own: they may signal errors, they may raise exceptions, and they may
diverge. Here is an example that uses effects to show how loose contract satisfaction
does not imply shy-loose contract satisfaction:

C‡ = let g = [ ] in let f = (λx.x) in (g f )

v‡ = (λ f.( f 1))

κ‡ = (flat(PZ?) �→ flat((λx.�bool)))
d�→ (λ f.flat((λx.(( f 3) + �num) ≥ 0))).

While both the client and the server loosely satisfy the contract, only the client satisfies
it in the sense of shy-loose satisfaction; the server, however, fails.

As for loose contract satisfaction, we argue that the relevant compositions are
observationally equivalent because they always diverge. The complete program
diverges when the contract monitor tries to check the postcondition on the argument
of g. A divergent computation is also triggered when the client’s or server’s portions of
the contract are disabled:

oblc[[κ‡]] = (flat((λx.tt)) �→ flat((λx.�bool)))
d�→ (λ f.flat((λx.tt)))

obls[[κ‡]] = (flat(PZ?) �→ flat((λx.tt)))
d�→ (λ f.flat((λx.(( f 3) + �num) ≥ 0))).

As for shy-loose contract satisfaction, the weakened element for the application
(g f ) is w‡ = (λx.if x = 1 then 1 else exn). Under this setting, both C‡[monl(κ‡, w‡)]
and the client variant C‡[monl(oblc[[κ‡]], w‡)] diverge, meaning the client satisfies the
contract. In contrast, the server-protected variant, C‡[monl(obls[[κ‡]], w‡)], returns 1
because the postcondition of g over-eagerly tries to inspect w‡ at 3. In short, even the
empty context can differentiate the two compositions and therefore the server fails to
satisfy the contract in the shy-loose sense.

8. OTHER RELATED WORK

Concurrency researchers have been investigating the use of behavioral pre-order
for a long time [Hennessy 1988]. Most recently, this idea has been applied to define
satisfaction for contracts for web services [Carpineti et al. 2006; Bravetti and
Zavattaro 2007; Castagna et al. 2008; Castagna and Padovani 2009].

Contracts for web services are abstract traces of processes. They are extracted from
the source code of a process with the help of type annotations or a type inference
algorithm. As such they are constructed in isolation for each component and they
are guaranteed to meet the behavior of the process. When two processes that broad-
cast their contracts are brought together, their contracts are checked statically for
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satisfaction
monitoring tight loose shy-loose shy-tight

static analysis [1] [2]

run-time checking [3],[5] [4],[5] [5],[6]
1 : [Xu et al. 2009], 2: [Knowles et al. 2006], 3: [Findler and Felleisen 2002]
4: [Hinze et al. 2006], 5: [Degen et al. 2010], 6: [Chitil et al. 2003]

Fig. 5. Classification of higher-order contract systems.

compatibility using various forms of test pre-ordering, which implies the behavioral
compatibility of the two processes.

In contrast, our software contracts are a possibly independent specification of the
interaction of two components. It is not guaranteed that either component meets the
contract. In this setting, contract satisfaction has to do with deciding if each of the two
components meets its obligations with respect to the shared contract. In case one of
the components fails to satisfy its obligation, a blame error is signaled.

The two views are dual. The first checks for compatibility of two components with
separate and verified interfaces using the two interfaces. The second checks for
conformance of each component with a common agreed-upon interface that regulates
the interaction of the two components.

9. CONCLUSION

This article introduces a unified framework for understanding behavioral software
contract satisfaction. Instead of relying on a particular model or semantics (denota-
tional, operational), the framework exploits observational equivalence, meaning that
the results hold for all possible functionally-equivalent (adequate) semantics. Most im-
portantly, our framework teases out the primary notions of contract satisfaction—tight
and loose—and establishes a relationship between them. Additionally, the framework
provides an opportunity to explore a “shy” approach to contract checking and to
compare it with the basic notions.

Concerning the different incarnations of the Findler-Felleisen system, our frame-
work classifies the approaches to contract satisfaction as shown in Figure 5. Columns
correspond to the instantiation of our framework that each system uses. Rows
correspond to the primary purpose of the system. Section 7 explains the placement
of Chitil et al. [2003], which is too low here. Hinze et al. [2006] are placed close to
the border-line between loose and shy-loose because their contract system for Haskell
adds a little bit of shyness to contract checking: it does not check if the argument of
a function guarded by a contract satisfies the precondition of the contract unless the
argument is “used” by the function. The SAGE system [Knowles et al. 2006] combines
dynamic contract checking with extended static checking and thus it resides between
tight contract satisfaction and loose contract satisfaction on the horizontal axis and
between run-time checking and static analysis on the vertical axis. Degen et al. [2010]
develop an eager contract system for an eager language and an eager and a delayed
contract checking system for a lazy language and thus they appear three times in the
table. Their eager contract system for the lazy language is similar to that of Hinze et al.
[2006]. Their delayed contract checking system for the lazy language is based on the
same notion of contract satisfaction as Chitil et al. [2003], but its implementation dif-
fers significantly. The classification points out that certain places remain unexplored,
which may be explicable with different approaches to software engineering.
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Concerning the software engineering of contracts, the results suggest three different
conclusions. Loose contract satisfaction is a recursively enumerable problem for whole
programs. As such the Findler-Felleisen approach is a perfectly adequate basis for
checking contacts. Logically the approach is in �1

0, making it somewhat simpler than
tight contract satisfaction, which demands a for-all quantifier and which is thus in
	1

0. Of course, if a software tool or a software engineer can confirm that a higher-order
function or a first-class object tightly satisfies some behavioral contract, the guarantees
are universally useful for the working programmer. Finally, our framework suggests
that the addition of shy contract checking to a language is a complex undertaking with
a large design space; the community needs additional evidence that investing in this
form of contracts is worthwhile.
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