
On Buffering with Stochastic Guarantees in
Resource-Constrained Media Players

Balaji Raman1, Guillaume Quintin1, Wei Tsang Ooi2,
Deepak Gangadharan2, Jerome Milan1, Samarjit Chakraborty3

1École Polytechnique, Laboratoire d’informatique (LIX), Palaiseau, France
2Department of Computer Science, National University of Singapore, Singapore

3Institute for Real-Time Computer Systems, TU Munich, Germany
{balaji, quintin, jerome.milan}@lix.polytechnique.fr

{ooiwt, gdeepak}@comp.nus.edu.sg, samarjit@tum.de

ABSTRACT
Playout delay or buffering are commonly used in the case of
streaming multimedia to ensure smooth playout. A large de-
lay, however, is required for promising a high quality in dis-
play. Such significant delays consume huge on-chip memory.
We show that when the constraints on output are slightly
relaxed, the playout delay needed can be reduced to a neg-
ligible value with no perceivable loss in video quality.

We propose a mathematical framework that precisely es-
timates that minimal playout delay value. Perhaps more
importantly, unlike existing analytical models, our frame-
work allows to specify loss and provides guarantees that the
desired display quality is achieved with the chosen delay.
We present simulation results to validate the minimum de-
lay value obtained from the analytical framework. Using the
reduced delay value enormously saves the on-chip memory
requirement.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems

General Terms
Design, Performance, Theory

Keywords
playout delay, multimedia systems, probabilistic analysis

1. INTRODUCTION
Given the constraints of application imposed on limited

hardware resources, it is a challenge to design System-on-
Chip (SoC) for media-processing devices [6]. Using relaxed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0715-4/11/10 ...$10.00.

constraints on the quality of the display can yield markedly
significant savings of many on-chip resources, including pro-
cessor capacity requirement and memory capacity.

Studies have shown that multimedia applications can tol-
erate certain loss in quality, and this deterioration in quality
is not perceivable up to some extent [1, 20]. These quality
degradations have been previously shown in the literature to
save on-chip resources, albeit there were no guarantees on
the design and SoCs were built to handle only average-case
scenarios [21, 8].

We propose a framework where loss in quality could be
represented and mathematically quantified using probabilis-
tic parameters. An application parameter, namely the play-
out delay, is adjusted so as to reduce the on-chip resource
requirements. Using a system model, we explain how play-
out delay variable could be used in a probabilistic constraint
on display quality.

Figure 1: Playout de-
lay and processor fre-
quency.

Figure 2: Playout delay
with buffer underflow.

Consider a SoC with a processing element and two on-
chip memories, the input and the playout buffer. The input
buffer temporarily stores the data items from a multimedia

stream. The multimedia application being executed in the
processor fetches data from the input buffer, and stores its
output in the playout buffer. The output device displays
items in the playout buffer at a constant rate. For example,
a video decoding application decompresses the input stream
and the decoded items are displayed at a fixed rate (say
30fps).

The amount of processing cycles required for each stream
object (e.g., a macroblock or a frame) is variable 1. If the
processing element runs at some constant speed then the
number of stream objects produced per unit time is vari-
able. But since the display device consumes stream objects
at a constant rate it is possible that the playout buffer is
empty at times, leading to buffer underflows. If the buffer
should never underflow, previous studies have shown that
the display must start after an initial playout delay [12]. We
now explain this playout delay concept.

Figure 1 shows three scenarios where the output device
consumes stream objects after a near zero, small, and large
delay (top, middle, and bottom respectively). Assume that
we are given an input stream for processing. The middle and
bottom sketch in Figure 1 shows the cumulative number of
stream objects produced with two different processor speeds
(for the given input stream).

The cycles per second requirement is almost infinity when
the consumption starts at the same time as the production
(refer top graph in Figure 1). When the playout starts after
a small delay, the required production rate is still high. The
reason for this need in processing resources is as follows.

To guarantee that the buffer should never underflow, we
should consider the worst-case scenario where stream ob-
jects would take maximum processor cycles to execute. The
processor must produce them at a high rate, so that dur-
ing the worst-case, enough items are produced to meet the
playout rate (middle graph in Figure 1).

With considerable initial delay, previous work in this di-
rection have shown that the processor cycles per second re-
quirement reduces to the average cycles per second required
to process the stream [12]. While full quality is assured, this
delay could be large (see bottom graph in Figure 1). In this
paper, we propose to relax the output constraints, and de-
termine the minimum playout delay required so as to reduce
the playout buffer size required.

We designed a mathematical framework, which estimates
a lower bound on the output, given the input characteris-
tics and processing requirements for a class of streams [12].
We build on this existing deterministic framework to have
probabilistic constraints on the output. Now we explain how
the lower bound is tied to the playout delay and the buffer
underflow.

Suppose that we are required to find the minimum playout
delay such that it is guaranteed that the playout buffer never
underflows so that the display quality is always met. In the
top most graph in Figure 2, the cumulative processor cycles
correspond to three specific video streams. The cycles per
time shows the actual cycles consumed during the processing
of the stream.

Assume that we have a lower bound on the cycles/second
consumed of streams belonging to a class of videos with same
bit-rate and resolution, that is, without the knowledge of the
actual processor cycles consumed (shown in Figure 2). From

1the number of bits per stream object is variable

the literature, we know how to estimate a lower bound on
the processor cycles consumed for a class of streams [12]. In
middle of Figure 2, we see that the chosen playout delay is
such that the lower bound is always higher than consump-
tion.

If the delay value is lowered, the constraint on display
quality is relaxed, which leads to buffer underflow at times
(refer bottom graph in Figure 2). The amount of buffer un-
derflow could be specified using stochastic constraints. The
given input streams satisfies the underflow constraint, if the
lower bound satisfies it. This reduction in the playout delay
required also leads to reduced buffer size.

To the best of our knowledge, our framework is one of
the few to provide analysis allowing loss in quality, whilst
providing guarantees for designing multimedia. Present an-
alytical modeling techniques are inadequate for designing
multimedia-processing system-on-chips, either because the
models do not provide any guarantee on output quality [11],
or because their analysis are for worst-case scenarios and
therefore often lead to cost-inefficient designs [19]. Our work
is inspired from the research developments in the computer
networks area towards stochastic network calculus [5] for
performance analysis.

1.1 Illustrative Example
In this subsection, we show that the initial playout delay

determines the buffer size, and hence any reduction in delay
consequently leads to smaller buffer.

We took a video stream of resolution 352×240 that was
MPEG2 compressed to a bit-rate of 1.5 Mbps such that 30
frame per second could be displayed. A complete SystemC
simulation set-up was built; the video stream was decoded
and played-out after different initial delay values. During
each experiment, we noted the maximum playout buffer un-
derflow and playout buffer size required (such that there is
no overflow). Two important observations were made as the
delay was increased.

1. The increase in delay increases the maximum fill level
of the buffer; increase in delay raises the level of buffer
fill. The size of the playout buffer at the maximum
fill level is the required playout buffer size. So, any
increase in delay increases the buffer size.

2. Second, an increase in delay decreases the number of
times the buffer underflows (refer Figure 3). The con-
sumption is constant unlike the playout buffer fill. Cor-
rectly chosen initial delay makes it possible to store suf-
ficient items before consumption starts. Even-though
the buffer fill continues to vary, buffer underflow is
greatly reduced.

If the playout delay value is reduced, then the buffer size
is reduced too 2, with an increase in buffer underflow (which
in turn reduces the video quality). Our mathematical frame-
work, estimates for a given set of streams the minimum play-
out delay required such that the desired display quality is
achieved.

2We present results in macroblocks instead of bytes for gen-
eraility. For a decompression application, the playout buffer
has to hold uncompressed video. So, for MPEG decoding,
the reduction in terms of hundreds of macroblocks will lead
to huge reduction in terms of bytes.

0 2 4 6 8 10 12 14 16
x 109

0

200

400

600

800

1000

1200

1400

Time
(in seconds)

Bu
ffe

r U
nd

er
flo

w

(in
 m

ac
ro

bl
oc

ks
)

d = 40ms

 d = 100ms

d = 80ms

Figure 3: Playout buffer underflow over time. The
variability in underflow substantially reduces with
large increase in playout delay.

1.2 Contributions
We discuss related work in detail later in the paper, but

to summarize, our main contributions are:

• Stochastic Guarantee: Even though the system de-
signed with our probabilistic mathematical framework
does not always output 100% frame rate, the designer
has confidence on the performance of the system in
that it would at least output (100 − ∆)% frame rate.
The huge savings in resources (processor capacity and
on-chip memory size) is achieved with only slight re-
duction in the throughput. This cost-effective design
is the primary motivation for the system architect to
design devices with probabilistic guarantees.

• Insight: The designer achieves the following with tun-
ing the playout delay parameter: (a) sets the media
player’s QoS, and (b) analyzes the architectural pa-
rameters such as the processor speed and buffer size.
This application/architecture co-design is possible first
with identifying the non-trivial correlation among the
playout delay, QoS, and buffer size. Second, the math-
ematical solution presented in this paper characterizes
the correlation and hence the solution for the delay is
central for the co-design. Our work illustrates that a
mathematical framework can provide insights into the
design of the system.

1.3 Organization
We recommend the reader to first understand the prelimi-

naries of our mathematical framework by reading Section 2.
Then the reader will be able to follow how we formulate the
stochastic constraint in Section 3. Thereafter, to get a quick
idea on the results, one can jump to Subsection 5.1, where
we numerically evaluate the delay value. The first reading
can then end with the conclusions in Section 8.

Two approaches for the closed-form estimation of the min-
imum delay is presented in Section 4. The results for these
approaches are presented in Section 5.2. Section 6 is a brief
survey on existing mathematical framework attempting to
solve similar problems addressed in this paper. Section 7
attempts to answer potential questions on this work.

2. SYSTEM MODEL
We now present the basic framework used to model the

variations of the incoming rate of input items and the fluc-

Figure 4: System Model

tuations of the associated processing requirements. Our sys-
tem model, shown in Fig. 4, consists of a processor with an
internal buffer b, a playout buffer B and a playout (or out-
put) device. The processor decodes the input stream and
writes the decompressed data in the playout buffer which is
consumed by the playout device (e.g., a video display or a
speaker) at a constant rate.

We assume that the input bit stream to be decoded is
fed to the internal buffer b at a constant rate of r bits per
second. For the sake of simplicity, we consider a stream to be
made up of a sequence of stream objects, such as macroblocks
in case of video playbacks. Given an input stream to be
decoded, let x(t) denote the number of stream objects filled
into the internal buffer over the time interval [0, t]. Since the
number of bits constituting a stream object can vary, x(t)
depends on the particular input stream to be decoded. To
bound these variations, we introduce two functions αl and
αu verifying,

αl(∆) ≤ x(t + ∆) − x(t) ≤ αu(∆), (1)

for all t and ∆ ≥ 0. Here αl(∆) and αu(∆) respectively
represents the minimum and maximum number of stream
objects that can arrive in the internal buffer within any time
interval of length ∆.

αl and αu are computed from two auxiliary functions φl(k)
and φu(k) respectively denoting the minimum and maxi-
mum number of bits constituting any k consecutive stream
objects. φl and φu are obtained by analyzing a large number
of samples that are representative of the input streams to be
processed by the target decoder. Once φl and φu are experi-
mentally determined, we can compute their pseudo-inverses
noted φ−1

l and φ−1
u . φ−1

l (k) and φ−1
u (k) respectively returns

the maximum and minimum number of stream objects that
can be constituted by k bits. Since we assume a constant
input rate of r bits/sec, we compute the bounding functions
αl and αu as

αl(∆) = φ−1
u (r∆) and αu(∆) = φ−1

l (r∆). (2)

Let y(t) and C(t) be the number of stream objects respec-
tively written into the playout buffer B and consumed by
the output device over the time interval [0, t]. For a smooth
playback it is naturally required to assure that,

y(t) ≥ C(t), ∀t ≥ 0. (3)

We model the service provided by the processor by a
function β with β(∆) representing the minimum number
of stream objects that are guaranteed to be processed (if
available in the internal buffer) within any time interval
of length ∆. It can be shown that y(t) ≥ (αl ⊗ β)(t),
where ⊗ is the min-plus convolution operator defined as [8]
(f ⊗ g)(t) = inf0≤s≤t{f(t − s) + g(s)}. Hence for the con-
straint (3) to hold, it is sufficient to have,

(αl ⊗ β)(t) ≥ C(t), ∀t ≥ 0. (4)

This can be written in a more usable form using the
min-plus deconvolution operator defined by (f ' g)(t) =
sups≥0{f(t + s) − g(s)}. It is known from the duality be-
tween ⊗ and ' [3], that for any three functions f , g and h,
g ⊗ h ≥ f if and only if h ≥ f ' g. Applying this result
to (4) we obtain,

β(t) ≥ (C ' αl)(t), ∀t ≥ 0. (5)

Note that β(t) in inequality (5) is defined in terms of the
number of stream objects needing to be processed within any
time interval of length t. However, the number of processor
cycles needed to decode a stream object is not constant. We
thus model the variability in the number of cycles required to
process a stream object using two bounding functions γl and
γu. γl(k) and γu(k) respectively returns the minimum and
maximum number of cycles required to process k consecutive
stream objects.

Finally, our model assumes that the playout buffer is read
by the output device at a constant rate of c stream objects
per second after an initial playout delay (or buffering time)
of d seconds. The number C(t, d) of stream objects read by
the output device over the time interval [0, t] is thus given
by

C(t, d) =


0 if t ≤ d
c(t − d) if t > d.

(6)

3. MINIMIZING BUFFERING
In this section, we derive the minimum playout delay re-

quired to obtain an output rate with acceptable loss. With
relaxed constraints on playout quality, we show that the ini-
tial delay can be substantially reduced thus minimizing the
playout buffer size.

We first state the constraint to be satisfied for continu-
ous playback of the stream such that the actual output rate
is met. If the playout buffer never underflows, the output
stream is played with no quality loss. So, the playout buffer
should always have a greater cumulative number of stream
objects than consumed by the output device. Obviously the
initial playout delay increases the maximum playout buffer
size required. This delay, however, can be reduced if we
allow the playout buffer to underflow at times. We conse-
quently slightly relax the playout constraints as detailed in
Section 1 to be able to chose a smaller initial delay. A buffer
underflow of b stream objects can be written as

C(s, d) − y(s) > b, ∀s ≥ 0, ∀b ≥ 0. (7)

Equation 7 captures only positive buffer underflow. A
negative buffer underflow means there is excess items in the
buffer, so strictly speaking, there is no underflow. Also, note
that Equation 7 holds for a given output stream y. Once
again, we want to compute the lower bound for this output
stream y.

The lower and upper bounds on the number of incoming
objects (αl and αu) and the number of objects that are
guaranteed to be processed over any time interval (γu and γl)
were experimentally determined. Let ym be the minimum
number of stream objects that are produced in the interval
[0, t]. This lower bound can be computed as follows:

ym(t) ≥ (αl ⊗ βl)(∆), ∀t ≥ 0, ∀∆ ≥ 0. (8)

Computing the buffer underflow (Equation 7) using the
lower bound on the output stream (Equation 8) yields the

following condition:

C(s, d) − ym(s) ≥ C(s, d) − y(s), 0 ≤ s ≤ t. (9)

From Equation 8 and Equation 7, we write,

C(s, d) − ym(s) > b, ∀b ≥ 0, 0 ≤ s ≤ t. (10)

We consider buffer underflows to be random events. This
is true if, for example, the processor cycles per second al-
located to the decoding task is probabilistic (due to other
tasks consuming random cycles). Indeed, in our model, we
assumes that the processor cycles allocated to the decoding
task is random. However the incoming rate of stream objects
and their execution requirement are kept deterministic.

Note fmax the maximum processor cycles per second and
let F be a random variable giving the usable frequency,
that is the number of processor cycles allocated to the de-
coding task. Then the cumulative distribution of the us-
able frequencies is given by P (F = fi), for all fi, where
0 ≤ fi ≤ fmax.

Our goal is to estimate the minimum playout delay re-
quired such that the desired stochastic guarantees are met.
We write the probability P (U) of a buffer underflow of b
objects as

P (U) = P (C(s, d) − ym(s) > b), 0 ≤ s ≤ tmax, (11)

where tmax is the maximum analysis interval.
This probability P (U) defines a finite sample space over

any time interval [0, tmax], where the buffer underflow is
exactly zero or more. Equation 11 represents the subset of
the sample space where the buffer underflow is greater than
b stream objects.

Buffer underflows depends on the usable frequency which,
in our model, can vary randomly. Hence, the probability of
having more than b objects underflow is given by

P (U) =
fmaxX

f=0

n
P (U |F = fi) ∗ P (F = fi)

o
. (12)

On the other hand, we can bound the buffer underflow
probability using a stochastic bounding function g as,

P (U) ≤ g(b). (13)

The bounding function g 3 can be interpreted as a“quality
function” which embodies the acceptable loss in the quality
of the displayed media stream, usually using sound and video
perception models.

Problem Statement: We want to compute the mini-
mum delay d such that the desired output quality specified
using the function g is guaranteed. The input parameters
required to estimate the initial delay are:

• The usable frequency cumulative distribution P{F =
fi}, for all 0 ≤ fi ≤ fmax,

• The consumption rate c of the output device,

3g(b) is a strictly decreasing function. This is because, as
mentioned before, the total sample space in Equation 11 is
of all events where the buffer underflow is greater or exactly
equal to zero. The sample space denoted by Equation 11 for
the value b = 0 is equal to the total sample space. Therefore,
g(0) = 1. For increasing value of b the sample space noted
by Equation 11 is a decreasing and a sub-set of the sample
space lower than b.

• The probabilistic bounding function g(b),

• The lower and upper bounds (αl and αu) on the rate
of incoming stream objects,

• The maximum analysis interval tmax.

4. MINIMUM PLAYOUT DELAY

4.1 Using integer linear programming
Let the function u represents the buffer underflow at time

instance t for the output stream ym with an initial delay d,
that is,

u(t, d, ym) = C(t, d) − ym(t).

Naturally, we know the actual u function when d = 0 from
our system modeling. We could perform more simulations
with increasing delay values but that would be extremely
time consuming. Instead, we can use techniques from integer
linear programming (ILP) to find the minimum delay.

For a usable frequency fi and an initial delay d, the prob-
ability that the buffer underflows by more than b stream
objects in the time interval [0, t] is given by

hi(t, b) = P (u(t, d, ym) > b | F = fi) ,

with fi ∈ [f0 .. fmax] and t ∈ [t0 .. tmax]. As the usable
frequency increases, the buffer underflow reduces and hence
hi(t, b) ≤ hj(t, b) if and only if i ≥ j.

The problem now comes down to finding the hi that max-
imizes the objective function D(t, b) given by:

D(t, b) =
maxX

i=0

hi(t, b) ∗ P (F = fi), (14)

subject to the constraint:

maxX

i=0

(hi(t, b) ∗ P (F = fi)) ≤ g(b), (15)

for all b ≥ 0 and all t ∈ [t0 .. tmax]. This is carried out
using a standard integer linear programming solver.

We can now deduce the minimum delay value di corre-
sponding to each frequency fi from the hi(t, b) obtained,
by adding a constant value to the known u(t, 0, ym) func-
tion (essentially shifting it up or down) until we obtain the
appropriate hi(t, b) proportion.

Consider now a set Ti containing time intervals for which
the buffer underflow u is greater than or equal to zero. Let
T+

i,b (respectively T−
i,b) contain time intervals corresponding

to an underflow greater than (respectively lower than) b,
that is,

T+
i,b = {t ∈ Ti : u (t, d, ym(t)) > b} ,

T−
i,b = {t ∈ Ti : u (t, d, ym(t)) < b} .

We can derive bounds on the initial delay so that the
probabilistic conditions defined for the sets T +

b and T−
b are

satisfied. Let t+i,b such that u(t+i,b, d, ym) = inf{T+
i,b} and t−i,b

such that u(t−i,b, d, ym) = sup{T−
i,b} as shown in Fig. 4.1. A

first bound d+
i,b on the initial delay di for a usable frequency

fi is given by

d+
i,b =

t+i,b −

ym(t+i,b) − b

c

!
.

Figure 5: Finding the minimum delay knowing the
hi(t, b) probabilities

Similarly, the second bound d−
i,b on the delay is given by

d−
i,b =

t−i,b −

ym(t−i,b) − b

c

!
.

Finally the minimum delay dm satisfying Equation 12 is
computed as,

dm = max
i,b

˘
d−

i,b, d
+
i,b

¯

4.2 Pure probabilistic approach
We propose an alternative solution to Equation 12 for the

minimum delay. Let X be the random variable on [0, tmax]
such that,

X(t) = C(t, dm) − ym(t),∀t ∈ [0, tmax].

The random variable X depends on the function C which
has a conditional definition. To make computations simpler,
we consider the alternative random variable Y defined by

Y (t) = ct − cdm − ym(t).

It is easy to see that:

P (X(t) > b) = P (Y (t) > b), ∀t ∈ [0, tmax] . (16)

Using Equation 16, we can rewrite Equation 12 as,

P (Y (t) > b) ≤ g(b),

for all b ≥ 0. This new equation has the advantage to have
a non-conditional definition. The next step is to transform
P (Y > b) in a more convenient form so that we will get an
equation without probability and equivalent to equation 11.

Let us now divide the interval [0, tmax] into disjoint time
intervals, that is, [tj , tj+1[⊂ [0, tmax]. Then the probabil-
ity that the random interval chosen corresponds to a buffer
underflow greater than b is written as:

Pj,b = P
“`

Y (t) > b
´
∩
`
t ∈ [tj , tj+1[

´”

and consequently P (Y (t) > b) becomes

P (Y (t) > b) =
X

j

Pj,b

If the time intervals are small enough, we can discretize
ym and note ym(t) = yj for all t ∈ [tj , tj+1[. Note Yj the
random variable such that

Yj(t) = c (t − dm) − yj , ∀t ∈ [0, tmax]. (17)

Equation 17 can thus be rewritten using Yj since

Pj,b = P
“`

Yj > b
´
∩
`
t ∈ [tj , tj+1[

´”

Using Equation 17, the constraint on the time interval t
can be written as,

t >
b + cdm + yj

c
, ∀t ∈ [0, tmax]

Let A = (b + cdm + yj)/c. Note that the random variable
Y is uniformly distributed on interval [0, tmax]. Hence ap-
plying standard rules of probability of randomly picking up
an interval in [0, tmax], where all time intervals are uniformly
distributed, we get:

Pj,b =

8
<

:

(tj+1 − tj)/t if A ≤ tj

(tj+1 − A)/t if tj < A < tj+1

0 if A ≥ tj+1

This looks quite difficult to handle but it can be rewritten
in terms of min and max functions as:

Pj,b =
tj+1 − min(max(A, tj), tj+1)

t
(18)

and since

max(x, y) =
x + y

2
+
˛̨
˛
x − y

2

˛̨
˛

min(x, y) =
x + y

2
−
˛̨
˛
x − y

2

˛̨
˛

|x| =
√

x2

it can be rewritten as a closed form. Indeed, let

Dj =
Aj + tj

2
+

s„
Aj − tj

2

«2

,

we can rewrite Pj,b as

Pj,b =
1

tj+1 − tj

0

@v − Dj + tj+1

2
−

s„
Dj − tj+1

2

«2
1

A .

Now that we have a closed form solution for Pj,b, we can
iterate over all time intervals, and write Equation 12 as,

X

j

Pj,b ≤ g(b). (19)

for all b ≥ 0. We have successfully transformed the prob-
lem statement into a form from which we can deduce the
delay. Indeed, from Equation 19, we can easily numerically
compute the minimum initial delay for a given underflow
b. It is actually an infimum of all delays corresponding to
various time intervals. We denote this delay for a fixed b
as db

m. Taking the greater of all db
m delays for all possible

underflows b then gives the minimum initial delay we are
looking for.

5. RESULTS
In the following section we present a method to numer-

ically compute the minimal delay while satisfying Equa-
tion 12 for any given stochastic bounding function g. Later
we present in detail the results for the two approaches.

5.1 Numerical Evaluation
In this section, we describe the two simulation set-ups:

(1) SystemC simulation for validation of analytical model
results, and (2) MATLAB implementation of our analytical
model. There are two main observations from the SystemC
and MATLAB experiments: (1) the delay value reduces as
the maximum buffer underflow increases. Consequently, the
buffer size reduces, and (2) the minimum playout delay es-
timated using the analytical model corresponding to maxi-
mum buffer underflow value is accurate with respect to the
mathematical model.

MPEG
Decoder

Source Code

MPEG source with
hooks + statistical

modules
Step 1Step 1

MPEG
SScalar

Executable

SScalar GCC
Step 2Step 2

SScalar ISA +
ISA for hooks

Sim-safe instruction
set simulator

SimpleScalar

Bits per
macroblock

Jl, Ju

�Il, Iu

c, tmax, h(a),
fmax, P(X=f)

ddmm

MPEG
Stream

Cycles per
macroblock

Bits per
macroblock

Cycles per
macroblock

Proposed
Framework

Step 3Step 3

Step 4Step 4

Figure 6: Simulation setup.

We now describe the simulation set-up used to compute
the input parameters required for the mathematical model.

Simulation Set-up: We modeled our processor using the
sim-profile configuration of the SimpleScalar instruction set
simulator [2]. Our media-processing task was an MPEG-
2 decoder [7], whose source code was annotated with start
and stop counters to record the number of processor cycles
consumed by each stream object. To characterize the exe-
cution requirement of the decoder, we used a set of video
clips (obtained from [18]) having an average bit rate of 1500
kbps and a resolution of 352 × 240 pixels. The display rate
of these clips was 30 fps.

The procedure followed to obtain these functions is shown
in Figure 6. To implement the input models we used MAT-
LAB [9]. Recall that φ characterizes the variability in the
number of bits constituting each macroblock in the com-
pressed video stream, α characterizes the variability in the
arrival pattern of the video stream at the buffer b and γ
captures the variability in the execution requirement of each
macroblock. Clearly, such a characterization is more expres-
sive than the traditionally used best/worst bounds which are
overly optimistic/pessimistic.

We now estimate the minimum playout delay required.
We show that the minimum playout delay required is such
that the stochastic boundary function g(b) is greater than
the probability that the buffer underflows (P (U > b)). As
mentioned in the problem statement in Section 3, the proces-
sor frequency distribution is an input function to our mathe-
matical model. This minimum playout delay is smaller than
the delay that would be otherwise required if the buffer never
underflows. In Figure 7, the probability that the buffer un-
derflows is plotted. The probability curves are shown for the
stochastic bounding function and the probability that the

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

Maximum Buffer Underflow

C
on

di
tio

na
l P

ro
ba

bi
lit

y
Probability
g(b)

Figure 7: Meeting desired stochastic constraints.
The probability that the playout buffer underflows
is no more than the stochastic bounding function.

buffer underflows. Using the mathematical model we found
that for a delay value 151.4ms, the stochastic bounding func-
tion is greater than the probability the buffer underflows b
stream objects (b varies from 0 to 406).

For simplicity, the g(b) function used in our experiments
is,

g(b) =
1

bmax
∗ exp

„
−b

bmax

«
, 0 ≤ b ≤ bmax. (20)

A system designer would probably use a more sophisticated
function for g(b) taking into account visual and audio per-
ception models.

Using the exhaustive search method we were able to find
the minimum playout delay required.

The simulation set-up was used to validate our results
obtained using our mathematical model. Figure 6 shows
the simulation set-up. We fixed the maximum buffer un-
derflow and estimated the minimum playout delay required
using the mathematical model, and from the SystemC simu-
lation. The SystemC set-up requires an iterative procedure
to check if the stochastic bounding function is satisfied, for
each delay value. An exhaustive search using our mathe-
matical framework determines the minimum playout delay
value. In simulation using SystemC and with the analytical
framework we fixed b to the maximum value (Figure 8 shows
comparison of delay values obtained and estimated).

5.2 Delay Estimation
In this sub-section, we present results for the minimum

playout delay solutions presented in Section 4. First we
show evidence for the correctness of the results obtained
from the closed-form solutions w.r.t to results obtained from
numerical evaluation. Second, we present results for both
the ILP and the pure-probabilistic approach in an attempt
to find the minimum playout delay.

Figure 9 shows the minimum playout delay values esti-
mated for various maximum buffer underflows using the ILP
based approach. Our objective is to show that the ILP based
approach provides an upper bound on the minimum play-
out delay compared to the numerical evaluation. (Results
shown in Figure 8). We set the maximum playout buffer un-

0 200 400 600 800 1000 1200 1400
40

60

80

100

120

140

160

180

Maximum Buffer Underflow
 (bmax in terms of stream objects)

M
in

im
um

 P
la

yo
ut

 D
el

ay

(d
m

 in
 m

s)

Analytical Model
Simulation

Figure 8: Accuracy of analytical model. Minimum
playout delay estimated using mathematical model
is close to the delay values obtained from simulation.

derflow and found the corresponding minimum playout delay
required using the ILP approach. That is, the g(bmax) = 0
(unlike the exponential decay function 4). Clearly, Figure 9
shows that the delay values we obtain from ILP are greater
than the delay values we obtain using numerical evaluation
for similar buffer underflows.

 80
 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
i
n
.

P
l
a
y
o
u
t

D
e
l
a
y

(
i
n

m
i
l
l
i
s
e
c
o
n
d
s
)

Max. Buffer Underflow (in macroblocks)

ILP

Figure 9: Minimum playout delay values for fixed
maximum buffer underflow.

Figure 10 shows the minimum playout delay estimated
using ILP and a pure probabilistic approach. The desired
quality constraints are met as the ratio of the buffer un-
derflow probability (P (U > b) over the stochastic bounding
function (g(b)) approaches one. We now observe and explain
the result shown in Figure 10:

• Minimum Playout Delay: There are more values cor-
responding to a ratio around 1 in both solutions. The
reason being that we have used the exponential decay
function for this experiment. Unlike for the results
presented in Figure 9, g(bmax) -= 0 for the exponen-

4Note that the results obtained in Figure 8 too were obtained
using g(bmax) = 0.

tial decay function 5. Therefore, for both solutions we
cannot have a ratio greater than unity. Thus we find
more solutions for the minimum playout delay value.
If we consider the first delay value to approach unity,
then for the ILP based approach the answer is 222.22
milliseconds and for pure probabilistic approach it is
131.31 milliseconds. As mentioned before, ILP gives
us a safe upper bound. Use of a different stochas-
tic bounding function would give us a single minimum
delay value for both the solutions.

• ILP drop: Note in Figure 10, for ILP, the ratio sud-
denly drops to zero. The probability that the buffer
underflow is greater than b is the sum of the product of
the conditional probabilities with the probability dis-
tribution of frequencies. This summation probability
has been optimized by ILP to achieve the upper bound
which is g(b). Hence, when there is a non-zero under-
flow b, the value of P (u > b) will be close to g(b), and
this ratio drops rapidly to 0 as the buffer underflow
becomes zero.

• Approximations: We see that the delay values es-
timated for the pure probabilistic approach is lower
than the ILP. The reason for the difference in the delay
value estimated is due to two approximations: (1) We
first randomly generate processor frequency for each
time interval required such that it fits the distribution
P (F = fi). This random set gives the processor cy-
cles available over time intervals we are interested in.
Then we compute β(∆) using the randomly generated
processor frequencies. After which we compute the
lower bound ym for a given frequency profile (which
is generated from a frequency distribution). Therefore
the delay value from the pure probabilistic approach
is the minimum delay value for a given frequency pro-
file; and (2) the second approximation is due to the
discretization of the output function.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 120 140 160 180 200 220 240 260

M
a
x
b
(
P
(
U
>
b
)
/
g
(
b
)
)

Playout Delay (in milliseconds)

ILP
Pure-Probabilistic

Figure 10: Playout delay solutions for meeting
stochastic constraints.

5We set the bmax = 406 in Equation 20

6. RELATED WORK
We present previous work published under two research

topics in system design for multimedia: (1) analytical frame-
work, and (2) techniques for reducing on-chip memory.

6.1 Analytical Models
In this section, we will look at the initial classification

in methods for SoC design and discuss the pros and cons
of the approaches. Existing approaches for SoC design can
be broadly classified as follows: (1) analytical models, and
(2) simulation. The main disadvantage of simulation based
techniques is that they are slow for any design that involves a
large number of iterations (for example, designs that involves
identifying several design parameters). Moreover, simula-
tion techniques do not provide any special insights that can
lead to resource savings.

SoC
Architecture
Design

Analytical
Models

Simulation

Probabilistic

Deterministic

Task

Event

Standardized

General

Process
granularity

Event
arrivals

Throughput
guarantees

Design
methods

Figure 11: Dimensions of SoC Design.

Figure 11 sketches various existing design methodologies.
System-level design using mathematical framework involves
fast exploration of design parameters. This paper shows
that there could be valuable insights obtained from such
analysis. Clearly, guarantees on throughput could be for-
mulated in mathematical frameworks. With understanding
of the benefits of mathematical models, we now look at the
second-level of classification in performance modeling.

In general, analytical models can be divided as determin-
istic and probabilistic frameworks. Mostly, deterministic
models are for worst-case analysis of the systems. The worst-
case analysis is suitable for hard real-time systems. For soft-
real time systems, however, a probabilistic framework is ap-
propriate. The existing probabilistic mathematical frame-
works only analyze average-case scenarios or most-probable
scenarios. We have seen so far two levels of classification for
methods for SoC design: (1) simulation based or analytical
models, and (2) mathematical modeling. Now we look at
the third level.

The granularity of the application, more precisely, if they
are modeled as tasks or events is the basis of this classifica-
tion. Further, if they are events they could be again divided
into techniques that model standardized or general events.
Here we discuss in detail some of the popular analytical
models. The reader will be able to map these models with
the classification discussed. Analytical methods that have
gained attention are: (1) synchronous data flow graphs [17],
(2) stochastic automata networks [21], and (3) event adap-
tation functions [15].

The mathematical model we propose differ from other ex-
isting models in the following ways:

• The arrival of items in our model is not limited to
standard input models such as periodic, Poisson, and
so on.

• Our model captures the variability in the processing
of data items such that this variable nature of the me-
dia stream could itself be exploited for efficient system
design.

• The analytical framework that we present can be ap-
plied to any level of granularity i.e., each data item in
the stream can be a bit, a macroblock, or a frame.

• In contrast to average-case analysis of the existing prob-
abilistic models, we show that guarantees on output re-
quirement could be still provided with our stochastic
mathematical framework.

• Our framework can be applied to any kind of multime-
dia streaming applications. In other words, it does not
rely on the specific characteristics of the application.

6.2 Reducing Buffer Memory
Previous efforts [10, 16, 17] have specifically been directed

towards optimizing on-chip memory in system-on-chip archi-
tectures designed for embedded multimedia systems. Most
of the previous papers attempted to reduce memory require-
ments of synchronous data-flow (SDF) graphs which are
used for specifying compute-intensive kernels of DSP ap-
plications.

Murthy and Bhattacharya [10] proposed buffer merging to
reduce memory requirements of SDF graphs. Buffer merg-
ing is achieved through sharing buffers that two different
processes use. After analyzing the lifetime of actors (nodes
specifying application code blocks in SDFs), it is determined
whether two different processes containing these actors can
potentially share buffers.

Similar approaches have been followed in the domain of
computer networks to counter the burst in network traffic
so as to effectively utilize network resources. In compari-
son, our work is concerned with fixed playout delay, rather
than dynamically adjusting it at run time [14]. Further our
technique is more relevant in the context of playing stored
audio and video. Hence, we did not exploit network related
parameters such as loss and delay.

7. DISCUSSION
In this section, we answer some potential questions on this

work. The first subsection will introduce the reader an ap-
proach for formulating QoS using our framework. Second,
we will present evidence for use of the arrival and service
curves for modeling data flows present in media applica-
tions. Also, we point to literature studies which use this
basic framework presented in this paper to model multi-
processor and multi-task architecture set-ups. The last sub-
section discusses two points: (1) reasons for the choice of the
stochastic bounding function used in our numerical evalua-
tion; (2) how our two approaches for estimating the delay
can be effectively utilized.

7.1 QoS Constraints
In this subsection, we discuss how the designer could spec-

ify the acceptable, tolerable loss in the quality of the video
display using statements such as: Case 1- the buffer should

never underflow more than two consecutive frames in dis-
playing 30 frames sequentially; Case 2- the buffer should
never underflow more that 17 frames (in total) in displaying
100 frames sequentially. These type of constraints could be
written as (for Case 1): (In the below equation, p represents
the number of time units that have elapsed.)

P{C(s, d) − ym(s) > b} ≤ g(b), (21)

where 0 ≤ s ≤ tmax, s = 2
30 ∗ p, ∀0 ≤ p ≤ tmax∗30

2).
The time instance s corresponds to the point where 30

frames should be displayed (we know in this case 30 frames
takes one second. So, when p = 1, we have s = 2

30 and at
that point in time it is tolerable to have buffer underflow
of at most 2 frames in 30 frames. The b corresponds to
stream objects of 2 frames and g(b) = 0. g(b) is a stochastic
bounding function, which defines the probability that the
buffer underflow is no more than b stream objects.

Hence, in Case 1, if b corresponds to stream objects for 2
frames and for every s (i.e. at points where 30 frames ideally
should be produced), g(b) = 0. The probability that the
buffer underflows more than b stream objects (corresponding
to 2 frames) is zero. Similarly, Case 2, could be denoted and
it would be a variation in Equation 21 in terms of defining
b, s, and p. For generality, that is for all b ≥ 0, we consider
g(b) gives the upper bound on the desired probability.

7.2 System Model Parameters
To better understand our framework, we opted for a sim-

ple architecture and single application media stream in our
model and analysis; there is no limitation whatsoever to
model a complex architecture or to model multiple streams.

Framework Extension: The deterministic framework, which
we extend in this paper to a probabilistic set-up, has been
used for analysis for the following:

• a SoC with multiple processors in pipeline [13],

• multiple applications running concurrently in a pro-
cessor [12], and

• a data flow with a fork/join operation between the
application blocks [4].

If the buffers are not being shared, then the framework we
propose in this paper can handle multiple input streams too.

7.3 Bounding Function and Delay Solutions
g(b): The reason we chose the stochastic bounding func-

tion as an exponential decay is to have a simple function.
The solutions we provided for the delay values accept this
g(b) function as an input, so, the user can plug in any func-
tion he desires. In the previous section of this paper we
suggested an approach to formulate the QoS issues inde-
pendent of this stochastic bounding function. We envision,
however, the general stochastic bounding function could be
used in most of the design cases to model buffer underflow.

Two delay solutions: Recall that we presented the ILP
and the pure-probabilistic as approaches to estimate the de-
lay values. For ILP, the advantage is that the delay value
estimated is a safe upper bound; the disadvantage is that
the delay value chosen could lead to an inefficient design es-
pecially w.r.t to the buffer size. For the pure-probabilistic
approach, the advantage is that the delay value estimated
is not a pessimistic bound; the disadvantage is that certain

approximations are carried out in the estimation of delay
values. The result we presented in the paper shows what
the designer can expect from the ILP solution versus the
pure probabilistic approach; the lower most bound and de-
lay for a (or more) specific frequency profile respectively.

8. CONCLUSION
Multimedia players do not require hard real-time guaran-

tees; soft-real time guarantees are sufficient. Towards this,
we presented a framework with probabilistic constraints on
the output. An initial playout delay is chosen to satisfy
the stochastic constraints. Using this playout delay, the re-
quired playout buffer is reduced to a large extent, leading to
enormous savings in terms of memory used.

A potential future direction would be to estimate the min-
imum playout delay considering the sources causing buffer
underflow as a probabilistic event. For instance, the arrival
and the execution requirement of stream objects could be
probabilistic. Such an effort would lead to general stochas-
tic framework for designing system-on-chip for multimedia
applications.

This paper shows that stochastic guarantees are in fact
the constraints to be used when estimating processing and
memory requirements for processing multimedia.

9. REFERENCES
[1] R. T. Apteker, J. A. Fisher, V. S. Kisimov, and

H. Neishlos. Video acceptability and frame rate. IEEE
MultiMedia, 2(3):32–40, Spring 1995.

[2] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
infrastructure for computer system modeling. IEEE
Computer, 35(2):59–67, Feburary 2002.

[3] J.-Y. L. Boudec and P. Thiran. Network calculus: a
theory of deterministic queuing systems for the
internet. Springer-Verlag, New York, 2001.

[4] K. Huang and L. Thiele. Performance analysis of
multimedia applications using correlated streams. In
Proceedings of the conference on Design, automation
and test in Europe, DATE ’07, pages 912–917, San
Jose, CA, USA, 2007. EDA Consortium.

[5] Y. Jiang. A basic stochastic network calculus. In
Proceedings of the ACM international conference on
Applications, technologies, architectures, and protocols
for computer communications (SIGCOMM), pages
123–134, September 2006.

[6] A. Kahng, I. Chayut, J. Cohn, T. Hattori, J.-T. Kong,
P. Paulin, and R. Tobias. Roundtable: Design and
CAD challenges for leading-edge multimedia designs.
Design Test of Computers, IEEE, 24(1):83 –93, 2007.

[7] libmpeg2. A free MPEG2 video stream decoder.
http://libmpeg2.sourceforge.net/, 2006.

[8] Y. Liu, A. Maxianguine, S. Chakraborty, and W. T.
Ooi. Processor frequency selection for SoC platforms
for multimedia applications. In Proceedings of the
IEEE Real Time Systems Symposium (RTSS), pages
336–345, December 2004.

[9] Mathworks. Matlab 7.2.
http://www.mathworks.com/products/matlab/, 2007.

[10] P. K. Murthy and S. S. Bhattacharyya. Buffer
merging- A powerful technique for reducing memory
requirements of synchronous dataflow specifications.

ACM Transactions on Design Automation of
Electronic Systems (TODAES), 9(2):212–237, April
2004.

[11] A. Nandi and R. Marculescu. System-level
power/performance analysis for embedded systems
design. In Proceedings of the annual conference on
Design automation (DAC), pages 599–604, June 2001.

[12] B. Raman and S. Chakraborty. Application-specific
workload shaping in multimedia-enabled personal
mobile devices. ACM Transactions on Embedded
Computing Systems, 7(2):10, Feburary 2008.

[13] B. Raman, S. Chakraborty, W. T. Ooi, and S. Dutta.
Reducing data-memory footprint of multimedia
applications by delay redistribution. In Proceedings of
the 44th annual Design Automation Conference, DAC
’07, pages 738–743, New York, NY, USA, 2007. ACM.

[14] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne.
Adaptive playout mechanism for packetized audio
applications in wide area networks. In Proceedings of
the IEEE Conference on Computer Communications
(INFOCOM), pages 680–688, June 1998.

[15] K. Richter and R. Ernst. Event model interfaces for
heterogenous systems analysis. In Proceedings of the
IEEE International Conference on Design Automation
and Test in Europe(DATE), pages 506–513, March
2002.

[16] N. Sarshar and X. Wu. Buffer size reduction through
buffer sharing for streaming applications. In IEEE
International conference on Multimedia and Expo
(ICME), pages 1635–1638, Taipei, Taiwan, June 2004.

[17] S. Stuijk, M. Geilen, and T. Basten. Exploring
trade-offs in buffer requirements and throughput
constraints for synchronous dataflow graphs. In In
Proceedings of the ACM Annual conference on Design
automation (DAC), pages 899–904, San Francisco,
CA, April 2006.

[18] Tektronix. MPEG elementary streams.
ftp://ftp.tek.com/tv/test/streams/Element/index.html,
1996.

[19] E. Wandele and L. Thiele. Abstracting functionality
for modular performance analysis of hard real-time
systems. In Proceedings of the conference on Asia
South Pacific design automation (ASP-DAC), pages
697–702, January 2005.

[20] D. Wijesekera, J. Srivastava, A. Nerode, and
M. Foresti. Experimental evaluation of loss perception
in continuous media. Multimedia Systems,
7(6):486–499, November 1999.

[21] N. H. Zamora, X. Hu, and R. Marculescu.
System-level performance/power analysis for
platform-based design of multimedia applications.
ACM Transactions on Design Automation of
Electronic Systems, 12(1):2, 2007.

