Check for
Updates

Bottom-Up Shape Analysis using LZSF

BHARGAV S. GULAVANI and SUPRATIK CHAKRABORTY, IIT Bombay
G. RAMALINGAM and ADITYA V. NORI, Microsoft Research India

In this article, we present a new shape analysis algorithm. The key distinguishing aspect of our algorithm
is that it is completely compositional, bottom-up and noniterative. We present our algorithm as an inference
system for computing Hoare triples summarizing heap manipulating programs. Our inference rules are
compositional: Hoare triples for a compound statement are computed from the Hoare triples of its component
statements. These inference rules are used as the basis for bottom-up shape analysis of programs.

Specifically, we present a Logic of Iterated Separation Formulae (£LZSF), which uses the iterated sepa-
rating conjunct of Reynolds [2002] to represent program states. A key ingredient of our inference rules is
a strong bi-abduction operation between two logical formulas. We describe sound strong bi-abduction and
satisfiability procedures for LZSF.

We have built a tool called SPINE that implements these inference rules and have evaluated it on standard
shape analysis benchmark programs. Our experiments show that SPINE can generate expressive summaries,
which are complete functional specifications in many cases.

Categories and Subject Descriptors: D.2.1 [Software Engineering|: Requirements/Specifications; D.2.4
[Software Engineering]: Software/Program Verification—Formal methods; programming by contract

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Compositional analysis, hoare logic, separation logic

ACM Reference Format:

Gulavani, B. S., Chakraborty, S., Ramalingam, G., and Nori, A. V. 2011. Bottom-up shape analysis using

LISF. ACM Trans. Program. Lang. Syst. 33, 5, Article 17 (November 2011), 41 pages.
DOI = 10.1145/2039346.2039349 http:/doi.acm.org/10.1145/2039346.2039349

1. INTRODUCTION

In this article we present a new shape analysis algorithm: an algorithm for analyzing
programs that manipulate dynamic data structures such as lists. The key distinguish-
ing aspect of our algorithm is that it is completely bottom-up and noniterative. It
computes summaries describing the effect of a statement or procedure in a modular,
compositional, noniterative way: the summary for a compound statement is computed
from the summaries of simpler statements that make up the compound statement.
Shape analysis is intrinsically challenging. Bottom-up shape analysis is particularly
challenging because it requires analyzing complex pointer manipulations when nothing
is known about the initial state. Hence, traditional shape analyses are based on an
iterative top-down (forward) analysis, where the statements are analyzed in the context

The work of B. S. Gulavani was supported by Microsoft Corporation and Microsoft Research India under the
Microsoft Research India PhD Fellowship Award.

Authors’ addresses: B. S. Gulavani and S. Chakraborty, Department of Computer Science & Engineering,
IIT Bombay, Powai, Mumbai 400076, India; email: {bhargav; supratik}@cse.iitb.ac.in; G. Ramalingam and
A. V. Nori, Microsoft Research India, 196/36, 2nd Main, Sadashivnagar, Bangalore 560 080, India, email:
{grama, adityan}@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org

© 2011 ACM 0164-0925/2011/11 ART17 $10.00

DOI 10.1145/2039346.2039349 http://doi.acm.org/10.1145/2039346.2039349

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2039346.2039349&domain=pdf&date_stamp=2011-11-23

17:2 B. S. Gulavani et al.

delete(struct node *h, *a, *b)

1. y=h;

2. while (y'=a && y!=0) {
3. y=y->next;

4. X=y;

5. if (y!=0) {y=y->next;}
6. while (y!=b && y!=0) {
7. t=y;

8. y=y->next;

9. delete(t);

}

10. if (x !=0) {

11. x->next=y;

12. if (y!=0) y->prev=x;
}

Fig. 1. Motivating example — deletion of list segment.

of a particular (abstract) state. Though challenging, bottom-up shape analysis appears
worth pursuing because the compositional nature of the analysis promises much better
scalability, as illustrated by the recent work of Calcagno et al. [2009]. The algorithm
we present is based on ideas introduced by Calcagno et al. [2009].

Motivating Example. Consider the procedure shown in Figure 1. Given a list pointed
to by parameter h, this procedure deletes the fragment of the list demarcated by pa-
rameters a and b. Our goal is to devise an analysis that, given a procedure S such as
this, computes a set of Hoare triples [¢] S [¢] that summarize the procedure. We use the
above notation to indicate that the Hoare triples inferred are total: the triple [¢] S [¢]
indicates that, given an initial state satisfying ¢, the execution of S terminates safely
(with no memory errors) in a state satisfying ¢.

Inferring Preconditions. There are several challenges in meeting our goal. First, note
that there are a number of interesting cases to consider: the list pointed to by h may
be an acyclic list, or a complete cyclic list, or a lasso (an acyclic fragment followed by a
cycle). The behavior of the code also depends on whether the pointers a and b point to
an element in the list or not. Furthermore, the behavior of the procedure also depends
on the order in which the elements pointed to by a and b occur in the list.

With traditional shape analyses, a user would have to supply a precondition describ-
ing the input to enable the analysis of the procedure delete. Alternatively, an analysis
of the calling procedure would identify the abstract state o in which the procedure
delete is called, and delete would be analyzed in an initial state o. In contrast, a
bottom-up shape analysis automatically infers relevant preconditions and computes
a set of Hoare triples, each triple describing the procedure’s behavior for a particular
case (such as the cases described in the previous paragraph).

Inferring Postconditions. However, even for a given precondition ¢, many different
correct Hoare triples can be produced, differing in the information captured by the
postcondition ¢. As an example consider the case where h points to an acyclic list, and
a and b point to elements in the list, with a pointing to an element that occurs before
the element that b points to. In this case, the following are all valid properties that
can be expressed as suitable Hoare triples: (a) The procedure is memory-safe: it causes
no pointer error such as dereferencing a null pointer; (b) Finally, h points to an acyclic
list; (¢) Finally, h points to an acyclic list, which is the same as the list h pointed to at
procedure entry, with the fragment from a to b deleted. Clearly, these triples provide
increasingly more information.

A distinguishing feature of our inference algorithm is that it seeks to infer triples
describing properties similar to (c), which yield a functional specification for the ana-
lyzed procedure. One of the key challenges in shape analysis is relating the value of the

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:3

final data-structure to the value of the initial data-structure. We utilize an extension
of separation logic, described later, to achieve this.

Composition via Strong Bi-Abduction. We now informally describe how summaries
[p1] S1 [@1] and [ps] S2 [@2] in separation logic can be composed to obtain summaries for
S1;S2. The intuition behind the composition rule, which is similar to the composition
rule in Calcagno et al. [2009], is as follows. Suppose we can identify ¢,.. and ¢, such
that @1 * @pre and @pos * @2 are semantically equivalent. We can then infer summaries
[01%@prel S1 [@1%@pre] and [@post ¥ 92] S2 [@post * 2] by application of frame rule [O’Hearn
et al. 2001], where * is the separating conjunction of separation logic [Reynolds 2002]
(subject to the usual frame rule conditions: ¢, and ¢,.s should not involve variables
modified by S1 and S2, respectively). We can then compose these summaries trivially
and get [1 * @prel 81552 [@post * P2]. Given @1 and g3, we refer to the identification of
@pres Ppost such that @1 « gpe & @post * @2 as strong bi-abduction. Strong bi-abduction
also allows for existentially quantifying some auxiliary variables from the right-hand
side of the equivalence, as discussed later in Section 3.

Iterative Composition. A primary contribution of this paper is to extend this intuition
to obtain loop summaries. Suppose we have a summary [¢] S [¢], where S is the body
of a loop (including the loop condition). We can apply strong bi-abduction to compose
this summary with itself: for simplicity, suppose we identify ¢, and ¢, such that
@ * Qpre < Ppost * . If we now inductively apply the composition rule, we can then infer
a summary of the form [g x g%, 1 8* [¢%,, * @] that summarizes % executions of the loop.
Here, we have abused notation to convey the intuition behind the idea. If our logic
permits a representation of the repetition of a structure ¢,.. an unspecified number of
times (k), we can then directly compute a Hoare triple summarizing the loop from a
Hoare triple summarizing the loop body.

Logic of Iterated Separation Formulae. In order to achieve the above goal, we intro-
duce LZSF, an extension of separation logic, and present sound procedures for strong
bi-abduction and satisfiability in LZSF. The logic LZSF has two key aspects: (i) It
contains a variant of Reynolds’ iterated separating conjunct construct that allows the
computation of a loop summary from a loop body summary. (ii) It uses an indexed
symbolic notation that allows us to give names to values occurring in a recursive (or
iterative) data-structure. This is key to meeting the goal described earlier, that is, com-
puting functional specifications that can relate the value of the final data-structure to
that of the initial data-structure. LZSF gives us a generic ability to define recursive
predicates useful for describing certain classes of recursive data-structures. The use of
LISF, instead of specific recursive predicates, such as those describing singly linked
lists or doubly linked lists, allows us to compute more precise descriptions of recursive
data-structures in preconditions. Though we use LZSF for bottom-up analysis in this
article, its use in not restricted to this. Specifically, it can also be used to represent
program states in top down interprocedural analysis.

Empirical Evaluation. We have implemented our inference rules in a bottom-up ana-
lyzer SPINE and evaluated it on several shape analysis benchmarks. We say that a set
S of summaries for a program P is a complete specification for P if every input configura-
tion starting from which P terminates without causing errors satisfies the precondition
of some summary in the set S. On most of the examples, we could generate ‘complete’
functional specifications. On the example program in Figure 1, we could generate sev-
eral summaries with cyclic and lasso structures, although a complete specification was
not obtained. As will be explained later, this is due to the incompleteness of our strong
bi-abduction algorithm.

Our Contributions. (i) We present a logic of iterated separation formulae LZSF
(Section 4), which is a restriction of separation logic with iterated separating conjunc-
tion, and give sound algorithms for satisfiability checking and strong bi-abduction in

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:4 B. S. Gulavani et al.

this logic (Sections 6, 7, and 8). (ii) We present inference rules to compute Hoare triples
in a compositional bottom-up manner (Section 5). (iii) We have a prototype implemen-
tation of our technique. We discuss its performance on several challenging programs
(Section 9).

2. RELATED WORK

Our work is most closely related to the recent compositional shape analysis algorithm
presented by Calcagno et al. [2009], which derives from the earlier work in Calcagno
et al. [2007]. The algorithm described by Calcagno et al. [2009] is a hybrid algorithm
that combines compositional analysis with an iterative forward analysis. The first
phase of this algorithm computes candidate preconditions for a procedure, and the
second phase utilizes a forward analysis to either discard the candidate precondition,
if it is found to potentially lead to a memory error, or find a corresponding sound
postcondition. The key idea in this approach, which we borrow and extend, is the use of
bi-abduction to handle procedure calls compositionally. Given @1, the state at a callsite,
and g9, a precondition of a Hoare triple for the called procedure, Calcagno et al. compute
@pre and @pos such that @i % @pre = @post * p2. Our approach differs from this in several
ways. We present a completely bottom-up analysis which does not use any iterative
analysis whatsoever. Instead, it relies on a “stronger” form of bi-abduction (where
we seek equivalence, instead of implication, but allow some auxiliary variables to be
quantified) to compute the post-condition simultaneously. Furthermore, our approach
extends the composition rule to treat loops in a similar fashion. Our approach also
computes preconditions that guarantee termination. We use LZSF as the basis for our
algorithm, while Calcagno et al.’s work uses a set of abstract recursive predicates. We
also focus on computing more informative triples that can relate the final value of a
data-structure to its initial value.

Several recent papers [Podelski et al. 2008; Abdulla et al. 2008; Lev-Ami et al. 2007]
describe techniques to obtain preconditions by going backwards starting from some bad
states. Unlike our approach, these techniques are neither compositional nor bottom-up.

Extrapolation techniques proposed in Touili [2001] and Boigelot et al. [2003] compute
sound overapproximations of postconditions by identifying the growth in successive
applications of transducers and by iterating that growth. Similarly, Guo et al. [2007]
proposes a technique to guess the recursive predicates characterizing a data structure
by identifying the growth in successive iterations of the loop and by repeating that
growth. In contrast, we identify the growth in both the pre and postconditions by
strong bi-abduction and iterate it to compute Hoare triples that are guaranteed to be
sound. Furthermore, our analysis is bottom-up and compositional in contrast to these
top-down (forward) analyses.

TVLA [Sagiv et al. 1999] is a 3-valued predicate logic analyzer with transitive clo-
sure. It generates an abstraction of the shape of the program heap at runtime in the
form of 3-valued structure descriptors. It performs a top-down analysis within a proce-
dure starting from the given shape of input heap. Several works [Rinetzky and Sagiv
2001; Rinetzky et al. 2005a, 2005b] have proposed an interprocedural extension of the
basic intraprocedural analysis of TVLA. All these algorithms are top-down and for-
ward. Rinetzky et al. [2005a], compute partially functional summaries. They define a
cut-point as anode in the heap graph that is simultaneously reachable from some input
parameter of the procedure and some other program variable that is not a parameter to
the procedure. The summaries computed in Rinetzky et al. [2005a] track precise input-
output relations only between finitely many cut-points. Rinetzky et al. [2005b] design a
global analysis to determine if the program is cut-point free. The summarization algo-
rithm generates summaries only for cut-point free programs. These summaries do not
relate the input and output heap cells, except those heap cells that are directly pointed

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:5

Program Syntazx Separation Logic Syntaz (~ €{=,#¢}

e = v | null e u= null |v]| ...

Bu=v=e|v!=e P = e~e|false|true | PAP| ...

S = v.f:=e|v:=uf|v:=new | dispose v | S;8 S = emp |e— (f:e)|true| S*xS| ...
| assert(B) | v:=e | if(B, S, S) | while(B) S ¢ = PAS|3Jv. SH

Fig. 2. Program syntax and separation logic syntax.

to by a procedure parameter. In contrast, summaries expressed using LZSF can cap-
ture precise input output relationships between an unbounded number of cut-points.

Jeannet et al. [2004] propose an algorithm to generate relational summaries in TVLA.
They use instrumentation predicates that relate the input value of a predicate with
its output value. Additionally, they also use lemmas specific to the novel instrumen-
tation predicates to avoid loss of information during the abstract computation. Their
algorithm is top-down and forward, that is, they start abstract computation from the
main procedure and analyze each procedure (or reuse its already computed summary,
if possible) when it is called.

Yorsh et al. [2006] present a decidable logic of reachable patterns (LRP) in linked
data-structures. This logic uses regular patterns to characterize the reachable heap
structure. As such, using symbolic variables to represent the initial and final values of
the procedure parameters, it is possible to relate the reachable heap cells in the input
and output of the procedure. But in this work, the focus is on having a decidable logic for
verifying programs annotated with preconditions, postconditions, and loop invariants.
They do not provide an algorithm to compute procedure summaries in LRP.

The work on regular model-checking [Abdulla et al. 2004; Bouajjani et al. 2005, 2006,
2004] represents input-output relations by a transducer, which can be looked upon as a
functional specification. Given the transducer for the loop body and intial configuration
encoded as an automaton, the goal is to compute the final configuration after the loop
exits (i.e., the postcondition). This problem is undecidable in general, since the iter-
ated loop body transducer could encode a Turing machine. The authors therefore use
abstraction-refinement to compute over-approximations of the postcondition. Abdulla
et al. [2008] propose algebraic structures richer than finite state automata for repre-
senting shape of the program heap. Their method allows heap graphs to be directly
represented as graphs, and the operational semantics to be represented as relations
on graphs. All the analyses proposed above proceed top-down, and the authors do not
leverage compositional techniques to compute the transducer for loops.

3. COMPOSITION VIA STRONG BI-ABDUCTION

In this section, we introduce the idea of composing Hoare triples using strong
bi-abduction.

3.1. Preliminaries

Programming Language. We address a simple language whose syntax appears in
Figure 2. The primitives assert(v = e) and assert(v !'= e) are used primarily to
present inference rules for conditionals and loops (as will be seen later). Here v, u
are program variables, and e is an expression which could either be a variable or the
constant null. This language supports heap manipulating operations without address
arithmetic.

Semantically, we use a value domain Locs (which represents an unbounded set of
locations). Each location in the heap represents a cell with n fields, where n is statically
fixed. A computational state contains two components: a stack s, mapping program
variables to their values (Locs U {null}), and a heap ., mapping a finite set of non-null
locations to their values, which are n-tuples of (primitive) values.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:6 B. S. Gulavani et al.

(s,h) = PAS iff (s,h)|=PA(s,h)E=ES

(5,h) |= ex~ea iff s(er) ~ s(ea)

(s,h) = true

(s,h) £ false

(s,h) = P1 AP iff (s,h) |=P1A(s,h) =P

(s,h) = emp iff dom(h) = {}

(s,h) = e1— (f:e2) iff h(s(e1)) = (f:s(e2)) Adom(h) = {s(e1)}

(s,h) = S1% 52 iff 3hiho.hi#tha ARy Uhs = h A (s, h1) = S1 A (s, h2) |= Sa

Fig. 3. Separation logic semantics.

Table I. Local Reasoning Rules for Primitive Statements

Mutation o> (Ff:rw;.)vi:=elv> (fre;..)l
Deallocation v (ff:wt, ..., 7 : _w™)] dispose v [v # null A emp]
Allocation (modifies v) | [v= x]v:=new [Fw!... w™ v~ (fI: wl, ..., " w™)]
Lookup (modifies v) v=axAu—(f:w;. . Jlvi=uflv=wAur (f: w;...)]
[v=axAve (frw. Jvi=vilv=_wA x> (f: w;...)l
Copy (modifies v) [v=2xlvi=elv=e(v— x)]
Guard [v=e] assert(v=-e) [v =¢]
[v #e] assert(vl=e) [v #e]

Assertion Logic. We illustrate some of the key ideas using standard separation logic,
using the syntax shown in Figure 2. The ‘-~ in Figure 2 refer to constructs and
extensions we will introduce in Section 4. discussion. We assume the reader is familiar
with basic ideas in separation logic. Every expression e in separation logic evaluates to
a location. Given a stack s, a variable v evaluates to a location s(v). We define s(null)
to be null. A symbolic heap representation consists of a pure part P and a spatial part
S. The pure part P consists of equalities and disequalities of expressions. The spatial
part S describes the shape of the graph in the heap. Let dom(h) denote the domain of
heap h. emp denotes that the heap has no allocated cells, dom(h) = {}. The predicate
x +— (f :1) denotes a heap consisting of a single allocated cell pointed to by x, and the
f field of this cell has value [. In general, for objects having n fields f1,..., f", the
general version of the — predicateise — (f!:e1,..., f*:e,). The % operator is called
the separating conjunction; s; * sy denotes that s; and s refer to disjoint portions of
the heap and the current heap is the disjoint union of these sub-heaps. We use the
notation h;#hy to denote that ~; and s have disjoint domains, and use A, L Ag to denote
the disjoint union of such heaps. The meaning of pure assertions depends only on the
stack, and the meaning of spatial assertions depends on both the stack and the heap.

Hoare Triples. The specification [¢] S [¢] means that when S is run in a state satisfying
¢ it terminates without any memory error (such as null dereference) in a state satisfying
@. Thus, we use total correctness specifications. Additionally, we call the specification
[¢] S [@] strong if ¢ is the strongest postcondition of ¢ with respect to S. We use the logical
variable v to refer to the value of program variable v in the pre- and postcondition of a
statement S. The specification may refer to auxiliary logical variables from a set Aux,
that do not correspond to the value of any program variable. For the present discussion,
we prefix all auxiliary variable names with “_”. A Hoare triple with auxiliary variables is
said to be valid iff it is valid for any value binding for the auxiliary variables occurring in
both the pre- and postcondition. The local Hoare triples for reasoning about primitive
program statements are given in Table I. These are similar to the small axioms of
O’Hearn et al. [2001].

Notation. We use the following short-hand notations for the remainder of the paper.
Formulae true A S and P A emp in pre- or postconditions are represented simply as
S and P, respectively. The notation 6 : (v — x) refers to a renaming 6 that replaces

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 177

variable v with x, and e6 refers to the expression obtained by applying renaming 6 to
e. For sets A and B of variables, we write 6 : (A < B) to denote renaming of a subset
of variables in A by variables in B, and we write 6 : (A — B) to denote renaming
of all variables in A by variables in B. Given a formula ¢, we use free|(¢p) to refer to
the set of free variables in ¢. We denote sets of variables by upper-case letters like
V,W,X Y, Z,Forevery such set V, V; denotes the set of i subscripted versions of
variables in V. We say that ¢ is independent of the set of variables A, if AN free(p) =
We use ¢? and ¢° to refer to the pure and spatial parts, respectively, of ¢. The notation
3Xp * Y ¢ is used to denote IX, Y ¢? AP A ¢° % °, when ¢ and ¢ are quantifier free
and do not have free Y and X variables, respectively.

We denote the set of logical variables corresponding to the program variables modified
by S as mod(8). For primitive statements, the definition of mod is given in Table I. For
composite statements, mod is defined as follows. mod(S1; S2) and mod(if(C, S1, S2)) are
both defined as mod(S1) U mod(S2). On the other hand, mod(while(C) S1) is defined as
mod(S1).

3.2. Composing Hoare Triples

Given two summaries [¢1] S1 [@1] and [p2] S2 [@2], we wish to compute a summary for
the composite statement S1;582. If we can compute formulas ¢,. and ¢, that are
independent of mod(S1) and mod(S2), respectively, such that @1 * ¢,re < @post * @2, then
by application of frame rule we can infer the summary [¢1 * @prel S1;52 [@post * @2].
We can compose the two given summaries even under the slightly modified condition
1 % Qpre < 3Z. (@post * ¢2), if Z C Aux. The summary inferred in this case is [¢; *
(ppre] S1;82 [3Z. ((ppost * $2)]

Given ¢; and ¢y, we refer to the determination of ¢p.e, ¢posr and a set Z of vari-
ables such that ¢1 % ¢pre < 3Z. (@post * @2) as strong bi-abduction. The concept of
strong bi-abduction is similar to that of bi-abduction presented in Calcagno et al.
[2009] (in the context of using a Hoare triple computed for a procedure at a par-
ticular callsite to the procedure). Key differences are that bi-abduction requires the
condition @1 * @pre = @post * Y2, Whereas we seek equivalence (instead of implication)
while allowing some auxiliary variables to be existentially quantified in the right
hand side of the equivalence. While this composition rule is sound even if we use
bi-abduction, bi-abduction may not yield good postconditions. Specifically, if we disal-
low the deallocation operation, it can be shown that the composition of strong Hoare
triples using strong bi-abudction yields strong Hoare triples (refer to the appendix for
a proof). The “strong” property is not preserved under composition using bi-abduction,
although the composition is sound. A drawback of using strong bi-abduction, however,
is that there exist Hoare triples that cannot be composed using strong bi-abduction
but can be composed using bi-abduction. For example, [true] v := null [v = null] and
[true] v := null [v = null] cannot be composed using strong bi-abduction but can be
composed using bi-abduction. However, even with this drawback our tool could gener-
ate complete functional specifications for most of the benchmark programs using strong
bi-abduction in a bottom-up analysis.

Example 1. In this and subsequent examples, we will use v — w as a short-hand
for v — (next : w). Let us compose two summaries, [v = _a] v := new [3_b. v — _b] and
[v=_—cA_ct+> dv:i=vnext|[v=_dA_c+ d Notethat all variables other than
v are distinct in the two summaries, as they represent implicitly existentially quanti-
fied auxiliary variables in each of the two summaries. Since (3.b. v —~ _b) * emp &
de¢, d. emp x (v=_cA ¢+ .d) we can compose the two summaries and deduce
[v = a]l v:i=new;v:=vmext [dc, d. v = dA ¢ — _d]. As an aside, note that the
program fragment v:=new; v:=v.next introduces a memory leak.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:8 B. S. Gulavani et al.

[e1] St [1] BR;\N[(?HA 5] 5t (7]

N [p2] 82 [@2] free(ppre) Nmod(S1) =0 [i/\!B] s2 [f]

@1 * Ppre © IZ. (Ppost * p2) free(@post) Nmod(S2) =0 To] (5, S1 S;P) @
[1 * @pre] 51;52 [3Z. (post * @2)] £ C Aux @ P b @
Exit WHILE

[¢] assert(!B) [§] [¢] (assert(B);S)t ['], [¢'] assert(!B) [@]

[¢] while(B) S [@] [¢] while(B) S [@]

THEN ELSE
[¢] assert(B);S1 [] [¢] assert(!B);S2 [P]
7] 3(8, 51, 52) [7] [T 1£(3, 51, 52) (7]

Fig. 4. Inference rules for sequential composition, loops, and branch statements.

We now present a set of Hoare inference rules in separation logic for our programming
language. The rules are formally presented in Figure 4. The ComposkE rule captures
the above idea of using strong bi-abduction for the sequential composition of state-
ments. The rules WHILE, THEN and ELSE use the CoMPOSE rule to derive the fact in their
antecedent.

The rules Exit and WHILE are straightforward rules that decompose analysis of loops
into two cases. Rule ExiT handles the case where the loop executes zero times, while rule
WHILE applies when the loop executes one or more times. Rule WHILE leaves the bulk
of the work to the computation of [¢] S* [¢]. The notation [¢] ST [¢] does not represent
a Hoare triple in the standard sense, since S™ is not a statement in our programming
language. However, [¢p] ST [¢] is the key idiom we will use in the remainder of this
article. Hence, we overload the notation of Hoare triples, and also call [¢] S* [¢] a
Hoare triple. The notation [¢] ST [@] means that for every initial state satisfying ¢,
there exists a £ > 1 such that the state resulting after k executions of S satisfies ¢.
Note that this Hoare triple is used only in the WHILE rule. In this rule, the second
premise ensures that the state obtained after % iterations does not satisfy the loop
condition, and hence the loop terminates. In next two sections, we present a technique
for computing triples of the form [¢] ST [¢].

4. LOGIC OF ITERATED SEPARATION FORMULAE (LZSF)

Let S; denote the following loop in our programming language: while (v!=null) v :=
v.next. Let @fzo ¥’ informally denote the iterated separating conjunction 0 s - - - % y*
[Reynolds 2002] We would like to infer the following summary for S;: [v = xg A X, =
null A @l OJcl = X411 St [v = x, A 2 =mnull A @l OJCL — _x;+1]. The objective of this
section is to present a formal extension of separation logic that lets us express such
triples using a restricted form of iterated separating conjunction. We begin by giving
an overview of how we intend to infer loop summaries like this one.

Assume that we have a Hoare triple [¢] S [¢], where ¢ and ¢ are quantifier-free
formulae. We can compute a Hoare triple for %z executions of S by repeated applications
of the ComPosE rule as follows. Let ¢' (respectively, ¢*) denote ¢ (respectively, @) with
every variable x € Aux replaced by a corresponding indexed variable x;. Consider the
Hoare triples [¢'] S [¢'] and [¢**1] S [¢"+1], obtained from [(p] S [¢] by replacing variables
in Aux by indexed variables as described previously. Let ¢! pre. and ¢}, be such that both

free(gopre) n mod(S) and free(fppost) N mod(S) are empty, and @' * (Ppre & ‘Ppost * ¢'t1, Note
that unlike ¢ or ¢, we allow Pore a0d @4, to have free variables with indices ¢ as well

as I + 1. We can now inductively apply the ComPosE rule and conclude the following
Hoare triple.

[0° % (O #he)]S (O Phost) * 7] (4.1)

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:9

== ==~ TS
| ~ ' ~

) \) N / .
G G __GD e @ @ <R

- ;Yo = -r1 A\ s ees,” '
|, ! Yo - 0 Yk |,

< I)
v=ro g V=0 S~ - ! 9 V= ,.“‘\<<,,,,—” .
s - 0 . - . k
o @ @ Ppre © Yo = -T1 N\ x1 = Yy Ppre
U= Yo U= Yo ﬁ Sk+l
i—'
v=2ax1 g g v=-11

Orost
o AL
. \ 4
-Y1 o Yo\ -Yo 1
,

N
- v=_y1 -———-

(a) (b) (c)

Fig. 5. (a) Given summaries, (b) application of CompPosE, and (c) application of acceleration. Each box repre-
sents a heap cell, its contents represents the value of the next field. A circled variable above a box denotes
the name of the cell.

ae = arr | ael] | ael- + 1] | aec] | ae[$c]
e u=... | ael] | ael- +1] | aelc] | ae[$c]
P :==...|RP(PI, u)
S u=... | RS(S,l,u)

SH :=PAS|3v SH | Jarr SH

Fig. 6. LISZF assertion syntax.

We call the inference of the Hoare triple in equation (4.1) as acceleration of [¢] S [¢].
The following example illustrates acceleration of Hoare triples.

Example 2. Let Sbe the sequence of statements assert(v! = null); v := v.next. Sup-
pose we wish to compose the two summaries [v = _xg A o — _yol S [v = _yo A X0 — _yol
and [v = x1 A x1 = y1]S[v = _y1 A x1 — _y1], which are identical, except for re-
naming of auxiliary variables. Let ¢,.. denote x; = _yo A 2x1 = _y1 and ¢, denote
X1 = Yo X0 — _yo. Applying the ComposE rule results in the following summary: [(v =
XA X0 > yo)*(x1 = yoA x1 = yD] S;S [(Ler = yoA2xo > yo)x(v = _y1 A1 = y1)l.
This is pictorially depicted in Figures 5(a) and 5(b). Iterative application of CoMPOSE, or
acceleration, yields the summary: [v = xg A xg = _yo *@f;&(xi+1 = YiANXig1 > Yig1)]
skl [@f:_& (xit1 =i N2> yi)x(v=_yp A — _y)l. This is pictorially depicted in
Figure 5(c).

4.1. LTSF Syntax and Informal Semantics

We now introduce an extension of separation logic, called Logic of Iterated Separation
Formulae (or LZSF), that allows us to formally express the restricted form of iterated
separating conjunction previously alluded. The syntax of LZSF is given in Figure 6,
where “...” represents standard constructs of separation logic from Figure 2.

As we will soon see, we no longer need the informal notation (v = x¢)A (L = nulDA
(@f’;&;ci — ;1) to describe an acyclic singly linked list pointed to by v. Instead, we
can use the LISF formula ¢ = (v = A[0]) A (A[$0] = null) A RS(A[.] — A[- + 1], 0, 0),
where A is a new type of logical variable and RS is a new predicate.

Variables like A in the formula ¢ represent a new type of logical variables, called array
variables, that may be referenced in LZSF formulae. Intuitively, an array variable
represents a sequence of locations corresponding to the “nodes” of a recursive data
structure like a linked list. A LZSF formula may specify properties of the ith node in

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:10 B. S. Gulavani et al.

such a data structure, or specify a relation between the ith and i + 1st nodes of the
same (or even different) data structure(s), by referring to elements of the corresponding
arrays. In general, the syntax of LZSF also allows references to multidimensional array
variables. This is particularly useful for describing nested recursive data structures,
such as a linked list of linked lists. As a matter of convention, we will henceforth denote
array variables with boldface upper-case letters.

The semantics of LZSF uses a mapping from each array variable to a sequence of
values (vg, ..., vz). For unidimensional arrays, the values v; represent locations in the
heap, whereas for multidimensional arrays, the v;’s may themselves be sequences of
locations or sequences of sequences of locations, and so on. Expressions are extended to
allow indexed array references, also called array expressions, which consist of an array
variable name followed by a sequence of one or more indices. An array expression
can take one of four forms: (i) arrlcl, (ii) arr[$cl, (iii) arr[-], or (iv) arr[- + 1], where
¢ is a nonnegative integer constant, and arr is either an array name or an array
expression. Array expressions with fixed indices include array references of the form
arrle] or arr[$c]. These refer to the element at an offset ¢ from the beginning or end,
respectively, of the sequence represented by arr. For example, if A is mapped to the
sequence (vo, ..., vp), then the array expressions A[0] and A[$0] evaluate to vg and
v, respectively in LZSF semantics. The semantics of array expressions with iterated
indices, which include references of the form arr[-] and arr(- + 1], will be explained
later.

In addition to array variables, LZSF extends pure and spatial formulae with a
pair of new predicates, called RP and RS. These predicates are intended to be used
for describing pure and spatial properties, respectively, that repeat across nodes of
recursive data structures. Loosely speaking, if S denotes a spatial formula containing
an array expression with iterated index, such as arr[-] or arr[- + 1], then RS(S, [, u)
corresponds to our informal notation @f;l—us . Note, however, that the index variable
i and bound % are not explicitly represented in RS(S, [, u). Instead, the values of i and
k are provided by the evaluation context. The “dot” in arr[-] or arr[- + 1] intuitively
refers to the implicit index variable i. Thus, arr[-] refers to the element at offset i,
while arr[- + 1] refers to the element at offset i + 1. To see how the RS predicate is used,
consider the formula RS(A[-] — A[-+1], 0, 0), where A is mapped to a sequence of length
k+ 1. This formula asserts that for all i € [0, 2— 1], the ith element of A is the location of
a heap cell whose next field has the same value as the i + 1st element of A. In addition,
the predicate also asserts that the heap cells represented by elements A[0] through
Alk — 1] are distinct. The usage and intuitive interpretation of RP is similar to that of
RS, with the exception that RP is used with a pure subformula P (as in RP(P, [, u))
instead of the spatial subformula S in RS(S, /, u). For notational convenience, we will
henceforth denote RP(P, [, u) and RS(S, [, u) simply by RP(P) and RS(S), respectively,
when both / and u are 0.

While the RP and RS predicates are clearly motivated by Reynolds’ iterated sepa-
rating conjunction operator [Reynolds 2002], there are some differences as well. Most
important among these is the absence of an explicit iteration bound in the syntax of
RP and RS. Specifically, the iteration bounds in RS(S, !/, u) and RP(P,[, u) are pro-
vided by the lengths of sequences mapped to array variables with iterated indices in
the sub-formulae S and P, respectively. This implicit encoding of bounds allows us to
uniformly represent simple and nested data structures in a size-independent manner.
To see this, consider a linked list in which every element itself points to a distinct
nested linked list. Suppose further that the nested linked lists have different lengths.
If we were to represent this data structure using iterated separating conjunctions, we
would need a formula with two iterated separating conjunctions, one nested within
the scope of the other. Furthermore, the upper bound of the inner iterated separating

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:11

conjunction would need to be expressed as a function of the index of the outer iterated
separating conjunction. Clearly, this poses additional complications for algorithms that
reason about and manipulate such formulae. In contrast, the same data structure can
be expressed in LZSF (with the shorthand RS(S) for RS(S, 0, 0)) as

X[-] — (nlist : A[-1[0], next : xX[- + 1])
RS| A (A[-1[$0] = null) A (X[$0] = (nlist : A[$01[0], next : null),
A RS (AL~ ALl +1D)

where X is a unidimensional array representing elements (with nlist and next fields)
of the outer linked list, and A is a two-dimensional array representing elements (with
a next field) of the nested linked lists. The semantics of this formula will become clear
once we discuss the formal semantics of LZSF in the next section. However, notice
that the formula is syntactically independent of the sizes of individual linked lists.
As we will see later, our bi-abduction and acceleration algorithms also do not require
explicit bounds of iterated separating conjunctions. Consequently, we choose to to keep
these bounds implicit. Another way in which the usage of RP and RS predicates differs
from that of iterated separating conjunctions is that the lower and upper bounds of
iteration are expressed as offsets from the start and end, respectively, of the sequences
mapped to array variables. This allows us to refer to elements at a fixed offset from
the beginning or end of a linked list, for example, without explicitly referring to the
length of the list. In summary, the RP and RS predicates may be viewed as variants
of Reynolds’ iterated separating conjunction operator, in which iteration bounds and
indices are implicitly represented, and are provided by the evaluation context.

4.2. LTSF Semantics

We now extend the semantics of separation logic and formally define the semantics
of LISF. Since an LISF expresssion may be an array reference with one or more
iterated indices, we require the mapping of array variables to uni- or multidimensional
sequences of locations, and a list of integers, one for every iterated index, to evaluate
an LISF expression in general. Formally, the semantics of an LZSF expresison e is
given by the function &(e, L', s, V), shown in Figure 7. This function takes as inputs an
LISF expression e, a list L’ of nonnegative integer values, a stack s, and a mapping
V of array variables to uni- or multidimensional sequences of locations, and returns a
location as the value of e.

If e is a variable that is not an array, £ simply looks up the stack and returns
s(e) as the value of e. If e is the constant null, £ returns null. However, if e is an
array expression, £ uses the list L’ of integers and the mapping V of array variables
to sequences of locations to determine the value of e. Intuitively, integers from the
list L' are used to instantiate the iterated indices, [-] and [- + 1], appearing in e.
Thus, we need at least as many integers in L’ as the number of iterated indices in
e. This is ensured by the first precondition of function £(e, L, s, V), shown in Figure 7,
where the function Numlterind(e) gives the number of iterated indices in e. Formally,
Numlterind(e) is defined as follows: If array_var denotes an array variable, ae denotes
an array expression and v denotes a non-array variable, then Numliterind(array_var) =
0, Numlterind(ae[-]) = Numlterind(ae[- + 11) = Numlterind(ae) + 1, Numlterind(aelc]) =
Numlterind(ae[$c]) = Numlterind(ae), and Numlterind(v) = Numlterind(null) = 0. If e
is an array expression of the form array_var followed by % (fixed or iterated) indices,
then V must map array_var to a k-dimensional sequence of locations in order to avoid
indexing errors during evaluation of e and to ensure that (e, L', s, V) evaluates to a
unique location. This is formalized in the second precondition of £(e, L, s, V).

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:12 B. S. Gulavani et al.

e expression .
aexrpr array expression

/ . : ors
L list of integers L list of integers
. stack
input: . . . input: V mapping of array variables to uni-
v mapping of array variables to uni- > ?
2 : or multi-dimensional sequence(s) of
or multi-dimensional sequence(s) of .
. locations
locations .) . .
. unique location, or uni-/multi-
output: location output: . . .
. dimenional sequence of locations
requires:

requires:

(1) Number of elements in L’ > Numlterlnd(e))

(2) If e is an array expression of the form
array-war followed by k (fixed or iterated))
indices then the dimension of V(array-var)

(1) Number of elements in L =
Numlterind(aexpr)

If aexpr is of the form array_var followed by
k (fixed or iterated) indices then the dimen-

equals k sion of V(array_var) is at least k
E(e,L',s,V) =
let L = suffix(L’, Numlterind(e)) in Eo(aexpr, L, V) = match aexpr with
match e with | array_var — V(arraywar)
| null — null | ae[-] = Eq(ae, ti(L),V)[hd(L)]
| v — s(v) | ae[- + 1] = Eq(ae, tI(L),V)[1 + hd(L)]
| ae = Eq(ae, L, V) | aelc] = Eq(ae, L, V)|c]

| ae[$c] — let a = E,(ae, L,V) in
aflength(a) — 1 — ¢]

Fig. 7. Semantics of expressions, &.

In general, a list L' satisfying the first precondition of £(e, L', s, V) may contain more
integers than Numlterind(e). Therefore, we use the function suffix to extract a suffix
of L' of the same length as Numlterind(e). The “match e” construct used in Figure 7
implements a case split based on the structure of the expression e (analogous to the
match expression of functional programming languages like ML). The helper function
&, implements evaluation of an array expression, as outlined above. It takes as inputs
an array expression aexpr, a list L of integers and a mapping V of array variables to
sequences of locations. The instantiation of iterated indices in aexpr with integers from
Lis done recursively. Specifically, each recursive call instantiates the current rightmost
un-instantiated iterated index of aexpr with the integer at the head of L, and passes
the rest of L, that is, its tail, as argument to the next recursive call. Function &, has
preconditions similar to those of £, except that the dimension of V(array_var) is allowed
to be greater than the number of indices (fixed or iterated) following array_var in e.
Initially, function &, is called from function £. The preconditions of £ and the fact that
L is set to a suffix of L’ of length Numlinterind(aexpr) ensure that the preconditions of
&, are satisfied when it is called from within £. Subsequently, each recursive call of &,
reduces the number of (fixed or iterated) indices of aexpr by exactly 1. Moreover, the
number of iterated indices is reduced by 1 in exactly those cases where the length of the
list L is also reduced by 1. This ensures that once the preconditions of &, are satisfied
in the initial call, they will continue to be satisfied in every subsequent recursive
call.

Let aexpr be of the form array_var followed by %' (fixed or iterated) indices. Let
the dimension of V(array_var) be k. The second precondition of &,(aexpr, L, V) ensures
that £ > k. It is an easy exercise to see that &£,(e, L, V) returns a (k — k')-dimensional
sequence of locations. Therefore, if £ = £/, function &£,(e, L, V) returns a unique location.
Note that the second precondition of function £(e, I/, s, V) ensures that whenever &, is
called from within &£, we have k = &'. Therefore, every call of &, from within £ returns
a unique location. The functions Ad(L) and #/(L) used in the definition of &, in Figure 7
return the head and tail, respectively, of the list L. Similarly, if &,(e, L, V) returns a
sequence a, the function length(a), used in the definition of &,, returns the number of
elements in a.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:13

m = PAS iff nEPAmMES

m = e1 ~es iff £(e1,L,s,V)~ E(e2,L,s,V)

m = true

m [~ false

m |= RP(P,l,u) iff 3kk+1=len(V,L,P)AVI<i<k—1-—wu. (s, h,V,i::L)=P

m = Pi AP iff mEPLAmE P

m = emp iff dom(h) = {}

m = e1— (f:e2) iff h(€(e1,L,s,V)) =(f:E(e2,L,s,V)) Ndom(h) ={E(e1,L,s,V)}

m = RS(S,l,u) iff 3k, v, hy,. .., hy k+1=len(V,L,S)Au/ =k—1—uAh= E‘;lhi A
Vi<ij<u'.i#j= hi#h; A\VI<i<u. (s,h;,V,i:L)ES

m k= S1%Ss iff 3Ry, ho hi#tha AhiUhs = h A (s,he, V,L) |= S1 A (s, ha, V, L) |= Sa

m = Jv PAS iff 3n € Locs U {null} ([s|v:n],h,V,L) = (PAS)

=

m Jarr PAS iff 3k € N,a € N* = (LocsU {null}) (s, h,[V|arr:a],L) |= (P A S)

Fig. 8. Semantics of LZSF, mis (s, h, V, L), and len is as explained in text.

We now define a class of well-formed £ZSF formulae or (wff). The semantics is
non-trivially defined only for well-formed formulae. A LZSF formula that is not
well-formed does not have a model. For notational convenience, we overload the
function Numlterind, used in the definition of £(e, L, s, V) above, to operate over
expressions as well as predicates. Specifically, the function Numlterind is defined
over predicates as follows. Numlterind(e; ~ e2) = max(Numilterind(e;), Numlterind(es)),
Numlterind(P; A P;) = Numlterind(P;), Numlterind(RP(P, _,)) = Numlterind(P) —
1, Numlterinde — (f; : [;)) = Numlterind(e), NumlterInd(S; * S2) = NumlterInd(S;),
NumlterInd(RS(S, _, _)) = NumlterInd(S) — 1. An LZSF formula P A S is then said to be
well-formed iff (i) NumliterInd(P) = NumlterInd(S) = 0, (ii) for every sub-formula P; A P,
of P, we have Numlterind(P;) = NumlterInd(Py), (iii) for every sub-formula S; % Sg of S,
we have NumlterInd(S;) = NumlterIind(S;), and (iv) for every sub-formula e; — (f : e3)
of S, we have Numlterind(e;) > Numlterind(es).

Structures modeling well-formed LZSF formulae are tuples (s, 4, V), where s is a
stack, & is a heap, and V is a mapping of array variables to uni- or multidimensional
sequences of locations. The semantics of assertions is given by the satisfaction relation
(=) between a structure augmented with a list of integers L, and an assertion ¢. The
list of integers facilitates evaluation of array expressions by the function £ described
above. The formal definition of (s, &, V, L) = ¢ is given in Figure 8. Here, the notation
i :: Ldenotes the list L’ obtained by inserting i at the head of an already existing list L.
Similarly, the notation [V|arr : a] denotes the mapping V' defined by V'(arr) = a, and
V'(x) = V(x) for all array variables x different from arr. We say that (s, h, V) is a model
of p iff (s, b, V, []) = .

Let ¢ be a well-formed LZSF formula containing array expression(s), and let (s, &, V)
be a structure over which we wish to evaluate ¢. It follows from the definition of the
semantics (Figure 8) that in order to determine if (s, &, V, []) &= ¢, we must evaluate all
array expressions in ¢ in general. In order to avoid indexing errors when evaluating
array expressions, certain restrictions must be imposed on the mapping V, and hence on
the structure (s, &, V). This motivates us to define the set of well-formed structures for
a given well-formed LZSF formula ¢. For notational convenience, we will denote this
set by wfs,. Intuitively, a structure (s, h, V) in wfs, avoids indexing errors during the
evaluation of array expressions in ¢ by ensuring that whenever function € is called, the
corresponding preconditions (see Figure 7) are satisfied, and no out-of-bounds exception
occurs. Formally, a structure (s, 2, V) is said to be in wfs, if s and & are a stack and
heap, in the usual sense of semantics of separation logic, and the mapping V satisfies
the following conditions.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:14 B. S. Gulavani et al.

(1) Let ae be a maximally indexed array expression in ¢, that is, an array expression
that is not a subexpression of another array expression in ¢. Let the underlying
array variable in ae be array_var, and let ae be of the form array_var indexed by
a sequence of & (iterated and fixed) indices. Then, the dimension of V(array_var)
equals .

(2) The lengths of sequences accessed by array expressions in ¢ are such that no out-
of-bounds exception occurs when function £ is used to evaluate these expressions
in the definition of the semantics (Figure 8). Specifically:

(a) Ifelc] or e[$c] is an array expression in ¢, every sequence to which e evaluates
to during evaluation of ¢ is of length at least ¢ + 1.

(b) Let ¢ be a subformula nested within n(>1) RP (or RS) predicates in ¢. In
general, ¥ may refer to one or more array expressions. For every pair of ar-
ray expressions e; and es in ¥ that have at least n iterated indices, the se-
quences accessed by the nth iterated index of e; and es always have the same
length.

(3) All sequences mapped to array variables by V have non-zero lengths.

Let ¢ be a well-formed LISF formula, (s, A, V) be a structure in wfs,, and L be a
list of r integers, where r > Numlterind(ae) for all array expressions ae in ¢. From the
semantics of (s, h, V, L) = ¢ given in Figure 8, we find that for all constructs borrowed
from standard separation logic, the semantics remains unchanged. The semantics of
predicates RS and RP, which are novel to LZSF, however, deserve some explanation.
Consider a RP(P, [, u) (or RS(S, [, u)) predicate nested inside n — 1 other RP(or RS)
predicates. The length of the sequence accessed by the nth iterated index of every
array expression in P (or S) is guaranteed to be identical by the requirement of well-
formed structures of a formula. Given a list L of n — 1 index values corresponding to the
evaluation context arising from the outer RP(or RS) predicates, function len(V, L, P)
(or len(V, L, S)) determines the length, say k& + 1, of the sequence accessed by the nth
iterated index of an array expression in P (or S). The semantics of RP(P, [, u) then
requires that P holds for each array index i ranging from [to £ — 1 — u. Similarly, the
semantics of RS(S, [, u) requires that S holds over a sub-heap A; of & for each array index
i ranging from [/ to 2 — 1 — u, with the additional constraint that the A;’s are also pair-
wise disjoint. Note also that the definition of wff ensures that whenever E(ae, L, s, V)
is invoked in the definition of the semantics, then ae is a maximally indexed array
expression.

4.3. Comparison with Summaries Generated by Separation
Logic-Based Automated Shape Analysis Tools

In LZSF, we represent the values of variables in successive instances of a repeated
formula by using an array instead of hiding them under an existential quantifier of
a recursive predicate. This enables us to relate the data-structures before and after
the execution of a loop. This is crucial for generating succinct specifications. In the
following, we illustrate how more succinct specifications can be generated using LZISF
compared to those generated using recursive predicates by recent shape analysis algo-
rithms [Distefano et al. 2006; Berdine et al. 2007; Calcagno et al. 2007, 2009].
Consider a procedure traverse containing the loop S;: while(v!= null) v := v.next ,
that traverses a singly linked list. Let each element of the list have two fields named
Next and D. A summary in LISF is [v = X[0]ARS(X[-] = (Next : X[-4+1]; D : Y[]) AX[$0] =
null] traverse(v) [v = x[$0] A RS(x[-] — (Next : X[- + 1]; D : Y[]) A x[$0] = null].
This summary states that traverse neither modifies the elements of the linked list
nor the relative links between them. The shape analysis algorithms presented in
Distefano et al. [2006], Berdine et al. [2007], and Calcagno et al. [2007, 2009] would

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:15

generate the summary [list(v, next)] traverse(v) [list(v, next)], using the recursive pred-
icate list(v, next). This summary does not indicate whether the input list or the contents
of any of its elements are modified.

Consider the composite statement traverse (v); check(v), where the procedure check
requires, as precondition, a linked list pointed to by v with the D field of each element
pointing to h. This precondition cannot be expressed using the list recursive predicate.
Let clist(v, next, h) be the recursive predicate that captures the desired precondition.
The two statements cannot be composed unless we have a summary for traverse that
describes the data structure using the clist predicate. This is because the postcondi-
tion of [list(v, next)] traverse(v) [list(v, next)] does not indicate whether the content of
any element of the list is modified by traverse. Thus, either (i) we need to generate
summaries for traverse using all possible recursive predicates (e.g., list, clist, dll) that
may be required in some part of the code, leading to an explosion of summaries, or
(i1) we need to reanalyze traverse with new recursive predicates, making the analysis
non-modular. Note that even if we use the generic predicates defined in Berdine et al.
[2007] to capture both the predicates list and clist in a common framework, the sum-
mary for traverse computed using such predicates does not assert that none of the list
elements are modified by traverse. Hence, it is not possible to generate a succinct set
of summaries for traverse that can be used in modular analysis using the recursive
predicates and shape analysis algorithms presented in Distefano et al. [2006], Berdine
et al. [2007], and Calcagno et al. [2007, 2009].

In LZSF, the precondition for check can be expressed as v = x[0] A RS(X[-] — (Next :
x[- 4+ 1]; D : A) AX[$0] = null. The summaries for traverse and check can indeed be
composed using strong bi-abduction. For this composition, both the formulas ¢,.. and
@post can be set to RP(Y[-] = k). Thus, we can use the LZSF summary for traverse in
any context that requires the postcondition of traverse to satisfy some properties in
addition to the singly linked list structure, thereby facilitating modular analysis. Note
that relational summaries can be expressed using higher order recursive predicates
other than LZSF, as illustrated in Biering et al. [2005]. However, we do not know
of any other automated tool that generates relational summaries using higher-order
recursive predicates.

5. INDUCTIVE COMPOSITION

The rules introduced in Figure 4 are valid even with £LZSF extension of separation
logic. The set of auxiliary variables, Aux, includes the array variables in this extension.
For clarity, we adopt the following convention in the remainder of the paper: (i) unless
explicitly stated, all formulas in LZSF are quantifier free, (ii) Hoare triples are always
expressed as [¢] S [3X @], (iii) free(p) = VUW and free(9) = VUWUX, where V denotes
the set of logical variables representing values of program variables, and W, X are sets
of auxiliary variables, including array variables.! Thus W is the set of free auxiliary
variables occurring in ¢ and in 3X @.

5.1. Inference Rule InpucT

Let [¢] S [3X. 9] be a Hoare triple. We wish to compute a strong summary for S*. In
Figure 5 and Example 2, we have presented the intuition of acceleration that computes
summaries of the form [¢] S [¢] from the summary of S. We formalize this intuition in
the inference rule INpDUCT as shown in Figure 9. As in the previous Section, we use ¢’
(respectively, @) to denote ¢ (respectively, ¢) with every free auxiliary variable w € W

1By restricting preconditions to quantifier free formulas we do not sacrifice expressiveness. Indeed, the
Hoare triple [3Y. w(V, W, Y)] s [3X. v(V, W, X)] is valid iff [y(V, W,Y)] S [3X. ¥(V, W, X)] is valid, where
W, X Y are disjoint sets of auxiliary variables (see definition 124 in Cousot [1990]).

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:16 B. S. Gulavani et al.

INDUCT INDUCTQ
Given Given
L[] s [3X. 2] L [¢]s BX. 7]
2. @° : @ with every w € W replaced by wq 2. 70 @ with every w € W and z € X
3. @' : ¢ with every w € W replaced by w; replaced by wo and x1, resp.
4. f'rcri(gp;’”,() N mod(S) =0 3. o' ¢ with every w € W replaced by w;
5. j'?'(:(i(f%()st) I’; m{)d(S)U: 0) 4. f’l‘(i(i((p;)”_ﬁ) N mod(S) =0
6. (3X.) *Ppre & Ppost ¥ P 5. fr(:(:(gago‘”) N mod(S) =0
7. «a:(z — X][0]), for each z in W 6. (3X:. 3°) = 99;))1'6 & 37, (w;ﬁost * o)
8. B:(x — X[3$0]), for each z in W 7. Zy CWiUX; CAuxand |Z1| =7
9. Function lter as explained in following text 8. f”"f‘f(wg,q:) NZo=0
Infer 9. a: (z — X][0]), for each z in W \ Z
[pa = Iter(cp;]”_u)] st [3X. |tel’(<,0?,u,.t) *@B] 10. B, lter, same as described in INDUCT
Infer
[ax * Iter(¢0,.,)]
S+
B=x,z', ..., z". Iter(apgost) * @]

Fig. 9. Inference rule for acceleration INnpuct and INpUCTQ.

Iter (1)) pass2(1))
1: Yren < warp(y) match ¢® with
2: return RP(¢2,) ARS(YE,,) | emp — true A emp
| er = e2 = e #nullAep — e
warp () | s1 % s2 — pass2(sy) * pass2(s2)
1: Replace every indexed variable zog € W (resp. | RS(s,1,u) — let ¢ < pass2(s) in
z1 € W) by X[] (resp. X[- + 1]) RP(pP, 1, u) ARS(p%,1,u)

2: if 9P and ° do not have any newly introduced
array variables in common then

3: return ¥ A pass2()®)

4: else

5: return @

Fig. 10. Definition of lter(y).

replaced by an indexed variable w;. Let ¢9,,, ¢, be formulas such that free(¢),,) and

free(¢d,,,) are disjoint from mod(S) and (3X. §°)x¢),, < @9, *¢'. Note that the premises
4, 5, and 6 of INpucr imply that free(¢,,) and free(¢',,) are disjoint from mod(s), and
that (3X. @) % ¢l,, & ¢hee * @' ! for any i. Given these conditions, the ComposE rule can

be iteratively applied to obtain an accelerated summary similar to that in (4.1).

We use «, 8, and lter to express ¢°, ¢* and the iterated separating conjunction of
accelerated summary (4.1) in LZSF. The renaming « replaces every variable x € W in
¢ by x[0]. Similarly, 8 replaces every x € W in ¢ by x[$0].

The function Iter in premise 9 takes an LZSF formula ¥, computes an intermediate
formula v,.,, and returns RP(y%,) A RS(/5,) as defined in Figure 10. The formula v,
is computed by applying a function called warp to . warp makes at most two passes
over the syntax tree of ¢ in a bottom-up manner. In the first pass, it renames every
indexed auxiliary variable xy (respectively, x1) by a fresh array with iterated index
x[-] (respectively, X[- + 1]). If y%,, and ¥5,, do not have any common array variable, it
performs a second pass (formalized in algorithm pass2, Figure 10) in which every sub-
formula e; > eg in ¥}, is replaced by e; # null Aej — eg. All resulting sub-formulas of

the form RS(P A S, [, u) are finally replaced by RP(P, [, u) ARS(S, [, u). This ensures that

Vien and ¥, always have at least one common array variable, unless v° is emp. The

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:17

length of these common arrays determines the implicit upper bound in the universal
quantifier of RPand RSpredicates in Iter(y).

Example 3. Recall Example 2 where two instances of the summary [v = x A x
ylIslv=_yA x> _yl are composed using ¢), : (x1 = _yo A 1 + _y1) and @), :

(21 = _yo A %o — _¥p). For this example, Iter(gagre) generates the LZSF formula RP(x[- +

1] = y[.D A RSE[- + 1] ~ Y[+ 1]), and Iter(wgost) generates the formula RPX[- + 1] =
Y[-1) ARS(X[:] + ¥[-]). In this representation, the arrays x and Y represent the sequences
0, ...,x and _yo, ..., -y, respectively. The renamed formulas gpo and ¢8 correspond
to the formulas v = x[0] A X[0] — Y[0] and v = Y[$0] A x[$0] — Y[$0] respectively.
The application of INpucT thus generates the summary: [v = x[0] A RPX[- + 1] =
v[-]) AX[0] = Y[0] % RS(x[-+1] > ¥[-+1D] s* [v = ¥[$0] A RP(x[-+1] = ¥[-]) A RS(X[] >
v[-]) * x[$0] — v[$01]].

5.2. Inference Rule InpUCTQ

In general, the strong bi-abduction of 3X. ° and ¢! in premise 6 may require variables
to be existentially quantified on the right hand side. The INpucT rule needs to be slightly
modified in this case. However, the basic intuition of acceleration remains the same, as
isillustrated in the Figure 5. The modified rule INDUCTQ is presented in Figure 9. We use
a refined notation in INDUCTQ where ¢’ (respectively, ¢*) denotes ¢ (resp. ¢) with every
variable w € W replaced by an indexed variable w; and every variable x € X replaced by
x;11. Let the strong bi-abduction between ¢° and ¢! be (3X;. %) %9, & 3Z;. (09, *91),
where Z; € W; U X; is the set of auxiliary variables. If the additional side-condition
free(wgre) N Zy = @ holds, we can infer the accelerated summary in the conclusion of
InDUCTQ.

Let Z;, be the set of variables {zil, ...,2;}. The values of variables in Z; =
{28, ...20}. ..., Zp = {2}, ...,2;} are represented as elements of r arrays z'= {z{, ...,
z}%}, ..., Z={2[, ..., 2,} in the postcondition of conclusion of INDUCTQ. These two repre-

sentations are analogous to representing elements of the same matrix row-wise and
column-wise. The variables representing the values of variables in Z; U --- U Z; need
to be existentially quantified in the postcondition of the conclusion of INDUCTQ because
of the existential quantification of Z; in strong bi-abduction. Hence, we existentially
quantify the array variables z!, ...,z in the conclusion of INDUCTQ.

By existentially quantifying the array variables z!, . . . ,z" in the conclusion of INDUCTQ,
we also quantify the array indices representing values of the variables in Zj, which
need not be quantified. Although this is sound, we lose the correspondance between
the Z, variables in pre and postcondition of the conclusion. We can establish this
correspondence by adding extra equalities zy = z, for every variable zy € Zy, to ¢’gost in
the conclusion.

LEmMA 5.1. Inference rules INDucT and INDUCTQ are sound.
Proor. We use induction on number of compositions to prove INpucTQ. COMPOSE

proves the base case, [¢? x ¢9,]1 S;S [3X5, Z1. (¢, * @1)]. The induction case can be
proved as follows.

1. [¢'] s 3Xi11. @' Premise 1, Aux. variable renaming
2. [0 @f;(l,wfwe] S*¥1[3X,11, Z1, ..., Z;,. Induction case assumption
Qf;(} Ppost * 7 Premise 6

3. (3Xk+1. /(ﬁk) * @ﬁre =4 3Zk+1. ((pgost * §0k+1)

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:18 B. S. Gulavani et al.

4. (3Xp1. Za. . T OF) Py * 9°) % 0k,

1> OF 4 @hos depends on Wo, ..., Wy,
(Z1. ... Zh OF) Phos * AXpr1. 90) x 0%, and Zi, ..., Z, it is indep. of X1

¢ By premise 8, Z; N free(gof;re) =0
(3Z1. ... Zh OF) Phog * AXi1. 9 ¢k,) foranyi e {1.k}

¢ From 3
(3Zy,.... Z. Qf;ol Prost * 31 (%ﬂ;vst % gt+1)) |
¢ OF g #ls is independent of Zj1

(Zi,.... Zp1. OF, (pfwst * gkt1)
5. [p*1]'S [3Xpsa, @] Premise 1, Aux. var. renaming
6. [¢°* O @l % 0l] Apply ComposE to 2 and 5, using
sh+2 _ strong bi-abduction between first
(3Z, ..., Zyi1. ok, Dot * A2, ¢"1)] andlast formulas of 4
7. 160 O o¢pe]
sht2 . from 6
[3Xps2. 21, ..., Zps. ok, Phpst * ikl Xp.o is disjoint from Z; U--- U Z,

The Hoare triple in 7 in this section is expressed in the conclusion of INDUCTQ as
[pa * Iter(¢),,)] st [3X.z',....z. lter(pl,,,) * pBl. The formulas ©f ¢}, and OF ol
are expressed in LISF as lter(g,,,) and lter(g,,,), respectively. The parameter £ in
the pre- and postcondition of 7 is implicitly is hidden in the semantics of RS and RP
predicates output by Iter. Every free array variable in lter(¢,,,) is guaranteed to be
free in Iter(gofm) by the strong bi-abduction in the premise of INpUCTQ. This common
array variable ensures the same parameter % in the pre- and postcondition of the
resulting Hoare triple. However, it is possible that all the array variables in Iter(¢;,,)
are existentially quantified and hence Iter(go;re) and Iter(goﬁ,ost) do not share an array
variable. This results in an over-approximate postcondition. We can obtain a stronger
postcondition in this case by adding a dummy equality e = e in the Rp predicate output
by lter(g,,s), where e is an expression from lter(¢},,) involving an array variable not
present in lter(¢},,,). O

5.3. Inference Rule INDuCTSYMM

The inference rule INDucTSYMM enables us to compute summaries that capture the
effect of executing the statement S zero or more times. This is in contrast with
the summaries inferred by INpucTqQ which capture the effect of executing S one or
more times. Additionally, INDucTSYMM also enables us to eliminate some variables from
the pre- and postcondition of the inferred summary, thus simplifying it.

If, in Eq. (4.1) ¢}, (respectively, ¢,,,,) is same as ¢° (respectively, $*) modulo variable
renaming, then we can infer the following summary: (0%, ¢)IS*1[(0%_, ¢))l. Recall
the accelerated summary inferred in Example 2, which is depicted in Figure 5(c). In
this example, the shape of ¢° (respectively, $°) and @yre (respectively, ¢l,,.) are the
same. Hence we can rewrite the accelerated summary as follows. [v = xg A @fzo(xi >
i Ay = 20 SF v = g A @fzo(xi — i A _y; = x;41)]. This is depicted in
Figure 11(a).

The equalities x; 1 = ¥;, for each i, in the pre- and postcondition identify the folding
points [Guo et al. 2007] of the repeated data-structure in the heap. We can replace

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:19

/ N / N / N
C @ G , C@ e
\ < \ N \ <
N
v = _ro Py = i N ey
SLH SI»-+1
U= Tkl P Yi = il N oy V= Tpyl P = i
-7 BN , - S L7 - - \\
/ N / N , N
- HECED IR B EDIERS

.
;@ D) \
) ~ 1 ~
N E Lo | . ;
A = A -

Fig. 11. (a) Alternate representation of summary in Figure 5-c, and (b) Summary resulting from application
of InpuctSymm. Each box represents a heap cell, its contents represents the value of next field. A circled
variable above a box denotes the name of the cell.

INDUCTSYMM
Given
[¢] s 3X. @], [X| =t

?° : @ with every w € W and = € X replaced by wo and z1, resp.

' : @ with every w € W replaced by w;, for i € {0,1}

(3X1. %) * ! is satisfiable

7i : (mod(S) N free(3X.) — free(e’) \ mod(8)), for i € {0,1},

s.t. Pure part of ¢ implies (Eq 7;)

~0 : (mod(8) N free(p) — free(3X1.3°) \ mod(S)), s.t. Pure part of 3X;.3° implies (Eq 7o)
o : (yo — YI[0]), for each y in W

B (y1 — Y[$0]), for each y in W

Iter same as described in INDUCT

10. 65 : (Wo — Wq), s.t. ap — b1 € 55 iff (Eq v0)71 = ao = b1, and ag ¢ range(to)

Infer

AN

© ® N

[(Eq m0)er A lter(¢°7085 A (Eq v0)7165)]
g
[(3X1,... . X" (Eq 71)B A lter(3%7065 A (Eq 70)7185)]

Fig. 12. Variant of INnpuCTqQ, INDUCTSYMM.

_y; by x;41 from both the pre- and postcondition, and thus eliminate all the _y;’s. We
obtain the following simplified summary from this renaming (depicted in Figure 11(b)).
v = x0 A OF gt > 241] 891 [v = 241 A OF_ 2 = xi41]. The corresponding
summary in £LISF is [v = xX[0] A RS(x[-] — x[- + 1])] 8* [v = x[$0] A RS(X[-] — x[- + 1])].
In this specification, if the length of x is A + 1 (where A > 0), then it summarizes A
iterations of S. Hence, it is a summary for zero or more iterations of S, denoted as
[¢] s* [¢]. The notation [¢] S* [¢] means that for every initial state satisfying ¢, there
exists a £ > 0 such that the state resulting after %2 executions of S satisfies ¢. These
ideas are captured formally by the rule INDUCTSYMM in Figure 12.

For a renaming y, let (Eq y) denote the conjunction of all the equalities a = b
such that y renames a to b. The premises 5 and 6 of INDUCTSYMM in Figure 12 imply
¢° = Eq 10 A %10 and 3X;. ¢° = 3X7. (@°y0 A EQ y0), respectively. These premises also
imply that jp and r; have same domains and their ranges are independent of mod(S)
variables, hence (Eq yp)t; is independent of mod(s). This fact implies that (Eq yo) A
(Eq yo)r1 < (Eq 1) A (EqQ y0)71. Hence, [¢°] S [3X;. ¥°] is a valid Hoare triple, where
Y0 =Eq 1A et A(EQ yo)T1 and 0 = Eq 11 A 0%y A (EQ yo)71. Let ¢ (respectively, 1/?)

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:20 B. S. Gulavani et al.

be same as y° (respectively, V0 except that the variable indices 0 and 1 are replaced
by indices i and i + 1, respectively. By the law of auxiliary variable renaming, it follows
that for any i, [y*] S[3X;41. ¥l is a valid Hoare triple. Let us compose the Hoare
triples [y°] S [EIX1 ¥°] and [y!] S [3X5. ¥]. From the deﬁnltlons of ¥° and v, we can
infer the following strong bi-abduction between 3X;. ¥° and !.

3x;. w) % go 71 AEq)12 & 3X7. ((p o A (EQ yo)T1 % wl). (5.2)
— —
‘Pgre ‘ﬁgusz

An interesting feature of this strong bi-abduction is that wgre A (Eq 11) (respectively,
9%5s: A(EQ T1)) is same as ¥t (respectively, 7). Thus, the shape of 99, (respectively, ¢9,,)
is same as that of ¥ (respectively, ¥°). Thus, from the premlses 1-9, by 1nduct1vely

applying CoMpPOSE to the sequence of Hoare triples, [v°] 8 [3X;. ¥°), [v1] S [3Xs. ¥, .
[¥*] S [3X,.1. ¥*], we obtain the following accelerated summary.

[(Eq 10) A OF_o¢'t; A (EQ 13)7i41] S* (EQ Ter1) A OF_o3Xi41. 0 A (EQ y)Tinal. (5.3)

INpUcTSYMM uses the premise 10 to existentially quantify some auxiliary variables
from the summary [y'] S [3X; 1. ¥'] and thus simplify the ﬁnal accelerated summary
computed above. For this purpose, we define a renaming 8y from variables in W, to
variables in Wj. It is computed from the equalities in (Eq Y0)T1. Us1ng the rule for
existentially quantifying auxiliary variables, it follows that each of [y%5}] S [3X;. ¥°5¢],

(Y1621 S [3Xe. ¥1621, ..., [Y*85 1] S [3Xp 1. ¥*6F] is a valid Hoare triple. Ifag — b; € 8]
then we can eliminate all occurrences of g;’s by applying the renaming 63 and 8% to both
sides of the the strong bi-abduction in (5.2). The renaming 53 has a property that if
b1 € range(8}) then by € range(r1) which in turn implies b; ¢ dom(s2). This ensures that
(a) (Eq 'C1)5152 = (Eq Tl) (b) ((p)/0)5152 (ao)/o)Sé, and (c) (Eq)/0)‘51838% = (Eq)/0)1'1(38.
Hence, 1ﬁ08 82 = ¥°}. Using the renamings 8] and 52, we can therefore infer the
following strong bi-abduction between 3X;. %8} and 152

(Ele. aoc%) * <p1115f A (Eq)/1)1’25% < 3X;. (@Oyo(% AN (Eq)/0)1'136 * t[/13%). (5.4)

0 0
¢7pre (ﬂpost

We require 8} to satisfy the constraint ag € dom(5}) = ao ¢ range(to) so that 05162 is
equivalent to {0\053 and it does not have variables with all indices 0,1 and 2; otherwise,
its repetition cannot be expressed by LZSF predicates RS and RP.

By inductive application of the compose rule to the sequence of Hoare triples,
(053] s [3Xy. Y0831, [¥162] S [3Xe. ¥162), ..., [Y*6FH1] S [3Xsp1. ¥8E 1], we get the fol-
lowing accelerated Hoare triple.

[Eato) A OF ¢ uSl“ A(EQ y)Ti4180]
(5.5)
[(Eqmi) A OF, HXM. P78 A (Eq)t

The conclusion of INDUCTSYMM uses the renaming «, 8 and the function lter (which
are same as those defined in INDUCT) to represent this Hoare triple in LZSF.

Example 3 uses the inference rule INpDUCT to accelerate the summary [v = x A
x> ylSlv=_yA _x+— _yl. In the following example, we apply the inference rule
INDUCTSYMM to accelerate the same summary.

Example 4. Recall the acceleration of summary [v = xg A g = _yol S[v = yo A
o — _yol] in Example 3. For this example we can obtain 7; and yy as (v — _x;) and

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:21

(v — _yo), respectively. These renamings satisfy the premises 5 and 6 of INDUCTSYMM.
With these renamings we find that (Eq yy)t; is equivalent to _yy = ;. The expressions
¢%79 and @y, are both equivalent to xo — _yo. Hence we can infer the valid Hoare
triple [¥°] S [3X;. ¥°], where ¢° and 3X;. ¥* are v = o A Xo — _yo A _yo = %1, and
V= X1 A X0 > Yo A_Yo = 1, respectively.

The renaming (_yy — _x;) satisfies the requirements of 53 in the premise 10. Hence,
we find that both (9°108} A (EqQ y0)718]) and (@°y083 A (EQ y0)T18]) are equivalent to
X0 — X1.

For composing the two triples [¢°51] s [3X;. ¥°5}] and [¢162] S [3X,. ¥182], the fol-
lowing is a valid strong bi-abduction.

(=21 A x9> x1) % (1 = x9) & (V=21 A x> x1)% (1 = x2)

Thus, the premises of INDUCTSYMM guarantee the validity of the following accelerated
summary [v = g A @fzoxi = X1l S* v = a1 A szoxi — x;+1]. Hence, by
application of INDUCTSYMM we obtain the following LZSF summary [v = X[0] ARS(X[-] —
x[- + 1] 8* [v = x[$0] A RS(x[-] —~ x[- + 1])]

5.4. Discussion

The summary inferred by INDUCTSYMM captures the effect of executing the statement S
zero or more times. This is in contrast with the summaries inferred by INpucTq, which
captures the effect of executing S one or more times. Summaries that capture the effect
of executing S zero or more times enable us to compute succinct specifications, and in
some cases, complete specifications that could not have been possible otherwise.

As an illustration, consider a program with a while loop nested within an outer while
loop. The outer while loop iterates over a single linked list pointed to by h, whereas the
inner while loop deletes the linked list pointed to by the data field of each element of
the outer linked list. Using the rule INDUCTQ, the inner while loop is summarized by
two Hoare triples one summarizing zero iterations of the loop body (corresponding to
zero length inner linked list), and the other summarizing one or more iterations of the
loop body (corresponding to nonzero length inner linked list). By one more application
of INDUCTQ, we can obtain a summary for the outer while loop whose precondition
either expresses the fact that all outer linked list elements point to zero length inner
linked lists or the fact that all outer linked list elements point to nonzero length inner
linked lists. However, the resulting summary after two applications of INDUCTQ is not a
complete specification for the program.

In contrast, INDuCTSYMM enables us to compute a single summary for the inner while
loop. It captures the deletions of inner linked lists of any length (zero or more). By one
more application of INDucTSYMM, we can obtain a summary for the outer while loop
whose precondition expresses the fact that data field of each outer linked list element
points to a linked list of length zero or more. Notice that this is a complete specification
for the program.

Note that if any Hoare triple in the premise of inference rules in Figures 4, 9,
and 12 is partial (i.e., termination is not guaranteed starting from a state satisfying
precondition), then the Hoare triple in the conclusion will also be partial.

LEMMA 5.2. The rule INDUCTSYMM is sound.

5.5. Generating Summaries using Combination of Rules

The Composk and ExiT rules can be used to obtain summaries of loop free code fragments
and trivial summaries of loops, respectively. Given a loop body summary, the Inpucr,
InpucTq, and INDUCTSYMM rules generate an accelerated summary for use in the WHILE
rule. Any pair of accelerated summaries can also be composed to obtain new accelerated
summaries.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:22 B. S. Gulavani et al.

[x = 0 A 1] assert(e);S1 [P1], [z — (f : y) * p2] assert(le); S2 [P2],

JOIN P1p = P2, P11 & @2, A is a fresh auxiliary variable, mod(S1) = mod(S2)

[z = A[0] A A[$0] = null A RP(A[+ 1] = null) ARS(A[] — (f :) * 2] if(e, S1, 52) [Fa]

Fig. 13. The rule Join.

We now present a procedure to enumerate all possible accelerated summaries for
the while loop while (B) S. This enumeration process may not terminate in general.
However, when it does terminate, it generates a complete specification for the while
loop. Let S be the set of summaries for the loop body assert (B); S. For the summaries s;
and s, let s denote the accelerated summary obtained by applying one of the INpuCT,
InpucTQ, or INDUCTSYMM rules to s;, and let s; o s; denote the summary obtained by
applying the ComPoSE rule to s; and sz. Let S be the set of summaries defined as the
least fix-point of the following set transformer: F(S) = {s* | s € S}U{sj0s2 | s1, 52 € S}US.
The set S contains all the accelerated summaries — a complete functional specification
for the loop while (B) S (assuming S is a complete set of summaries for the loop
body assert(B);S). This set can be computed in an iterative fashion, by repeated
application of F to the emptyset. However, this iterative fix-point computation may
not terminate. Hence, in practice, we use heuristics to guide the iterative fix-point
computation in order to generate useful summaries. For instance, in practice, we could
limit the number of applications of F' to a small fixed constant to quickly generate
a useful set of summaries. As another alternative, heuristics used for acceleration
in Bardin et al. [2005] can be adapted to guide the application of acceleration and
composition rules for synthesizing useful summaries.

Given procedure summaries, nonrecursive procedure calls can be analyzed by the
Cowmposk rule, as in Calecagno et al. [2009]. The InpucTq rule can be used to compute
accelerated summaries of tail recursive procedures having at most one self-recursive
call.

5.6. Generating Conscise Summaries using the Join Rule

In order to avoid explosion of summaries for programs with many branching state-
ments, we present the rule Join. It facilitates merging the summaries for two
branches of if-then-else statement into a single summary. The JoIN rule is pre-
sented in Figure 13. Consider two summaries [x = 0 A ¢1] assert(e);S1 [¢1], and
[x = (f:y) % @2] assert(le);S2 [@2] of two branches of the statement if (e, S1, S2)
(first two premises of JoIN). If g1u = @ and @14 < @2, where u renames auxiliary
variables, are valid, then we can infer the concise summary [(x = 0V x — (f :
) * @o] if(e, S1, S2) [@2]. Since LZISF does not permit disjunctions, the precondi-
tion cannot be directly expressed in £LZSF. However, we can encode the disjunction
(x =0Vvxr (f:y)) using a fresh auxiliary array variable A as: ¢ = x = A[0] A A[$0] =
nullARP(A[-+1] = nul) ARS(A[-] = (f : y)). The formula 3A is equivalent to x = null
(respectively, x — (f : y)) when the length of A is 1 (respectively, 2). It in inconsistent
when the length of A is greater than 2. Hence, it is equivalent to (x = 0V x — (f :).
In Section 6 on strong bi-abduction, we show how to implement the checks p1u < @9
and ¢1u = @2 for quantifier free LZSF formulas, as required by the JoiN rule. Al-
though the Join rule is valid even if the postconditions of the two summaries in the
premise have existentially quantified variables, in order to implement the checks in
the premise using the algorithm that we will present in Section 6, we require them to
be quantifier free formulas. Hence, we assume that ¢;, ¢; are quantifier free formulas
over free variable V, W and ¢9, @2 are quantifier free formulas over free variable V,Y.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:23

Decompose(p,) BiAbduct(y, v, modi, mods)

1: res + {} 1: res < {}

2: for all (M,C, Ly, L2) € Match(¢®,4°,0) 2: for all (81,02) € Decompose(p,) do
do 3: 8" < RemoveVar(d1, ¢, mod1,V U W)

1

3: A+ (P ANL1)* (M AC) x (9P A L) 4 05 < RemoveVar (82,1, mods, V UY)
4 if sat(A) then 5: v < ComputeRenaming (87, Y, mod1)
5: 81 +— M ANYP A Lo 6: K1 +— 517
6: d2 +~ M AP A Ly 7 Z « dom(~)
7 res « res U {(d1,02)} 8: if Isindep(1, mody1) and Islndep(d5, mod2) then
8: return res 9: 6 + ComputeRenaming(x1,Y, X)
10: Z « Domain(6)
11: K} «+ RemoveRedundant(r16, ¢P)
12: if Isindep(x}, X) then
13: k2 + RemoveRedundant(850, ¥?)
14: 7‘es<—resu(n;7n27ZAU2)

15: return res

Fig. 14. Algorithm BiAbduct.

5.7. Generating Summaries with Recursive Predicates

Instead of translating a recurrence into a LZSF formula, we could as well translate it
into a recursive predicate in the conclusion of INpucT, INDUCTQ or INDUCTSYMM. As an
illustration, recall the summary [v = xy A Qf’:OJCi > X1l $* [v = a1 A @fzoxi —
xi+1] generated by the InpucTSymM rule in Example 4. The recurrence @f:oﬂi —
_x;,1 previously obtained can be translated into a recursive predicate list(_xg, xz.1),
where list(_xp, xz,1) is the standard recursive predicate that characterizes a linked-list
segment [Distefano et al. 2006; Calcagno et al. 2007, 2009]. It is defined recursively

as follows, list(_xg, xz11) def Xg > Xpy1 vV 3xq. x> xq x list(eq, x41). Hence, we can
generate the summary [v = g A list(xo, 2z11)] S* [v = 11 A list(xo, xz11)], using
recursive predicates as a conclusion of INDUCTSYMM.

In general, we could either use the acceleration inference rules to generate new
recursive predicates, or pick a recursive predicate from the set of predefined predicates
to generate the accelerated summary. But summaries with recursive predicates do not
relate the input and output data-structures of a procedure and hence are nonfunctional.

6. A STRONG BI-ABDUCTION ALGORITHM FOR LZISF

In this section, we present a procedure to compute strong bi-abduction. We first present
a solution to a subproblem of computing LZSF formulas §; and 82, given two quantifier
free LIS F formulas ¢ and ¢, such that ¢ x38; < 82 . The algorithm Decompose given
in Figure 14 computes such §; and §; given ¢ and v as input.

The key step in Decompose is the Match procedure used in line 2. Match takes two
spatial formulas ¢° and ¥* and an integer constant (that corresponds to nesting depth
of ¢* and y* within Rs predicate) as inputs and returns a set of four-tuples (M, C, Ly, Ls)
where M is a pure formula and C, L, Ly are spatial formulas. For each such tuple, M
describes a constraint under which the heaps defined by ¢° and ¥* can be decomposed
into an overlapping part defined by C and nonoverlapping parts defined by L; and Lo,
respectively.

We present procedure Match as a set of inference rules in Figure 15. The rule No-
MarcH does not find any overlap between S; and S, whereas CELL-MATCH matches the
two input mapsto predicates. The rule REcursioN recursively finds all possible overlaps
between S; and Ss.

The utility of the integer parameter d of Match is in unrolling the Rs predicate
in UNROLLFRONT and UNRrRoLLBAck. The function unroll{(RS(S, I,), d) required by rule
UNrRoLLFRONT unrolls RS once from the beginning. It returns the formula obtained by
replacing every (d+ 1)th iterated index [-] (respectively, [-+1]) in S by the fixed index [/]

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:24 B. S. Gulavani et al.

No-MATCH UNROLLFRONT
k1 = RS(S,l,u), ka= x— (f:y),
(true, emp, S1, S2) € Match(Sy, S2,d) k' = unrollf(RS(S, 1, u), d)
(M, C, L1, L) € Match(k', k2, d)
(M,C, L1 *RS(S,l + 1,u), L2) € Match(k1, k2, d)

CELL-MATCH

ki=ze (ffiah), ke=ye (f1yh) UNROLLBACK
M=z=yANA\{z'=y"} ki1 = RS(S,lLu), ka = z— (f:vy),
(M,z — (f":2"),{},{}) € Match(k1, k2,d) k" = unroll,(RS(S, 1, u),d)

(M, C, Ly, L) € Match(k', k2, d)
(M, C, L1 * RS(S,1,u + 1), L) € Match(ky, ka2, d)

RECURSION
S1 = S] % ki, S2 = S5 x k2 MarcHRs
(/M./C.%l.Lz) c Maﬁch(kl,k:z/ad) k1 = RS(S1,l,u), k2 = RS(S2,l,u),
(N, C’, Ly, L) € Match(5 * Ly, 55 * La, d) (M, C, {},{}) € Match(S1, S2,d + 1)
(M AN,CxC",L,, L},) € Match(S1, 52, d) (Mo, My) = separate_zero_depth(M)

(RP(M1,1,u) A Mo,RS(C,1,u), {},{}) € Match(k1, k2, d)
Note: unrolls(RS(S,1,u),d) and separate_zero_depth(M) defined in the text.

Fig. 15. Rules for procedure Match.

(respectively, [[4+ 1]). Similarly unroll,(RS(S, [, u), d), required by UNrRoLLBACK unrolls
RS once from the end. It returns the formula obtained by replacing every (d + Dth
iterated index [.] (respectively, [+ 1]) in S by the fixed index [$u + 1 (respectlvely,
[$u]). The rule MarcuRs finds an overlapping part of the two Rs predicates. This is the
only rule that increments d. The function separate_zero_depth(M) used in the premise
of MaTcHRS returns a pair of predicates My and M;. M, is the conjunction of predicates
in M with depth zero (i.e., those predicates for which dim evaluates to 0, refer definition
of the function dim in Section 4.2) and M; is the conjunction of remaining predicates
in M. For example, separate_zero_depth(x[-] = hAn RP(A[-] = b[-]) A x = ¥) would return
(RP(Al'] =p[-DAx =y, X[-] = h). The predicates in M; are embedded in an RP predicate
in the conclusion of MaTcHRS, whereas the predicates in M, are not embedded in an RP
predicate since it would result in a non-well-formed formula. This is the main purpose
of separating M, from M;.

These inference rules can be easily implemented as a recursive algorithm. Note that
in rules UNROLLFRONT and UNROLLBACK, the size of the formula L; * RS(_, _, _) in the
conclusion may be larger than the size of formula %; in the premise. This may lead to
nontermination of the recursion. In practice, we circumvent this problem by limiting
the number of applications of these rules.

Lemma 6.1. Every (M, C, Ly, Lg) computed in line 2 of Decompose satisfies (i) M A
0 & (MAC)* Ly, and Gi) M AYS & (M AC)x* L.

Proor. We prove the lemma by induction on the depth of the recursion tree of Match.

Base Case. Single recursive call. Rules No-MarcH and CeLL-MarcH trivially satisfy
the property.

Induction Step. Assuming that the call to Match in the premise of rules RECURSION,
UnroLLFroNT, UNROLLBACK, and MaTcHRs satisfies properties (i) and (ii), we prove that
the conclusion of these rules also satisfies properties (i) and (ii). In the following, we
prove only property (i), property (ii) can be proved symmetrically.

(1) RECURSION

1. MARi & MAC x1,q assumption
2. NAS;*Li & NAC L] assumption
3. M/\N/\S/*L1©MAN/\C/*L/

4. M/\N/\S’*Ll*C<:>M/\N/\C/*L’ *C
5.M/\N/\S/>|<k1<:>M/\N/\C’>l<L’*C from 1
6.M/\N/\81(::>M/\N/\C>¢<C’>|<L/1 premise

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:25

(2) UNROLLFRONT
1. MAK & MAC %L, assumption
2. MARS(S,l,u) & M AR «RS(S,l+1,u) Defn. of unrolls
3. MARS(S,l,u) & MAC «L; «RS(S,l+1,u) from 1

3) MATCHRS

MAS; e MAC assumption

2. MASs & MAC assumption

3. My ARP(Mqy,1,u) ARS(S1,1,u) & My ARP(Mi,l,u) A from 1 and definition of
RS(C, 1, uw) separate_zero_depth

4. My ARP(Mq,1,u) ARS(Ss, 1, u) & My ARP(Mi,l,u) A from 2 and definition of
RS(C,!, u)

separate_zero_depth
Note that proof of UNROLLBACK is similar to that of UNROLLFRONT. O

Given a possible decomposition (M, C, Ly, Ly) of ¢° and ¢* as computed by
Match(g*, v*, 0), line 4 of Decompose checks whether this decomposition is consistent
with ¢? and ¢?. This is done by checking the satisfiability of (¢? AL;) x (M AC) * (P ALg).
If this formula is found to be satisfiable, §; and 89 are computed as M A P A Ly and
M A @P A Ly, respectively.

LEMMA 6.2. Every (81,82) pair computed in lines 5 and 6 of Decompose satisfies
Y*81 & SaxyY

Proor. Follows from the following equivalences

A pPAp* AM & (M AC) % (9P ALy) from Lemma 6.1

B. y?P Ay AM &S (MAC)* (P ALy from Lemma 6.1

C. Asox(MAYP A L) defn of A and A

D. As yx(MA@P ALy defn of A and B

5. o« (M AYP A Lg) & ¢ %81 defn. of 81, line 5 of Decompose

6. vx(MA@P AL & Y *do defn. of 8g, line 6 of Decompose D

Note that the Match procedure results in a possibly exponential number of decom-
positions, many of which could be discarded by the check on line 4 of Decompose. One
of the reasons for this exponential blow-up is the application of REcURsION rule which
explores all possible overlaps between ¢® and v°. The exponential blow-up can be mit-
igated by early identification of inconsistent decompositions during the application of
the REcURrsION rule. This can be done by pruning the application of REcUrsioN rule if the
partial decomposition indicated in its second premise, (M, C, L, Ly) € Match(ky, kg, 0),
is inconsistent with ¢? A ¥ 2, that is, when M A ¢P A P is unsatisfiable.

For amodel (s, &, V) of ¢+§1 (and also of 2 xy), let i, and h;, be disjoint sub-heaps that
partition £, that is, A = h, U ks, such that (s, h,, V) = ¢ and (s, hs,, V) = 81. Similarly,
let hy and hs, be disjoint sub-heaps that partition A, that is, A = Ay U hs,, such that
(s,hy,V) = ¢ and (s, hs,, V) = 82. It follows from Lemma 6.1 that every pair (61, 82)
computed by Decompose satisfies the following minimality property.

Definition 6.1 (Minimality Property). If ¢ x §1 & 82 * ¥ then §; and 82 are said to be
minimal if for every model (s, &, V) of ¢ * §; (and also of 8 * y), for every hs,, h, and
every hs,, hy, we have h;, € hy, and hs, C hy,.

The minimality property ensures that strong bi-abduction does not include any more
heap cells in §; and §s than those already present in ¥ and ¢, respectively.

As an example, suppose we wish to compose the two summaries [v = .a] v := new
[Fbv bland [v= cA ¢+ d]v:=vmnext [v=_dA _c+> _d] used for illustrations

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:26 B. S. Gulavani et al.

in Example 1. In order to compose these summaries, we need to compute a strong bi-
abduction between 3.6 v~ b and v = ¢ A ¢ — _d. We use this as a running example
to demonstrate our implementation of strong bi-abduction. Let ¢ = v~ b, ¥ =v =
_cA_c > _d.One ofthe two decompositions returned by Match(¢®, ¥*) is (true, emp, v —
b, ¢ — _d). This decomposition indicates that v — _b and ¢ > _d belong to disjoint
portions of the heap, thus implying v # _¢. However, since ¥? asserts that v = _,
this decomposition is inconsistent with ¢? A . Hence, it is discarded. The other
decompositionis (v = ¢A_b= d,v+— _b, emp, emp). This decomposition is consistent
with ¢? A ¥?, and hence (v= cA b= _dAremp,v= _cA_b=_dAemp)is returned as
a solution of Decompose(gp, ¥r).

6.1. Algorithm BiAbduct

We now present a sound algorithm for computing ¢p.e, ¢ps: and Z in the equivalence
(BX Q) * ¢pre < IZ (@post * @) in the premise of the Compose and INpucTqQ rules. Sim-
plifying notation, the problem can be stated as follows: given variable sets mod; and
mody, and two LIZSF formulas 3X ¢o(V, W, X) and ¥(V,Y) where V, W, X Y are dis-
joint sets of variables, we wish to compute ¢, ¢post, and a set Z € XU Y such that
(1) X @) * @pre < IZ (Ppost * V), (i) free(ppre) Nmody = ¥, and (iii) free(@post) N Mmody = V.

Our strong bi-abduction algorithm, BiAbduct, is presented in Figure 14. We first
illustrate the intuition of BiAbduct using our running example: ¢ = v+~ b, ¥y = v =
cAcer> d,V={w},W={},X={b},Y ={c, d} and mod; = mods = {v}. As explained
previously, Decompose(gp, ¥) returns the decomposition (v = ¢cA_b= dremp,v= cA
b= _dremp). Thus,wehavep x (v = cA b= _dremp) & (v=_cAb=_dremp) * .
We explain the intuition of our strong bi-abduction algorithm in the following three
steps.

—We want ¢,.. and ¢p0 to be independent mod; and mod,, respectively. To do this,
we use the equalities involving mod; variables in ¢ (respectively, mody variables in
V) to eliminate mod; (respectively, mody) variables from ¢,,. (respectively, ¢ os:). In
our current example, we replace v € mods by ¢ in ¢, since ¥ contains the equality
v = _c. Hence, we obtain g x (v = ¢ A b = _dAremp) < (Lb = _dAemp)* . However,
using this transformation we cannot make ¢, independent of v, since ¢ does not
have any equalities involving v.

—In order to make ¢,,. independent of mod; variables we existentially quantify the
auxiliary variables that are equated to mod; variables in ¢, from both sides of the
equivalence. In our current example, we existentially quantify ¢ from both sides of
the equivalence. As a consequence we can drop the equality v = _¢ involving the
auxiliary variable ¢ from ¢, thus making ¢,. independent of v. We now obtain
the equivalence ¢ x (b = d Aemp) < Jc (b= _dAemp) * Y.

—Our goal is to compute a strong bi-abduction between 3.6 ¢ and . Since the current
@pre has free _b, 3.6 (¢ * ¢pre) is not equivalent to (3.6 ¢) * ¢,.. However, if we can
make ¢, independent of _b, then the equivalence would hold. In order to make ¢,
independent of _b, we existentially quantify the auxiliary variables that are equated
to _b in ¢, from both sides of the equivalence. In our current example, since ¢,
contains _b only in the equality b = _d, we existentially quantify _d from both sides of
the equivalence, thus giving ¢ *(true Aemp) < 3¢, d (b = dAremp)x. The right-
hand side can be further simplified by eliminating _d to obtain 3_c (true A emp) * .
Now we can existentially quantify _b from both sides of the equivalence and obtain
(3D @) * (true A emp) < 3¢, b (true A emp) * .

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:27

The preceding intuitions are formalized in the procedure BiAbduct given in Figure 14.
The key step of bi-abduction is the Decompose procedure described previously. For
each pair (81, §2) returned by Decompose(y, ¥), we compute §; and &, from §; and Js,
respectively, using the function RemoveVar (lines 3, 4). The function RemoveVar(¢;, ¢s,
mod;, B) replaces every free variable v € mod; in ¢; by e if ¢ implies v = e and free(e) €
B\ mod;. After renaming, it also removes any redundant equalities of the form x = x,
and equalities implied by ¢5 from ¢;. For our running example, §1 =v = cA b= d
and 8 = v = ¢ A _b = _d. RemoveVar(§s, ¥, mody, V UY) renames v by _c in 2, hence
5y = b = _d. RemoveVar(sy, ¢, mod;, V.U W) does not rename any variables from 41,
hence 1 =8 =v=_—cAn_ b= d.

Next, we process the formula §; so as to make it independent of mod;. In line
5, we compute a renaming y : (Y < mod;) such that §;y is independent of
mod; variables. This is done by invoking function ComputeRenaming. The function
ComputeRenaming(¢, A, B) renames a variable a € A by b € B if ¢? implies the equal-
ity @ = b. The renaming y ensures that ¢ % x; < 3Z (85 *), where k; = 8]y and
Z = dom(y). If 81y is not independent of mod; or &, is not independent of mod;, we
discard the pair (6], 6;) (line 8). Note the asymmetry in dealing with §; and §;, which
stems from the asymmetric structure (3Z only on right side) of the required solution
(3X @) * @pre < 3Z (@post * ¥). For our running example, Z={c}andy : (. — v) gives
a valid renaming, since 8}y = _b = _d is independent of v.

Lemma 6.3. Every k1 and Z computed in lines 6 and 7 of BiAbduct satisfy ¢ x k1 <
3Z (8, * ¥).

Proor. Follows from the following equivalences.

1. 3Z ¢ %8, & 3Z 8, ¢ Definition of Decompose and RemoveVar, and 3 elimination
2. 3Z ¢ x8] & @ x81y 3Z 8] < 81y, and ¢ is independent of Z variables
3. ¢x8jy © 3265, * ¥y from 1,2]

For every «1, at line 9 we compute a renaming 0 : (Z — X), where Z C Y, so as to
render «160 independent of X (lines 9, 10, 11). Ihe function ComputeRenaming(x1, Y,
X) computes the renaming 0. Let § : (X < Z) be a renaming such that 0(x) = z
only if 6(z) = x. The function RemoveRedundant(¢1, ¢5) removes the equalities from ¢
that are implied by ¢5. It also removes trivial equalities like x = x or RP(x[] = x[-])
from ¢,. If k| = RemoveRedundant(x6, ¢?) is independent of X then BiAbduct returns

(k1, K2, Z U Z), where kg is the formula returned by RemoveRedundant(Sée_, YP), as a
solution of strong bi-abduction.

The invocations of ComputeRenaming in lines 5 and 9 have one important difference:
in line 5 only non-array variables in mod; are renamed, whereas in line 9 array vari-
ables in Y may be renamed. The function ComputeRenaming(¢, A, B) renames array
variables as follows. An array variable a € A is renamed to another array variable
b € B if ¢? implies one of the following facts: (i) RP(a[-] = p[-]) A A[$0] = Dp[$0], or
(ii) RP(A[- 4 1] = b[- + 1]) A A[0] = p[0], or (iii) RP(A[-] = p[:] A A[- 4+ 1] = b[- + 1]).
Higher dimensional arrays can be renamed by performing similar checks for each di-
mension. For our running example, we have X = { b}, Z = {d} and 0 : (.d — _b). It is
evident that (3.6 v — _b) x (true A emp) < I, d (true Aemp) * (v = ¢c A ¢ —
d). Thus, ¢, = ki = RemoveRedundant(k10, p?) = true A emp, ¢y = k2 =
RemoveRedundant(s,0, *) = true A emp, and and Z = {_c, .d} is a solution of strong
bi-abduction between 3 b ¢ = 3bv— bandy =v=_cA c+— d.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:28 B. S. Gulavani et al.

Levma 6.4. Every 0 and Z at line 12 of BiAbduct satisfy (3X @)% k16 < 32, Z (87)

Proor. Follows from the following equivalences.

1 ¢x*xk1 & EVA o * Y from previous step

2 EIZ((p * K1) & EIZ 7 (84 %) quantify Z N

3. 317 (¢ x k1) & @ * K10 ¢ independent of Z, and 3Z x; < k160
4. ¢xK10 & 3Z, ZS’ x from 2,3

5. ¢xK10 & ¢ RemoveRedundant(/qG, P) definition of RemoveRedundant

6. ox*xKk10 & @* Kl k; < RemoveRedundant(x10, ¢?)

7 EIX(p*K1<:>EIZZX(8’*1//) from 4 and 6

8. «jandy are independent of X assumption

9. (3X§0)*K1¢>E|Z Z (8,0 %) 3X 8}, < 8,0

10. 3X) *xk] & 32, 7 (kg *) from 9 and definition of «o m|

Example 5. Let us compute strong bi-abduction between 31X ¢ = 3Ix A = x[0] A
RSx[-] — x[- 4+ 1]) AX[$0] = null and ¥ = A = Y[0] A RS(Y[-] — ¥[- + 1]) A Y[$0] = null.
Let the sets mod; and mody be empty

—The Match procedure finds the following overlap between ¢ and v: (M, C, emp, emp)
where M is RP(x[-] = Y[-] AX[- + 1] = ¥[- + 1]) and C is RS(x[-] — x[- + 1]). Hence §;
is computed as M A h = Y[0] A Y[$0] = null A emp and 85 is computed as M A h =
x[0] A x[$0] = null A emp, thus giving the equivalence ¢ %01 & o x Y.

—Since the mod set is empty, y is an empty renaming and Z is an empty set.

—The set of quantified variables X contains the array variable x. We compute the
renaming 6 as (Y — X), from the predicate RP(x[-] = ¥[-] A X[- + 1] = ¥[- 4+ 1]) present
in 81. 610 is the formula RPXx[] = x[] AX[- + 1] = x[- + 1]) A & = x[0] A X[$0] =
null A emp. RemoveRedundant(6,6, ¢?) eliminates the redundant equalities from
810 and returns the formula true A emp that is independent of x. § is (x — ¥) and
890 is the formula RP(y[-] = Y[] AY[- + 1] = ¥[- + 1]) A A = ¥[0] A Y[$0] = null A emp,
and RemoveRedundant(20, ¥?) removes the redundant equalities and returns the
formula true Aemp. Hence, the result of strong bi-abduction is (3X ¢) xtrue Aemp <
3y (true A emp *).

6.2. Implementation of the Joix Rule

In Section 5.6, we presented the JoIN rule to merge summaries for two branches of the
statement if (e, S1, S2).The premises of JOIN require us to check whether g1 1 < @9
and g1u = @3 for quantifier free LZSF formulas ¢1, @2, ¢1, and gz. We now show how
the BiAbduct can be used to implement these checks. We will use the observations in
the Proposition 6.1.

PropoSITION 6.1. Given ¥ and V.

(1) if ¢ * (true A emp) & (true A emp) * U, then ¥ & v
(2) if ¢ * (true A emp) < (P Aemp) * ¥, then ¢ =

In order to check whether ¢4 < @9, where ¢; is a formula over free variables V, W
and @9 is a formula over free variables V,Y, we call BiAbduct(GW ¢4, 2, V, V). The
following lemma gives sufficient conditions under which we can infer ¢ 1 < @s.

LEMMA 6.5. If Z computed at line 7 of BiAbduct (Figure 14) is), and 6 computed at
line 9 of BiAbduct is such that k10 and 8,0 are both equivalent to true A emp, then we

can infer 16 < @s.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:29

Proor. Follows from the following equivalences.

1. g1%k1 & 8y % o . From Lemma 6.3 and since Zis ¢
2. 910 x K10 & 850 * 20 Apply renaming 6) .
3. 910 * (true A emp) & (true A emp) * g2 @3 is indep. of dom(f) and «16 = 650 =

~ true A emp
4. 010 & @2 Proposition 6.1 0

In order to implement the check g1 = @2, where @7 is a quantifier free formula
over free variables V, W and ¢, is a quantifier free formula over free variables V,Y,
we use the renaming computed in the previous step and call BiAbduct(@16, », V, V).
The following lemma characterizes sufficient conditions for validity of 916 = 3.

Lemma 6.6. If 8] computed at line 3 of BiAbduct is equivalent to true A emp and &,
computed at line 4 of BiAbduct is equivalent to P A emp, then we can infer 10 = ¢».

Proor. If §] is true A emp, then y computed at line 5 of BiAbduct is an empty

renaming (by the definition of ComputeRenaming). Hence, the set Z_ computed at line 7
of BiAbduct is an empty set. Therefore, by Lemma 6.3, we have ¢10 * (true A emp) <
(P A emp) * @3. The proof now follows from Proposition 6.1. O

6.3. A Note on Incompleteness of BiAbduct

A strong bi-abduction procedure can be said to be complete if, whenever there exists
LISF formulas ¢, and ¢p.s: and a set Z of auxiliary variables for input LZSF formulas
3X ¢ and ¢ such that 3X ¢ * ¢,.. < 3Z (@post *), the procedure finds such ¢pre, @post
and Z. For the LZSF formulas ¢ : & = x[0] A RS(X[.] — x[- 4+ 1], 0, 0) AX[$0] = null and
¥ o h =Y[$0] ARS(Y[- + 1] — Y[.], 0, 0) A¥[0] = null, the fact that 3x ¢ * (true A emp) <
3y ((true A emp) *) is valid. However, BiAbduct will not be able to compute this
strong bi-abduction. This is because the Match procedure cannot find the correct overlap
between ¢° and *. Hence BiAbduct is not a complete strong bi-abduction procedure.
The pure constraint expressing the correct overlap between ¢® and v® is not expressible
in LZSF. In the next section, we present techniques to do sophisticated matching.

7. AN EXTENSION OF LZSF

In this section, we describe a couple of limitations of the strong bi-abduction technique
presented so far and present extensions to overcome these limitations.

¢ : h=x[0] ARSX[] —~ x[- + 1], 0, 0) A X[$0] = null
¥ @ b Y[0] * RS(Y[-] = Y[- + 1], 0, 0) A Y[$0] = null.

Consider the formulas ¢ and v defined here. The formula ¢ represents a linked list of
any length (including zero) pointed to by 4. The length of array x in ¢ is one greater
than the length of the linked list pointed to by ~. Whereas, the formula v characterizes
a linked list of non-zero length pointed to by A. In i, the length of array v is same
as the length of the list pointed to by 4. The strong bi-abduction of ¢ and v, however,
does not have a valid solution since the constructs of LZSF do not allow us to relate
arrays of different lengths (x and v in this case). In order to overcome this shortcoming
and enable computation of strong bi-abduction between ¢ and v, we enrich LZSF with
sub predicate. Section 7.1 describes this enhancement.
Now consider the same formula ¢ as described previously and ¢ defined here.

¢ : h=12[$0] A RS(z[- + 1] — z[], 0, 0) A z[0] = null

The formulas ¢ and ¢ are different representations for the linked list of any length
(including zero) pointed to by A. The length of array x (respectively, z) in ¢ (respectively,

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:30 B. S. Gulavani et al.

¢) is one greater than the length of the linked list pointed to by A. The strong bi-
abduction of ¢ and ¢ returns a solution (¢pre, ¢post) that restricts the length of linked
list in @ * @pre (OF @post * @) to one, although both ¢ and ¢ model linked lists of arbitrary
lengths. The reason for this “too restrictive” solution is that £LZSF does not allow us
to compare array elements at equal offsets from opposite ends. In order to overcome
this shortcoming and enable computation of strong bi-abduction between ¢ and ¢ we
enrich LZSF with rev predicate. We describe this enhancement in Section 7.2.

7.1. Enhancement of LZSF with subPredicate

The Match algorithm can match the RS predicates of ¢* and ¥* and return the four-tuple
(RPx[-] = Y[-IAx[-4+1] = Y[-+1]), ¢*, {}, h — Y[O]). But this overlap is not consistent with
¢? and yP. The Match algorithm returns another solution for the pair ¢* and v*. It first
unrolls the predicate RS(x[-] — x[-+1], 0, 0) to give x[0] > x[1] *RS(x[-] — x[-+11, 1, 0)
and matches x[0] +— x[1] with 2 — Y[0]. The residual RS predicate in ¢° cannot be
matched with the one in ¥* because of the different offsets in the two RS predicates.
The solution returned by Match, in this case, is the four-tuple (A = x[0] A Y[0] = x[1],
h — Y[0], RSxI[-] — x[-+ 1],1,0), RS(¥[] — Y[- + 1], 0, 0)). For this decomposition,
M A ¢*° % Ly (and also M A ¢* x Ly) is inconsistent since M implies Y[0] = x[1] whereas
the spatial parts have predicates Y[0] — _xX[1] — _and hence imply Y[0] # x[1]. Due to
the inability to relate arrays of different lengths in £LZSF, Match cannot find the right
overlap between ¢® and v°. Hence, the strong bi-abduction of ¢ and v fails, although
they represent structures for which strong bi-abduction should be possible.

To remedy this problem, we introduce a new pure predicate sub(e, [, u, ¢’) where e and
e’ are two LIS F expressions that differ only in the array name and /, u are non-negative
integers. Let a and a’ be the arrays accessed by the first iterated index of expressions e
and ¢/, respectively. Intuitively, sub(e, [, u, e’) establishes the equality of all elements of
array a’ and the elements of array a between the offsets / and u from its start and end,
respectively. Thus, it implicitly constrains the lengths of arrays a and a’. The semantics
of suble,l, u, e’) is formally defined as follows. Note that we overload the function len
defined in Section 4.2 and used in Figure 8 to operate over single expressions instead
of pure or spatial formulas.

(s,h,V,L) = suble,l,u,e) iff dkk+1=1len(V,L,e’) Alen(V,L,e)>1l+un
len(V,L,e’) =len(V,L,e) -l —u A
VO<i <k Ele,G+1)::L,s,V)=E, €, i::L,s V).
(7.6)

For example, the pure predicate sub(x[-], 1,0, Y[-]), represents the fact that length
of array X is one more than that of array v and that the sequence x[1], ..., x[$0] is
same as the sequence Y[0], ..., ¥[$0]. It may seem that we could have used just array
names in the sub predicate and written this fact as sub(x, 1, 0, Y). However, we wish to
express sub relationships among the nested arrays in a uniform manner, for example,
the predicate sub(a[1][-], 1, 0, p[2][-]) expresses the sub relationship between the arrays
A[1] and p[2]. Hence we use array expressions instead of array names.

k1 : RS(S1.0,0), ks : RS(Sy. L, w),
MatcuRSA (M.C. {).{)) € Match(S;, SubS(Ss. L. u). 1)

(RP(M, 0,0) A SubP(Sz,7,u), RS(C, 0, 0), {}, {}) € Match(ky, k2, 0)

The sub predicate provides us with the vocabulary to relate arrays of different
lengths. We now introduce new match rule that uses this predicate to match arrays of

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:31

different lengths. To avoid nesting of the sub predicate within a RP predicate we allow
introduction of sub predicate only while matching RS predicate that are not nested
within another RS predicate.

For notational convenience, we introduce two macros SubS and SubP, which are
defined as follows. SubS(S, [, u) is defined as the spatial formula obtained by replacing
the array variable, say A, in every expression e in S having at least one iterated index
with an expression e, which is same as e but the array variable is replaced with
a primed version, say A'. Intuitively, SubS(S, [, u) returns a spatial formula over the
primed versions of the array names that will be related to the original unprimed names
by the sub predicates. SUbP(S, [, u) generates a pure fact relating the newly introduced
array variables, like A, with the old ones, like A. Let the function Ib(e) replace the first
iterated index in e by the index [-]. SUbP(S,, u) returns a conjunction of facts of the
form sub(Ib(e), L, u, Ib(e’)) for every expression e in S replaced with e’ by SubS(S, [, u).
The macro SubP(S, [, u) generates the conjunction of such sub predicates. For example,
SubSx[-] — x[- + 1], 1, 0) returns the spatial formula xX'[-] — X[+ 1] and SubP(x[-] —
x[-+1], 1, 0) returns the pure formula sub(x[-], 1, 0, X' [-) Asub(Ib(x[-+1]), 1, 0, Ib(X'[-+1])).
By definition of Ib, sub(Ib(x[- + 1]), 1, 0, Ib(X'[- + 1])) = subx[], 1, 0, X'[-]).

ProposiTioNn 7.1. For a predicate RS(S, 1, u) not embedded in any RS predicates,
RS(S, [, u) A SubP(S, 1, u) & RS(SubS(S, !, u), 0, 0) A SubP(S, [, u).

We extend the rule MarcHRs in Match algorithm to the rule MaTcHRSA that uses sub
predicate to match two RS predicates. We can now use the rule MATcHRSA to match
RSx[-] — x[- + 11,1, 0) and RS(¥[-] — Y[- + 1], 0, 0), and thus compute Match(¢?®, ¥*)
as a set consisting of (M, ¥*, {}, {}), where M is h = x[0] A Y[0] = x[1] A RPX'[] =
Y[IAX[-+ 1] =¥[- + 1], 0, 0) Asub(x[], 1, 0, X'[-]). This match is consistent with ¢? and
¥P. Hence, the procedure Decompose computes §; as M A Y[$0] = null A emp and §,
as M A h =x[0] AX[$0] = null A emp, such that ¢ * §; < 83 * .

The use of sub predicate allows us to express equality constraints between arrays
of different lengths. Implicitly this allows to express difference constraints between
lengths of array variables that is not expressible in LZSF. LISF can express only
equality of array lengths.

7.2. Enhancement of LZSF with revPredicate

Consider the formulas ¢ and ¢ defined at the start of Section 7. The Match algorithm
will match the RS predicates in ¢* and ¢° and return the four-tuple (M, ¢*, {}, {}) as the
only solution, where M is the pure formula RP(x[-] = z[- + 1] A z[-] = x[- + 1], 0, 0). But
this too-restrictive constraint restricts the length of the matched list to be < 1,

k1 : RS(S1,1,u), ke : RS(Ss, u,l),
MatcaRsB (M, C, {},{})) € Match(S;, RevS(Ss), 1)

(RP(M, I, u) A RevP(Ss), RS(C, 1, u), {}, {}) € Match(ky, k2, 0)

Although ¢ and ¢ represent a same set of structures in the heap, bi-abduction of
¢ and ¢ generates constraints that reduce this set of structures. This is because the
pure constraint describing the overlap of a list expressed as RS(x[-] — x[- + 1], 0, 0)
and the same list expressed as RS(z[- + 1] — z[-], 0, 0) cannot be expressed in LISF
without restricting the lengths of x and z. To remedy this problem, we introduce a new
predicate rev(e, e’) where e and e’ are LZSF expressions that differ only in the array
name. The semantics of rev(e, e’) is defined as follows

(s,h,V,L) k= revie,e) iff dk.k+1=Ien(V,L,e')=1len(V, L,e) A

VO<i<k.Ele,i::L,s,V)=E/,(k—1i)::L,s V). (7.7)

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:32 B. S. Gulavani et al.

For example, the predicate rev(x[-], z[-]) asserts that x and z are arrays of same
lengths and that the sequence x[0], x[1], ..., x[$0] is same as z[$0], z[$1], ..., z[0].

The rev predicate provides us with the vocabulary to relate array elements that are
at the same offsets from the opposite ends. We now introduce new match rule that uses
rev predicate to match an array with the reverse of another array. To avoid nesting of
the rev predicate within a RP predicate, we allow introduction of rev predicate only
while matching RS predicates that are not nested within another RS predicate.

For notational convenience, we introduce two macros RevS and RevP, which are
defined as follows. RevS(S) is the spatial formula obtained as follows. Initially, we
replace the first iterated index [-] (respectively, [-+1]) in every expression e in S with an
iterated index [- + 1] (resp. []). Then, we replace the array variable in such expressions,
say A, with a primed variable, say A". The function RevP(S) denotes a pure fact relating
the newly introduced array variables, like A’, with the old ones, like A. Recall from
previous section that Ib(e) returns the expression same as e but with its first iterated
index switched to [-]. RevP(S) returns a conjunction of facts of the form rev(lb(e), Ib(e’))
for every expression e in S replaced with e’ by RevS(S). Intuitively, RevS(S) returns
a spatial formula over the primed versions of the array names that are related to the
original unprimed names through the rev predicates. The macro RevP(S) generates
the conjunction of such rev predicates. For example, RevS(z[- + 1] — z[]) returns the
spatial formula Z'[-] — Z'[- + 1] and RevP(z[- + 1] — z[-]) returns the pure formula
rev(lb(z[- 4+ 1]), Ib(Z'[-1)) A rev(b(z[-]), Ib(Z'[- + 1])). Note that, by definition of Ib, this
formula reduces to rev(z[-], Z'[-]).

ProposiTioN 7.2. For a predicate RS(S,I,u) not embedded in any RS predicate,
RS(S, [, u) A RevP(S) & RS(RevS(S), u,) A RevP(S).

We extend the rule MaTcHRs in Match algorithm to the rule MaTtcuHRsB that uses rev
predicate to match two RS predicates. We can now use the rule MarcuRsB to match
RSx[] — x[- + 11,0, 0) and RS(z[- + 1] — z[], 0, 0), and thus compute Match(¢®, ¢°) as
(M, ¢*, {},{}), where M is RP(x[-] = Z [] AX[- + 1] = Z'[- + 1], 0, 0) Arev(zl[-], Z[- + 1]). This
match is consistent with ¢? and ¢”. Hence, the procedure Decompose computes §; as
M A h = z[$0] A z[0] = null A emp and 8 as M A h = X[0] A X[$0] = null A emp, such
that<p*81 & 89 * .

The use of rev predicates allows us to equate array elements that are arbitrary
distance apart (e.g., i and & — i in Eq. (7.7)). LISF does not allow us to express this
fact.

8. SATISFIABILITY CHECKING ALGORITHMS

In this section, we provide a sound procedures for checking satisfiability of (a) LISF
formulas, and (b) LZSF extended with sub and rev predicates. Any LZSF formula is of
the form P A S or 3X. P A S. Since 3X. P A S is equisatisfiable with P A S, we present
satisfiability procedures only for quantifier free LZSF formulas.

8.1. Satisfiability Checking Procedure for LZSF

The basic idea of the satisfiability checking procedure is to convert a LZSF formula to a
formula in separation logic without iterated predicates (satisfiability checking of these
formulas can be reduced to satisfiability checking of formulas in the theory of equality
and is hence efficiently decidable). This is achieved by instantiating the lengths of all
dimensions of all arrays to fixed constants, and by soundly unrolling the RP and RS
predicates. The array lengths are so chosen that the offsets specified in the fixed indices
of all expressions in the formula are within the respective array bounds. We illustrate
the algorithm through an example before presenting it formally.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:33

sat(¢p) Flatten(p, lentbl)

1: lentbl < GetLengths(y) 1: while — isFlat(¢) do

2: 1) < Flatten(y, lentbl) 2: for all top-level terms ¢t : RP(...,l,u) or
3: return sat_sep(v)) RS(...,l,u) in ¢ do

3: len < FindLength(t, lentbl)

GetLengths(p) 4: ent < maz({len — 1 — 1 — u,0})
1. Fe0=0 5: t' < iter_unroll¢(, cnt)

2: for all (X,i,1) € LB(y) do 6: replace ¢ with ¢’ in ¢

3 F+ FA(I+1<(X,4) 7: end while

4: for all (X,i,u) € UB(y) do 8: ModifyUB(y, lentbl)

5 F« FA(u+1<(X,4) 9: return ¢

6: for all ((X, 1), (Y, j)) € lterConstr(¢) do

7 F + FA({X, i) =(Y,35))

8: return Solve(F)

Fig. 16. Satisfiability procedure: sat(¢).

Example 6. Consider a LZSF formula ¢ = (h = x[0]) A (g = Y[0O]D) A (¢ = xX[$1]) A
(x[$0] = Y[$0]) A (Y[$0] = null) A RSE[] — x[- + 1] *¥Y[-] —» Y[- + 11,0, 0). The RS
predicate in ¢ requires that x and Y have same lengths. The expressions x[0] and
x[$0] (respectively, Y[0] and Y[$0]) require that the length of array x (respectively,
array Y) be at least 1. Similarly, the expression X[$1] requires that the length of x
be at least 2. A sound way of checking the satisfiability of ¢ is to guess the lengths
of the arrays and expand the RS and RP predicates for these array lengths so as to
obtain a standard separation logic formula (one without RS or RP predicates). For the
current example, setting the lengths of both arrays x and v to 2 satisfies the constraints
imposed on their lengths by ¢. If the length of array x is 2, we have x[0] = x[$1] and
x[1] = x[$0]. Similarly, if length of Y is 2, we have Y[$0] = v[1]. Moreover, the predicate
RS&X[-] — x[- + 1] x Y[-] = ¥[- + 1], 0, 0) can be written as x[0] — x[1] % Y[0] — Y[1], by
applying the semantic definition of RS (given in Figure 8). Hence, if we set the lengths
of x and Y to 2, we can rewrite ¢ as v = h = X[0] Ag = Y[0O] At = X[0] AX[1] = Y[1] AY[1] =
null A x[0] — x[1] * Y[0] — ¥[1]. The only array expressions in i are of the form x[i]
or Y[i], i € {0,1}. It has no RS or RP predicates. Hence, it is a standard separation
logic formula. It is evident that if ¢ is satisfiable then so is ¢. The formaula v can be
satisfied by having x[0] = h = ¢t = [1,Y[0] = g = Iy and x[1] = Y[1] = null, [; # I,
h(l1) = null, and A(ls) = null. Hence, ¢ is satisfiable.

This intuition is formalized in the satisfiability procedure sat given in Figure 16.
The key step of sat procedure is the conversion of an LZSF formula ¢ to a formula v
in separation logic without iterated predicates using the Flatten procedure. In order to
soundly eliminate iterated predicates from an £LZSF formula ¢, Flatten requires the
lengths of all dimensions of all the array variables in ¢. The function GetLengths(g)
computes these lengths. Any model of the flattened formula is also a model of LZSF
formula ¢. The function sat_sep(y) determines the satisfiability of a separation logic
formula .

The predicates RS, RP and the expressions with fixed indices in ¢ impose restrictions
on the length of different dimensions of array variables. The function GetLengths en-
codes these constraints in the formula F. The variables in F' are represented as (X, i),
where X is a free k-dimensional array variable in ¢ and 1 < i < k. The variable (x, i)
represents a safe length for the ith dimension of x that avoids indexing errors. Lines
2-7 add constraints to F so that evaluation of fixed indices in the expressions of ¢ does
not cause an array indexing error. The function LB(¢p) returns a set of tuples (x, Z, [) such
that there is an expression in ¢ accessing the ith dimension of array x with a fixed index
[. Similarly, UB(¢) returns a set of tuples (X, , u) such that there is an expression in ¢
accessing the ith dimension of array x with a fixed index $u. The function IlterConstr(¢)
returns a set of pairs ({(X, i), (Y, j)) such that there exist expressions e; and es embedded

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:34 B. S. Gulavani et al.

IterConstr () o IterExpr (¢, 1)
IterExpr(¢p,) % match ¢ with

| RS(u. 1, u)
| RP(¢,l,u) — {(X,j5) = (Y, k) | X = free(e1),Y = free(ez),e1,e2 € 9 and
j = iterDim(ey,1), k = iter Dim(ez2, i) and
7,k >0, and
} U lterExpr(¢, i + 1)
G

Fig. 17. Function lterConstr(e).

iter_unrollg(RP(P, 1, u), c) = iter_unrollg(RS(S,l,u),c) =
if (¢ = 0) then true else if (¢ = 0) then emp else
unrollg(RP(P, 1, u),0) A iter_unrollg(RP(P,l+1,u), c—1) unrollg(RS(S, 1, u), 0) * iter_unrollg(RS(S,1+1,u),c—1)

Fig. 18. Unroll functions.

in an RS (or RP) predicate such that free(e;) = X, free(e2) = Y and i and j are the
dimensions of x and Y, respectively, over which the RS (or RP) predicate iterates. Lines
6 and 7 capture constraints imposed by RS and RP predicates on the lengths of array
dimensions. The function IterConstr is defined in Figure 17. The function iter Dimfe,)
used in Figure 17 returns the dimension number corresponding to the ith iterated
index in e if e has at least i iterated indices, otherwise it returns —1. The formula F is
always satisfiable as the only constraints it has are of the form ¢ < (x, i) or (x,i) = (Y, J)
(c is a constant). To construct a satisfying assignment to the variables in F, we first
compute the equivalence classes of variables (implied by equality constraints) in F. We
set the value of each variable in an equivalence class to the largest constant among
all the inequality constraints involving those variables. The function Solve(F') returns
such an assignment to the variables in F'. Any structure having array sizes conforming
to lentbl returned by GetLengths(¢) (line 1 of sat) is a well-formed structure for ¢.

Flatten uses an intermediate function isFlat(¢), which returns true if ¢ does not have
any RS or RP predicate; otherwise, it returns false. The function FindLength(z, lentbl),
where ¢ is RP(P, [, u) (respectively, RS(S, [, u)), returns the length of array dimension
corresponding to the first iterated index of any array expression in P (respectively,
S). Flatten then eliminates the iterated predicates ¢ by the function iter_unrolli(¢, cnt),
which is a repeated application of unroll(¢, 0) as defined in Figure 18. Recall that
unroll}(RS(S, I, u), d) is defined in Section 6 as the formula obtained by replacing the (d+
1)th iterated index [-] (respectively, [- + 1]) of every expression in S by the fixed index [/]
(respectively, [l + 1]). The function unrol;(RP(P, [, u), d) is analogously defined. Finally,
all expressions that access a dimension, say i, of an array, say X, with a fixed index $u
are modified by replacing [$u] with [lentbl(x, i) — 1 —u]. The function ModifyUB(p, lentbl)
does this transformation.

LemmA 8.1. For a LISF formula ¢, if sat(p) returns true, then ¢ is satisfiable.

8.2. Satisfiability Checking Procedure for LZSF Extended with suband rev Predicates

With the use of sub and rev lemmas in bi-abduction, the pure part of LZSF formulas
can have additional conjunction of constraints of the form sub(e, [, u, e’) and rev(e, e’).
We need to modify the Flatten and GetLengths algorithms for checking satisfiability of
LISF formulas in the presence of these additional constraints. The modified algorithms
FlattenL and GetLengthsL are presented in Figure 19. The algorithm satL(¢) uses these
modified algorithms to flatten ¢.

Algorithm GetLengthsL takes into account the constraints imposed on array lengths
by suble, [, u, e’) and rev(e, e’) in addition to the constraints considered in GetLengths to
calculate the array lengths.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:35

satL(¢) GetLengthsL ()
1: lentbl < GetLengthsL(p) 1: F«<~0=0
2: 1) < FlattenL (¢, lentbl) 2: for all predicates sub(e,l,u,e’) in ¢ do

3: return sat_sep(v)) v < (arr(e),idim(e))

3

4 v’ « (arr(e),idim(e’))
FlattenL (¢, lentbl) 5 F+ FAv =v—l—uAv>Il+4u
1: lentbl <+ GetLengthsL(y) 6: EquateHigher(e, ¢, F) o
2: p1 < AddRevConstrs (i) ;: for all predlcatez T’ev(e, e') in ¢ do
3: pa2 < AddSubConstrs(p) 0 v = (arr(e), idim(e))
4

: return p; A p2 A Flatten(p, lentbl) v’ <+ (arr(e’), idim(e"))

10: F+ FA(w=1")

11: EquateHigher(e, ¢’, F)

12: for all (X,4,1) € LB(varphi) do
138 F« FA>I+1<(X,4)

14: for all (X, 4, u) € UB(varphi) do
15: F+— FAu+1<(X,1i))

16: for all ((X,1i),(Y,j)) € lterConstr(¢) do
17: F «+ FA(X,3) =(Y,3))

18: if sat_dc(F') then

19: return SolveDiff(F')

20: else

21: raise unsat

Fig. 19. Satisfiability procedure: satL(p).

Let arr(e) give the array name used to build the array expression e and idim(e)
give the dimension number corresponding to first iterated index in e. The predicate
suble,l, u,e’) requires that the length, len, of dimension idim(e’) of arr(e’) be equal to
length of dimension idim(e) of arr(e) - ({ +u) (as defined in Eq. (7.6)). Lines 2-5 add such
constraints to F'. The predicate rev(e, e’) requires that the length of dimension idim(e) of
arr(e) be same as the length of dimension idim(e’) of arr(e’) (as defined in Eq. (7.7)). Lines
7-10 of GetLengthsL add these constraints to F. Suppose for a predicate sub(e, [, u, ') (or
rev(e, e’)), the number of dimensions of arr(e) and arr(e’) are k and %/, respectively. The
definition of sub (respectively, rev) requires that for every 0 < j < k—idim(e), the length
of dimension idim(e)+ j of arr(e) is same as the length of dimension idim(e’)+ j of arr(e’).
The function EquateHigher(e, ¢’, F) adds such constraints to F' (lines 6 and 11). Lines 12-
17 add constraints imposed on array lengths by rs and Rp predicates and expressions
with fixed indices. In contrast to constraints obtained in GetlLengths, constraints in
GetLengthsL may have difference constraints. This is due to the constraints imposed
by the predicate sub(e,l, u,e’) in line 5. Hence, the formula F may be unsatisfiable.
The function sat_dc(F) at line 18 checks whether F' is satisfiable. If F' is satisfiable,
GetLengthsL returns the model constructed by SolveDiff(F) (line 19); otherwise, it raises
an an error indicating unsatisfiability of ¢ (line 21). Any structure having array sizes
confirming to lentbl returned by GetLengthsL(¢) is a well-formed structure for ¢.

The function FlattenL first soundly eliminates the predicates sub(e, [, u, ¢’) (line 2) and
rev(e, ') (line 3) from ¢. It replaces the predicates sub(e, l, u, e’) (respectively, rev(e, e’))
with a pure constraint given in the defining equation 7.6 (respectively, 7.7) by calling
AddSubConstrs (respectively, AddRevConstrs) at line 2 (respectively, line 3). Finally, it
soundly eliminates the iterative predicates in ¢ by calling Flatten(y, lentbl).

Lemma 8.2. Given a LISF formula ¢ with sub and rev predicates, if satL(p) returns
true then ¢ is satisfiable.

The satisfiability procedures presented in the previous subsections are sound but
incomplete. This is because GetLengths(¢) and GetLengthsL(¢) return only one of the
many (possibly infinite) mappings from array dimensions to their lengths. The formula
¢ may be satisfiable, but not for the array length mappings returned by the func-
tion GetLengths or GetLengthsL. In Gulavani et al. [2009], we show that satisfiability
checking of a subclass of LZSF having only single dimensional arrays is decidable.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:36 B. S. Gulavani et al.

Any formula ¢ belonging to this subclass is satisfiable iff it is satisfiable for some array
length mapping in the finite set M, of array length mappings. This means that, if ¢ is
satisfiable, then there exists a model of bounded size. Hence satisfiability checking is
decidable for this subclass of LZSF. Unfortunately, the size of the finite set is doubly
exponential in the size of ¢ in the worst case. However, the efficient but incomplete
procedures of the previous two subsections and the inefficient but complete decision
procedure given in Gulavani et al. [2009] are two extremes of the satisfiability checking
procedures. The insights in these contrasting procedures can be exploited for tuning
the efficiency and precision of satisfiability checking procedure as suitable for a specific
application domain.

9. IMPLEMENTATION

We have implemented the inference rules to generate specifications of programs in a
tool SPINE.2 It takes as input a C program and outputs summaries for each procedure
in the program. SPINE analyzes the program in a bottom-up manner, that is, a proce-
dure is analyzed before analyzing its callers. We tabulate the procedure summaries in
a central repository. Currently, SPINE cannot generate accelerated summaries for (mu-
tually) recursive procedures. Analysis of pointer arithmetic is also beyond its current
scope. SPINE takes two optional input arguments — -lemmas and -join — to guide the
application of heuristics for generating useful summaries.

Option -lemmas. With this option the strong bi-abduction algorithm uses the predi-
cates sub and rev, described in Section 7, to generate more expressive summaries. The
algorithm Match uses the rules MaTrcHRsA and MarcHRsB described in Section 7 in
addition to the rules outlined in Figure 15.

Option -join. With this option turned on SpINE tries to merge summaries for two
branches of the if-then-else statement by using the rule Join presented in Figure 13.
This helps generate concise specifications for branching constructs and potentially
complete specifications when such constructs are embedded in loops.

9.1. Experimental Evaluation of SPINE

The results of running SpPINE on a set of challenging programs, without -lemmas or
-join option, are tabulated in Figure 20. Programs in Figure 20(a) are adopted from
[Calcagno et al. 2007]. Program delete is the same as the motivating example in
Section 1. Programs in Figure 20(b) are adopted from Abdulla et al. [2008] and Mgller
and Schwartzbach [2001]. These programs manipulate singly or doubly linked lists. In
each of these tables, the fourth column indicates the number of summaries inferred by
SPINE. The last column indicates whether the inferred summaries provide a complete
specification for the corresponding program. SPINE inferred richer summaries than
those inferred by the tool in Calcagno et al. [2007]. For example, for the programs
delete and reverse, SPINE infers preconditions with cyclic lists (indicated by * in
fourth column). For the program delete, some of the inferred preconditions even have
a lasso structure.

The examples in Figure 20(c) are program fragments modifying linked structures
in the Firewire Windows Device Driver. We report only the summaries discovered for
the main procedures in these programs. A complete set of summaries is discovered for
all the other procedures in these programs. The original programs and data structures
have been modified slightly so as to remove pointer arithmetic. These programs perform
selective deletion or search through doubly linked lists. The program PnpRemove iterates

2

acronym for Spefication Inference Engine.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:37

[Progs | size [time(s) [IV [V | [Progs [size [time(s) | IV [V]
init 16 0.007 2 | Yes dll-reverse 23 0.084 3 No
del-all 21 0.006 2 Yes fumble 20 0.010 2 Yes
del-circ 23 0.007 2 | Yes zip 37 0.374 4 No
delete 42 0.058 | * 19 No (b)
append 23 0.010 3 | Yes BusReset 145 0.043 *3 | Yes
ap-disp 52 0.036 6 | Yes Cancellrp 87 0.743 | * 32 | Yes
copy 33 0.324 3 | Yes SetAddress 96 0.122 *6 | Yes
find 28 0.017 4 | Yes GetAddress 94 0.122 *6 | Yes
insert 53 0.735 6 Yes PnpRemove 460 37.600 34 No
merge 60 0.511 12 No (c)
reverse 20 0.012 *3 No nested 24 0.028 5 Yes

(a) rev-rev 30 0.150 3 No
off-trav 31 0.122 0 No
dll-trav-2 24 0.126 2 No

(d)

Fig. 20. Experimental results on (a) list manipulating examples from Calcagno et al. [2007], (b) examples
from Abdulla et al. [2008] and Mgller and Schwartzbach [2001], (¢) functions from Firewire Windows Device
Drivers, and (d) a miscellaneous set of programs. For a program in each row, Column ‘size’ indicates its size
in terms of lines of code, Column “time(s)” indicates time in seconds taken by the SPINE to calculate the
number of triples indicated in Column IV, and Column V indicates whether the discovered triples give a
complete specification for the program. Experiments performed on Pentium 4 CPU, 2.66GHz, 1GB RAM.

[Progs [size | time(s) [IV][V]
delete 42 0.082 | * 21 No
rev-rev 30 0.025 4 No
off-trav 31 0.016 1 Yes
dll-trav-2 24 0.014 3 Yes
PnpRemove 460 23.800 *32 | Yes

Fig. 21. Experimental results of running SPINE with -lemmas and -join option. Columns are same as in
Figure 20.

over five different cyclic lists and deletes all of them; it has significant branching
structure. All programs except CancelIrp refer to only the next field of list nodes. The
program CancelIrp also refers to the prev field of list nodes. The increased number of
inferred summaries for CancelIrp is due to the exploration of different combinations
of prev and next fields in the the pre and postconditions. We have checked whether the
computed summaries form a complete specification for the corresponding programs
by manually going through the susmmaries output by SPINE.> We found that the
summaries inferred for all programs except PnpRemove are complete. These summaries
capture the transformations on an unbounded number of heap cells, although they
constrain only the next fields of list nodes. Hence, these summaries can be plugged
in contexts where richer structural invariants involving both next and prev fields are
desired.

Programs in Figure 20(d) is a miscellaneous collection of singly or doubly linked list
manipulating routines. Program nested deletes a nested linked list, rev-rev reverses
a linked list twice. Program off-trav has two loops — the first loop traverses all ele-
ments except the head and the second loop traverses all elements of the list. Program
dl1l-trav-2 also has two loops — the first loop traverses the double linked list from head
to tail following the next field and the second loop traverses the same list from tail to
head following the prev field. SPINE is unable to generate a complete specification for
any of these programs, except the program nested.

We repeated the experiments by running SPINE with -lemmas and -join option.
SPINE can now generate richer specifications for the program tabulated in Figure 21.

3 Available to the interested readers at http:/www.cfdvs.iitb.ac.in/~bhargav/spine.html.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:38 B. S. Gulavani et al.

Complete specification can now be generated for programs off-trav and PnpRemove.
The use of rev (respectively, sub) predicate was instrumental for generating richer
specifications for rev-rev and dll-trav-2 (respectively, off-trav). The use of JoiN
rule was instrumental for generating complete specification for PnpRemove. PnpRemove
has several nested branching constructs of the form if (v != null) delete(v) inside
while loops. The use of Join rule enabled SPINE to generate a single, complete summary
for such branching constructs. This facilitated the generation of complete specification
for each while loop in the program PnpRemove. With the options -lemma and -join,
SPINE neither produced any new summaries nor did it take more time while analyzing
the remaining programs.

10. CONCLUSION

We have presented inference rules for bottom-up and compositional shape analysis.
Strong bi-abduction and satisfiability checking form the basis of our inference rules.
The novel insight of inductive composition is captured by the inference rule InpuCT.
This rule enables us to hoist the Hoare triple of a loop body outside the loop. This
enables uniform application of the compositional analysis to entire program, albeit
without recursive procedures.

We have introduced a new logic called LZSF to express the Hoare triples. LZSF
provides a uniform framework to express recursive predicates characterizing list-like
and nested list-like data-structures. This logic enables us to relate the data-structures
in the pre and postcondition of the program. We illustrate the advantages of Hoare
triples expressed using LZSF over those expressed using recursive predicates with
respect to succinctness and composability.

We have presented sound procedures for strong bi-abduction and satisfiability check-
ing of LIS F formulas. Although neither of these procedures are complete, we identify
a fragment of LZSF that has a small model property. Hence, checking satisfiability
of this fragment is decidable. But, its worst, case complexity is doubly exponential.
Second, we do not yet know whether the satisfiability checking of entire LZSF is de-
cidable. Hence, we use the sound procedure sat in our implementation for checking
satisfiability of LZSF formulas.

One possible direction for future work is to enhance the strong bi-abduction pro-
cedure to make it complete for an expressive fragment of LZSF. Another possibility
is to have a fall-back mechanism to compute only a bi-abduction, whenever strong
bi-abduction cannot be computed (or strong bi-abduction does not exist). Identifying a
class of programs for which our inference rules can generate complete specification is
also an interesting problem to solve. In the future, we would like to extend our tech-
nique to generate expressive specifications for programs having recursive procedures
and those manipulating tree-like data-structures.

APPENDIX
A. COMPOSITION OF STRONG HOARE TRIPLES USING STRONG BI-ABDUCTION

Let Post(s, (s, h)) denote the set of states resulting from the execution of S starting from
the initial state (s, h). We say that a program statement S satisfies domain expansion
property if for any state (s’, ') € Post(S, (s, b)), we have dom(h’) O dom(h). A program
statement S satisfies minimal resource property if (s’, h') € Post(S, (s, h)) implies that
for all hy disjoint from A2 and /', (s', K’ U hy) € Post(S, (s, h Ll hy)). It is straightforward to
see that all the primitive program statements given in Figure 2, except the deallocation
statement dispose, satisfy the domain expansion and minimal resource properties.
Note that although the program fragment S : x := new; dispose x satisfies the domain
expansion property, it does not satisfy the minimal resource property. This can be shown

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:39

as follows. Consider (s, k') € Post(S, (s, b)), where s'(x) = s'(y) =1, s(x) = [,s(y) =,
and dom(h') = dom(h) = (. Let dom(hy) = {l'}. Starting from a state (s, kLl k), execution
of S cannot result in a state (s’, A’ L hgy) because the statement x := new cannot allocate
a new object at an already allocated location I’ € dom(h U hy). Hence, (s', 2’ U hy) ¢
Post(s, (s, h U hy)), although Ay is disjoint from A and /.

In the following, we first show that programs without the deallocation statement
satisfy the domain expansion and minimal resource properties. Later, we prove that if
the deallocation statement is disallowed then the composition of strong Hoare triples
using strong bi-abudction yields strong Hoare triples.

LEmMa A.1. If statements Sy and S, satisfy domain expansion and minimal resource
properties, then their composition Si; S, also does.

Proor. Consider (s”, ") € Post(Ss; S,, (s, h)). Let (s, &) be an intermediate state such
that (s, /') € Post(S,, (s, h)) and (s”, i) € Post(S,, (s, /')). Since S; and S, both satisfy
domain expansion property, it follows that dom(h”) 2 dom(h’) 2 dom(h). Hence, S4; S,
satisfies the domain expansion property.

Consider a trace starting from (s, 2) such that (s’, #’) € Post(S, (s, h)) and (s”, k") €
Post(S,, (s’, #)). By the domain expansion property, we have dom(h”) 2 dom(h') 2
dom(h). Hence, for all hy such that ho#h”, we have ho#h' and ho#h. Combining these with
the fact that both S; and S, satisfy minimal resource property, we obtain that for all A,
such that ho#h”, (s”, ho U h") € Post(S,, (s’, ho L A")) and (s', kg L ') € Post(Sy, (s, ho U h)).
Hence, S;; S, satisfies minimal resource property. O

LEMMA A.2. If assert(B); S satisfies domain expansion and minimal resource proper-
ties, then while(B) S also does.

Proor. This can be proved by induction on the number of times the loop body iterates
using Lemma A.1 as the base case. O

LEmMma A.3. If S; satisfies domain expansion and minimal resource properties,
lp1] 81 [@1] is a strong Hoare triple, and ¢y N mod(S1) = ¥ then [p1 * @prel S1 (01 * @prel
is a strong Hoare triple.

Proor. By frame rule, it is evident that [¢1 * @pre] S1 [@1 % @pre] is a valid Hoare triple.

We now show that [¢1 * ¢prel S1 [@1 % @pre] is strong. Consider (s, h) &= @1 * ¢pre. Let
h = hi#hy such that (s, h) = @1 and (s, h) = @pre. Since [¢1] S; [¢1] is a strong Hoare
triple, there exists (s’, h}) = ¢1 such that (s, h1) € Post(Sy, (s, h})). Since s and s" map
variables other than mod(S,) to same values, and since ¢, is independent of mod(S,),
it follows that (s', h2) = ¢pre. Moreover, since S; satisfies domain expansion property,
dom(h}) € dom(h,) and hence k) #hs. Consequently, (s, A} Uh2) = ¢1 % @pr.. Furthermore,
since S; satisfies minimal resource property, (s, hy Uhg) € Post(Sy, (s, A} Lhg)). Thus, for
every (s, h) = @1 * @pre, there exists (s, &) = ¢1 * ¢pre such that (s, h) € Post(Sy, (s, #)).
Hence, [¢1 * @prel S1 [@1 % @prel is a strong Hoare triple. O

LEmMMA A.4. If statements S; and S, satisfy domain expansion and minimal resource
properties, [p1] S1 [¢1] and [p2] S, (2] are strong Hoare triples, ¢1%¢pre < 3Z. (Qpost *¢2),
and ¢pre "MOd(S1) = @post NMOd(S2) = B then [¢1 % @prel S1;82 [3Z. (@post * P2)] is a strong
Hoare triple.

Proor. Given the assumptions and using the frame rule, it is straightforward to
show that [¢1 * @pre] S1;82[3Z. (@post * @2)] is a valid Hoare triple.

From Lemma A.3, it follows that [p1 * ¢prel S1 [@1 * @pre]l and [@post * w2l So [@post * P2l
are strong Hoare triples. Hence, [3Z. (¢post * ¢2)] So [3Z. (¢post * ©2)] is a strong Hoare
triple.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

17:40 B. S. Gulavani et al.

Since 1 * @pre < IZ. (@post * ¢2), it follows that [p1 * @pre] S1582 [3Z. (@post * P2)] s a
strong Hoare triple. O

ACKNOWLEDGMENTS

We thank Hongseok Yang and Dino Distefano for introducing us to the idea of abduction and for providing
us with benchmark programs. We also thank the anonymous reviewers for their insightful and critical
comments. The ideas in the appendix are motivated by the suggestions made by one of the reviewers of
earlier draft.

REFERENCES

Aspurra, P., Bouassani, A., CEDERBERG, J., Haziza, F., aND ReziNg, A. 2008. Monotonic abstraction for pro-
grams with dynamic memory heaps. In Proceedings of the International Conference on Computer Aided
Verification (CAV). 341-354.

ABpULLA, P. A., JonssoN, B., NiLssoN, M., AND Saksena, M. 2004. A survey of regular model checking. In
Proceedings of the International Conference on Concurrency Theory (CONCUR). Springer, 35—48.

BarpIN, S., FINKEL, A., LEROUX, J., AND SCHNOEBELEN, PH. 2005. Flat acceleration in symbolic model checking.
In Proceedings of the International Symposium on Automated Technology for Verification and Analysis
(ATVA). 474-488.

BERDINE, J., CaLcacno, C., Cook, B., Disterano, D., O’'HEArN, P. W., WiEs, T., anD Yancg, H. 2007. Shape anal-
ysis for composite data structures. In Proceedings of the International Conference on Computer Aided
Verification (CAV). 178-192.

BiERING, B., BIRKEDAL, L., AND TorP-SMITH, N. 2005. Bi-hyperdoctrines and higher-order separation logic. In
Proceedings of the European Symposium on Programming Languages and Systems (ESOP). 233—-2417.

BoigeLor, B., LEgay, A., AND WOLPER, P. 2003. Iterating transducers in the large. In Proceedings of the Inter-
national Conference on Computer Aided Verification (CAV). Springer, 223—-235.

Bouagsani, A., HABERMEHL, P., Moro, P., AND VoJNar, T. 2005. Verifying programs with dynamic 1-selector-
linked structures in regular model checking. In Proceedings of the Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS). Springer, 13-29.

Bouadgsani, A., HABERMEHL, P., AND RocALEWICZ, A. 2006. Abstract regular tree model checking of complex
dynamic data struct ures. In Proceedings of the International Symposium on Static Analysis (SAS).
Springer, 52-70.

Bouagsani, A., HABERMEHL, P., AND Tomas, V. 2004. Abstract regular model checking. In Proceedings of the
International Conference on Computer Aided Verification (CAV). Springer, 372-386.

Carcacno, C., Disterano, D., O'HEARN, P., AND Yang, H. 2009. Compositional shape analysis by means of bi-
abduction. In Proceedings of the Annual Symposium on Principles of Programming Languages (POPL).

Carcacno, C., Disterano, D., O’'Hearn, P. W., anD Yang, H. 2007. Footprint analysis: A shape analysis that
discovers preconditions. In Proceedings of the International Symposium on Static Analysis (SAS). 402—
418.

Cousor, P. 1990. Methods and logics for proving programs. In Formal Models and Semantics, J. van Leeuwen,
Ed., Handbook of Theoretical Computer Science, vol. B. Elsevier Science Publishers B.V., Chapter 15,
843-993.

Disterano, D., O’'Hearn, P. W., anp Yang, H. 2006. A local shape analysis based on separation logic. In
Proceedings of the Tools and Algorithms for the Construction and Analysis of Systems (TACAS). 287—
302.

Guravani, B. S., CHAKRABORTY, S., RAMALINGAM, G., AND Nori, A. V. 2009. Bottom-up shape analysis using lisf.
Tech. rep. TR-09-31, CFDVS, IIT Bombay. www.cfdvs.iitb.ac.in/~bhargav/spine.html.

Guo, B., VacuHARAJANI, N., AND Aucust, D. I. 2007. Shape analysis with inductive recursion synthesis. In
Proceedings of the Conference on Programming Languages Design and Implementation (PLDI). 256—
265.

JEANNET, B., LociNov, A., REps, T. W., AND Sactv, S. 2004. A relational approach to interprocedural shape
analysis. In Proceedings of the International Symposium on Static Analysis (SAS). 246-264.

Lev-Awm, T., Saciv, M., Reps, T., AND GuLwani, S. 2007. Backward analysis for inferring quantified preconditions.
Tech. rep. TR-2007-12-01, Tel-Aviv University.

MgLLER, A. AND ScHwARTZBACH, M. I. 2001. The pointer assertion logic engine. In Proceedings of the Conference
on Programming Languages Design and Implementation (PLDI). (Also in SIGPLAN Notices 36, 5).

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

Bottom-Up Shape Analysis using LISF 17:41

O’HEearn, P. W,, REYNOLDS, J. C., AND YaNG, H. 2001. Local reasoning about programs that alter data structures.
In Proceedings of the Symposium on Computer Science Logic (CSL). Lecture Notes in Computer Science,
vol. 2142, Springer 1-19.

PopELski, A., RyBALCHENKO, A., aND WiEs, T. 2008. Heap assumptions on demand. In Proceedings of the
International Conference on Computer Aided Verification (CAV). 314-327.

REvNoLDs, J. C. 2002. Separation logic: A logic for shared mutable data structures. In Proceedings of the 17th
Annual IEEE Symposium on Logic in Computer Science (LICS). 55-74.

RiNETZKY, N., BAUER, dJ., REPs, T. W., Sactv, S., aND WiLHELM, R. 2005a. A semantics for procedure local heaps
and its abstractions. In Proceedings of the Symposium on Principles of Programming Languages (POPL).
296-309.

Riverzky, N., Saciv, M., anD Yauav, E. 2005b. Interprocedural shape analysis for cutpoint-free programs. In
Proceedings of the International Symposium on Static Analysis (SAS). 284-302.

RimveTzKY, N. AND Sactv, S. 2001. Interprocedural shape analysis for recursive programs. In Proceedings of
the Conference on Computer Construction (CC). Lecture Notes in Computer Science, vol. 2027. Springer,
133-149.

Sactv, M., Reps, T., AND WILHELM, R. 1999. Parametric shape analysis via 3-valued logic. Trans. Prog. Lang.
Syst. 24, 2002.

Touri, T. 2001. Regular model checking using widening techniques. In Proceedings of the Conference on
Verification of Parameterized Systems (VEPAS’01). 342-356.

YorsH, G., RaBmvovich, A. M., Sacrv, M., MEYER, A., AND BouagJjani, A. 2006. A logic of reachable patterns
in linked data-structures. In Proceedings of the Foundations of Software Science and Computation
Structures (FoSSaCS). 94-110.

Received December 2009; revised July 2010, April 2011; accepted July 2011

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 17, Publication date: November 2011.

