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Capacity Metric for Chip Heterogeneous Multiprocessors 
 

Mwaffaq Naif Otoom 
 

ABSTRACT 
 

 

The primary contribution of this thesis is the development of a new performance metric, 

Capacity, which evaluates the performance of Chip Heterogeneous Multiprocessors 

(CHMs) that process multiple heterogeneous channels. Performance metrics are required 

in order to evaluate any system, including computer systems. A lack of appropriate 

metrics can lead to ambiguous or incorrect results, something discovered while 

developing the secondary contribution of this thesis, that of workload modes for CHMs – 

or Workload Specific Processors (WSPs).  

For many decades, computer architects and designers have focused on techniques that 

reduce latency and increase throughput. The change in modern computer systems built 

around CHMs that process multi-channel communications in the service of single users 

calls this focus into question.  Modern computer systems are expected to integrate tens to 

hundreds of processor cores onto single chips, often used in the service of single users, 

potentially as a way to access the Internet. Here, the design goal is to integrate as much 

functionality as possible during a given time window. Without the ability to correctly 

identify optimal designs, not only will the best performing designs not be found, but 

resources will be wasted and there will be a lack of insight to what leads to better 

performing designs. To address performance evaluation challenges of the next generation 

of computer systems, such as multicore computers inside of cell phones, we found that a 

structurally different metric is needed and proceeded to develop such a metric. 

In contrast to single-valued metrics, Capacity is a surface with dimensionality related 

to the number of input streams, or channels, processed by the CHM. We develop some 

fundamental Capacity curves in two dimensions and show how Capacity shapes reveal 

interaction of not only programs and data, but the interaction of multiple data streams as 

they compete for access to resources on a CHM as well. For the analysis of Capacity 

surface shapes, we propose the development of a demand characterization method in 

which its output is in the form of a surface. By overlaying demand surfaces over Capacity 
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surfaces, we are able to identify when a system meets its demands and by how much. 

Using the Capacity metric, computer performance optimization is evaluated against 

workloads in the service of individual users instead of individual applications, aggregate 

applications, or parallel applications. Because throughput was originally derived by 

drawing analogies between processor design and pipelines in the automobile industry, we 

introduce our Capacity metric for CHMs by drawing an analogy to automobile 

production, signifying that Capacity is the successor to throughput. By developing our 

Capacity metric, we illustrate how and why different processor organizations cannot be 

understood as being better performers without both magnitude and shape analysis in 

contrast to other metrics, such as throughput, that consider only magnitude. 

In this work, we make the following major contributions:  

• Definition and development of the Capacity metric as a surface with 

dimensionality related to the number of input streams, or channels, processed by 

the CHM.   

• Techniques for analysis of the Capacity metric. 

Since the Capacity metric was developed out of necessity, while pursuing the 

development of WSPs, this work also makes the following minor contributions: 

• Definition and development of three foundations in order to establish an 

experimental foundation – a CHM model, a multimedia cell phone example, and a 

Workload Specific Processor (WSP).  

• Definition of Workload Modes, which was the original objective of this thesis.   

• Definition and comparison of two approaches to workload mode identification at 

run time; The Workload Classification Model (WCM) and another model that is 

based on Hidden Markov Models (HMMs).  

• Development of a foundation for analysis of the Capacity metric, so that the 

impact of architectural features in a CHM may be better understood. In order to 

do this, we develop a Demand Characterization Method (DCM) that characterizes 

the demand of a specific usage pattern in the form of a curve (or a surface in 

general). By doing this, we will be able to overlay demand curves over Capacity 

curves of different architectures to compare their performance and thus identify 

optimal performing designs. 
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Chapter 1 

Introduction 
 
 

 

 

 

 

Performance metrics are required in order to evaluate any system, including computer 

systems. Latency and throughput are the two metrics commonly used to model 

performance of a computer system. Since the origins of computer design, computer 

architects and designers focus on techniques that reduce latency and increase throughput. 

The change in modern computer systems built around Chip Heterogeneous 

Multiprocessors (CHMs) that process multi-channel communications in the service of 

single users calls this focus into question. Modern computer systems are expected to 

integrate tens to hundreds of processor cores onto a single chip, often used by single users 

to access the Internet. The input to these systems is multi-channel, and the design goal is 

to integrate as much functionality as possible during a given time window. Latency 

assumes that reducing the execution time of individual tasks results in a better performing 

system. This is true so long as the system executes only one application at a time. 

Throughput assumes that the input demand is constant and that the output is a single 

stream. This, in turn, results in a single unit value that is described by its maximum, 

regardless of the amount of demand. While throughput can deal with multiprocessing via 

aggregation, it fails to model the performance of systems that process distinct, multiple 

heterogeneous channel inputs. Since it results in a single unit value, throughput does not 

model the impact of the type of demand on the capabilities of multiple processor cores 

that are heterogeneous. Further, since throughput assumes demand is invariant over time, 

it does not model the actual or useful work and is a function of supply only. Without the 

ability to compare designs of multicore computers that serve individual users, not only 

will the best performing designs not be found, but resources will be wasted and there will 

If we knew what it was we were doing, it 
would not be called research, would it? 

         Albert Einstein 
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be a lack of insight as to what leads to better performing designs. We show that a 

structurally different metric is needed for the next generation of computer systems, such 

as multicore computers inside of cell phones. 

The overall performance of a CHM that processes multichannel inputs must be 

understood as a collection of performance points that represent the variety of 

multichannel combinations the system can support. Accordingly, in this work, we 

develop a new performance metric, Capacity, which evaluates the performance of CHMs 

with multiple heterogeneous channels. Capacity is a surface with dimensionality related 

to the number of input streams, or channels, processed by the CHM. We develop some 

fundamental Capacity curves in two dimensions and show how Capacity shapes reveal 

interaction of not only programs and data, but also the interaction of multiple data 

streams as they compete for access to resources on a CHM. For the analysis of Capacity 

surface shapes, we propose the development of a demand characterization method in 

which its output is in the form of a surface as well. By overlaying demand surfaces over 

Capacity surfaces, we are able to identify when a system meets its demands and by how 

much. Using the Capacity metric, computer performance optimization is evaluated 

against workloads in the service of individual users instead of individual applications, 

aggregate applications, or parallel applications. We first introduce our Capacity metric 

for CHMs by drawing an analogy to automobile production, motivating that Capacity is 

the successor to throughput.  

1.1 Automobile Analogy 

CHMs have the potential to integrate tens to hundreds of heterogeneous processor cores 

onto single chips. Often they are used by single users in real time and in a wide variety of 

situations. The design goal is often to integrate as much functionality as possible for 

processing within a window of time, but also over a wide variety of anticipated 

processing scenarios [1]. Overall functionality is increasingly characterized as the 

processing of multichannel inputs, which result in multimodal situations. Multimodal 

situations are defined by the modeling of a variety of scenarios that arise from the 

intersection of user preferences and the data arrival from the Internet. The resultant 
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system operates in different modes at different times and these modes must be recognized 

so that the system can respond to different loading situations. 

The processing of multichannel input streams on multicore computers can be thought 

of as analogous to the production of multiple types of automobiles in a production plant 

composed of multiple manufacturing pipelines. This analogy also serves to illustrate how 

Capacity is a successor to throughput.  

 

 

Figure 1: Batch Production 
 

Automobiles were first produced in batches. In batch production, only one 

automobile would be assembled at a time. Figure 1 shows an automobile system 

example. The system receives a request of N Model-T automobiles and produces K 

automobiles in a given time interval. The design goal of these systems is to reduce the 

processing time of each product model. In computer systems, latency over one or more 

job types is an important performance metric for single application computers in which 

only one application is being executed at a time.  

 

 

Figure 2: Single Assembly Line 
 

Batch production was then replaced by assembly lines, which were first invented by 

Henry Ford. The motivation was to improve the throughput of the production system by 

dividing major tasks into smaller tasks that could be done simultaneously. Figure 2 shows 

a single automobile pipeline model. The pipeline is assumed to produce Model-T 

automobiles. The pipeline consists of three stages, gj, where j is a stage sequence number. 

The input to the model is a demand for cars of type Model-T, and the output is the 

automobiles themselves. The pipeline throughput during a given time interval is defined 

Assembly Line: Model-T 
N Model-T K Automobiles 

g1 g2 g3 

Model-T 
N Model-T K Automobiles 
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by the duration of the bottleneck stage, or the slowest stage in the pipeline. In order to 

calculate the throughput of the system, all pipeline stages should be busy during the given 

time interval, which means that the input should not be the limiting factor. This analogy 

results in a single value for the throughput metric. 

The design goal of assembly lines is to increase production throughput. The spilt of 

the production cycle into stages makes it possible to process multiple requests at the same 

time. In this example, while the execution time of individual models is similar to that of 

Figure 1, the throughput of this example system is three times that of the system in Figure 

1, assuming all stages have equal cycle times. Next, we consider the performance of 

multiple heterogeneous assembly lines. 

Figure 3 shows a heterogeneous two-pipeline plant – one pipeline produces Model-T 

automobiles and the other pipeline produces Model-A automobiles. Here, throughput is 

increased by implementing multiple assembly line designs. Multi-product scheduling on 

heterogeneous pipelines has been previously studied for automobile production [2]. The 

architecture of each pipeline is different, as would be expected in the production of 

different types of cars with different features. In Figure 3, they differ in terms of the 

number of stages and the duration of each stage; the jth stage on the line i is gi,j. At the 

plant level, some coupling is expected between the overall production of the two types of 

cars. For example, the stage duration time of the Model-T pipeline could be different 

from that of Figure 2 due to starvation that arises because of the existence of other 

pipelines sharing the same inventories or workers.  

 

 

Figure 3: Multiple Assembly Lines Plant 

Assembly Line: Model-T 
NT Model-T 

K Automobiles 

g1,1 g1,2 g1,3 

NA Model-A 
g2,1 g2,2 g2,3 

Assembly Line: Model-A 

Communication Network 

S
ch

ed
ul

e
r 
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In order to achieve the maximum production of the Model-T, production of the 

Model-A should be zero. This is the definition of throughput. Throughput of automobile 

assembly lines is found when individual production types are evaluated, resulting in a 

single unit of performance. This is analogous to performance evaluation of computer 

systems where computer architects evaluate performance using parallel programs. Each 

program can be multithreaded but runs individually, and so its overall rate of execution is 

evaluated. Similarly, microarchitects identify the maximum throughput, usually using a 

common work unit such as instructions per cycle. These maxima points can be used to 

compare different architectures or an average value can be generated.  

Throughput is distilled into single score values using a common work unit. As a result, 

throughput can be shown as a straight line (a plane in higher dimensions). It connects the 

maximum production points of individual product models. This straight line represents 

the average production of this plant over a presumed common work unit for the 

heterogeneous production types. For example, the unit “automobiles” could be used 

instead of specific units for the Model-T and the Model-A. This average production 

results in a linear relationship as production of the Model-T and the Model-A are varied. 

This correctly models the production of completely independent channels in a decoupled 

system, but it does not capture the relationships of different production types as they 

access the common (shared) plant resources.  

From the above discussion, there are three assumptions in which computer systems are 

evaluated and optimized for throughput. First is that demand is constant or maximum 

thus supply is the only limiting factor. The second assumption is that throughput results 

in a single output stream. This, in turn, results in a single unit value, described by its 

maximum, also regardless of the demand. Finally, work done by a production plant is not 

a function of time and is thereby not related to the input stream as a function of time. As a 

consequence of these assumptions, throughput does not model the useful work that can be 

done within a given time interval or the impact of the type of the product model on the 

capabilities of multiple lines(s) that are heterogeneous. 

Traditionally, throughput could be used to model classes of parallelism because the 

similarity between elements of the parallel computation permitted evaluation to take 

place over a common work unit. However, in modern computer systems with multiple, 
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diverse production streams that persist in the computer over long period of time, the 

differentiation in the types of production requires evaluation and analysis to consider the 

effects of workload heterogeneity.  Next, we discuss our view of performance of the same 

plant system in Figure 3.  

The performance of this plant can no longer be considered as distilled to a single 

number. To illustrate this concept, for the same plant system shown in Figure 3, consider 

Figure 4, in which we show the output of the plant as multiple heterogeneous channels. 

This plant can produce a wide variety of combinations of Model-Ts and Model-As in a 

given time interval. The production of one type of automobile affects the plant’s ability to 

produce the other type of automobile. Characterization of the production capacity of this 

automobile plant as the maximum production of Model-Ts and Model-As requires a set 

of points, or a curve. Thus, there is no single-dimensional (single-unit, single variable) 

metric to model the Capacity of this plant because it now processes two input streams 

that share some common resources. 

 

 

Figure 4: Our View of the Output of Multiple Heterogeneous Assembly Lines Plant 
 

Because it lacks the ability to track interactions that occur in higher dimensions, 

throughput lacks cause and effect analysis, including, for example, the effects of 

combining different production types on the same plant. For instance, assuming that the 

supply of the plant does not increase, making more Model-Ts requires that resources be 

redirected from making the Model-A to making the Model-T. For a plant to increase the 

quantity of one model produced, production of the other model must be reduced. Here, 

Assembly Line: Model-T 
NT Model-T K T Model-T 

g1,1 g1,2 g1,3 

NA Model-A 
g2,1 g2,2 g2,3 

Assembly Line: Model-A 

Communication Network 

S
ch

ed
ul

e
r 
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production of the Model-A must be reduced in order to produce more of the Model-T. 

Further, throughput is presumed to be invariant over arbitrary time intervals, whereas, 

production can change with interval size as the relationships between types produced by a 

given plant can change with the period of time over which production is evaluated. 

As a result of the above discussion, throughput cannot answer these questions: 

Question 1: Can this plant satisfy the demand of NT Model-Ts and NA Model-As in 

so many days? 

Question 2: For a specific increase in one of the supply features, which product 

models can take more relative advantage? 

Question 3: How much of the production of Model-A must be reduced for a given 

increase in production of the Model-T?  

Question 4: What new designs are better for different sets of production possibilities?  

Each of the following questions has a parallel in the design of the CHMs that process 

workloads in the service of single users: 

Question 1: Can this CHM design processes specific quantities of a set of tasks in a 

specific time window? 

Question 2: What are the effects of adding architectural features on the production of 

specific demand streams of a computer system that simultaneously processes multiple 

output streams? This lends insight to designers about the cause and effect of design 

features in a CHM, to include processor choice, communications design and scheduler 

decisions.   

Question 3: How much of one demand stream must be reduced for a given increase 

in the production of the other demand stream(s)? 

Question 4: What CHM designs are better for different sets of application 

combinations and rates, or workload modes, and by how much, compared with other 

designs? 

1.2 Chip Heterogeneous Multiprocessors (CHMs) 

CHMs are increasingly being used to execute multichannel heterogeneous workloads, 

often in the service of single users. Multichannel inputs can be processed at different 

rates and in a variety of combinations. Single-user computers have a window of time 
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during which the user would like to see a collection of jobs done. This window is tied to 

acceptable performance – something built into human perception, but also the way people 

now use their computers on the go. Within that window, we integrate as much 

functionality as we can. Latency, bandwidth, and recently throughput have served 

embedded systems and computer architecture design well for a long time because of the 

simple usage of computer devices at that time.  

 

 

Figure 5: Input/Output of a Modern CHM  
 

According to the Semiconductor Industry Association (SIA) [3], by the year 2015, 

future mobile devices will allow dozens of main processors and data processing engines 

to be placed onto an approximate area of an iPhone [4]. Furthermore, these processors 

will likely be heterogeneous [5], [6]. Heterogeneity in resources is being utilized not just 

to save power consumption but also to improve the performance of different demand 

types. Most of the current and potential processor types are classified into three 

categories in terms of specificity: General Purpose Processors (GPPs), Digital Signal 

Processors (DSPs), and Media processors. These categories fit the job types that 

dominate current mobile device applications such as speech recognition, mp3 streaming, 

video decoding, and text processing, etc. Future mobile computing devices have a the 

potential to integrate a network on chip (NoC) to connect the different internal 

components together [7]. Figure 5 shows a CHM integrating different processing, 

communication, and storage elements onto a single chip, as well as its multichannel input 

and output streams. Multichannel inputs can be processed at different rates and in a 

variety of combinations.  
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Also shown in Figure 5, at any given time, there is a set of demand streams, L, or 

channels. Each set potentially executes concurrently on a multicore processor; for 

example, while the user is surfing the Web, a Skype call arrives. The arrival of a new 

loading situation is identified as a new demand arrives. Note that the loading of the 

system is mainly a function of external timing, unlike uniprocessors which are sequenced 

by the speed at which an instruction stream is processed. Some demand streams may 

persist in the system indefinitely. Still others may not complete before the next demand 

(input) arrives. The interaction of the processing time with the external timing of inputs 

creates a workload which is a product of external timing from both the user and other 

inputs (such as the Internet) as well as internal processing. In modern computer systems 

with multiple, diverse production streams that persist in the computer over a long period 

of time, the differentiation in the types of production requires evaluation and analysis to 

consider the effects of demand heterogeneity. The performance of this system can no 

longer be considered as distilled to a single number.  

Also shown in Figure 5 is the output of the system described as multiple 

heterogeneous streams. Each output stream is of a different type, thus the performance, P, 

of this system is defined as a wide variety of combinations of output streams in the given 

time interval, I. The production of one demand type affects the system’s ability to 

produce the other types of demand.  

The overall performance of the CHM that processes multichannel inputs must be 

understood as a collection of performance points that represents the variety of 

multichannel combinations the system can support.  

1.3 Our Insight 

Our metric is motivated as the successor to throughput via an analogy to automobile 

pipelines. We develop a Capacity metric as a curve (or a surface) with dimensionality 

related to the number of input streams, or channels, processed by the CHM. These curves 

give the designer the ability to understand the effects of adding architectural features on 

the performance of a computer system that simultaneously processes (produces) multiple 

output streams. Significantly, these curves do not result in linear relationships as demand 

for different production types varies. Distillation of rates of production over multiple 
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production types to a common work unit – such as automobiles, instructions, tasks, or 

programs, results in a linear relationship as rates of production of more specific types 

within those categories varies. But if a straight line was superimposed on any of our 

Capacity curves, the real Capacity of the plants (designs) being examined will either 

underestimate the true Capacity of a given plant for a given set of production values, or it 

will overestimate what the plant is capable of.  

We illustrate some fundamental Capacity forms and show how they may be used as 

the basis for evaluation and analysis of Capacity curves generated via measurement. Our 

Capacity curves are experimentally generated via measurement. Our overall goal is to 

motivate the development and use of the Capacity metric for performance evaluation of 

modern CHMs, specifically, we advocate investigation into how shapes of Capacity 

curves can be used to classify systems and identify how features of designs can be 

manipulated in order to change the shape of the Capacity curves.  In order to achieve this, 

we show that Capacity surfaces (which we refer to as curves, as many of our 

experimental results are two-dimensional) have properties of both magnitude and shape, 

and each is required in order to understand workload performance. For example, we 

found the following types of Capacity curve shapes in our experimentation: 

• Balanced – symmetric about a center point; 

• Convex – favoring workload streams that are not mixed in type; 

• Concave – favoring mixed workload streams over pure streams; 

• Steep – representing a significant change as workload mix changes; 

• Modal – including multiple local maxima, minima; and 

• Independent – representing a decoupled system 

By identifying these fundamental Capacity curve shapes of systems, we will be able 

to use Capacity curve’s shape to analyze the significant features of a CHM. Future 

systems are anticipated to have many input streams, resulting in Capacity curves of 

higher dimensions that cannot be seen by graphical techniques. Therefore, a higher-

dimension surface analysis will be done. For the analysis of Capacity surface shapes, we 

simply project these surfaces into their two-dimensional (2D) spaces. By doing this, we 

intend to facilitate analysis of these higher-dimension surfaces. We propose the 

development of a demand curve that characterizes a specific loading of a user. Then, we 
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will compare the performance of different CHMs by overlaying a demand curve over 

their Capacity curves, identifying which design is better able to handle a specific demand. 

1.4 Contributions Summary 

By developing our Capacity metric, we illustrate how and why different processor 

organizations cannot be understood as being better performers without both magnitude 

and shape analysis, in contrast to other metrics, such as throughput, that consider only 

magnitude. The major contributions of this thesis are: 

• Development of the Capacity metric as a surface or space with 

dimensionality related to the number of input streams, or channels, 

processed by the CHM.   

• Techniques for analysis of the Capacity metric. 

Since the need for the Capacity metric was discovered while pursuing the 

development of Workload Specific Processors, this work also makes the following minor 

contributions: 

• Three foundations were developed in order to establish an experimental 

foundation – a CHM model, a multimedia cell phone example, and a WSP.  

• The second is the definition of Workload Modes, which was the original 

objective of this thesis.   

• The third is to develop, compare, and contrast two approaches to workload 

mode identification at run time; The Workload Classification Model 

(WCM) and another model that is based on Hidden Markov Models 

(HMMs).  

• The fourth is to establish a foundation for the analysis of the Capacity 

metric so that the impact of architectural features in a CHM may be better 

understood. In order to do this, we developed a Demand Characterization 

Method (DCM) that characterizes the demand of a specific usage pattern in 

the form of a curve (or a surface, in general). By doing this, we will be able 

to overlay a demand curve over Capacity curves of different architectures to 

compare their performances. 
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1.5 Thesis Organization 

Our work begins by discussing our observation that CHMs need to be designed and 

evaluated to workload modes. Then, we use an automobile production example to show 

how traditional metrics failed to evaluate the CHMs that process workload modes.  

In Chapter 3, we develop three foundational models in order to establish an 

experimental foundation – a CHM model, a multimedia cell phone example, and a 

Workload Specific Processor. We contrast these foundations to those of the single-core 

computer design. 

In Chapter 4, we summarize the relevant research on performance metrics. Since our 

Capacity metric was motivated by the need to evaluate WSPs, we also include a 

discussion of existing workload models and types of benchmarks. Finally, we discuss our 

MESH simulator that has been used to simulate the CHMs that process heterogeneous 

workloads, and show why existing HDL simulators failed to do this. 

One of our secondary contributions in this thesis is the identification of workload 

modes for the purpose of real-time optimization, so we are focused on fast mode 

identification as well as the modeling of those modes that can be used to optimize system 

performance. In Chapter 5, we develop our WCM to identify workload modes at real 

time, and then extend it into the more complex HMM. We compare the two algorithms 

using our multimedia cell phone example. 

To meet the central challenge of this thesis, the development of a new performance 

metric that can be used to evaluate the performance of the CHMs that process workloads, 

in Chapter 6 we introduce a descriptive, graphical, and denotational definition for our 

Capacity metric, contrast it with Pareto optimization, and show some basic forms of 

Capacity curves in 2D. Our ultimate goal is to motivate the development and use of the 

Capacity metric for performance evaluation of modern CHMs.  

In Chapter 7, we advocate investigation into how information in the shape of the 

Capacity curves can be more significant than magnitude. We show how shapes of 

Capacity curves can be used to classify systems and identify how features of designs can 

be manipulated in order to change the shape of the Capacity curves.  

The final chapter closes our thesis by summarizing the key contributions in this thesis 

and including future directions of research. 
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Chapter 2 

Background 
 

 
 

 

 

 

The major contribution of this thesis is the development of a Capacity metric, the need 

for which was discovered when traditional metrics such as latency and throughput failed 

in pursuit of the thesis’s original goal, which was designing single-user, multicore 

computers for patterns of workloads. Modern computers may potentially integrate tens to 

hundreds of heterogeneous processor cores onto single chips, or CHMs, often used in the 

service of single users. The input workload of these computers is becoming more 

situational, defined more by responding to a variety of situations, or workload modes, that 

arise from the intersection of user preferences and data arrival from the Internet. A 

workload mode is defined as a timed set of applications that simultaneously arrive at the 

system in a variety of combinations and at different rates. The sequence of workload 

modes exhibited by individual users may reveal a pattern. This opens up the possibility to 

design and evaluate CHMs used in the service of single users as WSPs. Toward that end, 

we found a need to rank the performance of different CHM designs that process workload 

modes in order to find optimal designs. 

Traditional performance metrics such as latency and throughput failed to design and 

evaluate WSPs. Improving the latency of individual applications within workload modes 

is limited by user perception and preferences. More computing power does not always 

impact the user’s ability to perceive it. Furthermore, when humans juggle sets of 

applications in which data is arriving in real time, they can only pay attention to so much 

information in a fixed amount of time. As a result, faster processing of some tasks is 

wasted on the user, the ultimate judge of performance. While throughput dominates 

parallel processing, it assumes that the relationship between work and the time interval in 

Somewhere, something incredible is waiting 
to be known. 

  Carl Sagan 
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which it is measured is linear. In other words, increases in the time interval corresponds 

with increases in the amount of work that can be done in the same time period. This is 

representative only when the computer processes tasks in a batch style or independently 

on a general purpose processor or a homogeneous multiprocessor.  

Since different CHMs are specialized for different sets of applications, depending on 

the computational requirements of these applications as well as the architectural features 

of the individual cores inside these CHMs, the performance of different CHMs may be 

ranked differently as different workload modes are being processed. In other words, one 

design may be ranked higher than another, but only over some of the anticipated set of 

workload modes for which it is being designed. Specific situations must be exposed in 

order to properly evaluate a design, requiring more information than single-valued 

metrics, such as throughput which models either fully loaded systems or averages, neither 

of which may occur in real designs. Distilling performance into single scores requires a 

function such as the mathematical means, as well as a common, short time, and work 

units. The determination of the appropriate average used in computer performance 

evaluation has long been controversial [8], especially because different means result in 

different design rankings. Short time units assume demand is continuous over the time 

interval in which performance is measured, resulting in an unreal performance. Because 

workload modes led us to the need to rank different designs, we found that it was 

impossible to rank them without a metric that simultaneously allows us to look at the 

different loading situations. As a consequence, the need for a new performance metric 

that shows how these workload modes can be used to evaluate the performance of 

different CHMs is necessary. In contrast to single-score metrics, our proposed metric 

shows performance as a surface with dimensionality related to the number of applications 

processed by the CHM. The surface includes all possible production modes of a CHM.  

Next we will first discuss our observation that CHMs need to be designed and 

evaluated against workload modes. Then, we will show using an automobile production 

example demonstrating why traditional metrics failed to evaluate the CHMs that process 

workload modes.  
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2.1 Single-User Multicore Computers 

Multicore, mobile devices are being widely used by single individuals for comprehensive 

wireless access to the Internet, often processing simultaneous applications. And yet, the 

design and evaluation of CHM computers have yet to be oriented toward workloads 

instead of toward benchmark suites, even parallel ones. Workloads differ from single 

applications distributed over multiple processors or the strictly timed applications that are 

consistent with traditional embedded systems because they arrive as sets that may overlap 

and which are distributed over time. In this thesis, we define these timed sets of 

applications as workload modes. The external timing of workload mode arrival is a 

primary factor in the potential to optimize. Thus, designing and evaluating CHMs for 

workload modes requires a fast runtime identification of persistent changes in loading 

that arise from patterns of use in single-user behavior, something we initially sought to 

develop in order to define and design WSPs. We found that existing performance metrics 

such as latency and throughput fail to properly rank CHM designs that process workload 

modes. We focus this chapter on why existing performance metrics cannot be used to 

rank the performance of this type of computing. We first introduce the motivation to 

design CHMs for patterns of workload modes. 

2.1.1 Single-User Usage Patterns 

In order to optimize CHMs according to the way individual users use their single-user 

computers, we first develop our definition of usage patterns through several examples. 

Usage patterns are first introduced in [1]. Paul et al. introduced usage patterns or 

scenarios as a design methodology to help designers model and evaluate the performance 

of CHMs [1]. These scenarios model application’s functionality, concurrency, and arrival 

timing pattern. Gheorghita et al. [9] develop the concept of system scenarios. System 

scenarios are unique system behavior phases, called Run-time Situations (RTS), which 

have a similar cost. In order to identify these unique phases, a classification and 

clustering method based on the cost function is used. The overall use of these scenarios is 

to optimize the system at design-time, which in turn should result in performance gains at 

run rime. Thus, these scenarios need to be predicted at run time. In order to do this, 

Gheorghita et al. used the Markov-based predictor developed by Vandeputte et al. [10] . 



 16 

In contrast with the work of Paul et al. [1], these scenarios cannot be generalized to all 

platforms because system scenarios are identified from the execution phases on specific 

platforms. This in turn complicates the design space exploration of embedded systems. 

Further, these scenarios are extracted from single program phases, so they do not model 

multiple co-executing programs. Still further, the cost of predicting these scenarios at run 

time is too expensive especially that their prediction also needs an on-line learning or 

calibration process. Finally, while the cost function that classifies scenarios can be 

anything, Gheorghita et al. focus only on energy consumption [9]. Thus, these scenarios 

are not an accurate representation of processing workloads. 

While the usage pattern examples throughout this thesis are projections of future use, 

their implementation is real. Our projected usage patterns have proven accurate in scope, 

however, since the latest version of the iPhone allows a greater degree of application 

concurrency, to include Web browsing while speaking on the phone [11]. We will 

explore considerable work in real usage pattern profiling and discovery in section 4.4. 

 

Figure 6: The First Usage Pattern 
 

Figure 6 depicts a usage pattern in which the user uses the cell phone to call 

customers, receive pictures of products, talk on the phone, or check a Web page. The 

timeline is on the independent axis and applications are on the dependent axis. Each 

application consists of several tasks, summarized in the legend below Figure 6 and 
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discussed later. Note that as time progresses, the user places different requirements on the 

cell phone system as different combinations of applications execute – a set of 

applications are run concurrently, driven by user intervention and the arrival of data from 

the Web. The task progression is also shown in Figure 6 (e.g. to receive a picture, the 

system must first perform a Viterbi decode, followed by rijndael decryption (AES) task, 

and finally perform JPEG decode). Because of task heterogeneity and concurrency, this 

usage model may benefit from execution on a heterogeneous multicore computer. Also 

note that aggregate models of workloads are not appropriate for such computer usage, 

especially when these usage patterns include external timing.  

Aggregate workloads have been reasonable as long as they represented an 

approximation of computer usage, processed as single input streams on single processor 

computers. For batch execution systems in which the input is single stream, lower latency 

and higher throughput translate to improved performance because their performance is 

correctly evaluated using an aggregate model of their workload. In contrast, the variety of 

applications that execute on single-user computers that process heterogeneous 

multichannel input need to be executed on heterogeneous multicore processors; aggregate 

models of workloads are not appropriate. Situational models of workloads, however, are 

appropriate evaluation techniques for this kind of computer system. This type of 

situational loading with user saturation is unique to single-user, multicore computing, and 

results in the need to consider sets of workloads that are developed from usage patterns or 

the way single users use their computers. 

Consider an individual workload mode, wm, which results from changes in patterns of 

inputs arriving over time. While external timing impacts the workload mode of the chip, 

workload modes are not distinctly presented to the system. In contrast to embedded 

systems in which external timing specifies system behavior, workload modes represent 

only the potential to optimize. This observation implies that changes in workload modes 

must be identified at runtime. From an architectural point of view, the distinction 

between a multiprocessor being in wm A vs. wm B is not significant unless there is the 

potential to optimize. Multicore computer design has yet to fully enter into a model in 

which evaluation, design, and optimization are oriented around single-user workload 

patterns that exhibit distinct situations.  
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Consider another usage pattern, shown in Figure 7. It involves a user listening to 

music and surfing the Web on the cell phone. When a phone call arrives, the “mp3 

streaming” task is suspended by the usage program, although the “surf Web” and “send 

picture” tasks persist. Because of the different combinations of application sets, input 

data, deadlines, and constraints, this usage pattern may exhibit different system 

performance from the previous usage pattern, shown in Figure 6, causing the designer to 

tune the systems differently, despite each system executing the same set of applications.  

 

 

Figure 7: The Second Usage Pattern 
 

Usage patterns provide not only applications and datasets to the system under test, but 

also arrival timing of workloads consistent with the perceived usage of the system. Usage 

patterns model the impact of overlapping data-dependent execution, fixed response times 

for streaming (periodic) inputs, and aperiodic arrival times of events, and can facilitate 

the evaluation of how well the system responds to the arrival of new applications while 

others persist in the system. In order to identify persistent changes in loading that arises 

from patterns of use in single-user behavior, we develop the basis to model and classify 

workload modes.  

2.1.2 Workload Modes 

A workload mode is a unique set of concurrently executing applications that includes 

external timing information that models user demand. Each workload mode opens up the 

possibility for tuning the system differently. It also models the effects of task interactions 
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on the performance of a CHM. Workload modes are presented to the system in response 

to a mixture of timed external and untimed internal events. The external events result 

from user–computer interaction and data arrival. In Figure 6 and Figure 7, the vertical 

dashed lines identify individual workload modes, which are subsequently numbered at 

the top of Figure 6. At each dashed line, the load on the system is different enough to 

warrant consideration for chip level optimization. The internal events arise from changes 

in data that are being processed by existing applications as well as the execution 

completion of existing application(s). Since the timing of application execution 

completion is defined by the architecture, different architectures may generate different 

workload modes from the same usage pattern. 

 As discussed in the previous section, usage patterns are a sequence of workload 

modes. Workload modes need to be predicted in advance, so that optimal optimizations 

can be selected at design time. This in turn would also result in less identification 

overheads at run time. In order to do this, we exploit some design-time knowledge about 

workload modes in order to identify them at run time and to apply predefined optimal 

optimization profiles. This in turn results in a more efficient system in terms of both 

performance and energy. Later in this thesis, we present a method of workload mode 

identification that exploits some design-time knowledge and contrasts it with another 

method that is independent of design-time knowledge of workloads and uses HMMs.  

Workload mode identification has to happen at both design time and run time. At 

design time, for each unique workload mode, we dedicate an optimization profile that 

stores the optimal system parameters such as frequency/voltage of each processor as well 

as where each task can be run. Other techniques such as Dynamic Voltage and Frequency 

Scaling (DVFS) [12], [13], [14] and processor power state management (on, off, or idle) 

can be used for reducing energy consumption. Further, different scheduling/mapping 

mechanisms can also be customized according to the identified workload mode. 

 At run time, once the workload mode is identified, using the same procedure at design 

time, one of the set of optimization profiles that have been already built at design time is 

chosen, depending on the identified workload mode. Intuitively, the optimization profile 

is not changed during execution unless a new workload mode arrives. More significantly, 

changing optimization profile incurs some overhead. Later we discuss that the amount of 
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overhead depends on the sequence of these modes. Thus, there should be a tradeoff 

between the amount of incurred overhead and expected performance gains. Further, some 

workload modes may be important for chip optimization while others are not, and this 

difference is a direct consequence of the ability of the architecture to optimize for a 

workload mode. Later we conduct a cost—benefit analysis of our WCM and HMM 

models. One significant difference between our WCM and HMM is that our WCM is 

sup-optimal. In other words, it does not have to identify all workload modes, in contrast 

with HMM which has a very expensive learning phase that makes it capable of 

identifying most workload modes and thus is able to change optimization profiles all the 

time. We also discuss how identification and optimization overhead is crucial to chip 

optimization. 

Since the concept of workload modes is similar to that of demands for automobiles in 

that they both arrive to the system as timed sets of heterogeneous content, we use the 

same automobile example described in Chapter 1 (Figure 4) to illustrate our thesis. 

 

Table 1: Five Different Automobile Plant Configurations 

Model-T Assembly Line Model-A Assembly Line 

C
on

fig
. 

Model-T Model-A Model-A Model-T avg. 

C1 6 3 9 2 10 

C2 4 8 13 1 13 

C3 10 2 6 6 12 

C4 6 3 6 3 9 

C5 9 2 9 2 11 

 

2.2 Automobile Example 

The automobile plant, shown in Figure 4, consists of two assembly pipelines, one for the 

Model-T and one for the Model-A. Table 1 shows the production capacity of five 

different configurations for the same plant system during a day shift. In each 

configuration, we assume that the supply and human resources of its pipelines have 

changed relative to other configurations to produce more or less of the Model-T and 

Model-A products. These configurations range from fully homogeneous to fully 
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heterogeneous designs to show how different plant configurations perform when different 

demands arrive at the system.  

For illustration, consider configuration C1. Configuration C1 is a heterogeneous plant 

system, in which each pipeline is more specialized to produce a specific model type. The 

Model-T assembly line can produce six Model-T automobiles per hour, and can also be 

used to produce only three Model-A automobiles per hour. The Model-A assembly line 

can produce nine Model-A automobiles per hour, and can also be used to produce only 

two Model-T automobiles. Consider another configuration, C2. We use the same fixed 

plant resources to generate an alternative configuration. Here, the production of the 

Model-A assembly line has been improved by deploying more workers to produce 13 

Model-A automobiles per hour, and can also be used to produce only one Model-T 

automobile per hour. Since the number of workers is fixed, the Model-T assembly line 

can now produce only four Model-T automobiles per hour, and can also be used to 

produce eight Model-A automobiles per hour. Configurations C4 and C5 are 

homogeneous, in which both pipelines produce the same amount of each model type. 

Note that configurations C4 and C5 use the same pipelines as configuration C1. 

Configurations C2 and C3 are heterogeneous configurations with different production 

capacities than that of the other configurations. Also note that we have chosen these 

configurations deliberately – the average number of models produced by each 

configuration is different. The average, avg., is calculated using the arithmetic mean of 

the maximum production of each model type when produced individually. Later in this 

section we explore different types of mathematical means. Again, while this example is 

hypothetical, it is used for the purpose of illustration. 

Since we are interested in the performance of different plant configurations that 

simultaneously process different rates of combinations of model types, we draw the 

response time of the five plant configurations for four production modes (Model-T, 

Model-A), shown in Figure 8. Shown on the dependent axis is response time, measured 

in hours, as the plant processes the demands that arrive from customer requests and 

configures itself for each different production mode. Each curve represents a different 

candidate configuration. Figure 8 shows curve fitting over each of the production modes. 

The curves differ not only by magnitude, but also in their shapes. These production 
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variation curves show crossover points in which different configurations exhibit different 

performance as demands vary. If the curves did not cross, then there would be no 

significant difference in optimal performers due to production mode variation. But, 

because the curves do cross, the actual input to the plant system results in the 

identification of different configurations. 

 

 

Figure 8: Performance of Different Configurations Processing Different Demands  
 

Interestingly, homogeneous configurations (C4 and C5) behave linearly for the same 

set of demands in the order shown on Figure 8, while heterogeneous configurations (C1, 

C2, and C3) behave non-linearly as demand varies. For such a system, there is no clear 

optimal configuration because for different production modes of interest the rank of the 

optimal performers changes. As a result, composite performance metrics may not 

appropriately rank such systems. For example, since they do not include timing 

information and therefore do not cluster individual jobs, benchmark suites tend to 

aggregate the performance of individual jobs using the geometric mean. Computer 

architects opt to use the geometric mean to generate a composite score of performance 

because it balances performance, which is appropriate for general-purpose usage but not 

for systems that exhibit distinct situational usage. 

Here, we further illustrate why traditional composite performance metrics fail to rank 

the performance of multiple heterogeneous resource systems that process multiple 

heterogeneous demand streams. Figure 9 illustrates how single-score performance 
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metrics are generated. Figure 9(a) shows an automobile plant that at some point processes 

a demand of two heterogeneous product type streams, T and A, that arrive 

simultaneously. Note that this demand needs to be fulfilled in time window, τ. In order to 

evaluate the production throughput, P, of this plant during time window, τ, using a single 

score metric, an artificial procedure of two main steps is adopted. Figure 9(b) and Figure 

9(c) show this procedure.  

 

 

Figure 9: Distilling Performance into a Single Number 
 

First, the two demand streams need to be separated, as shown in Figure 9(b), and 

evaluated independently over a relatively short time interval, tu, such as a day, or even an 

hour. By selecting a short time interval over which production is being evaluated, 

demand is presumed to be non-zero and time-invariant over the entire time interval. 

Further, work is expressed using a common model type, such as automobiles, without 

distinction of the type of model. The output from this step is the maximum production of 

each demand type during the short time interval, tu. Figure 9(c) shows the production 

throughput of this plant as a relationship between the maximum production of the two 

demand streams, T_max and A_max, expressed in terms of a common model type, 

automobiles.  

Second, it is also assumed that the average area occupied by the two maxima points 

can be represented by a linear curve. To transform this linear relationship between the 

two maximum productions into a single, representative score of the plant performance 

functions, such as mathematical means, is needed. Note that since we use a common 

work unit, such as automobiles, we can average the throughput of different demand types. 
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Thus, computer architects use metrics such as Instruction per Cycle (IPC) or Instructions 

per Second (IPS) to evaluate throughput. Finally, since throughput is measured during a 

short time interval and that the model type is not taken into account, production 

throughput is presumed to be linear with time interval length. As a result, to compute the 

production throughput of this plant over the specified time window, τ, the average 

performance over the short time interval, tu, is normalized to the length of the time 

window, τ, resulting in the same linear relationship. 

 

Table 2: Optimal Configuration Ranking of Table 1 

Production    

P1 P2 Arithmetic H armonic Geometric 

C
on

fig
. 

(0,21) (16,0) AM Rank HM Rank GM Rank 

C1 17.8 20.0 18.9 3 18.8 4 18.8 4 

C2 10.0 32.5 21.3 5 15.3 1 18.0 3 

C3 26.7 11.0 18.8 2 15.6 2 17.1 1 

C4 23.3 18.3 20.8 4 20.5 5 20.7 5 

C5 20.0 15.0 17.5 1 17.1 3 17.3 2 

 

The major mathematical means are the arithmetic mean (AM), geometric mean (GM), 

and harmonic mean (HM). The arithmetic mean has been used to summarize performance 

for time-based metrics, whereas the HM is used for rate-based metrics. The HM, when 

applied to a rate, is equivalent to calculating the total number of products divided by the 

total time. In contrast, the GM can be used for systems that balance the performance of 

different task types such as a general-purpose processor, but the behavior should first be 

normalized with respect to a specific configuration. Thus, standard benchmarks such as 

SPEC report performance values as speedup relative to a standard, reference machine, the 

SPECRatio. In this way, execution time is factored out of comparisons, or else 

applications that take longer would be given more weight in comparisons, but this time-

based weighing is important to modeling how individual users perceive the response time 

of a system that processes workloads.   

Table 2 shows the response time of the five configurations, shown on Table 1, when 

they process two production modes. These production modes were selected because they 

represent the maximum production of each model type when produced individually 
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during a single day shift. Thus, some configurations would be able to produce these 

modes in a day shift while others cannot – they need more time. Table 2 also shows the 

rank of the average response time of each configuration, computed using three different 

averages: HM, GM, and AM. Note that using different mathematical means results in 

different ranks, as previously predicted. The HM ranks C2 as the best configuration 

because it is better suited to handle these demands, whereas the AM ranks C5 as the best 

configuration. The GM ranks C3 as optimal. When other design factors, such as 

scheduling in the case of heterogeneous resources, are considered, the rank is also 

expected to be different because the heterogeneity of assembly lines opens up the 

possibility for multiple scheduling options. Still, all configurations operate under a fixed 

area budget. Intuitively, this observation occurs because different loading situations 

differentiate configurations – the performance ranking of configurations changes from 

one loading situation to another, depending on the specificity of these configurations. 

Later in this section, we study the impact of scheduling on the rank of optimal 

performers.  

 

Table 3: Optimal Configuration Ranking (More Production Modes) 

Production    

P1 P2 P3 P4 P5 P6 Arithmetic H armonic Geometric 

C
on

fig
. 

(0,8) (0,21) (3,10) (6,6) (9,6) (16,0) AM Rank HM Rank GM Rank 

C1 6.7 17.8 10 10 16.7 20.0 13.5 2 11.6 3 12.6 4 

C2 3.8 10.0 7.7 14.6 20.0 32.5 14.8 4 9.3 1 11.9 2 

C3 10.0 26.7 15.0 10.0 10.0 11.0 13.8 3 12.1 4 12.8 3 

C4 10.0 23.3 13.3 10.0 16.7 18.3 15.3 5 13.9 5 14.6 5 

C5 7.8 20.0 10.0 6.7 10.0 15.0 11.6 1 10.1 2 10.8 1 

 

Interestingly, when more production modes are included, the ranking of the same 

mean changes. In Table 3, we included four more production modes. Note that the 

ranking of all means has changed relative to the ranking in Table 2. The problem of 

ranking different configurations in order to find the optimal performers has inspired us to 

come up with a new performance metric, Capacity.  

Our Capacity metric views performance of the CHM that processes workload modes 

as a curve or surface with dimensionality related to the number of application types 
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within a workload mode. In Figure 10, we apply this insight to the plant example. The 

Capacity curves, shown in Figure 10, show all feasible combinations of two automobile 

models produced concurrently during a day shift. Each curve represents a different 

candidate configuration. Shown on each axis is a product model. In order to increase the 

production of one model, production of the other model must be reduced. For example, 

production of automobiles of the Model-A type must be reduced to produce more Model-

T automobiles. Thus, for a given increase in production of one model, Capacity shows 

how much of the other model(s) must be reduced. Production modes of interest can be 

overlaid on these curves. The shape and magnitude of a curve or a set of production 

modes on the curve (for multimodal curves) reveal some information about the 

production system. The analysis of these curves for the purpose of ranking CHMs that 

process workload modes is a major contribution of this thesis.  

 

 

Figure 10: The Production Capacity Curves of the Five Configurations 
 

Next consider another example in which we point out to another problem of using 

throughput. Table 4 shows three made-up configurations that consist of Model-T and 

Model-A assembly lines. Note that the production throughput of all configurations is the 

same when measured using the arithmetic mean of the maximum production of each 

model type individually. Configuration C1 is a homogeneous configuration in which both 

assembly lines, Model-T and Model-A, can produce eight Model-A automobiles during a 

day shift, and can also be used to produce only six Model-T automobiles. Configuration 
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C2 and C3 are heterogeneous, but they differ in the structure of the internal assembly 

lines. Each assembly line in C2 is analogous to a general-purpose processor in that it 

produces almost the same amount of products of each model type in unit time. In 

configuration C3, each assembly line is specified for specific model type.  

 

Table 4: Three Different Plant Configurations 

Model-T Assembly Line Model-A Assembly Line 

C
on

fig
. 

Model-T Model-A Model-A Model-T avg. 

C1 6 8 8 6 14 

C2 10 12 4 2 14 

C3 10 4 12 2 14 

 

Figure 11 shows the Capacity curve for the three configurations, discussed in Table 4. 

The Capacity curves show all feasible combinations of Model-A and Model-T models 

produced concurrently during a day shift; this is something that throughput cannot show. 

Each curve represents a different candidate configuration. Shown on each axis is a 

product model. Note that all Capacity curves have the same maximum points when 

considering the production of one model type at a time, which is the definition of 

throughput. Also note how the curves are not straight line and the shape varies as 

different rates and combinations of models arrive at the plant.  

 

 

Figure 11: The Production Capacity Curves When Mapping to The Best Resource 
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Figure 12 plots the response time of each configuration in response to producing four 

different demands. Note that response times do not cross, thus there is no problem in 

ranking optimal performers using an average.  

 

 

Figure 12: Performance of Different Configurations Processing Different Demands 
 

Table 5 shows the performance ranking of the three configurations processing 

different production modes. Note that the ranking is the same, without distinction of the 

mathematical mean used, since there is no crossover in performance curves. 

 

Table 5: Optimal Configuration Ranking of Table 4 

Production       

P1 P2 P3 P4 Arithmetic H armonic Geometric 

C
on

fig
. 

(0,16) (4,14) (10,12) (12,0) AM Rank HM Rank  GM Rank 

C1 1.00 1.25 1.63 1.00 1.22 3 1.17 3 1.19 3 

C2 1.00 1.25 1.50 1.00 1.19 2 1.15 2 1.17 2 

C3 1.00 1.00 1.00 1.00 1.00 1 1.00 1 1.00 1 

 

Since configurations C2 and C3 are heterogeneous, we study the impact of scheduling 

demands to resources other than the one that provides the best performance for the task 

type on the Capacity. Note that the first configuration C1 has no other scheduling options 

since it is a homogeneous configuration. Figure 13 shows the Capacity curves when 

mapping demands to a resource other than the one that provides the best performance for 
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the model type. Interestingly, while the maximum production is the same as in Figure 11, 

intermediate production modes, especially for C3, are totally different. This is another 

problem of throughput. It does not show the impact of scheduling on different 

combinations of inputs because it evaluates them individually. Note that throughput 

assumes a linear relationship between the two maximum productions, similar to C1 and 

C2 curves which are not fully heterogeneous. 

 

 

Figure 13: The Production Capacity When Mapping Randomly 
 

Again, while all mathematical means result in the same ranking of the optimal 

configurations, the ranking has changed due to the change in scheduling. Now 

configuration C3 has become the worst among the three configurations, whereas 

previously it was the optimal configuration, as shown in Table 5. 

In this chapter we illustrated the need for a new performance metric to evaluate the 

performance of the CHMs that simultaneously process heterogeneous outputs or 

workload modes. CHM evaluation for workload modes, in contrast with single 

applications or aggregate models of workloads, requires a new metric in order to find 

optimal designs for specific usage patterns, or WSPs. We showed that distillation of 

multi-type production over a given heterogeneous multi-pipeline plant (design) to a 

common work unit, an average, includes a two-fold problem. First, it precludes the 

designer from identifying cases in which the system has more Capacity than the average 

or cannot meet the predicted average production – where the non-linear curves rise above 
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or fall below the straight line (average) that occurs when a common work unit for 

throughput is used. The other problem is that different mathematical means result in 

different rankings due to the fact that performance curves, that relate response time or 

throughput to a change in demands, do cross. The crossover points result due to the fact 

that different CHM designs are specialized for different demand types.  

In the next chapters, we include both parts of the work, designing and evaluating 

CHMs as WSPs using traditional metrics such as latency and throughput and using our 

suggested metric, Capacity. Our overall goal is to show how processor resources affect 

the end user of mobile computing devices and, more specifically, point to where 

resources are wasted when resources targeted to old and incorrect models of 

performance. Next, we develop the foundation for our observation that CHM designs 

need to be evaluated for workload modes. 
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Chapter 3 

Foundations 
  

 

 

 

 

In this chapter we develop three foundations that we used to develop our Capacity metric 

– a CHM model, a multimedia cell phone example, and a WSP. Each of these 

foundations has analogies to models that are used in single core design, but which are 

missing in multicore computer design. Part of our thesis is that WSPs more correctly 

capture what mobile computing devices do and that they result in categorically different 

approaches to processor design, something we initially sought to develop in more detail 

but which has become a secondary contribution to this thesis when that work resulted in 

the discovery that single valued metrics failed to properly rank optimal performing 

designs. WSPs are enabled by the presence of collections of individual user initiated job-

style applications that arise as users interact with multicore, mobile devices. Evaluation 

of WSPs is what led us to develop the Capacity metric. Existing models for single-core 

computers, (i.e. those relying on an Register Transfer Level (RTL) and accompanying 

benchmarks) cannot be used to develop and evaluate our WSP model. RTL key design 

features do not capture those of CHM designs. And, individual benchmarks do not 

accurately model the real workload of single-user multicore, mobile devices. Thus, we 

needed to develop new examples that permit benchmarking of single-user mobile 

computing devices to replace traditional benchmarks, an equivalent model to RTL for the 

types of architectures that are projected to be in those devices, that is a CHM model, and 

finally a WSP model that is to CHMs is what an ISA is to an RTL. 

3.1 Single-Core Computer Design 

Existing models for single core computers such as Register Transfer Level (RTL) have 

been long dominant in computer systems design, however, they are inappropriate to 

Research is creating new knowledge.  
         Neil Armstrong 
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model multicore systems for a three-fold reason: (1) the key design features of RTL 

design do not capture those of CHMs; (2) traditional benchmarks do not model the real 

workloads of single-user multicore, mobile devices; and (3) since CHMs include 

multiple-ISA cores, there is no single ISA at the H/S boundary of CHMs. Thus, 

Heterogeneous Core Level (HCL) design has become compelling, as the trend for 

computer systems is to integrate heterogeneous multicore designs. HCL design requires 

the definition of equivalent models to that of lower level designs, in addition to new 

hardware design languages and simulation tools [124].  

 

  

Figure 14: A Single Processing Element (PE) 
 

As an analogy, consider the way a Processing Element (PE) is designed at the RTL. 

Figure 14 shows a single PE as a relationship between a Finite State Machine (FSM), 

program and data streams, and an Instruction Set Architecture (ISA). A conventional 

processor is an FSM that mainly consists of a state register and a combinational logic. 

The primary input to the FSM is a program stream and a data stream. In the 

combinational logic, the value of the state register is combined with the incoming data for 

computation. A state register may store data, an instruction pointer or the program 

counter. In response to the incoming data, the FSM can load the program counter. This 

allows dynamic change of execution sequence that makes FSMs programmatic designs, 

but still their execution is sequential. Computation in a FSM is triggered at the clock 

edges. In a synchronous FSM, all of the processing is defined to occur during the clock 
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period. Thus, the processing time of the combinational logic can be determined a priori . 

In summary, RTL design consists of three key features: 

• Computation that is done in combinational logic blocks;  

• Communication that is done on simple wires; and 

• State that is held in registers. 

Further, two key features characterize the benchmarks of an RTL design: 

• Individualized: benchmarks arrive to the system individually; and 

• Untimed: benchmarks and their associated datasets are sequenced by the 

processor speed thus they do not include an external time reference.  

An ISA specifies how the FSM layer is accessed by a software program. It includes a 

set of control, communication, and computation instructions that the underlying processor 

understands and supports. Thus, ISAs are developed after the processor model is 

designed, regardless what software is going to execute on this processor model. An ISA 

is accessible by the developer or the compiler, representing a contract between an FSM 

and the developer (or compiler).  

 

 

Figure 15: Our View of the Design at the HCL 
 

So far we have shown that RTL design includes three foundational models – FSMs, 

benchmarks, and ISAs. Such models are missing at the HCL. Figure 15 depicts our view 

of the design at the HCL. In the remainder of this chapter, we develop these three 
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foundations for HCL design – a CHM model, a multimedia cell phone example, and a 

WSP. 

3.2 A CHM Model 

Since key features of RTL design are inappropriate for HCL design, we first establish a 

baseline model of a CHM like that of an RTL for an ISA. Our model includes the key 

elements of computer design. Figure 16 shows our suggested CHM model. It shows a 

central control processor (CP) that coordinates all other resource processors, from R1,…, 

Rn. We establish a CHM that has some central control [15] so that the chip may respond 

to persistent changes in loading. Each resource processor has its own contribution to the 

overall Global Chip State (GCS), denoted as RSi. Consider GCS as logically global 

runtime state which provides information guiding Chip-Level Scheduling (CLS) 

decisions, and so the time it takes to gather GCS must be factored into the effectiveness 

of a chip-level scheduler. Examples of GCS are numbers of idle tasks in the system, the 

execution progress of running tasks, the availability of resources, and the current load on 

the memory and bus, etc. The state of each resource processor (RSi) must be transferred 

to the CP if it is to be used in the decision making of the CP in a given situation. 

Examples of RSi are the frequency and voltage level of the processor as well as the 

progress of running task(s), if any. Because of the lower communications costs within the 

resource processor relative to the communications costs within the whole chip, and also 

in order to reduce loading on the interconnection network, RSi (collectively the GCS) is 

kept local to the resource processor until global scheduling is triggered. The CP gathers 

the GCS and sends scheduling decisions to computational resources, which are the 

processing elements used to execute the assigned application functionality. Since the 

central controller coordinates all other system resources, this is the easiest control flow to 

realize.  

Note that all application tasks are eligible to be placed at any of the processing 

resources. The main advantage of coordinating the system state in this way is the 

preservation of a sequential control flow scheme for programming the chip; this is largely 

a programmatic solution in which distinct blocks of software may be accelerated by 

execution on custom hardware or on many blocks in parallel, and often both. Many 
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current CHMs fall into this category of design, in which a general-purpose processor 

serves as the central controller. The main disadvantage of this approach is that the central 

controller can be a bottleneck. The system can only execute as fast as the sequential 

fractions of software can execute on the CP. In general, the software executing on the 

central controller must be as simple as possible or the central controller must have 

sophisticated scheduling that tunes the application to the slave processors so that 

throughput can be maintained. 

 

                              

Figure 16: A CHM Architecture 
 

Distributed control flow is also possible. In the case where the CHM operates on 

several distinct groups of applications, in which each group uses multiple programmable 

resources, it might be more advantageous to specify several controllers in the system, one 

per group of applications. This approach lowers the amount of system state passed to 

each controller since every controller receives only the state relevant to its decisions (i.e. 

the state relating to the application group the controller is managing). A fully distributed 

approach in which each processing element makes a decision about what to run next, can 

be useful in systems in which state sharing overhead greatly dwarfs the performance 

gains of making a global task mapping choice. 
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We view optimization for single-user workload modes as the basis of global, chip 

level optimization for CHMs. The optimization of the chip can be thought of as the need 

to optimize globally, and hence we model this using a global central controller. However, 

we model a state that leads to global decision making the GCS, as logically distributed 

among local processors, and the actual global scheduling could be distributed as well. In 

either case there will be overhead that synchronizes distributed parts of the global 

scheduling. We include that overhead in our model. Our model focuses on the simplest 

form of control, the centralized controller with the distributed state shown in Figure 15. 

We will use this architectural model later in the experimentation. Note that our model is 

conceptual; the actual implementation of our constructs may vary considerably in the 

actual architectures, but these variations will only affect physical parameters, such as the 

overhead costs.  

Here, we summarize the key features of our CHM model: 

• Computation: processors (R1,…,Rn) and the central processor (CP), having 

different ISAs, in contrast to FSMs in which computation is done in 

combinational logic blocks. 

• Communication: an interconnection network or bus with different properties 

such as communication bandwidth and burst width, in contrast with FSMs in 

which communication is done on wires. 

• State: global state (GCS) and local states (RSi) kept in memories, in contrast 

with FSMs in which state is held in regiesters. 

• Triggering method: even-driven, time-triggered, or a mix of both, in contrast 

with FSMs in which triggering is done on the clock cycle. 

The architecture of our CHM model is based upon a combination of a survey of 

existing devices and a projection of where we believe they are evolving. Computer 

systems are increasingly becoming multicore. When multiprocessing happens within a 

single die/processor, we call that a multicore architecture. Although the focus of our 

survey will be on CHMs, we will also investigate existing homogenous multicore 

processors, since it is likely that these types of processors will soon be extended to 

include heterogeneous cores with different ISAs. Below is a brief overview of existing 

homogenous and heterogeneous multicore architectures.   
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Most multicore designs for desktops, laptops, and servers have homogenous cores 

that all implement the same ISA. Examples of homogenous multicore processors include 

IBM’s POWER6 dual-core multithreaded processors [16], [17], AMD’s quad-core 

Opteron processors [18], Intel’s dual-core and quad-core Xeon processors [19], [20], 

Compaq’s Piranha 8-core research prototype processor, and Sun Microsystems’ T1 and 

T2 8-core multithreaded processors [21], [22]. An overview of early homogenous 

multicore designs is presented in [23]. Multicore designs with tens of processors, often 

referred to as many-core designs, have recently been introduced. Examples of many-core 

designs include Tilera’s Tile64 Processor for multimedia processing [24], AMD’s 

Radeon and Firestream processors for graphics processing [25], [26], NVIDIA’s GeForce 

and Tesla processors for graphics processing [27], [28], [29], and Intel’s Larrabee 

processor for visual computing [30]. Many-core processors often include programmable 

processors, along with on-chip interconnect, bus controllers, memory controllers, and 

cache. Although homogenous multicore and many-core designs offer some advantages 

over CHMs in terms of design reuse and programmability, they often cannot match the 

area, performance, and power benefits of CHMs [31]. Because of their heterogeneity 

feature, CHM processors can match each application to the core best suited to meet its 

performance demands, resulting in performance gains. CHMs also, compared with 

homogeneous multicores, would use a larger number of small low-power (and low-

frequency) cores, thus it can be more area-efficient and significantly reduce processor 

power dissipation, especially when dynamic power management is adopted.  

Because of their area, performance and power advantages, several designs for CHM 

processors have been developed. AMD’s Accelerated Computing Initiative [32] and 

Intel’s Tera-scale Computing Research Program [33], [34] acknowledge the benefits of 

CHM designs, but have not yet developed them. Most of these designs are targeted 

toward specific application domains, such as multimedia processing, graphics processing, 

and wireless communications. CHM processors include:  

• Sandbridge Technologies SB3000 processor [35], which has four Sandblaster DSPs, 

an ARM9 application processor, on-chip memory, a DMA controller, and numerous 

peripherals for implementing a variety of handheld device functions.   
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• Texas Instruments DaVinci Digital Media System-on-Chip [36], which has a C64x 

DSP, an ARM9 processor, multimedia accelerators and co-processors, and numerous 

peripherals.   

• Texas Instruments OMAP3440 Processor [37], which has an ARM Cortex™-A8 

processor, Imagination Technologies’ POWERVR SGX™ graphics core, an image 

signal processor, an image video audio accelerator, and several peripherals. 

• Infineon’s MuSIC Processor [38], which has an ARM processor, four SIMD DSPs, 

on-chip shared memory, a multi-layer bus interface, accelerators for wireless 

communications, and various peripherals.  

• STI’s Cell Processor [15], which has a Power Processing Element (PPE) with vector 

extensions, eight Synergistic Processing Elements (SPEs), an element interconnect 

bus, and on-chip memory and bus-interface controllers. 

Each processor in the Sandbridge SB3000 has its own private L1 and L2 cache 

memories, making processors loosely coupled. SB3000 also includes a central processor, 

which is the ARM9 application processor that facilitates programming the other chip 

elements. The central processors usually are general-purpose processors and of different 

types than the other processing elements on chip. The application processor has a specific 

task, which is to control the functions of the other processing elements. Other cores can 

run any task since they are homogeneous. Thus, this mapping model is semi-static. The 

TI DaVinci is similar to the SB3000 in that its processors are loosely coupled, but it has 

no central processor. Each core processor in the DaVinci is specialized to do a specific 

job. In contrast, OMAP3440, MuSIC, and Cell processors share L2-cache memory, so 

their processor cores are tightly coupled. MuSIC and Cell processors are centralized 

architectures since they include a central processor that facilitates programming the other 

chip elements, while OMAP3440 is a distributed system in which there is no central 

controller. While the Cell and MuSIC processors have a central controller, this controller 

can be also used to execute other tasks that can also be executed in the other processing 

elements, thus its mapping model is partially dynamic. OMAP3440 is a dynmaic system 

since any task can run on any processor. In these systems, processor cores are connected 

via different bus technologies. 
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Table 6: CHM Processors Classification 

System Processor Coupling Programming Mapping Communication Class 

SB3000 Loosely Centralized Semi Static AMBA Bus A 

DaVinci Loosely Distributed Static Multilayer Bus B 

OMAP3440 Tightly Distributed Dynamic System Bus C 

Cell Tightly Centralized Semi Dynamic Ring Bus D 

MuSIC Tightly Centralized Semi Dynamic Multilayer Bus  D 

Trend Tightly Centralized Fully Dynamic NoC – 

 

Based upon the above discussion, we extracted four key features from these systems, 

processor coupling, programming model, processor-application mapping type, and 

processor interconnection technology. We classify the CHM systems in the above-

mentioned list based upon these features. Table 6 summarizes these classes according to 

the selected features. Table 6 also includes the chip makers trend in designing CHMs. 

Note that multicore systems are increasingly becoming centralized to facilitate global 

programming models and thus to extremely exploit the parallelism feature of multicore 

designs. Therefore, some sort of global state is required to be saved in a shared memory. 

This global state makes processors tightly coupled. Dynamic mapping or scheduling has 

proven significant performance gains over static scheduling by allowing any task to 

execute on any processor. Future systems are expected to integrate high-speed networks 

to connect chip elements. As increasing transistor densities and larger die sizes enable 

increased integration, we envision future CHM processor systems with tens to hundreds 

of heterogeneous cores including general-purpose processors, digital signal processors, 

graphics processors, and/or multimedia processors, along with programmable hardware 

accelerators, fixed-function hardware, on-chip memory, high-speed interconnect 

networks, and a wide variety of peripherals. We used this trend to build our baseline 

CHM model, which we believe will be prevalent in future. 

3.3 Multimedia Cell Phone Example  

Since our WSPs are enabled by the presence of workloads (instead of individual 

benchmarks) that result from single users, we needed to develop new examples that 

permit benchmarking of CHMs. In contrast to existing benchmark suites, our examples 
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include the arrival time of applications as well as some level of concurrency. We first 

develop our example – that is a multimedia cell phone example – and then we contrast it 

with existing benchmark suites. 

 

 

Figure 17: Six Cell Phone Applications and their Components 
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Modern mobile phones, or smart phones, are becoming increasingly ubiquitous. At 

the same time, these devices increasingly are including software features such as those in 

laptops and desktops. The cell phone example has been developed as the basis of a 

benchmark suite for CHM systems, and is first introduced by Paul et al. [1]. The cell 

phone is capable of browsing the Web, and has enhanced Human Computer Interaction 

features typical of many future – and even current – devices. Together, these make the 

resultant system a hybrid of an embedded system and a personal computing device. 

We extended the cell phone example of Paul et al. [1] to include more functions such 

as speech recognition. Moreover, we further developed the implementation of some 

applications to preceisly capture their behaviors when executed on CHMs. Consider 

several applications that can run on a cell phone. The applications within the cell phone 

are able to exhibit a wide variety of behaviors, placing differing needs on the hardware. 

We define six possible cell phone applications: (1) surfing the Web, (2) making a phone 

call, (3) sending a picture, (4) receiving a picture, (5) speech recognition, and (6) 

streaming mp3, as shown in Figure 17. 

 
Table 7: Our Benchmark Classification 

Benchmark Type (Y) Complexity (C) Data Dependency (S) 
FIR/IFFR Streaming Low Size 
FFT/IFFT Streaming Low Size 
Viterbi Streaming or Job-based Low Size 
AES Streaming or Job-based Low Size 
MP3 Streaming High Size 
Convenc Job-based Low Size 
Autocor Job-based Low Content 
JPEG Job-based Medium Content 
Text Job-based Low Size 
FLASH Streaming or Job-based High Content 

 

Each application consists of several tasks, shown in Table 7, extracted from the 

EEMBC benchmark [39]. For instance, “surfing the Web” takes on an arbitrary number 

of JPEG, text, and Macromedia Flash jobs that execute concurrently, but the system must 

first perform a Viterbi decode. The twelve different tasks, in Table 7, are grouped into 

classes. First, we distinguish between streaming and job-based application behavior. 

Second, we look at the application data dependency as it relates to run time. An important 

distinction between streaming and job-based categories is that job-based tasks can always 
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use more computational power in order to reduce latency, in which the streaming tasks 

have no use for extra computational power once deadlines are met. An example of a 

streaming task is making a phone call. An example of a job-based task is taking a picture. 

Note that some tasks belong to two task classes depending upon the contexts in which 

they are used. For example, Viterbi is a streaming task when used to stream data as in a 

phone call. However, it is a job-based task when used in sending a picture. On an 

orthogonal axis, we consider data dependency. A data content dependent task exhibits a 

different run time when faced with input data of different content, but of the same size. 

An example of a data content dependent task is MPEG video compression, in which run 

time is dependent on the content of the picture that is encoded. In contrast, data size 

dependent task run times vary with the amount of data applied to the input. Many 

encryption algorithms’ run times are not dependent on the content of the file to be 

encrypted, but rather only on the file size.  

Now, we perform a survey of existing benchmark suites and show why they fail to 

optimize CHMs, in contrast with our example. The SPEC CPU [40] suite includes 

scientific and engineering application benchmarks that are used mainly to characterize 

workloads of general-purpose computing [41], [42], [43]. SPEC compares the 

performance of a system (in term of both speedup and rate) to a reference machine – this 

normalization is eventually used to average the performance of different applications 

using the geometric mean.  Two problems exist in SPEC benchmarks. First, SPEC is not 

geared toward embedded computing and multimedia applications. The other problem is 

that SPEC is not able to measure and model power consumption. 

In contrast with SPEC, MediaBench [43] benchmark geared toward multimedia and 

communications systems [43], [44]. The problem of MediaBench is two-fold. First, it 

focuses on batch execution systems where individual programs are evaluated. The other 

problem is that MediaBench focuses only on multimedia applications and not embedded 

systems, in general. 

In contrast with both SPEC and MediaBench, EEMBC and MiBench benchmarks are 

geared toward embedded systems [42]. There are differences between MiBench and 

EEMBC benchmarks. MiBench is a free benchmark, in contrast with EEMBC which 
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requires a paid membership to have access to the testing suites [42]. Similar to the other 

benchmark suites, these two benchmark suites focus on batch execution systems [45].  

In summary, benchmarks are executed one a time, which is a major problem. This 

implies that there is no external time reference for the arrival of these programs.. Another 

problem is that the data associated with these programs are also untimed. Modern 

embedded systems applications can often be described as workloads consisting of 

numerous I/O streams, and parallel applications that enter and leave the system at 

different times and in a bursting fashion, rather than in terms of a system with constant 

loading or programs executing in isolation. Table 8 summarizes existing benchmarks 

based on key features. Also, it includes our definition of workloads that arise from the 

interaction between individual users and modern mobile devices. The definition of 

workloads motivates us to develop a new performance metric, Capacity. 

 

Table 8: Existing Benchmarks Summary 

Benchmark Concurrency Timed 
datasets 

Timed 
applications 

Target 

SPEC  Multiple Untimed Untimed General purpose 
MediaBench Single Untimed Untimed Multimedia 
MiBench Single Untimed Untimed Traditional Embedded 
EEMBC Single Untimed Untimed Traditional Embedded 
Our Example Multiple Timed Timed Modern Embedded 

 

Several workload models have been proposed for use in multiprocessor systems, and 

are discussed thoroughly in section 4.3. Aside from benchmarks, researches have 

implemented numerical, statistical, and stochastic models on measured data to come up 

with accurate workload models. More interestingly, user behavior graphs have been 

developed to capture user interactions at higher levels. However, not all of these models 

are tractable for single-user multicore computers. Individual benchmarks do not represent 

real workloads. Although user behavior graphs seem to be a good choice for emergent 

workloads, they do not model the arrival time of commands. Trace driven models incur 

overhead in terms of instrumentation setup and the amount of collected data. Stochastic 

models are not scalable while the number of workload modes and processors increases. 

Statistical and numerical models are static models, in contrast to the behavior of users, 

and may yield misleading results when using the wrong model. 
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We will use our multimedia cell phone example to artificially form different usage 

patterns, discussed in Chapter 2, which can be used later in this thesis as benchmarks to 

evaluate CHM designs. 

3.4 Workload Specific Processors (WSPs) 

There is no ISA for CHMs that bridges CHMs to the way the system is used and will be 

programmed. We suggested WSPs to do that. Thus, WSPs are to CHMs what an ISA is to 

an RTL. We first perform a survey of existing computing categories based on their 

performance evaluation models, showing how our WSPs result in categorically different 

approaches to processor design.  

Computing can broadly be classified into its dominant research communities, 

characterized by traditional Computer Architecture and Computer Aided Design. 

Computer Architecture has focused on general purpose computing of the kind found in 

desktops and laptops, while Computer Aided Design has focused on Application Specific 

Integrated Circuits (ASICs) and Embedded Computing. Each community has offshoots, 

but the broad goals of these communities can be classified. In Computer Architecture, 

optimization of the design is to a pre-fixed and agreed upon set of benchmarks, and in 

Computer Aided Design, each design is highly unique and customizable. We describe the 

assumptions inherent to each of these categories below, in order to illustrate how WSPs 

differ. The WSP model of performance evaluation is later discussed in Figure 18. We 

develop our WSP model by contrasting it to general purpose processing (GPP) and 

application specific processing (ASP) models. Our definitions of GPP and ASP models 

show the foundations of existing performance evaluation techniques the way they are 

designed, not the way they are used.  

Figure 18 illustrates the differences between the three performance optimization 

models; the GPP, the ASP and the WSP. Figure 18 shows that the inputs are conceptually 

presented to the GPP sequentially so that applications do not overlap and thus there is no 

contention between them. The processor (or the compiler) generates the sequence of 

execution by identifying interdependences between individual program inputs. Figure 18 

also shows that each application starts execution after the previous application completed 

execution, in which a downward arrow indicates the beginning of an application and an 
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upward arrow indicates the end of an application. Each input represents a different type 

of application. Each application type takes a different execution time, E(Appi), to 

complete. Evaluating the performance of all application types produces a set of 

performance values that can be normalized to a reference architecture as speedup, and 

then averaged to produce Pi. This model is appropriate for batch execution, but does not 

accurately describe the performance of interactive workloads [46]. Even in the case of 

multithreaded GPPs, the input to the system is still presented as a single demand stream. 

That also leads to the use of average performance values. In the uniprocessor world, 

SPEC [40] is a popular set of benchmark applications; SPLASH-2 [47] is the analog in 

the multiprocessor world. 

 

  
Figure 18: Application Arrival Timing of Different Performance Optimization 

Models 
      

Next, we consider real-time embedded systems that use Application Specific 

Processors (ASPs). Figure 18 illustrates that the input is an application or a set of 
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applications that persist in the system over time and that are considered to arrive 

periodically. Thus, real-time embedded systems are designed given upfront specifications 

of the applications it will carry out. These systems are designed to meet real-time 

demands within a period, tu, and the execution time, Pi, of the application or the set of 

applications has to be less than the deadline, tu, usually leaving some slack time. 

Increasing the computation power of these systems is wasteful when the deadlines are 

met unless the designer wishes to add more functionality to the existing system 

functionalities [46]. Thus, today’s cell phones do not fall into the traditional real-time 

embedded systems category. Our new evaluation model (WSPs) addresses the way 

processors are used in this design. 

Figure 18 also illustrates our WSP model. At any given time there is a set of 

applications. These applications are presented to the system in response to a mixture of 

timed, external and untimed, internal events. The external events result from user-

computer interaction and data arrival. The internal events arise from changes in data that 

are being processed by existing applications. Thus, the arrival of new application(s) or 

data, a significant change in the data being processed by existing application(s), or the 

departure of an existing application(s) defines a new mode of operation. For instance, 

App1 and App2 arrived at the system at time τr1, resulting in workload mode wm1. Later 

on, at time τr2, App3 and App4 arrived while App1 and App2 were still executing. This 

results in a different workload mode, wm2. Thus, wm2 at time τr2 now has four 

applications: App1, App2, App3, and App4. In this example, there are four workload 

modes generated due to application arrival and departure. wm4 was generated due to a 

significant change in the data being processed by App1.  

In Figure 18, the change in the input data is denoted by using different color contrasts 

to show different phases of execution. For example, the processing of an MPEG file that 

has been previously downloaded can result in different processing requirements that can 

persist in the system long enough to result in a significant program phase. Thus, while the 

MPEG application persists in the system for a long period of time, optimization of the 

whole system requires consideration of the data being processed. Also, webpages have 

different time granularities, during which the content updates [46], [48]. These updates 

may result in on-chip optimizations. Kumar, Tullsen and Jouppi divided individual 
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program execution into phases that exhibit different behaviors due to the change in the 

input data during execution [49].  

Figure 18 also shows that time is continuous and that some jobs may persist in the 

system indefinitely while others may not complete before the next input arrives. For 

instance, App1 arrived at τr1 and departed at τr5. Meanwhile, applications App3 and App4 

arrived and finished execution. Again, the downward arrow indicates the beginning of an 

application and an upward arrow indicates the end of an application.  

Paul et al. established the foundation for the observation that emerging computers 

have a categorically different relationship with users by the development of a new 

taxonomy that is called the U-A (User-Application) Taxonomy [46]. The U-A Taxonomy 

extends the most widely known taxonomy in computing, that is Flynn’s Taxonomy [50], 

which categorizes computer architecture into Single Instruction, Single Datastream 

(SISD), Single Instruction, Multiple Datastream (SIMD), Multiple Instruction, Single 

Datastream (MISD), and Multiple Instruction, Multiple Datastream (MIMD). The focus 

of Flynn’s Taxonomy is on the structure of the computer and not the objectives of the 

computer. Thus, an additional classification scheme for computing that considers the 

objective of the computer seems necessary. The U-A Taxonomy is proposed as a way of 

distinguishing the objective of the computer from its structure.  

The most common computing structures from Flynn’s Taxonomy that are realized are 

SISD and MIMD. In the U-A Taxonomy, the authors define four new classes of 

computing and further subdivide them according to their realization as SISD or MIMD 

computers, resulting in eight classes of computers. A Single-User (SU) computer is 

designed with the presumption that only one person will be using the computer at any 

point in time. In contrast, a Multiple User (MU) computer is designed to satisfy the needs 

of multiple users who share the computer services at the same time. A Single Application 

(SA) computer is designed to execute a single application at a time. When the single 

application is complete, the computer moves on to the next application. In contrast, a 

Multiple Application (MA) computer is designed to execute multiple applications at the 

same time; multiple applications are considered to be executing in a MA system 

concurrently, even though the concurrency can be achieved in a variety of ways. 



 48 

Our WSP model falls under the SUMA-MIMD classification. The SUMA-MIMD 

computer has the objective to execute multiple applications concurrently on a 

multiprocessor in the service of a single user. Examples of SUMA-MIMD machines 

include personal computers and laptops with multiple cores. Because personal computing 

devices are increasingly designed to meet portability demands (on size and power 

consumption), SUMA-MIMD computers are starting to be realized as heterogeneous 

multiprocessors. SUMA-MIMD computers represent a class of computer for which 

performance is not always dominated by latency and throughput over the application set. 

The most obvious way to see this is that the user’s perceptions are inherently limited, so 

that more computing power does not always impact the user’s ability to perceive it. For 

example, when humans juggle sets of applications in which data is arriving in real time, 

they can only pay attention to so much information in a fixed amount of time. As a result, 

faster processing of some tasks is wasted on the user, who is the ultimate judge of 

performance. Thus, performance must be evaluated in terms of its impact on individual 

users.  

Figure 19 illustrates the definition of a WSP. At any given time, there is a set of 

applications. Each application potentially executes concurrently on a multicore processor.  

 

 

Figure 19: Workload Definition of WSPs 
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We use time to identify both the arrival of applications as well as their persistence in 

the system as new applications arrive. Workload mode wm1 at time τr1 has n1 applications 

of m1 application types, wm2 at time τr2 has n2 applications of m2 application types, and so 

on. Further, each application type at τri consists of s instances, and the cumulative 

summation of these instances at any given time τri equals ni. Thus, the loading of the 

system is a function of external timing, unlike uniprocessors, which are sequenced by the 

speed at which an instruction stream is processed. Furthermore, each user application 

consists of several processor tasks that have different characteristics, such as Type, Y, 

Complexity, C, and Data Dependency, S, discussed in Table 7. When executed, each task 

in a mode wmi processes associated input data, S, from the set. The input data sets also 

change with time. Some applications may persist in the system indefinitely while others 

may not complete before the next input arrives. 

From an optimization perspective, this results in a multimodal system; the system 

operates in different modes at different times and these modes must be recognized so that 

the system can respond to different loading situations. In this thesis, we model 

overlapping demands as workload modes and show how the identification of workload 

modes is critical to effective optimization of WSPs. We show why they must be 

identified using models of the likely behavior of the system, in which these models are 

derived from single-user models. Next, we discuss how prior work in performance 

metrics and workload analysis has not focused on single-user usage patterns that result in 

workload modes that include heterogeneity, concurrency, and timing features. 
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Chapter 4 

Prior Work 
 

 
 

 

 

 

 

Since the primary contribution of this work is the development of the Capacity metric, in 

this chapter we first summarize existing performance metrics used in computer systems, 

discussing why they fail to properly evaluate the performance of CHMs that process 

heterogeneous multi-channel inputs. Because our Capacity metric is graphical and 

includes the effects of global resource sharing, similar to metrics used in networks, we 

also include a discussion of metrics in computer and communication networks. The 

development of our Capacity metric was motivated by the need to evaluate WSPs, so we 

then include a discussion of existing workload models and types of benchmarks and why 

these models and benchmark suites are inappropriate to evaluate CHMs. Finally, our 

Capacity metric needed to simulate workloads on CHMs, so we discuss our MESH 

simulator that has been used in that regard and show why existing HDL simulators failed 

to achieve this goal. 

4.1 Performance Metrics 

Considerable prior work exists in metrics and evaluation of workloads and multicore 

computing. Although prior work has called upon the need to develop new performance 

metrics [51], none has considered breaking out the heterogeneity of workloads or has 

modeled heterogeneity impact on the performance of a CHM that processes a 

heterogeneous multichannel workload. 

Alameldeen and Wood discuss the need for simple work-based metrics [52]. 

However, suggested metrics accurately predict performance only if the unit of work is 

If there is any one secret of success, it lies in 
the ability to get the other person’s point of 
view and see things from that person’s angle 
as well as from your own.  

Henry Ford 
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representative of the entire system’s functionality, which is not the case when 

multichannel inputs implicitly carry different units of work. Kumar et al. evaluate the 

throughput of CHMs by increasing the demand for each application type until it reaches 

the maximum production [49]. The overall throughput is then evaluated by finding the 

average score of the individual throughput scores. But averaging implies a functional 

overlay of the way different demand streams will be combined that can obscure the 

variety of situations a real system can encounter. Skadron et al. pointed out that average 

values used for many current systems that run multiple processes simultaneously (such as 

average IPC) can lead to misleading performance results because they factor out 

performance differences that result due to the bursting behavior of current systems [51]. 

Hill and Marty develop a speedup hardware model of multicore systems to complement 

Amdahl’s software model, but assume that the input is a single channel [53]. SPECRate 

is also a single valued metric [54]. 

Prior work has also examined the throughput of Simultaneous Multithreading (SMT) 

and CHM architectures using both parallel programs and multiprogrammed workloads 

[55], [56], [57], [49]. Both parallel and multiprogrammed workloads provide thread-level 

parallelism, but they differ in how threads compete for global chip resources. Threads of 

multiprogrammed workloads do not share memory references; this results in more 

accesses to the cache memory. Furthermore, these threads have different phase patterns 

such as ILP and memory accesses, causing interference in branch predictors. Kumar et al 

[49] statically mapped each thread type to a specific core, thus multiprogrammed 

workloads are less likely to vie for the same processing elements on chip. Thus, 

evaluating computer architectures using multiprogrammed workloads is different from 

our evaluation for Capacity metric because the number of threads of different types is not 

fixed to the number of cores on chip and the execution time is limited by a time window 

that is perceived by the user. While parallel applications [58], [59], [60] may have the 

benefit of sharing the caches and branch predictors, they test SMT differently. In contrast 

with the multiprogrammed workloads, all threads in a parallel application have similar 

execution patterns. As a result, threads in a parallel application may create bottlenecks in 

these resources. Traditionally, throughput could be used to model these classes of 

parallelism, because the similarity between elements of the parallel computation 
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permitted evaluation to take place over a common work unit. However, in modern 

computer systems with multiple, diverse production streams that persist in the computer 

over long period of time, the differentiation in the types of production requires evaluation 

and analysis to consider the effects of workload heterogeneity.   

Existing performance metrics can be broadly classified as either time-based or work-

based metrics. Table 9 summarizes examples of each class. Time-based metrics, such as 

latency and response time, are used to optimize the computer systems in which the input 

is sequential, or SUSA computers. In the new era of computing in which computer 

systems are increasingly integrating multicore chips in the service of single users, work-

based metrics, such as throughput and bandwidth, are more appropriate to optimize these 

systems. In other words, the design goal of single-user multicore computers, or SUMA, is 

to process as much work as possible during a window of time. None of existing work-

based metrics has considered breaking out the heterogeneity of workloads or has modeled 

heterogeneity impact on the performance of a CHM that processes a heterogeneous multi-

channel workload. For computer systems that need to be optimized for both time and 

work metrics such as super computers, power consumption and heat dissipation become a 

major concern. In contrast, for the systems used in some domains such as banking the 

designer (and the customer) worries about the security, reliability and availability of the 

system more than anything else. 

 

Table 9: Taxonomy of Existing Performance Metrics 
Time  

Work Matters Doesn’t Matter 
Matters Power, Power per Area, and 

Utilization, etc 
Throughput, and Bandwidth, etc 

Doesn’t Matter Latency, and Response Time, 
etc 

Reliability, Availability, 
Security, and Scalability, etc 

 

Through recognition of the architectural coupling of different demand streams in 

multicore computing, but at the same time the separation of the performance of each type 

of demand stream from the perspective of the user, we establish the foundation for 

analysis of CHMs that service single users, or SUMA computers. With the Capacity 

metric, we set up the possibility of analyzing CHMs so that resources will not be wasted 
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as resource loading, or workloads, can be executed by the computing device, but these 

effects might never be seen by the user. 

4.2 Performance Modeling of Computer and Communication Networks 

There is a similarity between our Capacity metric and performance metrics in 

networking: 

• Some performance metrics in networking are graphical. For instance, 

considerable work has been done on network optimization using the network load 

metric, which is a graphical metric. The shape of the network load metric curves 

reveals significant information that helps in load balancing management; and 

• Both measure the effects of global resource interactions on the performance of a 

system. Global resource interactions that take place while routing a packet, 

represented as an overhead, are widely modeled and studied in networking.  

Thus, we review the literature of performance metrics in networking to point out 

similarities and differences with our work, signifying the potential of our Capacity metric 

to be used in communication networks as well.  

Performance analysis has an important role in networking because it provides 

estimates of network behavior in terms of different metrics. Depending on the metrics of 

interest, designers can select network architectures and protocols. Performance modeling 

and evaluation can be done using either simulation or analytical models. Simulation is 

based upon measurement, similar to the way we generate our Capacity curves, while 

analytical models are based on a representation of a system via a model. Both need to 

model performance in terms of a metric. 

Two primary metrics are used in the performance evaluation of mobile ad hoc 

networks: packet delivery rate and end-to-end delay. These metrics are mainly used to 

compare different ad hoc routing protocols. The work of [61] uses the packet delivery 

rate and end-to-end delay metrics as the two primary metrics for evaluating VoIP 

communication. These metrics are analogous to the throughput and latency metrics used 

in computer systems. Other metrics such as jitter, flow length, and packet overhead are 

also important metrics that can be derived from the primary metrics. All of these metrics 

are single-valued metrics. Each metric is typically obtained via averaging all metric 
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values obtained from the monitored flows. Recently, two directions of research have been 

taken in the development of performance metrics of ad hoc mobile networks. In the first 

direction, different types of performance metrics are distilled into a single-valued index. 

In the other direction, performance is broken down into its components instead of using 

averaging. This requires a graphical means to view performance. Here, we discuss both 

directions. 

The work of [62] defines an index for measuring the performance of ad hoc 

networking protocols. This performance index distills different performance values that 

result from different metrics into a single value that can be used to describe the overall 

system performance. In order to do this, Ajbar and Perkins develop a statistical model 

that averages the performance of four metrics: packet delivery ratio, end-to-end delay, 

jitter, and packet overhead [62]. While this approach makes comparison easier, but it may 

lead to incorrect results because it factors out the performance differences between 

systems when evaluated against different metrics. 

The work in [63], [64] find that distilling performance into a single-valued score via 

averaging conceals the relationships between performance metrics and system 

parameters. Moreover, it often leads to misleading conclusions about system 

performance. Note that different routing flows from senders to receivers have different 

characteristics [65], [66]. As a result, Yuen and Yates [63] present a graphical 

representation of performance results. This graphical representation can be used to reveal 

the different relationships between different performance metrics and system parameters. 

This in turn gives insight about what parameters lead to changes in performance. While 

this type of work identifies the significance of cause and effect analysis in performance 

evaluation through the use of graphical metrics, it does not consider the different types of 

work the system is producing and the impact of the work type on the performance of a 

system. 

Considerable work in networking has considered the impact of routing overhead on 

the performance of networking systems [67], [68], [69], [70]. While overhead modeling 

in networking considers the size and type of the packet: control or data, it does not 

consider the heterogeneity of the content of the original files being sent through the 

network.  
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While much of the work on the performance evaluation of ad hoc networks has 

focused on routing performance, other work has considered power constraints that limit 

routing performance [71]. In general, power is derived from two primary metrics: packet 

delivery rate and delay. This is analogous to the way we view performance; in order to 

correctly model power consumption, Capacity must be accurately modeled first.   

4.3 Workload Analysis 

The development of accurate workload models of single-user multicore devices was 

required for the development of our Capacity metric. Our Capacity metric accounts for 

the effects of these features of workloads, which should also be considered in modeling 

the workload of CHMs:  

• Heterogeneous concurrency: heterogeneous inputs arrive the systems as sets of 

concurrent applications or workload modes; 

• Arrival time: timed arrival of workload modes and their associated data. 

Workload modes occur due to either external events that occur due to user—

computer interaction  or internal events that arise due to changes in the data; 

• Global resource interactions (represented as overhead), such as schedulers, 

memory, communication resources, etc.: This is a result of the above two 

features; the overlap between different sets of concurrent, heterogeneous 

applications makes global resource interaction more significant to performance. 

There is much prior work on workload modeling, but none includes the above list of 

features when modeling workloads of single-user, mobile devices and uses them as the 

foundation of performance optimization of CHM architectures.  

Considerable prior work has recognized the significance of workload characterization 

for accurate performance evaluation [72], [73], [74], [75]. Previous research on 

workloads characterization has focused on constructing workloads using either existing 

benchmarks [49] or realistic data collection [76]. Exposing the system to a collection of 

benchmarks, either one at a time or collectively, does not construct a real workload. On 

the other hand, previous work that used realistic data by observing a specific system for 

some period of time has focused on the number of requests, session duration, number of 

accessed pages, etc. These parameters do not take into consideration much more vital 
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characteristics of the request itself, such as the complexity of the request, the number of 

simultaneous instances of each request type, or the time granularity of the request that 

may be limited by single-user access patterns, etc. Some previous work used statistical 

models to represent workloads [77], but these aggregate instances do not permit modeling 

of individual usage patterns. Finally, most of the previous work has focused on server 

workloads [78], [79]. Next, we elaborate more on different types of workload analysis, 

including existing workload modeling and workload characterization techniques. 

4.3.1 Workload Models 

We group existing workload models in the literature review into three categories; 

Benchmarks, Graphs, and Traces. 

 

A. Benchmarks 

Previous research on workloads has focused on constructing representative workloads 

using existing benchmarks [49]. Joshi et al. propose an approach to identify similarities 

between programs according to microarchitecture-independent characteristics [80]. Hoste 

et al. use program similarities to predict programs’ performance in advance [81]. In 

contrast, Vandierendonck et al. develop techniques to identify differences between 

benchmark programs [82]. However, exposing the system to a collection of benchmarks, 

either one at a time or collectively, does not construct a real workload. When models of 

single-user usage patterns are used, distinct modes of operation emerge that do not 

emerge from a random collection of interacting programs. 

In Chapter 3 we concluded that existing benchmark suites such as SPEC, MiBench, 

MediaBench, and EEMBC represent the workload of a batch style execution system. 

Thus, they do not model concurrency and external timing of input arrival. Because 

existing benchmark suites focus only on single program executions, existing benchmark 

suites cannot be used to evaluate the performance of the CHM that process timed sets of 

concurrent heterogeneous applications. 

 

B. Graph-Based 

Some existing workload models can be used to model application parallelism. One 

popular representation of application parallelism is task graphs [83], [84]. These graphs 
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are composed of nodes that represent functions and arcs that show the dependencies 

among these functions. 

D. Ferrari [85] introduce user behavior graphs. The nodes of a user behavior graph 

represent different types of user requests. The arcs associated with probabilities represent 

the sequences of user requests. If overlap option was chosen by the user, the user can 

issue as many requests as needed without having to wait for the completion of the 

existing one. Thus, these requests are simultaneously executing on the system.  

User behavior models are hierarchical. In other words, high-level workloads will be 

translated into a stream of low-level workloads. For that, Calzarossa et al. define a 

layered framework for the modeling of user behavior models [86]. Markov chain models 

can be used to identify dependencies between user requests [87], [88], [76], [89]. Later in 

this thesis, we show how Markov chains are too costly for recognition of workload 

modes in single-user devices. Although user behavior graphs seem to be a good choice 

for emergent workloads, they do not model the arrival time of requests.    

 

C. Trace-Driven or Measurement 

Both benchmarks and graphs are a representation of system workloads that may include a 

large margin of error. Thus, another type of workload models is based on the collection 

of traces via measurement. Traces are used to identify the key characteristics of a real 

execution behavior. To capture a real behavior, accurate instrumentation need to be 

developed. Further, to capture more characteristics about the execution behavior there is a 

need to insert a large number of checkpoints simply such as print statements into the 

system. Still further, because the collected data are usually large there is also a need for a 

tradeoff analysis between collection overhead and the accuracy of the model. Moreover, 

appropriate techniques have to be developed, so that it can be applied to ensure the 

quality of the derived workload model [90], [91]. While they are more accurate models of 

workloads, trace driven models incur overhead in terms of instrumentation setup and the 

amount of collected data. Next, we survey some workload characterization approaches 

that can be used in that regard. 
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4.3.2 Workload Characterization Approaches 

There are several workload characterization approaches that can be used to generate 

workload models. We classify them into three groups; numerical, statistical and 

stochastic. 

 

A. Numerical 

One numerical technique used in workload characterization is clustering [91]. Clustering 

is used to reduce the volume of collected data by discovering patterns in data. Two 

primary clustering algorithms are: k-means and hierarchical clustering [92]. As discussed 

earlier, Joshi et al. used both clustering approaches to identify similarities between 

programs [80]. Calzarossa and Serazzi [93] apply numerical fitting techniques to model 

the fluctuations in job arrival patterns. Both clustering and fitting techniques are needed 

to identify representative arrival patterns.  

 

B. Statistical 

Numerous studies have focused on modeling workloads by collecting workload traces or 

realistic data [94] and developing statistical models to fit these data based on specific 

attributes of workloads [77]. However, these approaches fail if the data is not stationary 

[95]. For example, Chiang et al. found that collected data may not have the same pattern 

during different times in the year [94]. S. Hotovy finds that workloads are also different 

at different installations and as users learn better how to use the system [96]. Moreover, 

previous work has focused on less significant system characteristics such as the number 

of requests, session duration, and the number of accessed pages, etc. These parameters do 

not take into consideration much more vital characteristics of the request itself, such as 

the complexity of the request, the number of simultaneous instances of each request type, 

or the time granularity of the request. 

Descriptive statistics has been widely used to characterize workloads [73], [97], [74], 

[98]. This model targets batch and interactive systems [91]. For the workload of personal 

computers, general descriptive statistics are used to identify user behavior [99]. But these 

aggregate instances do not permit modeling of individual usage patterns. Moreover, most 

of these studies model only the static characteristics of the workload. To model the 
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dynamic characteristics of the workload, graphical and mathematical methods are used. 

Thus, statistical and numerical models are static models, in contrast with the behavior of 

users, and may yield misleading results when using the wrong model. 

 

C. Stochastic 

The work of [100] builds a model of instructions’ sequences of individual jobs using a 

Markov chain model.  Markov chains are composed of states that represent different 

instructions and arcs that represent the possibility of instruction transition or sequences. 

Stochastic models, based on Markov chains, are used by G. Haring [101] to represent 

task interactions. Another domain that stochastic models are used in is the identification 

of phases that are used to represent the execution behavior of a program. A computer 

program is as a sequence of phases that differ in terms of processing, communication, 

memory access patterns. Carlson et al. [102] analyze the execution profile of an 

application in order to identify its phases. The execution profile is defined as a sequence 

of clusters of periods that have roughly uniform processor utilization and separated by 

sudden changes in processor utilization. Waheed and Yan [103] find by studying 

computational fluid dynamics applications that the characterization of phases can be used 

to develop tuning methodologies In general, stochastic models are not scalable while the 

number of workload modes and processors increases – something we discuss thoroughly 

in the next chapter. 

By focusing on emergent single-user multicore computers, we differentiate from all 

other workload approaches in which workloads are derived from stochastic models of 

arrival.  Usage patterns of single individuals are far more tractable than workload models 

that arise due to the interaction of many individuals vying for access to limited resources. 

We focus on building a classification scheme whereby architectures can be categorically 

optimized to classes of individual user access patterns.  

In general, these techniques can be used to develop a single-user model of usage 

patterns, which then result in a new form of benchmarking of the form shown in Figure 6. 

One purpose of this thesis is to show why this new form is necessary for emerging CHM 

computers, which are used by single individuals for processing and communications with 

other computers. We do so by focusing on the need to optimize to significant changes in 
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workload patterns, or workload modes, and show how this optimization is not likely to be 

effective in the absence of more sophisticated forms of benchmarks that are suited for 

emerging WSPs. 

4.3.3 A Summary of Workload Modeling Techniques 

We summarize the above discussion of workload modeling and characterization 

techniques. We classify these techniques based on two orthogonal factors: (1) task 

concurrency and type, and (2) arrival timing. The intersection between the values of these 

factors results in a different performance evaluation model. Table 10 summarizes our 

classification. 

 

Table 10: Performance Evaluation Models Classification 

                      Timing                                         
 
Concurrency / Type 

Un-timed Timed 

Single  Benchmarks, Traces  Stochastic, Statistics 
Homogeneous Benchmarks, Behavioral Graphs Stochastic Multiple 

Heterogeneous Benchmarks, Behavioral Graphs Workload Modes 

 

Benchmarks are presented to the system in an untimed manner. Further, they are 

presented to the system individually or concurrently (multiple copies of the same 

benchmark submitted to the system). Recently, prior work has considered heterogeneous, 

concurrent benchmarks. The number of running benchmarks matches the number of cores 

and thus these benchmarks are statistically mapped to these cores. While behavioral 

graphs are interesting because they profile the user behavior, which may expose the 

system to concurrent tasks, they lack the inclusion of arrival time information. Only 

stochastic processes can model the arrival time, but these times are not real, they are 

based on statistical analysis of collected data or traces. Further, there is not a stochastic 

model that models heterogeneous concurrency. 

Another level of classification that can be considered is when the type of architecture 

is included. Architectures can be classified as uniprocessors or multiprocessors, similar to 

the concurrency and heterogeneity features of the software. Multiprocessor architectures 

are further classified as being either homogeneous or heterogeneous. None of the above 
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techniques have also considered the overhead of maintaining a heterogeneous set of 

processors that are especially used to process a heterogeneous multi-channel input. As a 

result, we needed to develop a workload model that includes all of these features and 

effects that can be then used to evaluate CHMs.  

4.4 User Profiling and Usage Pattern Discovery 

Perhaps the greatest potential of the Capacity metric is to use it in conjunction with user 

profiling. In this way, the resultant Capacity shapes can be used to identify where 

performance of the CHM, in effect, is wasted on the user, especially characteristics of an 

individual class of user who uses their mobile device in very different ways from other 

classes of users. This will ultimately result in caps placed on Capacity curves/shapes, in 

which, above a certain shape, performance of the CHM is wasted. At this point the 

computer designer can use information developed in the analytical model in order to 

provide performance to the individual user that will actually have an effect on the user. 

Further, since our Capacity metric is used to model the performance of CHMs optimized 

to single-user usage patterns, usage pattern discovery is key. While we are not modeling 

real usage patterns, we also survey methods of usage pattern discovery for the sake of 

completeness. 

We have previously shown that user access patterns of webpages can result in single 

CHM architectures with significant performance differences [104]. There are two 

primary user profiling approaches. Explicit profiling is done  through explicit input from 

the users themselves in the form of questionnaires, interviews, and polls, etc in order to 

capture their interests [105]. Implicit profiling, or indirect profiling, is done by observing 

the navigation patterns of users using client or server logs. User profiling commonly uses 

machine learning techniques to discover potential interests and thus be able to create 

useful patterns in the profiles [105].  

Once data is collected, the pattern discovery process starts. Several methods from 

different fields such as statistics, data mining, machine learning, and pattern recognition 

can be used to do pattern discovery. Kosala and Blockeel [106] classify the purpose of 

Web usage mining to either understanding the user behavior so that the Web site can be 

optimized accordingly [107], [108], [109] or to improve the website’s effectiveness 
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[110]. Web personalization to user preferences has been done using artificial intelligence 

techniques in [108], [109].  

It is essential to ensure that accurate usage profiles are established in order to improve 

the efficiency of design choices. Hence, there is a need to gather as much information as 

possible pertinent to a user’s interaction with the system in order to identify behavioral 

patterns of users that could occur. In future work, we will investigate these and other 

techniques in order to create clusters of user profiles. For the purpose of this thesis, while 

our usage scenarios are artificially made-up, their implementation is real, which we think 

is enough to show the potential of our new performance metric. 

4.5 The Modeling Environment for Software and Hardware (MESH) 

The development of WSPs needed to simulate the performance (or the Capacity) of 

CHMs that process workloads result from different usage patterns of our multimedia cell 

phone example. Performance simulation of CHMs requires the manipulation of: 

1. Threads instead of instructions; 

2. Multiple-ISA processing elements instead of functional units; 

3. Memories instead of state registers; 

4. Complex interconnection networks instead of simple, message-passing channels 

or even wires; 

5. Chip level (global) dynamic schedulers instead of dataflows; and 

6. Timing that results from the intersection of discrete events running on 

heterogeneous processing elements instead of global clock cycles 

The above list of design elements requires the simulation tool to manipulate: 

a. Global-local state preservation and coordination;  

b. The overhead of global resource interactions (such as communication and 

memory contention, congestion, and synchronization); 

c. Task migration between heterogeneous processing elements; and 

d. Different triggering methods  

Further, the exploration of these design elements needs: 

• Quick design space exploration and 

• Easy debugging  
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Here, we first perform a survey of existing simulation methodologies, languages, and 

tools. Then, we show why each tool fails to simulate CHMs. Finally, we include a 

discussion of our MESH simulator and contrast it with existing simulators. 

Cycle accurate and instruction accurate simulators have been used for performance 

evaluation of CHMs. As computers integrate more processing elements, ISSs cannot be 

used to simulate the performance of CHMs, not just because they are slow, but also 

because they cannot manipulate the hardware and software features mentioned in the 

above list. Table 11 summarizes the list of existing tools reviewed, classified as 

performance specification vs. performance evaluation. Those tools that are classified as 

performance evaluation they also include performance specifications as well, usually 

conducted by a third party tool or language. 

 

Table 11: System Level Performance Languages and Tools 

Specification Evaluation 

VHDL, Verilog SpecC 

NI LabVIEW FPGA SystemC 

JHDL Ptolemy 

JHDLBits ARMn 

JBits GEMS 

 

The Hardware Description Languages (HDLs), such as VHDL and Verilog, have 

been long used to describe systems at the RTL. They are only used to describe the 

hardware and not the combination of hardware and software. Further, they are too 

detailed which limits fast design space exploration. For Field Programmable Gate Arrays 

(FPGAs), there are tools that combine software code with hardware code to create a 

functional design. Examples of these tools are NI LabVIEW FPGA [111], Java-based 

structural Hardware Description Language (JHDL) [112], [113], JBits [114], and 

JHDLBits [115]. However, these tools are not mature; they still lack modeling some 

design features. Further, they are not much different from traditional HDLs because they 

still simulate registers, wires, and gates, etc. They do not describe high-level evaluation 

of workloads executing on heterogeneous multicore chips. 
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System-level modeling languages such as SpecC, Ptolemy, and SystemC are built 

upon existing programming languages such as C and C++, so they do not have dedicated 

compilers. They use the compilers built for pre-existing programming languages. These 

languages have different aspects of system modeling. SpecC is used in Computer Aided 

Design (CAD) community. It uses communication refinement for performance modeling 

and to link different abstraction levels together [116]. The goal of SpecC is to eventually 

plug its modeled design to automated refinement and synthesis tools [116]. One of the 

major drawbacks of SpecC is that it limits user extendibility feature [117].  

Ptolemy II is a java-based tool that is developed by the Ptolemy Group [118]. It 

supports heterogeneous behavioral hierarchy through an actor-oriented design in which 

actors are software components that execute concurrently. The semantics of a model are 

defined by a software component that exists at each hierarchy layer (called the director) 

and implements a model of computation. However, Ptolemy II is used in the embedded 

software and synthesis community [116], [119]. Thus, in order to be used in a different 

domain, the designer needs to use more instructions. 

In contrast, SystemC allows extensions of the language to be created by users [116], 

[119]. SystemC’s goal is to allow quick design space exploration by facilitating the 

creation of designs with different variants [120]. However, there is a three-fold major 

drawback to using SystemC:  

• SystemC is generally used with an HDL where SystemC models the testbench 

and the HDL simulator models the system itself.  

• Debugging; errors in SystemC code will not be found until runtime during 

testing. Further, these errors are C++ errors; they are not related to the 

modeled system itself, making debugging complicated and time consuming.  

• SystemC models are even more complex because performance analysis 

procedures and the underlying communications structure have to be specified 

by the user.  

For these reasons, SystemC and the other system level languages are inappropriate to 

simulate CHMs that process heterogeneous, multichannel inputs.  

Recently several simulation tools targeting multicore systems have been developed 

such as GEMS [121] and ARMn [122]. Both simulators are cycle-accurate. The GEMS 
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was initially developed to simulate multiprocessors in database and Web servers. The 

ARMn is targeting single-ISA (that is ARM) multicore systems. In summary, design 

languages and simulation tools described in this section are inappropriate to model 

hundreds of heterogeneous multicore architecture variations and evaluate their 

performance in a timely manner.  

Because existing simulators failed to simulate the performance of CHMs that process 

workloads, we used our MESH simulator to model our cell phone example in the 

experiments of Chapters 5 through 7. The Modeling Environment for Software and 

Hardware (MESH) permits performance and power evaluation when threads execute on 

sets of heterogeneous resources under a variety of custom schedulers [123], [124]. MESH 

explores CHM design above the level of the ISS, where designers deal with threads, 

processors, and memories instead of instructions, functional units, and registers.  

MESH enables designers to evaluate the performance effects of design trade-offs in 

the numbers and types of processors and communications mechanisms, scheduling 

decisions, and software tasks (arrival time and complexity) on the overall performance of 

CHM systems. MESH has also previously proven its accuracy and speedy simulation 

[125], [126].  

MESH increases simulation performance by emulating target system performance 

using annotations inserted within the code. These annotations are generated by executing 

the same application code on the real platform to capture data dependent execution. This 

approach is called execution-driven simulation with cross-profiling or back-annotation. It 

has been widely used for traditional multiprocessor simulation [127], as well as for 

simulation of CHM systems [128] [124]. These annotations capture the computational 

complexity of a program’s code. Once the annotation region is reached, the simulation 

kernel determines the physical timing needed to execute the code of this region using the 

computational complexity values in these annotations. Each piece of code has to be 

annotated only once. This allows speeding up the design space exploration. This process 

can be automated using profiling tools [128].  

MESH is also capable of evaluating the effects of bus and memory contention on 

overall system performance. Once a shared resource access is accessed, an annotation 

must be inserted to determine contention [124]. 
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The process starts with a program’s source code. Then, the designer must identify the 

locations in the code in which annotations need to be inserted. Annotations need to 

capture the control flow of a program [124]. Therefore, annotations are usually inserted at 

the end of every loop and in every path of the branch. 

Schedulers use “consume calls” to resolve the logical threads of the software to the 

physical threads of the chip resources. “Consume calls” represent the complexity of a 

program fragment. A program fragment is defined as the granularity of software in a 

simulation. Therefore, fragments can be as large as the threads or as fine as the 

instructions. In general, fragments are finer than individual threads and coarser than 

individual instructions. If fragments are too coarse, accuracy suffers, and if fragments are 

too fine, simulation time suffer. Significantly, the annotation of “consume values” for 

program fragments is flexible, and this in turn makes design space exploration faster. 

However, the accuracy of these values is an important part of creating a good model.  
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Chapter 5 

Workload Mode Identification Models 
 

 
 

 

 

 

The initial objective of this work was to design and evaluate CHMs around our definition 

of workload modes that arise from single-user usage patterns. A central challenge for this 

type of design is how to model and identify the workload modes at real time, otherwise 

the systems do not have the ability to optimize to distinct situations as they are 

encountered. Thus, we analyzed and evaluated two modeling techniques, a Workload 

Classification Model (WCM) and a Hidden Markov Model (HMM), against their ability 

to permit dynamic optimization when specific workload modes were encountered. We 

include experimentation on our multimedia cell phone example and in so doing 

demonstrate why this work resulted in the need to develop the Capacity metric.  

5.1 Workload Classification Model 

WCM extends prior work in microarchitecture-independent workload characterization for 

individual benchmarks [129] by including timed concurrent applications. Our initial 

procedure is:  

Step 1: Characteristic Extraction. Each task type, Y, mentioned in Section 2 has a 

different working data set, S, and complexity, C, classified into three relative classes: 

low, medium, and high. Working data sets are further classified based upon their relative 

frequencies of update: cached and non-cached. Characteristic extraction is conducted in 

an adhoc manual manner by the system designer at design time. 

Step 2: Forming wm Vector. Step 1 resulted in m different workload mode 

characteristics. wm=[w1,...,wj,...,wm] represents the workload characteristics vector of 

It doesn’t matter how beautiful your theory 
is, it doesn’t matter how smart you are. If it 
doesn’t agree with experiment, it’s wrong. 

             Richard P. Feynman 
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length m, characterizing each workload mode wm, in which wj is a workload 

characteristic.  

Step 3: Forming M Matrix. Each usage pattern has n workload modes. For example, the 

usage pattern in Figure 1 has 12 workload modes. M  is the generated matrix of dimension 

n×m that represents a usage pattern, in which rows are wm vectors and columns are the 

number of instances, s, of each workload characteristic, w, in wm.  

Step 4: Forming R Vector. We suggested normalized weights, r, that correspond to the 

task complexity. For instance, baseline JPEG was assigned higher weights than text since 

JPEG has higher complexity than Text. Different JPEGs have different weights due to 

data content. Further, cached JPEG has lesser complexity than non-cached JPEG. 

Generally, r takes values in the range m ≥ r ≥ 1.  

Normalized complexity weights are generated by dividing the cycle budget of each 

application by the maximum cycle budget needed by an application in the system. We 

extend Sim-Profile [130] of SimpleScalar to extract the number of cycles for each 

application. Sim-Profile profiles each application when it runs on a different processor 

type.  

Step 5: Assigning R Vector Values to M Matrix. Matrix M is then multiplied by weight 

vector R. We normalize each column (characteristic) in the matrix by subtracting the 

mean value and dividing it by the standard deviation. The goal of the normalization is to 

put all characteristics on a common scale. Then, we linearly combine the absolute values 

in each row (workload mode vector wm).  

This algorithm is used to identify workload modes at runtime, exploiting some design-

time knowledge. The algorithm characterizes the workload of each mode individually 

without considering the prior workloads that might exist in the system before the arrival 

of the current mode. We gathered the data used by the WCM by observing the workloads 

of real-time usage patterns of the single-user cell phone example. The workloads are 

composed of sets of applications that differ in terms of datasets and arrival times and are 

therefore sufficient for the purpose of illustration.   

These usage patterns are represented by a data array in the format of [time, 

application(s)], in which time is the arrival time of application(s). The data array is then 

used as an input to a simple execution engine that reads the data array. Each workload 
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mode is defined at the arrival time (wm vector). The engine identifies all workload 

modes in the data array and starts filling the M  matrix by computing the number of 

instances of each application in different workload modes. Then it calls the profiler for 

each application to compute the complexity of each application; this forms the R vector. 

Finally, it assigns the complexities to Matrix M . 

 

 

Figure 20: Workload Mode Characterization 
 

The number of distinguishable workload modes from a system is too large. Therefore, 

to avoid the complexity of handling all of them at run time, several workload modes are 

clustered. This clustering is based on the execution cost of the workload modes. We build 

a vector table that includes all workload modes identified at design time as well as those 

identified at run time. Based on the values of the Global Chip State (GCS), a simple 

lookup in the vector table of workload modes can be carried out to find the optimal 

optimization profile for the identified workload mode. 

Figure 20 shows the normalized average workload complexity for each workload 

mode in three usage patterns (Figure 6, Figure 7, and Figure 22 are the first, second and 

third usage patterns respectively). Each of the first and third usage patterns has 12 modes, 

while the second usage pattern has only seven modes. Workload modes are clustered into 

a set of unique modes. These normalized complexities are considered as workload mode 

unique IDs that can later be used to identify workload modes at run time. For instance, 
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modes 5, 7 and 12 in usage pattern 3 and mode 10 in usage pattern 1 have relatively the 

most complex workloads, while modes 1, 2, 3, 4, 6, 8, and 9 in usage pattern 3, modes 2, 

5, 7, 8, and 12 in usage pattern 1 and modes 3, 4, 6, and 7 in usage pattern 2 have the 

lowest workload complexity. High complexity workloads have a higher number of jobs 

and more of type streaming while low workloads have fewer jobs and more of types like 

text processing.  

5.2 Hidden Markov Based Model (HMM) 

Our initial WCM model assumed that there was sufficient distance between the time 

intervals between modes so sequence does not matter. However, if model sequence 

matters, this assumption is invalid and a more complex model that cannot take advantage 

of design-time modeling of workload modes is required. HMMs are one such model. 

HMMs is a useful framework for modeling state transitions in a variety of areas such as 

speech recognition and bioinformatics [134]. Computer architects also use HMM in 

workload modeling of different computer systems [131], [132], [133]. Figure 21 shows a 

simple three-state diagram to capture the sequence relationship between workload modes. 

Here, we assume that current state depends on only the previous state, but not earlier 

states, or modes. If sequence matters, our initial model must be modified with three 

additional steps (using the notation similar to Rabiner’s [134]), thus forming an HMM: 

 

 

Figure 21: A Simple Three-State HMM Diagram 

 

• Step 3.a: Determining the A, B and π Matrices. A = matrix of transition probabilities 

aij for moving from mode wmi to mode wmj in one time step; B = observation 

probabilities of observing a symbol while being in mode wmj; and π = the initial mode 

probability distribution. 

wmi wmi+1 
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• Step 3.b: Determining the inter-modes duration probability Matrix X. This step 

enhances HMM to be used in our problem space in which a mode’s inter-arrival time is 

unpredictable due to the arrival of external event. Steps 3.a and 3.b could be done through 

user profiling.  

• Step 3.c: Running an HMM re-estimate (learning) algorithm to adjust the HMM 

parameters (A, B, π) based on the forthcoming workloads. The Baum-Welch algorithm is 

one of the popular algorithms used to do this. It uses the forward-backward procedure to 

re-estimate the parameters of the model as soon as new data are available. 

Our enhanced HMM model results in a workload mode transition table in which the 

next workload mode can be predicted based on the current workload mode or chip mode 

and the values of the GCS. The data in the workload mode transition table is updated at 

run time using a learning algorithm. In the next section, we experimentally evaluate the 

use of the WCM and HMM models used to identify persistent changes in the system 

loading, modeled as workload modes. 

5.3 Experiments 

Our goal in the experiments is to compare the use of WCM and HMM through the 

illustration of a single-user CHM with Internet access. While our example is small, it 

includes a representative set of applications that can be modeled with arrival times that 

cause overlap and are differentiated by type, as discussed previously. Our main goal is 

the comparison of the use of single-user workload mode modeling with application-

independent optimization in a CHM.   

We start by describing the experimental setup, then describe three sets of 

experimental results: one that examines the impact of mode sequence on modeling, one 

that describes how WCM and HMM differ in terms of overhead, and one that evaluates 

several candidate architectures for optimal performance.   

5.3.1 Example: Our Multimedia Cell Phone 

Our cell phone example has been developed as a basis of a benchmark suite for 

heterogeneous multicore systems [1] and is discussed previously in section 3.3. The 

example is modeled using The Modeling Environment for Software and Hardware 
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(MESH) simulator, which is discussed in section 4.5. We test the example system using 

differnet usage patterns. Examples of usage patterns used in our experiments are in 

Figure 6, Figure 7, Figure 22, Figure 23, and Figure 24. For comprehensive testing 

purposes, we include three additional usage patterns, which also use the tasks shown in 

Table 7. Note that usage patterns, in general, differ from each other in terms of (1) the 

duration of the pattern, (2) the number of workload modes in the pattern, (3) the inter-

arrival times of workload modes within a pattern, (4) the number and complexity of 

applications in each workload mode, and finally (5) the sequence of workload modes. 

The five usage patterns developed and used in our experiments depict some of these 

differences. 

 

Figure 22: The Third Usage Pattern 

 

Figure 22 shows a usage pattern in which the user is talking on a phone with travel 

agencies while browsing the Web for cheap flight tickets. Note that travel websites 

include search functionalities and contain a large number of photos and Macromedia 

Flash files. Further, the user enabled the speech recognition feature to look up phone 

numbers. Note that as time progresses, the user places different requirements on the 

systems as different combinations of applications execute. 

Consider another usage pattern, timeline for which is shown in Figure 23. In this 

usage pattern, the user is talking on a phone with a friend while sharing pictures of her 

pets. This usage pattern exercises the system differently from the previous usage patterns, 
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requiring encoding and decoding of multiple images at the same time. Finally, consider 

the usage pattern shown in Figure 24. In this usage pattern, the user is listening to music, 

surfing social networking websites, and exchanging pictures with a friend.  

 

 

Figure 23: The Fourth Usage Pattern 

 

 

Figure 24: The Fifth Usage Pattern 

 

Because of the different set of application sets, input data, deadlines and constraints, 

different usage patterns may exhibit different system performance, capturing the 
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strengths and weaknesses of each architecture. Our five usage patterns are sufficient to 

show that single-user future CHMs open up the possibility to be designed as WSPs, but 

we agree that a complete evaluation of a CHM may include tens of different test usage 

patterns executing on the same architecture. 

 

5.3.2 Architecture Modeling 
Three different processors (AMD K6-2E+, Philips PNX1700, and ADSP-BF533) were 

chosen for our experiments to model the potential diversity of the computational 

capabilities, power consumption, and area requirements of cores in even simple 

heterogeneous multicore systems. Based upon the job types that dominate virtually all 

cell phone applications, it seems reasonable to select three categories of processor types 

to simulate: PNX1700 is the Media processor, ADSP Blackfin533 is the DSP, and the 

AMD K6-2E+ is the GPP. The ADSP-BF533 is used because it is highly optimized for 

DSP applications, such as Viterbi and Convolutional. The PNX1700 is highly optimized 

for media applications such as MP3 and JPEG encoding and decoding. The AMD K6-

2E+ is a general-purpose processor that executes all applications fairly well. Although it 

consumes more power, the GPP is the second best choice for image files, which is 

interesting because the DSP barely outperforms the GPP for movie files. Both the DSP 

and GPP are significantly faster for text processing than the Media processor, and the 

GPP is the fastest.  

The GPP is the worst processor in terms of size and power consumption. It is four 

times larger than the media processor and two times larger than the DSP processor. In 

terms of power consumption, the GPP consumes five times more power than the Media 

processor and almost 20 times more power than the DSP processor. Thus, the quantity of 

GPP processors available in the system and the tasks to be scheduled for the processor 

should be limited in order to consume less energy. Further, the Media processor is 

essential for a mobile device due to its small size and excellent performance for image 

and movie files. The only disadvantage for the Media processor is its inability to deal 

well with text processing. The area and power consumption for these processors were 

derived from information available from [135], [136], [137]. These processors are 

inadequate for use in a mobile device such as a cell phone because of area and power 
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requirements. However, they are adequate to represent the key relative system-level design 

trade-offs for fixed-area devices, because they are consistent with each other. Lack of 

access to proprietary information makes a detailed examination of the processors used in 

mobile computing devices impossible. 

Our target implementation is a single-chip heterogeneous multiprocessor with a fixed 

area budget to be populated by four categories: Media Processors (M), Digital Signal 

Processors (D), General Purpose Processors (G), and Chip-Level Cache (C) with a 1024K 

cache set aside for data processing. The Central Processor (CP), or controller, is used to 

run the identification and scheduling algorithms. These sets produce a total of 16 

different architectures, as described in Table 12. eCacti [138] was used to determine the 

cache area and cache power consumption based on the selected cache size, block size and 

technology. We assumed a 65-nm manufacturing technology. Also, we assumed the 

power consumption of a processor in an idle state is 20% of its active power 

consumption. 

 

Table 12: Modeled Architectures 

 Architecture Central  
Processor 

 Architecture Central  
Processor 

1 3G G 9 4M, 4D D 
2 6D D 10 6M, 3D D 
3 12M M 11 8M, 2D D 
4 1G, 4D G 12 10M, 1D D 
5 2G, 2D G 13 1G, 2M, 3D D 
6 1G, 8M G 14 1G, 4M, 2D D 
7 2G, 4M G 15 1G, 6M, 1D D 
8 2M, 5D D 16 2G, 2M, 1D D 

 

The Chip Level Scheduler (CLS) used in these experiments permits tasks to execute 

on processors other than the one that provides the best performance for the task type. 

Thus, note that all the application tasks are eligible to be placed at any of the processing 

resources. For a multiple-ISA architecture, this requires separately compiled copies of the 

same task available for the different processor types. Despite the requirement for more 

memory storage, prior work shows that this type of programming of heterogeneous 
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multicore chips may result in better performance than static scheduling [139]. When the 

CLS is triggered, all tasks are candidates for redistribution on the processor resources. 

Furthermore, this CLS permits task migration between cores. We do not focus on task 

migration due to preemption that arises from QoS priorities, such as in streaming. Rather, 

we focus on the migration of tasks to better performing resources when they become 

available. Because tasks, shown in Table 7, are small, independent tasks and task 

migration in CHMs typically requires complex approaches, we model migration by 

simply restarting task execution on the new processor. This requires task state rollback. 

Our prior work implemented task migration with rollback in the MESH kernel and shows 

advantages of it [140]. 

5.3.3 Overhead Modeling 

A central question in computer design is: when does performance overcome the cost of 

the overhead and how will this relationship scale? Since we seek to understand of the 

impact of design-time knowledge of workloads on the design of the architecture 

(discussed in the next section), we include experimental data for the impact of overhead 

on mode identification.  

First we analytically model the overhead of both WCM and HMM. We use the Big-O 

notation for time and space complexities to describe the behavior of both WCM and 

HMM. We also assume that the basic arithmetic operation on numbers take O(1) constant 

time that is the uniform cost model of time and space. For example, in step 5, Matrix M  

of size n*m is multiplied by Matrix C of size m*1. Matrix multiplication requires three 

for-loops resulting in time complexity of n*m*m or O(n*m2). The space complexity from 

creating the results matrix of size n*1 is O(n). 

The learning and searching phases of the HMM require algorithms of three orders of 

magnitude of time complexity and two orders of magnitude of space complexity. Elliot et 

al. have shown that the HMM can be enhanced to give better predictions at the expense 

of increasing the space and time complexity of the learning algorithm to O(n4) [141]. 

Therefore, the most expensive step in HMM is the learning phase. It requires algorithms 

of at least O(n3) of time complexity and O(n2) of space complexity. However, the most 

expensive step in the WCM is step 5. Matrix multiplication requires time complexity of 

O(n*m2) and space complexity of O(n). Generally speaking, compared with HMM, our 



 77 

WCM is two orders of magnitude faster and requires an order of magnitude less memory. 

Thus, HMM is significantly more complex than the WCM model, which points in the 

direction of the necessity for design-time workload models. Next, we experimentally 

evaluate overhead. We experimentally model the overhead due to: (1) gathering global 

chip state, (2) evaluating and sending scheduling decisions, (3) bus contention, (4) cache 

memory misses, and (5) task migration. 

The architecture used connects processors via a 32-bit wide 200-Mhz bus. In order to 

capture the effects of contention on the CLS overhead and overall system performance, 

the usage of the system bus was carefully modeled. Since the bus is designed to primarily 

move large continuous amounts of data between the processors and the memory, it 

operates within a burst mode. The burst mode allows a processor to gain bus access for 

multiple cycles, allowing the arbitration for the bus to occur much less frequently. 

Our simulations perform bus arbitration every 50 bus cycles. The bus is used every 

time a streaming application is running by periodically sending out a burst of data to the 

processor that needs it. The bus is also used every time that one task completes its work 

and must pass on its output data to a task residing on a different processor. Finally, the 

bus is used every time the CLS must gather GCS or send the task mapping decision out 

from the CP. Bus contention not only affects the latency of individual tasks, it also 

interferes with the CLS. We take all of this into account when analyzing the CLS 

overhead. 

Even though the scheduling task has the highest priority on the bus, it still has to wait 

up to 50 cycles for the current bus burst to complete. Since our bus operates in burst 

modes of 50 cycles, we make an assumption that one burst is enough to transfer the GCS 

of one processor to the scheduling master (50 cycles * 32 bits = 200 bytes). Therefore, 

the overhead of gathering or sending information for one scheduling decision (measured 

in processor cycles) is:  

((Number of processors * 50 bus cycles) + Bus contention delay of 50 bus cycles). 

To ensure fair arbitration, the bus uses a simple lottery-based arbitration strategy 

outlined in [142] which is implemented within a hardware arbiter. Scheduling decisions 

are given highest priority, since they do not use the bus for very long, but can be a 

bottleneck to other work being done in the system. Next is streaming applications, 
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making them more likely to gain the bus in the case of contention. We additionally 

differentiate the phone call application as more important than other streaming 

applications, due to its high quality of service requirement. Finally, streaming 

applications have higher priority than job-based applications. 

In MESH, global resource contention is modeled via annotations containing shared 

resource accesses, as discussed earlier in section 4.5 [124].  

5.3.4 Workload Mode Sequence 

First, we experimentally verify that workload mode sequence has impact on chip-level 

optimization. We ask whether the optimization of the system to a previous chip mode has 

an impact on its ability to identify and respond or optimize to a current workload mode. 

A major reason for using HMM is because it models the effect of sequence, and WCM is 

not useful if workload mode sequence must be included in the runtime model. We 

measure the overall response time of the system as performance-optimizing overhead. 

Optimization overheads are affected by the GCS value that includes the previous mode, 

or chip mode. Thus, we look at the CLS overhead caused by different workload mode 

sequences, for a total of 25 in all.  

 

 

Figure 25: Chip-Level Scheduling Overhead  
 

We chose five different workload modes from Figure 6. These workload modes 

represent five different workload categories: (a) concurrent job-based tasks (mode 1), (b) 

one job-based task (mode 12), (c) one streaming task (mode 4), (d) concurrent job-based 

and streaming task (mode 3), and (e) one job-based and one streaming task (mode 8). We 

selected a sequence length of two, which is the minimum required to show the impact of 

mode sequence on CLS overhead. This results in 25 different sequence combinations. 

Further, three different arrival times of inter-modes were chosen; one second (∆t1), five 
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seconds (∆t2), and ten seconds (∆t3). Finally, we ran these experiments using chip 

architecture 13 from Table 12. 

Figure 25 shows the CLS overhead for the 25 different mode sequences, shown on 

the independent axis. On the dependent axis are the overhead values normalized to the 

sequence with the highest overhead. Figure 25 shows that: 

• Mode sequence affects scheduler overhead. First note that the inter-arrival time of 

modes matters to the overhead required to optimize a multicore architecture from 

one mode to the next. For instance, consider mode sequence (1,3). Overhead 

decreases as the inter-arrival time gets longer. In general, longer inter-arrival 

times (∆t3) lead to less CLS overhead since longer inter-arrival times typically 

mean less execution overlap and thus there is less opportunity for the scheduler to 

optimize. However, mode sequence alone sometimes invalidates this first-order 

conclusion. For instance, consider modes 3 and 4. Here, optimization overhead 

decreases when inter-arrival time of mode sequence (3, 4) increases from five 

seconds to ten seconds, but it does not in mode sequence (4, 3).  

• Scheduler overhead is dependent on both task type and arrival time. When new 

streaming tasks arrive to the system that is occupied by job-based tasks, the 

overhead incurred is larger because, in this case, arriving tasks have higher 

priorities than existing tasks resulting in preemption or even migration of running 

tasks and that incurs overhead and bus contention. An example is mode sequence 

(1, 4) in which a user started a phone call only one second after opening Gmail. 

This demonstrates that attempts to optimize require anticipation of how long the 

system is likely to remain in a specific mode, or else optimization can obstruct 

overall performance. This also demonstrates the impact of QoS requirements on 

chip-level optimization. 

Since mode sequence matters, it would seem that a complex model must be used to 

identify modes, such as HMM. However, if design-time knowledge of architecture can be 

used to eliminate the impact of mode sequence, then it is possible that the simpler and 

potentially more efficient WCM model can be used. 
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5.3.5 Overhead and Performance 

Table 13 and Table 14 show the average workload mode identification overhead for both 

identification models, WCM and HMM. Three different usage patterns were applied to 

these models. We look at both the time overhead in terms of simulation cycles and the 

space overhead in terms of bytes.  

 

Table 13: WCM Identification Overhead 

 WCM - Identification  

UP1 UP2 UP3 UP4 UP5 Average 

Arch. Time  
(Giga  
Cycles)  

Space  
(Kilo  
Bytes) 

Time  
(Giga  
Cycles) 

Space 
 (Kilo  
Bytes) 

Time 
(Giga  
Cycles) 

Space 
(Kilo  
Bytes) 

Time  
(Giga  
Cycles) 

Space 
(Kilo  
Bytes) 

Time  
(Giga  
Cycles)   

Space 
 (Kilo  
Bytes) 

Time  
(Giga 
Cycles) 

Space 
(Kilo  
Bytes) 

1 0.20 14.30 0.10 10.10 0.14 11.90 0.19 12.10 0.09 9.10 0.14 11.50 

2 0.18 13.50 0.09 9.63 0.13 11.50 0.16 12.10 0.09 8.73 0.13 11.09 

3 0.15 12.20 0.08 8.91 0.10 10.00 0.12 11.10 0.08 8.11 0.10 10.06 

4 0.21 14.60 0.11 10.50 0.15 12.20 0.19 13.20 0.09 9.30 0.15 11.96 

5 0.23 15.20 0.11 10.60 0.15 12.20 0.20 13.10 0.10 8.80 0.16 11.98 

6 0.20 14.00 0.09 9.32 0.12 10.90 0.19 13.50 0.08 8.32 0.13 11.21 

7 0.21 14.50 0.10 10.10 0.14 12.00 0.18 12.30 0.09 8.90 0.14 11.56 

8 0.22 14.90 0.11 10.50 0.15 12.10 0.20 14.10 0.10 9.30 0.15 12.18 

9 0.23 15.10 0.11 10.40 0.15 12.30 0.21 13.30 0.09 9.70 0.16 12.16 

10 0.23 15.00 0.11 10.40 0.14 12.00 0.22 13.90 0.09 9.50 0.16 12.16 

11 0.20 14.30 0.10 9.95 0.14 11.70 0.19 12.70 0.09 7.85 0.14 11.30 

12 0.18 13.60 0.09 9.59 0.11 10.50 0.16 12.90 0.09 8.49 0.13 11.02 

13 0.26 16.30 0.12 10.90 0.16 12.80 0.25 13.60 0.10 9.80 0.18 12.68 

14 0.26 16.20 0.11 10.60 0.15 12.50 0.23 15.10 0.10 8.80 0.17 12.64 

15 0.23 15.30 0.10 10.20 0.14 12.00 0.22 13.30 0.09 8.90 0.16 11.94 

16 0.26 16.10 0.12 11.00 0.16 12.60 0.24 14.60 0.10 10.10 0.18 12.88 

 

The simulation cycles consist of the bus and the CP cycles. Table 13 and Table 14 

illustrate the amount of identification overhead variation between the two models for 

different usage patterns of our cell phone example executing on different architectures. 

Table 13 and Table 14 show that the workload mode identification using WCM is, on 

average, 34 times faster than using HMM. Further, the identification using WCM is on 

average 83% more space efficient than using HMM. As a consequence of reducing the 

space overhead by 83%, the cache memory can also be reduced by 83%. Here, because 

the working data set of an identification model is called frequently, every time a 
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workload mode starts, we assume that the working data set of an identification model fits 

into cache. Again, the selected cache area is four times an individual Media processor’s 

area. For instance, three more Media processors can be included on the chip when using 

WCM. Thus, the system improves not only due to faster mode identification, but because 

there is more space left over to process the actual workloads.  

 

Table 14: HMM Identification Overhead 

 HMM - Identification  

UP1 UP2 UP3 UP4 UP5 Average 

Arch. Time  
(Giga  
Cycles)  

Space  
(Kilo  
Bytes) 

Time  
(Giga  
Cycles) 

Space 
(Kilo  
Bytes)

Time 
(Giga  
Cycles) 

Space 
(Kilo  
Bytes) 

Time  
(Giga  
Cycles) 

Space  
(Kilo  
Bytes) 

Time  
(Giga  
Cycles) 

Space 
(Kilo  
Bytes) 

Time  
(Giga  
Cycles) 

Space 
(Kilo  
Bytes) 

1 9.97 99.90 2.47 49.80 4.86 69.70 9.82 98.10 2.23 46.70 5.87 72.84 

2 7.89 88.80 2.06 45.40 4.16 64.60 7.71 87.70 1.90 44.30 4.74 66.16 

3 5.39 73.50 1.51 38.90 2.43 49.30 5.13 72.20 1.33 37.80 3.16 54.34 

4 10.90 104.00 2.90 53.90 5.24 72.40 9.10 91.00 2.64 52.70 6.16 74.80 

5 12.90 114.00 3.00 54.80 5.39 73.50 11.10 100.00 2.83 53.30 7.04 79.12 

6 9.36 96.80 1.80 42.50 3.37 58.10 9.19 94.70 1.63 41.30 5.07 66.68 

7 10.60 103.00 2.47 49.80 4.93 70.30 8.80 103.00 2.33 47.70 5.83 74.76 

8 11.70 108.00 2.90 53.90 5.16 71.90 10.10 97.00 2.57 52.10 6.49 76.58 

9 12.40 112.00 2.85 53.40 5.55 74.60 11.30 99.00 2.58 52.60 6.94 78.32 

10 12.30 111.00 2.85 53.40 4.93 70.30 10.20 94.00 2.66 51.70 6.59 76.08 

11 10.10 101.00 2.34 48.40 4.57 67.60 8.70 89.00 2.17 46.60 5.58 70.52 

12 8.21 90.60 2.02 45.00 2.90 53.90 8.03 89.00 1.91 44.10 4.61 64.52 

13 17.00 130.00 3.37 58.10 6.51 80.70 14.30 117.00 3.12 57.50 8.86 88.66 

14 16.80 130.00 3.00 54.80 5.80 76.20 15.10 121.00 2.81 52.90 8.70 86.98 

15 13.20 115.00 2.61 51.10 4.93 70.30 11.70 101.00 2.39 49.80 6.97 77.44 

16 16.10 127.00 3.49 59.10 6.15 78.40 14.40 109.00 3.29 58.20 8.69 86.34 

 

Table 15 shows the optimization overhead in terms of simulation cycles for both 

models. Again, we consider the same usage patterns and architectures in Table 12. The 

results in Table 15 follow the same results trend in Table 13 and Table 14. 

WCM shows consistently less optimization overhead than HMM through all 

architectures and usage patterns. In our cell phone example, using WCM decreases the 

optimization overhead by on average 49% compared with HMM. While the optimization 

overhead is not directly related to the identification models, the higher identification 

overhead results in workload mode overlap. This, in turn, results in greater GCS and thus 
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more time to gather, process, and schedule. In other words, the identification process is 

the input to the optimization process.  

 

Table 15: WCM vs. HMM Optimization Overhead 

WCM Optimization Overhead  
(Mega Cycles) 

HMM Optimization Overhead 
(Mega Cycles) Arch. 

UP1 UP2 UP3 UP4 UP5 UP1 UP2 UP3 UP4 UP5 

1 0.342 0.89 0.1 0.502 0.729 0.513 0.133 0.15 0.42 0.087 

2 0.444 0.167 0.192 0.213 0.107 0.666 0.251 0.289 0.541 0.193 

3 0.612 0.304 0.336 0.58 0.266 0.918 0.457 0.504 0.788 0.343 

4 0.413 0.146 0.17 0.377 0.104 0.619 0.22 0.255 0.509 0.156 

5 0.389 0.118 0.137 0.308 0.089 0.584 0.177 0.205 0.489 0.123 

6 0.549 0.234 0.274 0.491 0.111 0.824 0.351 0.411 0.731 0.299 

7 0.449 0.169 0.201 0.399 0.156 0.674 0.253 0.301 0.601 0.186 

8 0.501 0.205 0.237 0.436 0.178 0.751 0.307 0.355 0.633 0.247 

9 0.549 0.233 0.276 0.501 0.143 0.824 0.35 0.414 0.756 0.278 

10 0.588 0.262 0.301 0.521 0.201 0.882 0.394 0.452 0.693 0.303 

11 0.599 0.278 0.328 0.526 0.213 0.898 0.417 0.492 0.802 0.378 

12 0.605 0.294 0.322 0.517 0.243 0.908 0.442 0.483 0.872 0.389 

13 0.505 0.183 0.215 0.433 0.142 0.758 0.274 0.323 0.645 0.204 

14 0.548 0.207 0.244 0.488 0.167 0.822 0.31 0.366 0.732 0.267 

15 0.557 0.228 0.268 0.478 0.199 0.836 0.342 0.401 0.799 0.277 

16 0.455 0.153 0.177 0.403 0.107 0.682 0.23 0.265 0.61 0.149 

 

This raises the possibility that the architecture can have an impact on the method used 

to identify modes, that the architecture can permit the use of the simpler WCM model 

because it can respond to individual modes faster and thus eliminate the impact of 

sequence. We examine this next. 

5.3.6 Overall Performance  
We applied both identification models (WCM and HMM) individually to three different 

usage patterns (workloads) executing on different architectures of Table 12. Figure 26, 

Figure 27, and Figure 28 show the normalized average values of the average response 

time, energy consumption, and overhead of the five usage patterns for all architectures in 

Table 12. The normalized value is calculated by dividing each value in a single 
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performance metric (overhead, response time, and consumed energy) by the highest value 

in the same metric. Thus, lower normalized response time, consumed energy, and overhead 

values mean lower actual values. Consumed energy is calculated as the summation of 

power consumed by each processor during active and idle time [123]. 

 

 

Figure 26: The Normalized Average Response Time  
 

 

 

Figure 27: The Normalized Average Consumed Energy  
 

Optimal use of the WCM model requires the ability to leverage design-time 

knowledge of the individual usage patterns, so that a sequence-independent model can be 

used. However, we found that even sub-optimal use, when WCM does not identify all 

optimization points, can outperform the use of the more costly HMM. Furthermore, we 

found that different architectures performed significantly different so that future single 
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chip multicore architectures should be designed to models of design-time single-user 

workloads. 

 

 

Figure 28: The Normalized Average Overhead  
 

On average, over all architectures, the use of the WCM decreased application 

response time by 45% while overall system performance improved 191%. While the 

maximum system performance achieved is 256% by architecture 12, the minimum is 

actually 158% achieved by architectures 5, 9, 13, 14, 15, and 16. Further, the energy 

consumed is decreased by an average of 56%. The maximum energy decrease achieved is 

82% by architecture 12. The minimum is 42% achieved by architectures 13 and 9. 

 

 

Figure 29: Workload Mode Misprediction Rate  
 

Next, we investigate more insight about the relationship between overhead and 

performance. The time overhead introduced by switching between different optimization 

profiles may cause undesired side effects in a system, such as degrading the system 
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throughput, the amount of work done between two consecutive workload modes may 

negatively impacted due to the time overhead needed to switch to another optimization 

profile such as frequency/voltage scaling of processors.  

Figure 29 shows the workload mode misprediction rate of the WCM and the HMM 

identification models of the five usage patterns for all architectures in Table 12. The first 

column is for the WCM and the second column is for the HMM. The misprediction rate 

value is calculated by dividing the number of identified workload modes by the total 

number of workload modes. Note that each architecture has different total number of 

workload modes. As can be seen from Figure 28, there is a difference in misprediction 

rate between the usage patterns and between architectures. The second usage pattern 

(UP2) has the lowest misprediction rate among the five usage patterns. This is because 

UP2 has relatively larger average inter-arrival time intervals between workload modes 

and workload modes are more regular in their arrival, giving more time to identify these 

workload modes. Further, usage patterns with fewer workload modes make identification 

faster and more accurate.  

The computing power of different architectures is also a significant factor in the 

accuracy of the identification model. This, in turn, also has a significant impact on the 

performance of usage patterns. The computing power of architectures defines the interval 

between workload modes as well as the speed of executing the identification model. Note 

in Figure 29 that architectures 5 and 10 have relatively lower misprediction rates in all 

usage patterns. Comparing this observation with the results in Figure 26, Figure 27, and 

Figure 28, it shows that the performance of these architectures is relatively better than 

other architectures, though this is not general. For instance, note that architecture 6 has a 

higher WCM misprediction rate while it results in better performance values. 

For the HMM however, the reduction of the misprediction rate is quite substantial. 

On average, the HMM identification model can reduce the number of mispredictions by 

more than 46%. Figure 29 also shows that our WCM model does not perform well 

compared with the HMM model for many usage patterns, while it results in better 

performance. The reason for this is that the HMM improves the prediction rate at the 

expense of applying optimizations by requiring more time for identification. Thus, the 

sup-optimal WCM is more efficient than HMM. 



 86 

Another metric that can be used to compare the two models is cache misses. Our 

MESH simulator can be used to identify and compute cache misses. In order to do this, 

we need first to use an instruction set simulator (ISS) to generate full memory address 

traces. These traces are used to generate metrics that describe the memory behavior of 

individual program fragments. These metrics are annotated into the original source code, 

which is executed on the hardware architecture using the MESH simulator. The simulator 

can then find the cache hits and misses for each architecture when used to execute 

heterogeneous concurrent applications. This approach is introduced by Pieper et al. [143]; 

it is a derivative of stack distance histograms. Prior work [143] shows that MESH has a 

simulation time two orders of magnitude faster than cycle-accurate simulators and can 

accurately model cache configurations in CHMs.  

 

 

Figure 30: Cache Miss Rate  
 

Figure 30 shows the average cache miss rate of the WCM and the HMM identification 

models of the five usage patterns for all architectures in Table 12. The cache miss rate is 

calculated by dividing the number of cache misses to the total number of memory 

references. Note that Figure 30 shows that the WCM model, on average, performs better 

than the HMM-based model. This is because the HMM requires more memory and this, 

in turn, results in more cache misses, the relationship between the data size and cache 

misses. Intuitively, note that Figure 30 shows that architectures with lower cache miss 

rates perform better (see Figure 26, Figure 27, and Figure 28). 
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5.4 Analysis 
Overall, the costs of the HMM could not be overcome because HMM is, on average, 36 

times more costly than WCM. We found that it is better to miss optimization points using 

WCM rather than to incur the cost of finding all possible optimization points using 

HMM. Given our experimental results, in this section we expand our scalability analysis 

of each approach by including the impact of CHM architectures. We also verify our 

analysis. 

Heterogeneity is desirable because it can be used to exploit differences in task types, 

potentially retiring individual tasks within a workload mode sooner. However, 

completion of a task within a workload mode also presents the possibility for 

optimization of the CHM for the remaining applications in the mode. Heterogeneous 

architectures result in more potential optimization points within a workload mode than 

homogenous architectures due to a much wider variety of task completion times. Thus, 

the impact of executing WCM vs. HMM on a CHM can potentially be even greater than 

the Big-O analysis predicts because of the need to identify internal optimization points 

within workload modes.  

We define candidate workload modes (N), which arise due to both external changes 

in the input stream and internal events on a given architecture as: 

   ∑ =
=

UPN

i iN
1

ρ                                            

in which NUP is the number of workload modes in a usage pattern (UP) and ρi is the 

number of internal events within a workload mode that arises due to the ability of the 

hardware to process the mode. For example, the UP in Figure 1 has 12 modes, but the 

execution of that usage pattern on different CHMs can result in different numbers of 

candidate modes. 

We observe that different higher degrees of multitasking, multiprocessing, and 

heterogeneity tend to be generational, and our analysis is focused on the impact of 

workload modes on computing as it moves into the next era.  

We begin with a homogeneous multiprocessor system that processes sets of 

heterogeneous workloads. This can be considered present-day computing, in which multi-

core personal computers process multimedia applications from the Internet, in which 

homogeneous groupings can be exploited. Each group of homogeneous tasks within 
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application sets represents internal optimization points. Thus, for workload mode i in this 

system, ρi = Hi, in which Hi > NP. Here, NP is the number of processors on chip and Hi is 

the number of groups of homogeneous tasks within the workload mode i. The completion 

of each task grouping represents the potential to optimize remaining tasks within the 

workload mode.  

Next, we consider a heterogeneous workload that is presented to a CHM system. Note 

that this type of system, which many consider to be the future of computing [144], results 

in far more candidate workload modes due to the heterogeneity in the architecture. 

However, this same heterogeneity can also benefit overall potential performance while 

satisfying space and power constraints [49]. Here, all tasks and all processor resources 

have the potential to be heterogeneous, even though some subsets of tasks and processors 

may be homogeneous. Still, the completion of any single task in the system can create the 

potential to optimize. For example, a group of homogeneous tasks may be scheduled to 

execute on a single processor in sequence instead of waiting for an array of processors. 

Tasks may be migrated to better performing resources when they become available, even 

when there are fewer tasks in the system than available processor resources. Thus, ρi, in 

the worst case, equals all of the tasks in a mode, times all of the processors in the system; 

ρi =Ni
T*NP, in which NT is the number of tasks within a single workload mode.  

Note that as the number of processors in a CHM increases, overhead is expected to 

increase with heterogeneity due to increased potential optimization points, but also 

decreases if there are more processors overall, as Ni
T decreases if more processing power 

can retire tasks sooner. Thus, we expect to see overhead increase with different classes of 

heterogeneity, but reduce slightly as the number of processors increases. We also expect 

this effect to be more dramatic for HMM than for WCM, since HMM is already orders of 

magnitude more complex than WCM, irrespective of the internal optimization points that 

arise due to heterogeneity of the CHM. 

We computed the number of candidate modes for each architecture in our 

experimentation, and compared the predicted overhead of both the WCM and HMM 

models. We classified architectures by degrees of heterogeneity and ordered them by the 

total number of processors within those classes. The results are shown in Figure 31 and 

Figure 32, which compare the predicted and measured overhead trends of WCM and 
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HMM. We grouped the architectures in Table 12 on the independent axes as A, B, and C: 

(A) architectures are fully homogeneous (one processor type), (B) architectures are semi-

heterogeneous (two processor types), and (C) architectures are fully heterogeneous (all 

three processor types). Note that architectures of each group are rearranged to show the 

increase in the number of processors. The overhead is expressed in orders of magnitude. 

Our estimations focus only on the usage pattern shown in Figure 6. 

 

 

Figure 31: Measured, Analytical and Our Predicted HMM Overhead  
 

Figure 31 and Figure 32 confirm that our analysis that includes internal modes is 

more accurate than the Big-O analysis of section 5.3 that considers only external 

workload modes. As architecture heterogeneity increases (from class A to class C), the 

incurred overhead when using HMM increases exponentially, while WCM overhead 

increases only linearly. It also confirms that as the number of processors increases within 

a group, overhead decreases since the number of internal optimization points decreases as 

task groups are retired sooner. Compared with the measured overhead, our prediction 

model has only a 4% margin of error, while the Big-O model has 36%. 

Overall, we note that as computing moves toward CHMs with large numbers of 

processors of many different types, there exists a compelling need to design to models of 

single-user workload modes.  
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Figure 32: Measured, Analytical, and Our Predicted WCM Overhead  
 

5.5 Summary 

As we move into the next era of computing in which the complexity of applications and 

architectures grows, computers need to be optimized to workload modes that arise from 

single-user usage patterns. In this chapter, we aimed at designing WSPs by defining and 

identifying workload modes and optimizing CHMs to these modes at real time. Toward 

that end, we faced the following key challenge: which design is better, given the 

processing times of all workload modes executing on each design? Therefore, there was a 

need to rank these designs in order to identify WSPs. For that purpose, we used 

traditional single-valued performance metrics (specifically, response time and power 

consumption) to compare the performance of different designs.  

Here, we summarize some observations that put our optimal design ranking in 

question:  

1. Interestingly, for the same architecture, increasing the demand for one task type in 

a workload mode may result in a better overall performance. This is because the 

overhead generated by this specific combination of tasks (arrived during a 

specific time and sequence in the usage pattern) is smaller. The implication of this 

is that by using single-valued metrics, we preclude these effects from the 

designer. The overhead of identifying and processing workload modes has the 
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most interesting observations in this chapter. There are several factors that 

contribute to the magnitude of overhead. The factors that are related to the type of 

workload modes are mainly the degree of concurrency (number of tasks), the 

degree of heterogeneity (types of tasks within a workload mode), the granularity 

of workload modes arrival time, and the sequence of workload modes. 

2. Further, for the same architecture, different optimal design ranking results when 

processing different workload modes. Thus, by using single-valued metrics, we 

factor performance differences of different workload modes out. This also means 

not just that the best performing design may not be the best performer for all 

workload modes in a usage pattern but, more interestingly, may not meet all of 

them within the specified time interval. 

3. While we used the geometric mean to come up with a single-valued score, we 

expect the other mathematical means to result in additional different optimal 

design rankings due to the fact that performance varies as different workload 

modes are being processed, as discussed in Chapter 2. This variation occurs not 

only because CHMs are specialized for different types of workload modes, but 

more significantly because of the different values of overhead incurred due to the 

arrival of a different combination of work types.  

4. When it comes to architectures, multiprocessing, heterogeneity, and other 

architectural features such as communication and cache sizes all of these define 

the magnitude of overhead.  

The most interesting question to ask is: which design feature leads to better or worse 

performance? Again, single-valued metrics preclude this cause and effect analysis 

from the designer. It also precludes the effects of the interactions of multiple 

architectural features. 

In the next chapters, we use our Capacity metric to identify these WSPs. In Chapter 6, 

we define our Capacity metric, and in Chapter 7 we show how and why the optimal 

design ranking of the architectures in this chapter is inaccurate in contrast with our 

Capacity metric. 
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Chapter 6 

Capacity Metric 
 

 
 
 

 

 

In order to properly evaluate and rank CHM designs that process multiple, heterogeneous 

channels, the main contribution of this thesis is the introduction of a descriptive, 

graphical, and denotational definition of our Capacity metric. We previously introduced 

the Capacity metric by analogy with automobile plant production. Here, we contrast our 

Capacity with Pareto optimization and show some basic forms of Capacity curves. Thus, 

we motivate the continued development and use of the Capacity metric for performance 

evaluation of modern CHMs. Specifically, we advocate investigation into how shapes of 

Capacity curves can be used to classify systems and identify how features of designs can 

be manipulated in order to change the shape of the Capacity curves.  

6.1 Definition 

Capacity is a surface that shows the production feasibility of combinations of different 

types of outputs for a given plant over some interval of time. When two types of outputs 

are considered, Capacity results in a curve. If the production of the different types of 

outputs does not vary with each other over time, then the Capacity curve results in a 

collection of rates of production. The Capacity graph shows the maximum amount of one 

type that can be obtained for any specified production level of the other type(s), given the 

resources available as well as the way the different production types compete for those 

resources. Mathematically, a Capacity curve can be defined as a function in two 

variables: 

{T|A or A|T: P(τ)} 

Be sure you put your feet in the right place, 
then stand firm. 

     Abraham Lincoln 
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in which T is the production variable (or function) of Model-T, A is the production 

variable (or function) of Model-A, P is a specific production plant design, and τ is a 

given time interval in which we measure Capacity by collecting the production 

combination of different output types: Model-T and Model-A. Note that the production of 

Model-T, T, is given by the value of the production of Model-A, A, and vice versa. Later 

in this section, we define the function for a Capacity curve. 

According to this mathematical denotation, Capacity curves are generated for a 

specific plant design during a time window using measurement. In other words, the 

production of one model type is measured for different levels of production of the other 

model type(s) for the same design. The measurement includes the overhead of sharing 

resources between different output streams. 

6.1.1 An Illustrative Example 

For illustration, consider the plant example in section 1.1. Assume that the Model-T 

assembly line can produce four Model-T automobiles per hour, and can also be used to 

produce only two Model-A automobiles per hour. The Model-A assembly line can 

produce six Model-A automobiles per hour, and can also be used to produce only two 

Model-T automobiles. We generate all production possibilities of combinations of the 

Model-T and Model-A outputs for this plant. Figure 33 shows the Capacity of this plant 

during a time window of one hour in the form of a curve. 

 

 

Figure 33: A Capacity Curve 
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A Capacity curve shows all possible combinations of two automobile models that can 

be produced simultaneously during a given time window. For a plant to increase the 

quantity of one model produced, production of the other model must be reduced. Here, 

production of automobiles of Model-A must be reduced in order to produce more of 

Model-T. Capacity represents how much of the Model-A must be reduced for a given 

increase in production of the Model-T.  

Assuming that the supply of the plant does not increase, making more Model-Ts 

requires that resources be redirected from making Model-A to making Model-T. All 

points on the Capacity curve are efficient. Hence, all points on the curve (such as A, B, C, 

and D) are points of maximum productive efficiency. In other words, no more output can 

be achieved from the given inputs. All points inside the curve (such as E) are feasible but 

productively inefficient, and all points outside the curve (such as F) are unfeasible with 

the given resources and time window and thus unattainable. Note that point E is 

dominated by point A or point C, whichever is the model of interest. The user can choose 

between combinations or points on the Capacity curve. Point A is when Model-A is 

prioritized, point D is when Model-T is prioritized, in the middle of the curve (such as 

point C) an intermediate mix is achieved, and so forth. 

The example used above represents one form of Capacity. It represents a disparity in 

the heterogeneity of assembly lines in producing the two models. That is, as a plant 

specializes more and more in one model, the cost of producing that model increases 

because we are using more and more resources that are less efficient in producing it. The 

cost of producing successive units of the Model-T will increase as resources that are more 

and more specialized in for Model-A production are moved into Model-T production. If 

costs are constant, a straight-line Capacity curve is produced. This case reflects a 

situation in which assembly lines are not specialized (or homogeneous in their production 

of different models) and can be substituted for each other with no added cost. Products 

requiring similar resources will have an almost straight Capacity curve, and therefore 

almost constant costs. The Capacity curve would appear bowed toward the origin, with 

costs falling as more is produced of each respective model. Here greater specialization in 

producing successive units of a model drives down its cost. Later on in this paper, we 

investigate some of Capacity forms in computer systems. 
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Therefore, Capacity curves can represent how assembly line specialization that favors 

production possibilities of one model, assume the Model-T, shifts the curve more toward 

the Model-T axis, biasing production possibilities in that direction. Similarly, if one 

model makes more use of one assembly line and if the Capacity of that assembly line 

improves faster than other assembly lines, improvement possibilities might be biased in 

favor of that model.  

If the productivity or supply of assembly lines increases, the plant’s Capacity to 

produce both models increases. This increase ideally results in an outward Capacity 

curve. Conversely, a limitation in the production of the assembly lines, like the lack of 

supply in inventories, might move the Capacity curve inward, reflecting a reduction in a 

plant’s total productive Capacity. In the experiments section, we find more relationships 

between design features and Capacity curves.  

6.1.2 Capacity Function 

The reduction in the production of a given model represents a cost. This cost is measured 

in the ratio of the number of units of the second model reduced for the production of one 

or more units of the first model. In the context of Capacity, cost is directly related to the 

shape of the curve. Unless the curve is a straight line, the cost varies all along the curve. 

In Figure 33, producing more units of the Model-T, in general, results in a reduction of 

the number of units of the Model-A produced. Interestingly, at point B, the plant can 

produce more of the Model-T without any reduction in the production of the Model-A; 

thus the cost is zero. Therefore, Capacity represents how much of the Model-A must be 

reduced for a given increase in production of the Model-T. This ratio of costs can be 

determined using curve slopes at different points on the curve. 

As shown in Figure 33, as the production of Model-T rises (or falls) the production of 

Model-A may fall (or rise). The production of one variable may determine the production 

of the other, but there is no explicit formula for one in terms of the other such that A=f(T) 

or T=f(A). This is because of the fact that our definition of Capacity may result in a 

multi-valued function. Thus, the Capacity curve can be represented by an implicit 

function: 

f(T,A) = 0 
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The curve described by f(T,A) = 0 has tangent line at the point (ti, ai) given by the 

equation A = ai + A'(ti) . (T − ti), in which A'(ti) solves the equation given by 

differentiating the original equation with respect to T, treating A as a function of T and 

using the standard rules, and finally substituting A = ai, T = ti.  

The slope, A'(ti), at a point (ti, ai) is given by the partial derivative of the one model 

production with respect to the other model production. The slope numerically describes 

the rate at which output of one model can be transformed into output of the other. Again, 

unless the curve is a straight line, the rate varies all along the curve resulting in a 

multiple-valued function. Capacity curves are generated by measurement. But with 

sufficient experiments using them to model systems, they also have the potential to form 

the basis of analytical analysis. One reason for the variable cost rate along the curve is 

that heterogeneous resources include quantization effects such as workers being unable to 

finish a product in the remaining time of their shift. Further, integrating different 

quantities of different model types onto heterogeneous production resources incurs a 

different amount of overhead that impacts the measured production due to starvation that 

arises because of the existence of other pipelines sharing the same inventories. 

Interestingly, Capacity determines the cost of integrating more of one model type on the 

production of the other model type(s), which is something that cannot be displayed using 

a single performance score. Various numerical methods exist for solving implicit 

functions. Later on in this chapter, we introduce our own analysis. 

Here, we used only a two-model example for simplification, necessary for graphical 

analysis. If one model is of primary interest, all others can be represented as a composite 

model. In addition, the example can be generalized to the n-model case using n-D 

analysis. The tradeoff between the production of different types of commodities in an 

economic system has been investigated using Pareto optimality [145]. Next, we contrast 

our definition of Capacity with the concept of Pareto optimality. 

6.2 Capacity vs. Pareto 
We show how Capacity is different than Pareto using the same automobile plant example. 

We first define Pareto optimality for the above automobile plant example consisting of 

two assembly lines, LT and LA, which produce two automobile models, Model-T and 

Model-A. The outputs of the two automobile models that may be produced by the plant: 
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KA=A(LT
A, LA

A) 

KT=T(LT
T, LA

T) 

in which Li
j is a pipeline originally designed to produce automobiles of type i but can also 

be used to produce automobiles of type j. A and T production functions can be simply 

thought of as the allocation of the assembly lines to produce different quantities of 

different model types and are assumed to be increasing. In other words, allocating more 

assembly lines to produce specific model types increases the production of that model.  

Given an initial combination of output models, a change in the allocation of input 

models to resources that makes at least one output model better off without making any 

other outputs worse off is called a Pareto improvement. A combination is defined as a 

Pareto efficient or Pareto optimal when no further Pareto improvements can be made. 

Thus, for the production of the two automobile models to be Pareto efficient we require 

that we cannot increase the production of one model such that more of one is produced 

without giving up some of the other. This can alternatively expressed as: 

Max A(LT
A, LA

A) 

such that T(LT
T, LA

T) ≥ T* 

in which T* is the level of production of that model which must not be reduced. This is a 

multi-objective optimization problem that can be solved mathematically using the method 

of Lagrange. By doing this, we get from this analysis that the slope of both curves, A and 

T, must be equal at a Pareto efficient point. Each curve represents a relationship between 

the production of one type and an optimization function such as utility of labor or capital. 

Note that in order to achieve the maximum of function A, T* should be zero; this is the 

definition of throughput in the assembly line production of automobiles in which 

individual production types are evaluated, resulting in a single unit of performance. This 

is analogous to performance evaluation of computer systems in which computer 

architects evaluate performance using parallel programs. Each program can be 

multithreaded but they run individually and so their overall rates of execution are 

evaluated. Similarly, microarchitects identify the maximum throughput, usually using a 

common work unit, such as instructions per cycle. These maximums can be used to 
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compare different architectures or an average value can be generated. In contrast to our 

Capacity metric, throughput is distilled into single score values using a common work 

unit. The effects of combining different production types on the same plant and cause and 

effect analysis are missing from throughput. Further, throughput is presumed to be 

invariant over arbitrary time intervals. In contrast, Capacity surfaces can change with 

interval size as the relationships between types produced by a given plant can change 

with the period of time over which production is evaluated.  

For illustration, consider the plant example in Figure 4. We use the same fixed plant 

resources to generate an alternative configuration. Here, assume that the production of 

Model-T assembly line has been improved by deploying more workers to produce six 

Model-T automobiles per hour, and can also be used to produce only two Model-A 

automobiles per hour. Since the number of workers is fixed, the Model-A assembly line 

can now produce only four Model-A automobiles per hour, and can also be used to 

produce only two Model-T automobiles.  

Figure 34 portrays the differences between Pareto efficiency and our Capacity metric. 

Figure 34(a) shows the Pareto curve as a relationship between design configurations such 

as the production capabilities of individual assembly lines and the production of the two 

automobile models. Each point on the curve is Pareto efficient and represents a different 

plant configuration. Therefore, the performance of each plant design is distilled into one 

single point (KA, KT). Note that the performance metric in Pareto is automobiles, so this 

point can be averaged in order to come up with a single score for each plant design. 

Interestingly, since each design is represented by only one single production value, the 

output curve is concave, assuming the gradual re-allocation of workers from Model-T to 

Model-A results in a gradual decrease in the production of Model-T while Model-A 

increases. Figure 34(a) also shows the mechanism behind Pareto optimality. It shows that 

each model type is individually produced by plant configuration, Pi, and the output is 

represented using a common type that is automobiles.  

In contrast, Figure 34(b) shows Capacity curve as a relationship between the 

production of the two automobile models. In this case, each plant configuration is 

represented by a separate curve. Figure 34(b) includes all production possibilities of the 

same design for two different plant configurations. Note in Capacity curves, different sets 
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of production possibilities or modes have different magnitudes and curve types: convex, 

concave, or a straight line, in contrast to the Pareto production curve in Figure 34(a), 

which shows a regular shape over all production combinations. This is due to the fact that 

Capacity includes all production possibilities in the same design. It includes the cost of 

increasing the demand for one model type on the production of the other model type(s). 

And this requires that both model types simultaneously compete for plant resources, as 

shown in the bottom part of Figure 34(b).  

 

 

Figure 34: (a) Pareto Optimization vs. (b) Capacity 
 

Also note that on the curves of Figure 34(b) we contrast Capacity curves with 

throughput. Throughput is shown as a straight line (a plane in higher dimensions). It 

connects the maximum production points of individual models. This straight line 

represents the average production of this plant over a presumed common work unit for 

the heterogeneous production types.  For example, the unit “automobiles” could be used 

instead of specific units for Model-T and Model-A. This average results in a linear 

relationship as production of Model-T and Model-A are varied. This correctly models the 

production of completely independent channels in a decoupled system, but it does not 

capture the relationships of different production types as they access the common 
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(shared) plant resources. In the experiments section, we show many directly measured 

Capacity curves that do not result in linear relationships, as demand for different 

production types varies. Accordingly, for a given set of production values, any linear 

relationship will either underestimate the true Capacity of a given plant, or it will 

overestimate what the plant is capable of.  

In summary, Capacity includes the relationship between different production types 

that can be produced by a given plant or design. Thus, it tells which design is better at 

what range of production possibilities (or modes) and by how much. For example, the 

production of Design I is two times that of Design II when an intermediate mix of Model-

Ts and Model-As is needed. If the production of the Model-T is prioritized, Design I 

achieves 33% more production than Design II, while Design II achieves 33% more 

production when the Model-A is prioritized, whereas Pareto models the impact of 

(design) variables on what is presumed to be a prefixed relationship between models 

being produced. Thus, it only tells which design is better at a specific combination of 

production types. Further, it cannot answer the question: can this plant satisfy the demand 

of NT Model-Ts and NA Model-As in so many days, since it does not show the breakdown 

of performance for different combinations of multichannel input streams? 

Further, Capacity includes the effects on production of overhead, or resource sharing, 

as different production types compete for resources. Thus, Capacity curves lend insight 

into the cost of combining different production types on a common set of resources. 

Capacity shapes reveal the interaction of not only programs and data, but the interaction 

of multiple data streams as they compete for access to resources on a CHM. Eventually 

analytical techniques will be developed so that designers may better understand the 

origins of those inefficiencies and how designs may compensate for them. Next, we 

develop some fundamental forms of the Capacity metric in order to illustrate how 

Capacity shapes can be used to better understand design for multi-type production. 

6.3 Capacity Form 

In this section, we introduce some fundamental forms of the Capacity metric. Ultimately 

the Capacity metric will have its greatest potential when Capacity curves and surfaces 

can be developed and compared analytically. Consider some fundamental forms of the 
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metric in Figure 35, in which Capacity measures the performance of two demand 

streams, or channels, JPEG and, text processing, which might represent elements on 

webpages being processed by a single user on a mobile device. On the independent axis 

is the number of JPEG images (JPEGs) to be processed and on the dependent axis is a 

number of text files. Note that the dependent and independent axes are interchangeable, 

one production, P, can be considered to be a function of the other, or 

P(text)=f1(P(JPEG)) and P(JPEG)=f2(P(text)). The functional relationship between the 

maximum processing potential of different input channels describes the Capacity of a 

CHM. We describe some idealized forms that this functional relationship can take on for 

single and dual core CHMs that process the two channels of text and JPEG.   

 

 

Figure 35: Fundamental Forms of Capacity Curves  

 

First, consider the Capacity of a single core (uP) system that ideally processes 

unlimited combinations of text and JPEG; there are no quantization effects and there is no 

penalty for switching from processing one type of input to the other. The Capacity of this 

ideal uP is shown on Figure 34 as 1core_dynamic_zero_overhead (1dz), which is a 

straight line, formed between two maximums. The maximum of each type is the 

throughput when the core is always processing only that type. The production of the two 

demand streams on the idealized single core design is related by a constant, P(text) = 

C*P(JPEG), in which C = max(JPEG)/max(text)= J/X. This constant-value relationship 
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is a consequence of the idealized resource sharing and quantization effects as the system 

switches between processing different combinations of inputs. 

Next, consider a homogeneous two-core processor in which tasks are mapped to 

restricted cores, for example, one core processes only text and the other processes only 

JPEG images, and this processing is completely decoupled. Figure 34 shows the Capacity 

for this system, 2core_static_decoupled (2sd), as two straight lines that are parallel to 

each axis and terminate at a point, (max(JPEG), max(text)) or (J,X). This point is the 

maximum production of each core for each input type, which is the same as the 

processing potential of the single core on that type in the absence of any demand for 

processing of the other type of input. The lines are independent of each other because 

there is no relationship between the production of JPEG and text because each has 100% 

of its own processor resource and there is no sharing of any resources in this ideally 

decoupled system. This system has exactly double the Capacity of the single uP system. 

It has two cores of the same type compared with the single uP system and the total area in 

the box doubles that of the straight line of the single core system. In each of these 

systems, throughput can be used to model the essential features of the overall system 

Capacity. In the 1dz system, the two streams can be combined and averaged. In the 

decoupled system, throughput can be used to model the maximum production of 

completely independent channels. The Capacity of real systems, however, must include 

the effects of sharing resources such as communications networks, schedulers, and 

memories as multiple cores come together to form a system. 

A more realistic Capacity curve is 2core_static_coupled (2sc), in which input 

channels are presumed to be statically mapped to processor resources, but there is some 

cost due to resource sharing. This shape asymptotically approaches the ideal boxed area 

of the two-core decoupled system of 2sd, and the measure of the penalty, or overhead, 

due to coupling is captured in how far the curve deviates from the ideal boxed shape. 

Several works in communication systems address the identification of the curve knee 

[146]. Resource sharing can be considered to be analogous to communications sharing. 

Processing of one channel type is a function of the actual demand for the processing of 

the other channel type, however, in this case, the relationship does not result in a straight 

line. Rather, a convex curve is shown, in which there is a single mode and all effects of 
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resource sharing can be considered to be lumped into this single mode for the purposes of 

this illustration. For now, the presumption of homogeneity in both the cores and the 

effects of resource sharing on the different input types serve to keep this analysis simpler, 

as it results in symmetric curves. 

Next, consider another idealized CHM in which the input streams can be dynamically 

mapped to either of two processor resources as the curve, 2core_dynamic_zero_overhead 

(2dz). Again, the production of the two demand streams can be related to each other by 

the constant, C. Now, the Capacity of the two-core system can be considered to be double 

the Capacity of the single-core system (1dz), which is once again a highly idealized 

situation. The combination of the two cores is capable of processing double the demand 

of each input type taken individually, and all points in between. As scheduling and 

resource sharing becomes less ideal, a system such as 2core_dynamic_coupled (2dc) 

occurs. Here, the system can process maximums for each input type, which are the same 

as for the idealized two-core system. But now, as different combinations of inputs are 

considered, the system shows Capacity less than the ideal 2dz system because of the 

effects of sharing resources in the coupled CHM. A single modal, concave shape is 

shown for the 2dc curve, reflecting a maximum amount of overhead penalty when the 

different input streams are balanced. This reflects penalties due to task migration; the 

same design feature that facilitates greater potential to process situations in which the 

inputs are less balanced, at the extremes, produces its greatest penalty when the inputs are 

most balanced. 

The curves of most interest are the 2sc and 2dc curves because they include the 

effects of system coupling. The 2sc curve is convex while the 2dc curve is concave. Also, 

the maximum values that can be processed for unbalanced loads differ considerably. 

There is information in both the values and the shapes of the curves. This information can 

be related to some observations about the overall system organization. As analytical 

understanding of the shapes of Capacity curves progresses, we expect to find an 

additional relationship between system characteristics and the sizes and shapes of 

Capacity curves and discover what design features lead to: different extremes for 

unbalanced loads, convex and concave shapes for Capacity curves, multiple modes as 

multiple overheads interact, and asymmetry for heterogeneous cores and overheads. 
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These will be the basis of future analytical reasoning about Capacity curves. In the 

remainder of this thesis, we show how Capacity curves can be analyzed and how 

experimental generation of the Capacity metric can be used to compare different CHMs. 

In the experiments section we quantify the amount of performance gains that can be 

expected over that of traditional design.  

6.4 Capacity Metric Analysis 

As illustrated in section 6.3 in which fundamental shapes of the Capacity metric are 

discussed, the overall magnitude Capacity metric differs according to the flexibility of the 

scheduler. In general, the more chip-level schedulers have the flexibility to schedule tasks 

on any resource in the system, the higher the magnitude of the Capacity curve will be 

when loads are unbalanced. Thus, magnitude can be thought of as a means of measuring 

scheduler flexibility. The overall shape of the curve or surface, whether it is more convex 

or concave, can be thought of as a measure of the way the system handles load balance. 

In general, the more convex a curve or surface is, the more the system is suited to handle 

balanced loads and the more concave a curve or surface is, the more it is suited to handle 

unbalanced loads. If a curve or surface is more linear, it can approach an ideal system. 

However, this can also reflect a system that is lightly loaded, since it can so easily handle 

any load that is presented to it.  

The 2-D Capacity curves shown in section 6.3 all had only single modes – there was 

only one peak in the curves. However, in general, Capacity curves or surfaces will have 

multiple modes. We show examples of multimodal curves in the experiments section. 

These modes result when there is a cancellation effect of one design feature with another. 

For example, burst width can facilitate an unbalanced system, while a certain processor 

core type can facilitate a balanced system, but these effects do not cancel out perfectly. 

Thus, there may be multiple peaks, or modes, in the Capacity curve or surface. Modeling 

and understanding these effects are some of the most important concerns of single-user 

multicore designs, since maximum performance is often only achieved when designers 

have better understanding of how specific design decisions interact. Finally, the slope 

defines the cost of increasing the demand for one model type on the production of the 

other model type(s). This is an important feature that gives the designer the ability to 
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trade off not just between design choices but also between the usage preferences. In 

addition to these features, we will explore the potential for others. 

6.5 Experiments 

We used The Modeling Environment for Software and Hardware (MESH) simulator 

[124], discussed in section 4.5. Further, we used the same processors described in section 

5.3.2. Since overhead is an important factor in the evaluation of multiprocessor designs, 

and we included it in our models, we used our model of overhead in section 5.3.3.  

          

 

Figure 36: Experimental Setup Summary 
 

Within a fixed area, we generated four different architectures as combinations of 

number of processors, type of processors and L2-cache sizes. Our model parameters are: 

(1) four different CHM architectures (Arch1: 2G, 4D, 6M, 128K of cache; Arch2: 1G, 

4D, 6M, 192K of cache; Arch3: 2G, 2D, 6M, 192K of cache; and Arch4: 2G, 4D, 3M, 

192K of cache) (2) three different burst widths [(B): 16-, 32- and 64-byte], (3) three 

different communication bandwidths [(C): 0.4GByte/sec; 0.96GByte/sec; and 

1.2GByte/sec], and (4) two chip-level schedulers: A dynamic scheduler that maps tasks to 

the best available processors, permitting task migration, and a static scheduler that maps 
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each task to a specific processor(s) specified at design time does not allow task migration. 

We modeled these schedulers in MESH. Further, we modeled three types of demand 

streams: JPEG, Text and Frames, each with different working set sizes. Finally, Capacity 

is measured during two time intervals, I: half second and one second. In general, the time 

interval will affect the shape of the Capacity curves, since the balance of processing is 

subject to change. The total number of design choices is 72. Figure 36 summarizes all 

design features. 

The way we determine the time intervals during which Capacity is measured is by 

running each task type on all architectures. The maximum time needed by a task type is 

the selected time interval. Since architectures have different performance for different 

demand modes, different architectures may have different time intervals.  

 

 

Figure 37: Normalized Execution Time 

 

Figure 37 shows the concept behind our approach. It shows that for a specific 

architecture, the maximum time spent in a task is that of task i. Other tasks on the system, 

such as task j, complete the execution in a shorter time than that of task i leaving a slack 

time. Thus, the system can do more of the same task type during this slack time, as its 

demand is less than its supply, or the system is not being used to its full Capacity within 

that time interval. This approach is a type of execution normalization.  

Task i 

Task j 

Maximum execution time of a task in the system 

Execution time of task j 

Time left to do more of task j 
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6.5.1 Results and Discussions 

In this section, we include and discuss several sets of experimental results. We first focus 

only on two inputs, JPEG and text. We generated all Capacity curves of all designs, 

totaling 72 different CHM designs. We show some of these curves to give insight about 

the cause and effect of different design parameters on the system Capacity. While 

viewing these curves, we classify them based on patterns. 

 

a) Burst width feature 

Figure 38 shows two Capacity curves of a CHM differentiated by increasing the bus burst 

width from 16B (B1) to 32B (B2). The CHM consists of 2G, 4D, and 6M processors and 

128K of L2-cache memory. Each processor has its own L1-cache memory. In this CHM, 

as the bus’s burst width is changed from 16B (B1) to 32B (B2), the system changes from 

favoring balanced loads to unbalanced loads, similar to the difference between the 

concave and convex shapes of the 2dc and 2sc curves discussed previously. The B2 curve 

is the more ideal shape for the overall design goals since task migration is included, but 

the burst width impeded this result unless it was great enough.  

 

 

Figure 38: Capacity When Burst Width Increases 

 

b) Processor type and number features 

Figure 39 shows two Capacity curves for two different architectures (Arch2 and Arch3). 

In Arch3, we increased the number of GPP and Media processors, while reducing the 

number of DSPs. Note that adding this feature favors text and JPEG but not their mix. 
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The slope of the Capacity curve of Arch2 drops faster than that of Arch1. DSP processors 

have medium performance for processing both text and JPEG, thus they perform better 

than GPP and Media when a mix of text and JPEG is being produced. 

 

 

Figure 39: Capacity When More GPP and Media Added and DSPs Reduced 

 

 

 

Figure 40: Capacity When More Media Processors Added and DSPs Reduced 

 

In Figure 40 we show the effects of increasing the number of Media processors while 

reducing the number of DSPs. Figure 39 shows two Capacity curves for architectures 

Arch3 and Arch4. Compared with Arch4, the number of Media processors in Arch3 has 

increased by two times while reducing the number of DSPs by the half. Note that adding 

this feature favors JPEGs but not text because Media processors perform better than 
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DSPs in JPEG processing but worse in text processing. Note that the two curves differ 

not just in terms of magnitudes, but also in shapes. The slope of the Capacity curve of 

Arch3 drops slower than that of Arch4 resulting in a convex shape.  

 
c) Cache size feature 

Figure 41 shows the Capacity of the CHM of Figure 38 when the cache size increases by 

1.5 times. As a consequence, the chip area has increased. Figure 41 shows too little 

improvement in Capacity because the selected working set sizes of the text and JPEG 

tasks are small. However, this feature favors JPEGs more because their processing can be 

considered to be internally I/O bound more than text processing. 

 

 

Figure 41: Capacity When Cache Size is Doubled 

 

Figure 42 shows two Capacity curves for two different architectures (Arch1 and 

Arch2) differentiated by increasing the cache size from 128K to 192K at the expense of 

the number of processors on chip. Interestingly, the Capacity of both architectures to 

produce only text files is the same then the curves diverge significantly. In general, Arch2 

shows major performance improvement because the selected size of working data sets of 

tasks is larger. Thus, the increase in the cache size helps in improving the performance. 

Note that in the case of producing text only, increasing the cache size does not result in 

any improvement because the working set size of text files is already smaller than JPEGs. 

Again, increasing the cache size favors the production of task types with larger working 

data sets. 
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Figure 42: Capacity When Cache Size Increased (Less Processors) 

 

d) Communication bandwidth feature 

 

 

Figure 43: Capacity When Communication Bandwidth Increased 

 

Figure 43 shows the Capacity of the CHM of Figure 38 in which the overall 

communication bandwidth increases. C1 is 0.4GB/s and C2 is 1.2GB/s. In each case, the 

system approaches the straight line of an idealized system even though the processing of 

input channels is coupled via competition for global resources such as schedulers and 

memories. The two curves in Figure 42 overlap at the beginning and then diverge. This 

asymmetry results because communications Capacity affects JPEG more than text. With 

respect to a given amount of text processing, JPEG processing can be considered to be 

internally I/O bound more than text is with respect to a fixed amount of JPEG processing. 
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However, if the region of interest over which the two CHMs are being evaluated is 

limited to the maximum number of text and a small number of JPEG inputs, the two 

systems do not differ. In general, Capacity curves will be asymmetric. The asymmetry 

arises from the heterogeneity of both the input and the architecture. 

 

e) Multiple feature interactions 

 

 

Figure 44: Capacity (Larger vs. Smaller WSS) 
 

 

Figure 45: Capacity When Cache Size Increased (Same Processors) 
 

In Figures 44 through 46, we use the same system from Figure 42 in which the overall 

communication bandwidth increased from C1 is 0.4GB/s to C2 is 1.2GB/s. The Capacity 
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curve of the system approaches the straight line. Here, we picked this example to show 

how different architectural features interact. By changing other features, we show how 

the Capacity curve shape changes from being a straight line.  

In Figure 44, we used larger working data sets for both JPEG and text tasks. We 

increased the working set size until we started to see the shape of the Capacity curve 

changed from a straight line to a convex. This drop in the Capacity is caused because of 

the overhead generated due to using larger working data sets. The size of the working 

data sets determines the space and time delays in buses as well as memories. Note that 

this change only affected the intermediate mix of jobs. 

In Figure 45, we increased the cache size by 1.5 times, while keeping the same 

processors on the chip. The shape of the Capacity curve changed from a straight line to a 

concave. This increase in the Capacity is caused because of the increase in the cache 

memory size. Intuitively, increasing the cache memory size increases the production of 

each task type. Interestingly, note that this change affected only the intermediate mix of 

jobs. Since cache size increased, we are now able to store the data of both types in the 

cache memory.  

 

 

Figure 46: Capacity When Cache Size Increased (Larger WSS) 
 

Using a different view, in Figure 46 we combined the Capacity curves of Figure 44 

and Figure 45 in one figure. We can see that the system has changed from favoring 

balanced loads (when processing larger working data sets) to unbalanced loads (when the 
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cache memory has increased.) For such a system, the designer not only can analyze 

causes and effects, but can also find solutions to existing problems in the system. 

 

f) Scheduling feature 

Figure 47 and Figure 48 show two Capacity curves using two different chip level 

schedulers: dynamic and static. The CHM consists of 2G, 4D, and 6M processors and 

128K of L2-cache memory. The two figures are differentiated by the selected working set 

size; it is smaller in Figure 47 and larger in Figure 48. 

 

 

Figure 47: Capacity of Different Schedulers (Smaller WSS) 

 

 

 

Figure 48: Capacity of Different Schedulers (Larger WSS) 
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Figure 47 shows that both schedulers resulted almost in the same Capacity curves, 

because the working set size is small, which in turn makes task migration occur less. In 

contrast, when using larger working size sets, the dynamic scheduler outperforms the 

static scheduler especially when more JPEGs are produced, as shown in Figure 48. Note 

that other results (shown in Appendix A) show that communication bandwidth, cache 

size, and burst width significantly impact the performance of dynamic schedulers. 

 

g) Time window interval 

Figure 49 shows the Capacity when the time window in which we measure Capacity is 

doubled. Note that doubling the time window does not result in double Capacity because 

of the overhead generated due to resource sharing and running heterogeneous concurrent 

tasks. Again, increasing the window of time favors homogeneous inputs. The 

heterogeneity of inputs incurs more processing, communication, and storage memory 

overhead. 

 

 

Figure 49: Capacity When the Time Window Is Doubled 

 

6.5.2 Experiments Summary 

The experimental results, shown in this section, represent different forms of Capacity 

curves. These curves give the designer the ability to understand the effects of adding 

architectural features on the performance of a computer system that simultaneously 

processes multiple output streams. Significantly, these curves do not result in linear 
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relationships as demand for different production types varies. Distillation of rates of 

production over multiple production types to a common work unit, such as automobiles, 

instructions, tasks or programs, results in a linear relationship as rates of production of 

more specific types within those categories varies. But if a straight line were to be 

superimposed on any of our Capacity curves, the real Capacity of the designs being 

examined would either underestimate the true Capacity of a given design for a given set 

of production values, or it would overestimate what the plant is capable of.  

For each design, Pareto optimization or throughput can only show the maximum 

production of individual tasks in the form of a vector or single value that is generated by 

taking an average. For example, when throughput is evaluated using a common work 

unit, such as Instructions per Second (IPS), it can lead to erroneous insight. For example, 

in Figure 38, if the maximum production of each type is only considered, the Capacity 

curve of B2 is better than that of B1. Note this is not true when we consider specific 

combinations of tasks that might be most important to the end user of the design. For 

example, for an intermediate mix of tasks, the curve of B1 shows better Capacity than 

does B2. 

Here, we summarize some observations from our experiments about the effects of 

different architectural features: 

• Burst Width: increasing the burst width favors unbalanced loads. Narrower 

widths give multiple heterogeneous tasks a more equal chance to share the 

communication media. Otherwise some tasks may occupy the communication 

media for a longer time without the need for that long time, impeding the 

execution of other tasks. Wider widths favor homogeneous tasks because they 

have same communication and memory access patterns. Other factors such as 

the size of the working set of the same task type, also determine the optimal 

value of the burst width. Thus, there is an optimal value of the burst width for 

each workload type.  

• Communication Bandwidth: increasing the communication bandwidth ideally 

results in greater system Capacity. However, it also represents an overhead in 

terms of time, area and power consumption. Thus, increasing the 

communication bandwidth only makes sense when the gained Capacity 
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overcomes the incurred overhead. For instance, the production of tasks that 

require less I/O accesses takes less advantage from increasing the 

communication bandwidth.  

• Processor Number and Type: increasing the number of processors of a 

specific type favors the type of tasks that take more advantage of this 

processor type, shifting the Capacity curve toward the axis of that task type. 

This results in different shapes of the Capacity curve: a convex shape occurs 

when processor types do very well for both task types, and a convex shape 

occurs when processor types favor different task types. The magnitude of the 

curve depends on the number of processors on chip. However, note that 

increasing the number of processors incurs more overhead due to the 

increased complexity of synchronizing and controlling these processors, in 

addition to other costs such as the die area and power consumption, etc. 

• Cache Memory Size: increasing the cache memory size ideally results in better 

system Capacity. Its advantage is more obvious for those tasks that have 

larger sets of working data and greater I/O requirements. Since we model a 

fixed-area chip area, increasing the cache memory comes at the expense of 

reducing the number of processors. This trade-off analysis results in different 

Capacity curve shapes. 

• Scheduler Type: dynamic schedulers for CHMs generally outperform static 

schedulers because they allow task migration and dynamic decisions in 

response to the system loading and previous and current chip state. Note that 

the making of dynamic decisions and task migration incur overhead that has 

an inverse effect on the system’s Capacity. Dynamic schedulers often result in 

multimodal Capacity curve shapes because of this incurred overhead. 

• Time Interval: because of the effects of overhead incurred because of the 

interaction of multiple heterogeneous inputs vying for heterogeneous global 

resources, doubling the time interval may result in less double Capacity, in 

contrast with the assumption of throughput in which work and time have a 

linear relationship. The ratio of the Capacity to the time interval length 

depends on several factors including the type of workload. In other words, for 



 117 

a system with a homogeneous input, the ratio approaches to be linear, 

resulting in an almost straight-line Capacity curve shape, similar to the 

concept of throughput. In general, the increase in the time interval length 

favors unbalanced loads, resulting in a convex shape. 

Interestingly, note that when multiple architectural features interact, multimodal 

shapes result. While in this chapter we focused on JPEGs and text task types, we include 

in Appendix A one more task type, that is GIF. Our goal is to show how the type of input 

changes the system’s Capacity and thus be able to classify these effects into patterns. For 

the sake of completeness, in Appendix B we show the Capacity of this three-input 

channel system as a surface, although the way we analyze the Capacity surfaces is by 

holding one input constant at a time. For instance, a 3-D surface can always be reduced to 

a collection of 2-D curves. In general, an n-D surface can always be reduced to a 

collection of (n-1)-D surfaces, which can then be analyzed as collections. In Appendix C, 

we include the values of overhead incurred due to different combinations of inputs, and 

explain why multimodal Capacity curve shapes result. 

In the next chapter, we demonstrate the usefulness of our metric through a Capacity 

shape analysis. We show that information in the shape of the Capacity curves can be 

more significant than magnitude. 
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Chapter 7 

Shape Analysis 
 

 

 

 

 

 

Capacity is distinguished from other performance metrics because it emphasizes shape as 

well as magnitude. In this chapter, we show that information in the shape of the Capacity 

curves and surfaces can be more significant than magnitude is. 

7.1 Why Single-Valued Performance Metrics Fail 

In this section we show how attempts to distill performance to pure magnitude, or single-

valued metrics, can result in ambiguity or identification of incorrect optimal designs. 

7.1.1 Survey of Single-Valued Performance Metrics 

We first perform a survey of some popular, single-valued metrics that have been used to 

compare curves that consist of discrete points:  

(a) The average of all data points on the curve. The average is measured in terms of 

the model type on the dependent axis,  

(b) The maximum production of each model type. This also includes the average of 

the maximum production of each model type, using a common output type, 

(c) The area under the curve, measured in terms of the model type on the dependent 

axis, and 

(d) Pair-wise (point-to-point) comparison or least square method. The pair-wise 

method cannot be used in our case because the lengths of Capacity sets (or more 

precisely, the numbers of values in multisets) of different designs are unlike; we 

include it for the sake of completeness. 

Concentrate all your thoughts upon the 
work at hand. The sun’s rays do not burn 
until brought to a focus. 

 Alexander Graham Bell 
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Our goal is to show how our Capacity metric succeeds when single-valued 

performance metrics fail in evaluating the performance of the CHM that processes a 

multi-channel heterogeneous input. Thus, we examine how our metric compares to the 

metrics in items (a), (b) and (c) of the above list. We consider our metric to be more 

successful when it properly ranks designs from optimal performers to lesser performers. 

Admittedly, such comparisons can be somewhat arbitrary and subject to interpretation. In 

fact, we demonstrate this when we show that conventional means result in ambiguity, 

which is what prompted us to develop our new metric. Thus, we use workload analysis to 

show how some designs fit certain workloads better than others and how those designs 

cannot be identified in rank order using single-valued metrics. 

7.1.2 Comparison Analysis 

We first generate the Capacity curves for the designs that we have discussed in Table 12. 

Then we apply the different single-valued performance metrics in order to rank the 

performance of these designs. For the purpose of this section, we initially select the 

Capacity curves for only three designs. Three designs are sufficient for our purposes, 

because they show how single-valued performance metrics fail to identify optimal 

designs. We measure the Capacity of these designs to produce JPEG images and text 

files, which are examples of data-size dependent and data-content dependent execution, 

respectively [1]. 

 

 

Figure 50: The Capacity Curves of Three Different Designs 
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Figure 50 shows the three Capacity curves as a relationship between the production of 

JPEG images and text files. On the independent axis of the figure is the production of 

JPEGs and on the dependent axis is the production of text files. Design A refers to design 

4 in Table 12, which consists of one General Purpose Processor (GPP) and four DSP 

processors. Design B refers to design 7, which consists of two GPPs and four Media 

processors. Finally, Design C refers to design 2, which consists of six DSP processors. 

More discussion about the architecture of these designs is included Chapter 5. 

Next, we compare the Capacity metric to the single-valued performance metrics by 

asking which metric identifies the best performing design. Here, we define the best 

performing design as the design that has the greatest Capacity during a specific time unit 

amongst all designs on hand. This also implies that the best performing design is the one 

that has the shortest response time to process a set of workload modes. 

 

A. Averaging All Points 

The first method is to average all points (or supported demands) on the Capacity curve of 

each design and then compare the average of different curves. These points represent the 

production rate of JPEGs and text files. Since we cannot simply average the production 

of JPEGs and text files because they are of different complexities, we must instead 

average the time required to produce these demands. Note that the required time to 

produce any demand on the Capacity curve is the time interval during which Capacity is 

measured. Hence, we select the maximum production demands amongst all three designs. 

For instance, the maximum production of JPEGs when we can produce 15 text files is 50, 

as shown in Figure 50. Design C can produce this demand during the specified time 

interval, while Design A and Design B need more time to produce the same demand. 

Thus, for a design, these maximum demands may be produced during the time interval or 

need more time to be produced. Then, for each design, we average the execution time of 

these maximum demands on that design. 

Note that the best design varies as curves cross. Figure 50 shows crossover points in 

which different designs exhibit different performance as demands vary. The crossover 

points result because different CHM designs are specialized for different demand modes. 

If the curves did not cross, then there would be no significant difference in optimal 
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performers due to demand mode variation. But, because the curves do cross, the actual 

input to the system results in the identification of different optimal designs.  

Averaging requires the use of means. There are three primary mathematical means: 

Arithmetic Mean (AM), Harmonic Mean (HM), and Geometric Mean (GM), previously 

discussed in Chapter 2, in which we also showed the circumstances in which AM, HM, 

and GM can be used to average speeds (Demands/Time). HM is applied to equal 

demands, but with different execution time, whereas AM is used when demands are 

different but execution time is equal. The GM can be used for both time-based and rate-

based behavior, but the behavior should first be normalized with respect to specific 

machines. Since the design goal of CHMs is to optimize the response time of individual 

demand modes, the HM is the most appropriate mean. In this case, a better performing 

design is one that does more in a given interval, which the way users experience modern 

is computing. But, since the usage of the appropriate mean has long been controversial in 

computing [8], [51], and since the geometric mean is by far the most common method 

used in the evaluation of single-core architectures, we include all means in our analysis.  

 

Table 16: Response Time for all Production Modes 

Response Time Demand 
Mode A B C 

(0,95) 1.65 1.00 1.8 

(1,85) 1.6 1.00 1.7 

(5,70) 1.65 1.00 1.85 

(12,50) 1.55 1.90 1.00 

(15,48) 1.4 1.75 1.00 

(23,26) 1.45 1.85 1.00 

(27,15) 1.00 1.65 1.70 

(30,7) 1.6 1.00 1.75 

(32,5) 1.65 1.00 1.60 

(34,2) 1.55 1.00 1.65 

(36,0) 1.45 1.00 1.70 

 

Table 16 includes the response time of each design when used to produce different 

demands. Note that some designs can produce a demand mode during one time unit (the 

optimal design for this demand), while others need more time to complete this demand. 

The time interval over which a response is measured is an important consideration in a 
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metric for CHMs, and its impacts will be discussed in more detail later. Table 17 shows 

the rank of the average response time of each design, computed using the three different 

means (AM, HM, and GM).  

Note that using different means results in different ranks, as previously predicted. HM 

ranks Design A as the best architecture because it is better suited to handle the increase in 

demands, since HM ranks architectures based on their ability to execute more demands 

per time unit (rates), whereas AM and GM rank Design B as the best architecture. The 

arithmetic and geometric means rank different performers as optimal, even though they 

rank same architectures at the top. Thus, single-valued means already result in ambiguity 

in ranking optimal performing designs, and this was discovered in the work on workload 

modes as presented in section 2.2. Without a proper means of ranking optimal performing 

designs, it did not make sense to continue pursuing that work in more depth. 

 

Table 17: Optimal Design Ranking 

Arithmetic Harmonic Geometric Architecture 
Mean Rank Mean Rank Mean Rank 

A 1.54 2 1.20 1 1.45 3 

B 1.25 1 1.25 2 1.10 1 

C 1.70 3 1.40 3 1.30 2 

 

In summary, the traditional mathematical means result in ambiguous rankings of 

optimally performing designs. Averaging, in general, precludes the designer from 

identifying cases in which the system has more Capacity than the average or cannot meet 

the desired production. 

 

B. Bounded Area 

One of the best known techniques in curve comparison, for both discrete and continuous 

functions, is area difference. Mathematically, the area under a curve is calculated using 

the definite integral. Thus, the area bounded between two curves can also be found using 

the integral of the difference between their functions. Because our Capacity curves are 

measured and not computed and fitting these data using a function is an approximate that 

may include a significant error margin, we use numerical approaches to calculate the 

integral of discrete data. 
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Numerically, the trapezoidal rule is a well-known technique for calculating the 

definite integral. The trapezoidal rule works by approximating the region under the curve. 

It is one of a family of formulas for numerical integration called Newton–Cotes formulas. 

Simpson’s rule is also another member of the same family. Newton–Cotes formulas 

differ only in terms of their computation speed. 

When the trapezoidal rule is applied on the three Capacity curves shown in Figure 49, 

all curves have the same area, therefore their area difference is zero. This can be seen by 

inspection. Thus, according to this metric, all designs are equivalent. 

The area difference between curves is zero because curves cross, allowing areas 

under each curve to be alike. This also means that this metric collectively cancels out the 

effects of design specialization and does not show which design is really better. While 

integral is feasible at higher dimensional surfaces, this metric also results in ambiguous 

results. 

 

C. Maxima Points 

The third single-valued metric we consider is the maximum production of each model 

type, or maxima points. According to this metric, Design B is the optimal design and 

Design C is the worst deign.  

This metric is similar to the throughput metric in which the performance of different 

task types is individually evaluated and then averaged. Also note that some other designs 

(not shown) may have equal maximum points even though they are vastly different when 

they process an intermediate mix of work types. For instance, consider two designs that 

are only different in terms of the adopted scheduling policy. Schedulers may have the 

same performance in terms of Capacity when they process a homogeneous input, while 

they differ when they process a heterogeneous input; we have shown an example of this 

in Figure 13. Thus, this metric also leads to ambiguous results. 

7.1.3 Summary 

We have shown how single-valued performance metrics lead to either incorrect ranking 

or ambiguity. All three different single-valued metrics resulted in different rankings. 

Harmonic mean, which is the most appropriate metric according to our design goal, 

found that Design A is the optimal design, in contrast to the other mathematical means. 
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Whereas, the maxima points’ metric found that Design B is the optimal design. On the 

other hand, the bounded area metric found that all designs are equivalent. The major 

reason behind this ambiguity is that curves cross, resulting in crossing areas that are in 

favor of specific designs over others. Single-valued metrics factor out these areas of 

comparison. 

Designs A and B prefer the production of unbalanced loads. This is more obvious in 

Design B, in which the system performs very well when producing only text or JPEGs. 

As the demand increasingly becomes an intermediate mix of text and JPEGs, Capacity 

degrades (i.e. a fewer number of jobs are produced). Design A performs better than 

Design B when a mix of tasks is produced, but it performs very differently from Design 

B when it is processing only text or JPEGs. In contrast, Design C prefers the production 

of balanced loads. As the demand is becoming more heterogeneous, the Capacity 

gradually decreases. 

The only metric that describes the performance of these designs to produce different 

types of jobs, as we just described, is the curve shape. The shape of the Capacity curve of 

Design A and B is a convex, while it is a concave for Design C. The shape of the 

Capacity curve of Design A is a convex with less regularity than that of Design B. The 

abnormality is originated from the effects of overhead on the system Capacity. Note that 

the curve of Design A at some production region produced less than it should ideally 

have because of the overhead generated when having a specific combination of jobs. One 

reason for that is the overhead of task migration or memory and communication 

contention. Later on we include a deep analysis of the effects of overhead in creating 

multimodal curve shapes. 

Single-valued performance metrics fail to find optimal designs because they do not 

consider the relationship between the system’s production capabilities of specific 

workload modes and match them to the actual demands placed on the system. We bridge 

this gap by developing an algorithm to characterize demands in the form of a curve and 

overlay these curves over the Capacity curves. When Capacity curves match demand 

curves, they are optimal designs, regardless of their magnitude. 
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7.2 Our Approach: Demand-Capacity Matching 

In order to show the usefulness of our Capacity metric, we first need to characterize the 

demand for a system. Because the demand for modern CHMs is not, itself, single-valued, 

characterization of demand needs to be in the form of workloads, or distributed sets of 

concurrent jobs that result in collections of distinct loading situations.  

7.2.1 Demand Curve Generation 

In order to generate demand curves, we first develop an algorithm to identify all possible 

demands in a specific usage scenario. The identified demands are then used to draw a 

demand curve. 

 

A. Demand Collection Method (DCM) 

We use an enhanced version of the Workload Characterization Method (WCM), 

discussed in Chapter 5, to generate all possible demands exposed by a single-user usage 

scenario. Demand generation is conducted in an adhoc manual manner by the system 

designer.  

Step 1: Type Extraction. Each task type, Y, represents a dimension on the curve. Tasks 

with different working data sets, S, and complexities, C, can be considered different types 

of tasks.  

Step 2: Forming dm Vector. Step 1 resulted in m different task types within a demand 

mode (dm). dm=[Y1,...,Yj,...,Ym] represents the demand vector of length m, in which Yj is 

a task type. 

Step 3: Forming M Matrix. Each usage scenario has n demand modes. The number of 

demand modes is a function of the length of the time window in which demands are 

characterized as well as the sequence of demands. M  is the generated matrix of 

dimension n×m that represents a usage scenario, in which rows are dm vectors and 

columns are the number of instances, s, of each job type, Y, in dm.  

Step 4: Appends M Matrix. Step 3 is repeated for different time window’s length as 

well as for different sequences of demands. 

In order to convert the generated demand modes into an n-d graph, matrix M  is 

represented in the form of a multiset. Each set represents a demand mode (or vector) that 
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is shown as a point on an n-d space. A multiset is similar to a set except for allowing 

duplicate values to exist. Since our demands are unordered and duplicates may exist, we 

chose to use a multiset type of collections. 

Note that our DCM algorithm is similar to the WCM algorithm, but for different 

applications. While WCM was used to identify workload modes at runtime, utilizing 

some design-time knowledge, the DCM is used to generate all possible demands exposed 

by a usage scenario. We should also point out that the terms workload modes and demand 

modes are interchangeable. While we previously published [147] using the term 

workload modes for demands placed on the CHM, we have evolved and now more 

correctly distinguish this as demand modes, since others have claimed the term workload 

modes for different purposes, such as power optimizations [131]. Thus, we developed the 

term demand modes, while defining our Capacity metric.  

 

B. Time Window Selection and Demand Sequence 

One key part in our DCM algorithm is the inclusion of time, something that reflects a real 

workload. In order to do this, we divide the usage scenario into equal time intervals 

during which demand modes need to be collected. Here, the time interval is selected by 

running each scenario on all architectures. The maximum time needed by a demand mode 

is the selected time interval. Since architectures have different performance for different 

demand modes, different architectures may have different time intervals. This is 

analogous to the way we specify the time interval during which we measure Capacity, as 

discussed in section 6.5.1. This approach is a type of execution normalization. By doing 

this, we define a sliding window over our scenario during which we collect demands. For 

different sliding window sizes we expect different demands to arrive during this window. 

Another key part in our DCM is the sequence of demands. By evaluating the 

overhead generated due to different mode sequences, we have shown in Chapter 5 that 

the sequence of demand modes matters to system performance; for different mode 

sequences different amounts of overhead is incurred. Therefore, when demands are 

collected we consider all demand sequences for different time intervals. The number of 

sequences is n!, in which n is the number of modes in the scenario. For instance, the 
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scenarios shown in Figure 51 and Figure 52 have six modes each. Next, we discuss these 

scenarios and use our DCM to generate all demands exposed by these scenarios. 

 

C. Example: Usage Scenarios  

Here, we discuss two usage scenarios. While our scenarios are fictional, the data 

collected from these scenarios is real. In both scenarios, the mobile device is used only to 

surf webpages.  

Figure 51 depicts a usage scenario of a teenager. The timeline is on the independent 

axis and webpages are on the dependent axis. Each webpage consists of several tasks that 

arrive the system in the form of timed sets. These tasks are summarized in the legend 

below the figure. This usage scenario models an example input of modern computers in 

which multiple applications possibly run concurrently and arrive at different times. Note 

that as time progresses, the user places different requirements on the system as different 

combinations of applications execute. A set of applications are run concurrently, driven 

by user intervention and the arrival of data from the Web. The task progression is also 

shown in the same figure (e.g. to download a picture, the system must first perform a 

Viterbi decode and then JPEG decode).  

 

 

Figure 51: A Teenager Scenario 

 

Consider another usage scenario of a businesswoman, shown in Figure 52. Because of 

the different combinations of application sets, input data, deadlines, and constraints, this 

usage scenario may exhibit different system performance from the previous usage 
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scenario of Figure 51, causing the designer to tune the system differently, despite each 

system executing the same set of applications. These differences come from the type of 

webpages surfed by the user as well as the arrival timing of jobs. For instance, the user in 

the scenario of Figure 51 uses his or her mobile device to access social networks and 

entertainment webpages. This type of webpage has different requirements than that of the 

second scenario, in which the businesswoman accesses financial webpages most of the 

time. These differences do not just exist in the size and complexity of content, type of 

content, and number of jobs, but also in the arrival timing of data that affects the response 

of the system to the frequency of changes in the input stream [48]. 

While our scenarios consist of webpages only, they can be considered representative 

workloads of other applications. For instance, sending and receiving text and image 

messages in our multimedia cell phone example, discussed in Chapter 3, behave the 

same. We used only webpages because other cell phone applications are periodic, such as 

processing voice packets and MP3 frames. Since these applications are periodic, their 

demand is constant and therefore it is not interesting to include them. The Capacity 

metric is most useful in systems that have collections of data-size-dependent and data-

content-dependent execution. 

 

 

Figure 52: A Businesswoman Scenario 

 

Using our DCM algorithm, we generate all demands of the scenario in Figure 50. 

Since the demands consist mainly of three job types (text, JPEG, and GIF), the DCM 

results in a 3-D demand space. The data used by our algorithm were extracted using an 
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online tool (Webpage Analyzer) [148]. For simplification, we project this 3-D space into 

its 2-D spaces. Future systems are anticipated to have many input streams, resulting in 

demand curves of higher dimensions that cannot be seen by graphical techniques. By 

projecting an n-D space into its 2-D spaces, we facilitate analysis of these higher-

dimension spaces. Initially, we have computed three time intervals during which we 

collect demands by running this scenario onto the three designs described in section 7.1. 

We have also considered all mode sequences.  

In Figures 53 through 55, we show demands in 2-D. Again, these 2-D spaces are the 

projection of a 3-D space. On each plane, we show the set of demand modes generated 

due to this specific usage scenario. Some of these demands are aligned vertically. This 

means that for the same value of the independent variable there may be multiple values of 

the dependent variable. This is because demands for some type of jobs may be repeated 

during a specific scenario but in different combination with other job types. For instance, 

consider a demand that consists of two text files and five JPEGs, and another demand that 

consists of two text files and four JPEGs. For the same amount of text files, there are 

different amounts of JPEGs. This repetition may also occur in more than one variable in a 

demand that consists of more than three variables. The red line curve represents the 

maximum demand modes. For each value on the independent axis, there is only one 

unique maximum correspondent value on the dependent axis. We fit these maximum 

values using a curve that simply connects these values. We refer to this curve as the 

maximum production curve. 

 

 

Figure 53: Text-JPEG Capacity Plane 
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Our final goal is to identify a demand curve, similar to the concept of Capacity 

curves. The demand curves are analogous to how an ideal system would carry out the 

actual, required demand, a system with perfect Capacity to meet required workloads in all 

situations the system is expected to encounter, with no waste. In order to do this, having 

all possible demands the system needs to service, we can generate different types of 

curves such as the maximum and minimum demand curves. The demand curve is the 

target workload limit that the system must meet.  

 

Figure 54: Text-GIF Capacity Plane 

 

 

 

Figure 55: JPEG–GIF Capacity Plane 
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Depending on the design goal of the system, the designer may create different types 

of demand curves. For instance, the designer may choose to design a system to meet the 

most frequently repeated demands, demands that users may be most interested in, or 

demands that exhibit a high access to caches. For the purpose of illustration, we next 

extend our DCM algorithm to generate another type of demand curves, which is the 

occurrence frequency curve. 

D. Occurrence Frequency Curve 

One alternative is the design to the most frequently repeated demands, or the occurrence 

frequency curve. There are different ways to identify the occurrence frequency curve 

from the set of demands that we have. One approach we adopt is to use a weighted 

version of our DCM algorithm to identify clusters of demands. Each cluster is 

represented by only one demand mode on the curve. 

 

 

Figure 56: Maximum Demand vs. Occurrence Curves 

 

For that purpose, normalized complexity weights are generated by dividing the cycle 

budget of each application by the maximum cycle budget needed by an application in the 

system. We extend Sim-Profile [130] of SimpleScalar to extract the number of cycles for 

each application. Sim-Profile profiles each application when it runs on a different 

processor type. We enhance our DCM algorithm by including two more steps: 
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Step 5: Forming C Vector. We suggested normalized weights, c, that correspond to the 

task complexity. These values are extracted again using the modified version of the Sim-

Profile.  

Step 6: Assigning C Vector Values to M Matrix. Matrix M is then multiplied by 

weight vector, C. We normalize each column (task type) in the matrix by subtracting the 

mean value and dividing it by the standard deviation. The goal of the normalization is to 

put all task types on a common scale. Then, we linearly combine the absolute values in 

each row (demand mode vector dm).  

Demands with equal complexities are clustered together. The clusters with a larger 

number of elements (demands modes) can then be selected. Figure 56 shows the same 

curve of Figure 51 but is overlaid over the occurrence frequency curve. While curves 

intersect in some demand modes, they diverge in others. Again, the most appropriate 

curve depends on the system design goal. 

7.2.2 Curves Match Fit  

The final step in our approach is to match Capacity curves to demand curves. There are 

several techniques in the literature that can be used to match curves, especially in image 

processing and pattern recognition [149], but because we project both Capacity and 

demand surfaces into 2-D curves, matching 2-D curves is graphically applicable. 

The match fit should ensure that all demand modes are covered by the Capacity curve 

(the design can support all demand modes), but at the same time, the distance between 

the two curves should not be too far because this excessive Capacity may come at the 

expense of power consumption and waste in system resources. 

7.3 Experiments 

The purpose of these experiments is to show how our Capacity metric, in combination 

with demand curves, succeeds to identify optimal designs when single-valued 

performance metrics led to ambiguity or identification of wrong designs. The formation 

of demand curves emerged from the observation that the shape of the Capacity curve has 

information about the loading preference of a design (i.e. the demands that it can 

support). In our experiments, we also aim at analyzing the effects of overhead on the 

Capacity curve shape. We conclude with some discussion. 
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7.3.1 Experimental Setup  

We use the same experimental setup in section 5.2. The only change is that instead of 

using the scenarios, discussed in section 5.1, as the benchmarks to evaluate the 

performance of the designs, summarized in Table 12, we use the set of scenarios 

discussed in section 7.2.1. As discussed earlier in this chapter, the reason for this change 

is because the scenarios of section 5.1 were generated according to our multimedia cell 

phone example, discussed in section 3.3, which includes applications that have constant 

demands. The most interesting applications are those that have different demand 

requirements at different times. 

7.3.2 Results 

We first use the same example in Figure 50 to show how our Capacity metric leads to 

different results. In order to do this, we overlay the same Capacity curves shown in 

Figure 50 over the demand curves generated from our scenarios, discussed in section 7.2. 

The optimal design is the one with a Capacity curve that matches the demand curve. In 

Figures 57 through 59, we overlay the Capacity curve of Design A, Design B, and Design 

C, respectively, over both maximum and occurrence frequency demand curves. 

 

 

Figure 57: Overlay Demand Curves Over Design “A’s” Capacity Curve 

 

First note that our demands are balanced loads of both job types. As expected, Figure 

57 and Figure 58 show that Design A and Design B prefer unbalanced loads, loads that 

are mostly of one type of jobs, while they cannot produce some mix of text and JPEG 
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files, especially those that have more jobs of both types. This is because Design A has a 

GPP processor that is the best fit for producing text files and four DSPs that is the second 

best fit for the production of JPEGs. Design B is even better in producing unbalanced 

loads because it has two GPPs and eight Media processors that are the best performing 

processors for text files and JPEGs, respectively. As a result, Design B is a worse fit than 

Design A because the demand curve includes more balanced loads. In general, both 

designs could not match any of the demand curves. 

 

 

Figure 58: Overlay Demand Curves Over Design “B’s” Capacity Curve 

 

 

Figure 59: Overlay Demand Curves Over Design “C's” Capacity Curve 

 

In contrast, Figure 59 shows that Design C was able to cover all demands of the 

occurrence curve and almost all demands of the maximum curve. Note that Design C 
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performs better when the system receives balanced loads. This is because it has six of 

DSP processors that are the best performing processors for a mix of JPEGs and text files. 

The DSP outperforms Media processors in processing text files and outperforms GPPs in 

processing JPEGs. 

Back to our discussion in section 7.1, in which we have shown that single-valued 

metrics lead to different rankings, using the HM, which is the most appropriate metric 

according to our design goal, we found that Design C is the worst design, similar to the 

ranking of the arithmetic mean. Using the geometric mean, we found that Design C is the 

second worst design of the three designs. The maxima points’ metric also found that 

Design C is the worst design. Finally, the bounded area metric found that all designs are 

equivalent. In contrast, for specific loading situations, our Capacity metric found that 

Design C is the optimal design.  

 

 

Figure 60: JPEG–GIF Capacity Plane 
 

Now consider other demand and Capacity planes. Figure 60 shows Capacity and 

demand curves as a relationship between the production of JPEGs and GIF images. On 

the independent axis is the production of JPEGs and on the dependent axis is the 

production of GIF images. Note that we show in this figure the maximum demand curve 

only. Also note that we include all Capacity curves of Design A, Design B, and Design C 

on the same figure.  
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Now consider the demands generated from another usage scenario shown in Figure 

56 (a businesswoman scenario). Again, we used our DCM method to generate all 

demands exposed to the system due to this scenario. Then we fitted these demands using 

the maximum demand curve. Similar to Figures 56 through 58, in Figures 60 through 62 

we overlay the capacity curves of Design A, Design B, and Design C over the demand 

curve generated by the businesswoman scenario. Our goal from this experiment is to 

show how optimal design ranking changes as received demands change. Here, we view 

only one plane of the demand surface: the JPEG–text plane. Note that by looking at the 

maximum demand curve itself, you can see that it characterizes an unbalanced system 

loading when most demands are either JPEGs or text files. This is intuitive because the 

content of the webpages browsed in this scenario is either text (such as the content of 

Twitter, WSJ, or Gmail) or image (such as the content of Facebook, CNN, or BBC). 

 

 

Figure 61: Overlay Demand Curves Over Design “A’s” Capacity Curve 
 

 

Figure 62: Overlay Demand Curves Over Design “B's” Capacity Curve 
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Figure 61 and Figure 62 show that the Capacity of Design A and Design B almost fits 

all demands. The only difference between these designs is that Design A has an excessive 

Capacity that is not needed by this type of demand. This excessive Capacity may cause 

an overhead on the system, such as more power consumed. 

Figure 63 shows that Design C is the worst design because it does not fit all demands, 

while for some demand combination it has an excessive Capacity. Thus, the optimal 

design for this type of demand is Design B. Interestingly, the Capacity curve of Design B 

is a convex that favors unbalanced loads; this in turn matches the type of demand. 

  

 

Figure 63: Overlay Demand Curves Over Design “C’s” Capacity Curve 
 

Here, we find four interesting observations from these experiments aside from which 

design fits the demand curve more.  

• The Capacity curve (JPEG–GIF plane) of Design C is a concave that 

approaches the shape of a straight line. This is because Design C is a 

homogeneous processor (it has six DSP core processors) and both demand 

types (JPEGs and GIF) are of the same type of jobs that share some common 

processing requirements in, for example, the way they are migrated, access 

shared resources, etc. Thus, production of different job types can be replaced 

for each other at almost the same rate. 

• Second, the shape and magnitude of the curves on one plane are not the same 

as on other planes. For instance, when producing JPEGs only, Design A and 

Design B produced fewer JPEGs in the JPEG–GIF plane compared with the 
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production of JPEGs in the JPEG–text plane. In contrast, Design C produced 

more JPEGs in the JPEG–GIF plane, again compared with the production of 

JPEGs in the JPEG–text plane. The presence of the ability to process an 

additional input stream results in an overhead, even in the absence of data on 

that input stream. 

• Third, demand curves also have different shapes that reveal the type of the 

system loading. This in turn makes shape and magnitude matching between 

Capacity and demand curves possible.  

• Finally, the Capacity curves (JPEG – GIF planes) of Design A and Design B 

are asymmetric (or not ideal), exhibiting multimodal shapes. The asymmetry 

is caused when multiple overheads interact due to the existence of 

heterogeneous cores that process a combination of heterogeneous inputs.  

Overhead occurs when multiple processors are physically or logically joined 

in the formation of a system and include, for example, communications 

(busses and networks), scheduling, protocols, memory sharing, I/O sharing, 

and caching.  Next, we analyze the effects of overhead on the Capacity of the 

system.   

7.3.3 Overhead Effects 

Overhead has long been thoroughly studied in computer architecture in the essence of 

performance facilitation. While a primary goal has been to reduce or hide the effects of 

overhead, future successful CHM design may well require more exposure of the effects 

of overhead in specific situations. Examples for that are: the inclusion of more caches at 

the expense of other system resources, increasing the communication bandwidth at the 

expense of area and power consumption, and developing more computationally complex 

schedulers in terms of processing time and memory space. We have studied in Chapter 5 

the cost of overhead on system optimization. We have also modeled overhead in section 

5.2, including different elements that contribute to the overall system overhead. 

Figure 64 shows both the Capacity curve of Design A and the overhead curve 

generated, while measuring the same Capacity curve. Each curve has different scale. The 

scale for the Capacity curve is on the left, while the scale of the overhead is on the right. 
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We use normalized values of overhead to show how overhead varies along with different 

combinations of demands. 

 

 

Figure 64: Capacity vs. Overhead 
 

Note here several interesting observations:  

• Overhead increases when different types of input exist. For instance, the 

overhead incurred due to optimizing the system to demands that are 

homogeneous (either JPEGs or GIF images) is relatively lower than that of 

other demands. Optimizing different types of jobs concurrently costs more 

because they require more complex optimization in addition to exposing 

different requirements on the processing, communication and storage 

resources.  

• The cost of optimizing the system to produce only JPEGs is more than the 

cost of optimizing the system to produce only GIF images. 

• Increasing the number of jobs on the system increases the incurred overhead. 

Note that as we are producing more JPEGs, the overhead increases.  

• More interestingly, for some combination of demands, overhead increases 

exponentially because the system at these points suffers from communication 

and memory contention due mainly to task migration. Note that the choice of 

doing task migration at these points hurts the system’s Capacity because of the 

incurred overhead; the gained performance did not overcome the increase in 

the overhead.  
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Note that the incurred overhead differs for the same set of tasks when architectures 

change. For instance, Design C incurs less overhead (shown in Appendix C) compared 

with Design A and Design B, especially when processing a homogeneous input, because 

it is a homogeneous processor.  

7.3.4 Experiments Discussion 

Here, we summarize some observations from our experiments: 

• Optimal design ranking is a function of the type of input demands. Our initial goal 

was to show how future multicore mobile devices have to be designed to 

workloads that result from specific usage scenarios. In pursuing this goal, which 

we partially fulfilled, we found that single-valued performance metrics lead to 

ambiguity because they do not include the nature of workloads in their 

calculations. By developing the Capacity metric, we were able to integrate it with 

the definition of single-user usage scenarios in order to identify optimal designs 

for these scenarios. 

• Different combination of demand types in the same scenario have different 

optimal design ranking. This is intuitive and falls under the category of the 

previous point in this list.  

• Overhead is a key feature in design. We have also shown in these experiments 

how overhead affects the shape of the Capacity curve and the system performance 

overall. A solid model of overhead modeling is needed in addition to the Capacity 

curves in order to make the right optimization decisions. 

• Power, area, and resource utilization should be explicitly considered. They are 

already implicitly considered because there are limits to the numbers and types of 

processors considered in our examples. It may happen that several designs match 

the same demand, the optimal design now is the one that consumes less power 

and utilizes system resources more efficiently, for example. 

In this chapter we illustrated why single-valued performance metrics fail to evaluate the 

performance of the CHMs that simultaneously process heterogeneous outputs or demand 

modes. In contrast, our Capacity metric was able to find optimal designs for specific 

usage patterns, or Workload Specific Processors (WSPs). 
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Chapter 8 

Conclusions and Future Research Directions 
 

 

 

 

 

 

In this work we introduced a Capacity metric to evaluate the performance of Chip 

Heterogeneous Multiprocessors (CHMs) that simultaneously process heterogeneous 

outputs. Our metric is motivated as the successor to throughput via an analogy to 

automobile pipelines. Our Capacity curves are experimentally generated via measurement 

and are generally not linear when two input streams are processed. Thus, we showed that 

distillation of multi-type production over a given design (plant) to a common work unit, 

an average, precludes the designer from identifying cases in which the system has more 

Capacity than the average or cannot meet the predicted average production, in which the 

non-linear curves rise above or fall below the straight line (average) that occurs when a 

common work unit for throughput is used.  

8.1 Summary of Contributions 

We make several contributions in this work to identify optimal designs or WSPs. We 

classify these contributions into primary and secondary ones. Our primary contribution is 

the development of the Capacity metric. 

Our metric is motivated as the successor to throughput via an analogy to automobile 

pipelines that produce single types of cars as compared with the Capacity of plants that 

produce multiple types of cars, using multiple pipelines. We developed the Capacity 

metric as a curve in two dimensions (or a surface in higher dimensions) with 

dimensionality related to the number of input streams, or channels, processed by the 

CHM. These curves give the designer the ability to understand the effects of adding 

As for accomplishments, I just did what I had 
to do as things came along. 

    Eleanor Roosevelt 
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architectural features on the performance of a computer system that simultaneously 

processes (produces) multiple output streams. Significantly, these curves do not result in 

linear relationships, as the demand for different production types varies. Distillation of 

rates of production over multiple production types to a common work unit, such as 

automobiles, instructions, tasks or programs, results in a linear relationship as rates of 

production of more specific types within those categories varies. But if a straight line was 

superimposed on any of our Capacity curves, the real Capacity of the plants (designs) 

being examined will either underestimate the true Capacity of a given plant for a given 

set of production values, or it will overestimate what the plant is capable of.  

We illustrated some fundamental Capacity forms and showed how they may be used 

as the basis for evaluation and analysis of Capacity curves generated via measurement. 

Our overall goal is to motivate the development and use of the Capacity metric for 

performance evaluation of modern CHMs; specifically, we advocate investigation into 

how shapes of Capacity curves can be used to classify systems and identify how designs 

features can be manipulated in order to change the shape of the Capacity curves. In order 

to achieve this, we showed that Capacity surfaces have properties of both magnitude and 

shape, and each is required in order to understand workload performance.  

This work also makes the following secondary contributions that made our primary 

contribution possible: 

 
1) Three Foundations at the Chip Heterogeneous Core Level 

We developed three foundations that we used to develop our Capacity metric: a CHM 

model, a multimedia cell phone example, and a WSP. Existing models for single core 

computers (i.e. those relying on an Register Transfer Level (RTL), Instruction Set 

Architectures (ISAs), and accompanying benchmarks) cannot be used to develop our 

Capacity metric because: (1) RTL key design features do not capture those features of 

CHM designs, (2) individual benchmarks do not accurately model the workload of 

single-user mobile devices, and (3) there is nothing such an ISA for CHMs. Thus, we 

needed to develop: 

a) A multimedia cell phone example that permits the benchmarking of single-user 

mobile computing devices, to replace traditional benchmarks,  
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b) A CHM model equivalent to RTL for the types of architectures that are projected 

to be in future mobile devices, and 

c) A WSP. WSPs are to CHMs is what an ISA is to an RTL. Part of our thesis is 

that WSPs more correctly capture what mobile computing devices do and that 

they result in categorically different approaches to processor design. WSPs are 

enabled by the presence of collections of individual user initiated job-style 

applications that arise as users interact with multicore mobile devices.  

 
2) Workload Modes Definition and Identification  

We defined workload modes, derived from models of single-user access patterns, as a 

means of design orientation and performance optimization for future single-user CHMs. 

Through experimentation on our cell phone example and additional analyses, we found 

that a workload classification model that leverages workload models of user patterns can 

outperform the more costly Hidden Markov Model (HMM). Our ultimate goal is to show 

how the design of multicore architecture to models of single-user usage patterns and their 

associated workload modes will be necessary as the complexity of applications and 

architectures grow in future designs. Thus, we advocate WSPs as a new means of 

orienting single-user CHMs. 

We also developed a Workload Classification Model (WCM) to identify workload 

modes at runtime. We analyzed and evaluated the WCM and contrasted it to a HMM. We 

included experimentation on our cell phone example, illustrating how WCM is, on 

average, 34 times more time efficient and 83% more space efficient than HMM is, while 

improving overall performance by an average of 191% and being, on average, 56% more 

energy efficient. We found that even sub-optimal use of WCM can outperform HMM, 

further supporting the need for design-time workload models. 

 
3) Capacity Metric Analysis Foundation 

In addition to the development of the fundamental Capacity curve shapes, we established 

a foundation for analysis of the Capacity curves so that the impact of architectural 

features in a CHM may be better understood. In order to do this, we developed a Demand 

Characterization Method (DCM) that characterizes the demand of a specific usage pattern 

in the form of a curve (or a surface in general). By doing this, we were able to overlay 
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demand curves over Capacity curves of different architectures to compare their 

performance and thus identify optimal performing designs. 

8.2 Future Research Directions 

This research focused on the development of a new performance metric, Capacity, to 

correctly evaluate the performance of the CHMs that process workloads. The overall goal 

is to identify optimal designs for specific usage patterns that result from individual users 

accessing multicore mobile devices; the basis we used to define these designs was WSPs. 

One of the key challenges in this research is the scalability of our metric with the growing 

number of inputs and processing elements. Here, we summarize two key challenges for 

future work. 

 

8.2.1. Multi-Dimensionality Analysis 
The Capacity metric results in a surface with n dimensions modeling the interaction of n 

multichannel streams as they compete for resources. Surface analysis needs to be done in 

order to extract features in a feature vector. Feature analysis is necessary in order to give 

insight to designers about the cause and effect of design features in a CHM to include 

processor choice, communications design, and scheduler decisions. Future systems are 

expected to have many channels of inputs, and graphical comparisons of the Capacity 

metric will not scale beyond three dimensions. While the breakdown of performance into 

multichannel input streams is required in order to understand how real user demand 

affects the design of CHMs, this breakdown must ultimately result in a means by which 

numerical analysis can be used as a basis of comparison for performance.  

 

8.2.2 User Profiling 
Since Capacity metric was originally emerged from the need to optimize CHMs to 

workload modes that result from individual users using multicore mobile devices, single-

user usage profiling is essential for discovering real usage patterns or workloads. In this 

way, Capacity curves can be used to identify for each user where performance does not 

meet, exactly matches, or excessively meets his needs and by how much. In Chapter 4, 

we performed an extensive survey of existing methods on user profiling that can be used 

in that regard. 
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Appendix A 

Capacity Curves 
 

 

 

In Chapter 6, we focused on two input types, JPEG and text. Here, we analyze more 

results of our Capacity metric by including a third input type, GIF images. Thus, we show 

how different architectural features interact with the type of input by analyzing the 

Capacity curve’s shape and magnitude. Our goal is to have more insight about the effects 

of these features and to be able to classify these effects into patterns. 

Here, we summarize some interesting observations from our experiments by 

comparing the results in this Appendix to those of Chapter 6. We mainly compare the 

Capacity curves of GIF–text, JPEG–GIF, and JPEG–text. The JPEG–text curves are 

shown in Chapter 6 and the GIF–text and JPEG–GIF curves are shown in this Appendix. 

Our observations give more insight about the effects of the input type on the Capacity. 

• Burst Width: JPEG–GIF inputs took the most advantage from increasing the 

burst width, compared with JPEG–text and GIF–text. Increasing the burst 

width favors unbalanced loads. Thus, since GIF and JPEG input types have 

approximately similar communication and memory access patterns, wider 

widths favor this type of inputs more.  

• Communication Bandwidth: JPEG–GIF inputs took the most advantage from 

increasing the communication bandwidth as well because their processing 

requires more I/O accesses. Because both input types have approximately 

similar performance on different processor types, the shape of the curve 

approaches a straight line. 

• Processor Number and Type: for the JPEG–GIF inputs, changing the number 

and type of processors, results almost in the same Capacity curve shape 

because the selected processor types perform well for both task types. The 

minor change in the shape happens because of the different overhead values 
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that result from the interaction of different architectural features. However, the 

magnitude of the curve changes according to the number of processors. 

• Cache Memory Size: increasing the cache memory size has shown more 

advantage for JPEG–GIF because their processing requires more I/O accesses. 

However, because GIFs are animated, they took more advantage when cache 

size increased, making the Capacity curve shift toward the GIF axis. 

• Scheduler Type: dynamic scheduling matters only when we have 

heterogeneous inputs. Because JPEG–GIF inputs are more homogeneous than 

GIF–text and JPEG–text inputs, dynamic scheduling shows less advantages 

for the JPEG–GIF, compared with the static scheduler. Also note that the 

incurred overhead that is shown in the form of the multimodality of the 

Capacity curve shapes is greater in the GIF–text and JPEG–text inputs 

because they are heterogeneous.  

• Time Interval: the ratio of the Capacity to the time interval length has 

increased in the JPEG–GIF plane compared with the GIF–text and JPEG–text 

planes. As pointed out before, this ratio increases for unbalanced loads. Since 

GIF and JPEG have approximately similar performance on the different 

processor types on chip, the ratio approaches being linear, resulting in an 

almost straight-line Capacity curve shape. 

Again, note that when multiple architectural features interact, multimodal shapes 

result. 

 

 

Figure 65: Capacity When Burst Width Increased 
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• Burst width feature 

Figure 65 shows two Capacity curves of a CHM differentiated by increasing the bus burst 

width from 16B (B1) to 32B (B2). The CHM consists of 2G, 4D, and 6M processors and 

128K of L2-cache memory. In the GIF–text Capacity curve, as the bus’s burst width is 

changed from 16B (B1) to 32B (B2), the system changes from favoring balanced loads to 

unbalanced loads. Whereas, in the JPEG–GIF Capacity curve the architecture favors 

balanced loads. Also note that doubling the burst width results almost in the double 

Capacity. 

 

• Processor type and number features 

Figure 66 shows two Capacity curves for two different architectures (Arch2 and Arch3). 

In Arch2, we increased the number of GPP and Media processors, while reducing the 

number of DSPs. Note that adding this feature favors the mix of text and GIF but not 

their mix. The slope of the Capacity curve of Arch2 drops faster than that of Arch1. DSP 

processors have medium performance for processing both text and GIF thus they perform 

better than GPP and Media when a mix of text and GIF is being produced. On the other 

hand, both architectures show almost same performance when processing JPEG–GIF; 

this is because both types of jobs require the same processing, but differ in term of 

memory requirements. GIF images are animated thus they need more memory accesses. 

 

 

Figure 66: Capacity When More GPP and Media Added and DSPs Reduced 
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In Figure 67 we show the effects of increasing the number of Media processors while 

reducing the number of DSPs. The figure shows two Capacity curves for architectures: 

Arch3 and Arch4. Compared with Arch4, the number of Media processors in Arch3 has 

increased by two times, while reducing the number of DSPs by half. Note that adding this 

feature favors GIFs and text since Media processors perform better than DSPs in GIF and 

text processing. Note that the two curves differ not just in terms of magnitudes, but also 

shapes. The slope of the Capacity curve of Arch3 drops faster than that of Arch4, 

resulting in a convex shape.  

 

 

Figure 67: Capacity When More Media Processors Added and DSPs Reduced 

 

For the JPEG–GIF Capacity curve, again both processor models perform the same for 

both job types, but JPEGs have less memory requirements because they are static images. 

 

• Cache size feature 

 

 

Figure 68: Capacity When Cache Size Is Increased (Same Processors) 
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Figure 68 shows the Capacity of the CHM of Figure 65 when the cache size increases by 

1.5 times. As a consequence, the chip area has increased. The figure shows too little 

improvement in Capacity because the selected working set sizes of the text, GIF, and 

JPEG tasks are small. However, this feature favors GIF and JPEGs more since their 

processing can be considered to be internally I/O bound more than text processing. 

Figure 69 shows two Capacity curves for two different architectures (Arch1 and 

Arch2) differentiated by increasing the cache size from 128K to 192K at the expense of 

the number of processors on the chip. Interestingly, the Capacity of both architectures to 

produce only text files is the same then the curves diverge significantly. In general, Arch2 

shows major performance improvement because the selected size of working data sets of 

tasks is larger. Thus, the increase in the cache size helps in improving the performance. 

Note that in the case of producing text only, increasing the cache size does not result in 

any improvement because the working set size of text files is already smaller than GIFs. 

Again, increasing the cache size favors the production of task types with larger working 

data sets. 

 

 

Figure 69: Capacity When Cache Size Increases (Less Processors) 

 

For the JPEG–GIF Capacity curve, capacity has increased almost equally for both tasks 

because again they perform equally when executed on different architectures; only GIFs 

need more memory accesses because they are animated. 
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• Communication bandwidth feature 

Figure 70 shows the Capacity of the CHM of Figure 37 when the overall communication 

bandwidth increases. C1 is 0.4GB/s and C2 is 1.2GB/s. The two curves in the GIF–text 

Capacity curve overlap at the beginning and then diverge. This occurs because 

communications Capacity affects GIF more than text. With respect to a given amount of 

text processing, GIF processing can be considered to be internally I/O bound more than 

text is with respect to a fixed amount of JPEG processing.  

 

 

Figure 70: Capacity When Communication Bandwidth Increased 

 

• Scheduling feature 

Figure 71 and Figure 72 show two Capacity curves using two different chip level 

schedulers: dynamic and static. The CHM consists of 2G, 4D, and 6M processors and 

128K of L2-cache memory. The two figures are differentiated by the selected working set 

size; it is smaller in Figure 71 and larger in Figure 72. 

 

 

Figure 71: Capacity of Different Schedulers (Smaller WSS) 
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Figure 71 shows that both schedulers resulted in almost the same Capacity curves, 

because the working set size is small, which in turn makes task migration occur less. In 

contrast, when using larger working size sets, the dynamic scheduler outperforms the 

static scheduler, as shown in Figure 72. Note that dynamic schedulers result in 

multimodal shapes because of the incurred overhead. 

 

 

Figure 72: Capacity of Different Schedulers (Larger WSS) 

 

• Time window interval 

Figure 73 shows the Capacity when the time window in which we measure Capacity is 

doubled. Note that doubling the time window does not result in double Capacity because 

of the overhead generated due to resource sharing and running heterogeneous concurrent 

tasks. Again, increasing the window of time favors homogeneous inputs. The 

heterogeneity of inputs incurs more processing, communication and storage memory 

overhead. Note that for the JPEG–GIF Capacity curve, doubling the time interval results 

almost in double capacity even for the mixes of jobs. This is because both tasks perform 

almost the same on all processors. 

 

 

Figure 73: Capacity When the Time Window Doubled 
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Appendix B 

3-D Capacity Surfaces 
 

 

 

When a CHM is evaluated for its ability to process n channels of input, an n-D Capacity 

surface results. The way we analyzed an n-D Capacity surface in this thesis is by holding 

one input constant at a time. In that way, dimensionality can be reduced. For instance, a 

3-D surface can be always reduced to a collection of 2-D curves. In general, an n-D 

surface can always be reduced to a collection of (n-1)-D surfaces, which can then be 

analyzed as collections. For the sake of completeness, we extend our example of Chapter 

6 to include three input channels: JPEG, text, and Flash frames. Since 3-D surfaces can 

be graphically analyzed, we view the Capacity of this example by looking at the shape of 

the surface. We use this example to point out how our analysis of high dimensionality is 

effective. 

Future systems are expected to have many channels of inputs, and graphical 

comparisons of the Capacity metric will not scale beyond three dimensions. While the 

breakdown of performance into multichannel input streams is required in order to 

understand how real user demand affects the design of CHMs, this breakdown must 

ultimately result in a means by which numerical analysis can be used as a basis of 

comparison for performance. Sammon Mapping [150] can be used to transform higher 

dimensional spaces into smaller ones. Kiviat diagrams [151] can be used to facilitate 

depiction of the Capacity metric in higher dimensions. In computer architecture, little 

research has been done on visualization of simulation results, because computer 

architects usually distill the performance of different architectures into single values. 

Tools that can be used to explore an n-dimensional performance data [152] aim at the 

clustering and reduction of multidimensional performance data [129].  
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Figure 74: 3-D Capacity Surfaces 

 

Figure 74 shows two different views of two 3-D Capacity surfaces that result when 

the same heterogeneous CHM is differentiated by increasing the bus burst width from 

16B (B1) to 32B (B2) and is evaluated for its ability to process one more demand stream, 

or frames such as those found in Macromedia Flash. Note that the shapes of the curves on 

the JPEG–text plane are not the same as the previous Capacity curves, even in the 

absence of the frames channel. The presence of the ability to process an additional input 

stream results in overhead, even in the absence of data on that input stream. The convex 

and concave shapes in the Text-Frames plane, shown in Figure 74(b), suggest that the 

system changes from favoring balanced loads to unbalanced loads, with respect to frames 

and text. But Figure 74(a) suggests that the processing of text with respect to a variety of 

combinations of JPEG and frames takes on a more idealized, linear, shape, regardless of 

burst width. The JPEG–frames plane (not included) shows asymmetry in system Capacity 

curves. All of the shapes suggest that multiple factors contribute to a less than ideal 

shape, overall. In general, the more factors that affect the interaction of multichannel 

inputs, the less regular the resulting Capacity curves will be and the more modalities will 

contribute to those irregularities. While 3-D surfaces can be graphically analyzed, our 

analysis of higher dimensionality by breaking an n-D surface into a collection of its 2-D 

curves is more applicable. 
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Appendix C 

Overhead Modeling 
 

 

 

We have studied in Chapters 5 through 7 the effects of overhead on system 

optimization. Here, we include a detailed analysis of overhead. We include the different 

values of overhead incurred due to different combinations of inputs, and provide 

reasoning for why multimodal shapes result. We divided overhead into its main elements 

modeled in section 5.2: (1) chip level scheduling that includes collecting the GCS and 

making and sending scheduling decisions, (2) contention in memories and buses, (3) 

cache misses, and (4) the overhead of task migration.  

 

Table 18: Overhead of the System in Figure 64 

Overhead (Mega Cycles) 
Workload Mode      
(JPEGs, GIFs) Chip Level 

Scheduling 
Global Resource 

Contention 
Cache 
Misses 

Task 
Migration 

(0,10) 0.342 0.1 0.118 0.213 

(3,8) 0.512 0.17 0.304 0.436 

(6,9) 0.444 0.192 0.264 0.308 

(9,7) 0.433 0.236 0.346 0.501 

(12,5) 0.489 0.237 0.367 0.68 

(15,4) 0.549 0.274 0.89 0.502 

(18,6) 0.512 0.276 0.233 0.491 

(21,2) 0.501 0.237 0.205 0.399 

(24,0) 0.449 0.201 0.169 0.377 

 

Table 18 shows the overhead for the Capacity curve of Figure 64. Note how these 

values incurred due to the arrival of a specific combination of demands are tied to the 

shape of the Capacity Curve on Figure 64. 
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