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Capacity Metric for Chip Heterogeneous Multiprocess
Mwaffaq Naif Otoom

ABSTRACT

The primary contribution of this thesis is the depenent of a new performance metric,
Capacity which evaluates the performance of Chip Heteregas Multiprocessors
(CHMSs) that process multiple heterogeneous chanReldormance metrics are required
in order to evaluate any system, including compusistems. A lack of appropriate
metrics can lead to ambiguous or incorrect resutsnething discovered while
developing the secondary contribution of this thefiat of workload modes for CHMs —
or Workload Specific Processors (WSPs).

For many decades, computer architects and desigagesfocused on techniques that
reduce latency and increase throughput. The chamgeodern computer systems built
around CHMs that process multi-channel communioatio the service of single users
calls this focus into question. Modern computestems are expected to integrate tens to
hundreds of processor cores onto single chipsnafsed in the service of single users,
potentially as a way to access the Internet. Hbee design goal is to integrate as much
functionality as possible during a given time windd/Vithout the ability to correctly
identify optimal designs, not only will the bestrfgeming designs not be found, but
resources will be wasted and there will be a latkneight to what leads to better
performing designs. To address performance evaluatiallenges of the next generation
of computer systems, such as multicore computaiderof cell phones, we found that a
structurally different metric is needed and proeeetb develop such a metric.

In contrast to single-valued metrics, Capacity gigace with dimensionality related
to the number of input streams, or channels, peatedy the CHM. We develop some
fundamental Capacity curves in two dimensions dmmvshow Capacity shapes reveal
interaction of not only programs and data, butitheraction of multiple data streams as
they compete for access to resources on a CHM #s ke the analysis of Capacity
surface shapes, we propose the development of ardkrcharacterization method in

which its output is in the form of a surface. Byedaying demand surfaces over Capacity



surfaces, we are able to identify when a systemtsmiee demands and by how much.
Using the Capacity metric, computer performanceinupation is evaluated against
workloads in the service of individual users indt@& individual applications, aggregate
applications, or parallel applications. Becauseoughput was originally derived by
drawing analogies between processor design andin@pen the automobile industry, we
introduce our Capacity metric for CHMs by drawing analogy to automobile
production, signifying that Capacity is the sucoes® throughput. By developing our
Capacity metric, we illustrate how and why différgmocessor organizations cannot be
understood as being better performers without bo#gnitude and shape analysis in
contrast to other metrics, such as throughput,dbasider only magnitude.

In this work, we make the following major contritnuts:

» Definition and development of the Capacity metgaasurface with
dimensionality related to the number of input stieaor channels, processed by
the CHM.

» Techniques for analysis of the Capacity metric.

Since the Capacity metric was developed out of sgtye while pursuing the

development of WSPs, this work also makes thevioig minor contributions:

» Definition and development of three foundationsiider to establish an
experimental foundation — a CHM model, a multimezkd phone example, and a
Workload Specific Processor (WSP).

» Definition of Workload Modes, which was the origimdjective of this thesis.

» Definition and comparison of two approaches to Waall mode identification at
run time; The Workload Classification Model (WCM)daanother model that is
based on Hidden Markov Models (HMMs).

» Development of a foundation for analysis of the &y metric, so that the
impact of architectural features in a CHM may btdvainderstood. In order to
do this, we develop a Demand Characterization ME{B&CM) that characterizes
the demand of a specific usage pattern in the fafrencurve (or a surface in
general). By doing this, we will be able to overtlgmand curves over Capacity
curves of different architectures to compare thenformance and thus identify

optimal performing designs.
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Chapter 1

Introduction

If we knew what it was we were doing, it
would not be called research, would it?
Albert Einstein

Performance metrics are required in order to evalaay system, including computer
systems. Latency and throughput are the two mett@msimonly used to model
performance of a computer system. Since the origihsomputer design, computer
architects and designers focus on techniques ¢ldaice latency and increase throughput.
The change in modern computer systems built aro@iip Heterogeneous
Multiprocessors (CHMs) that process multi-chanmn@inmunications in the service of
single users calls this focus into question. Modesmputer systems are expected to
integrate tens to hundreds of processor coresabsitiagle chip, often used by single users
to access the Internet. The input to these systemsilti-channel, and the design goal is
to integrate as much functionality as possible riyra given time window. Latency
assumes that reducing the execution time of indadiasks results in a better performing
system. This is true so long as the system exeauwt@s one application at a time.
Throughput assumes that the input demand is cdnatahthat the output is a single
stream. This, in turn, results in a single unitueathat is described by its maximum,
regardless of the amount of demand. While througbpan deal with multiprocessing via
aggregation, it fails to model the performance ydtems that process distinct, multiple
heterogeneous channel inputs. Since it resultssingle unit value, throughput does not
model the impact of the type of demand on the déipab of multiple processor cores
that are heterogeneous. Further, since througlgsuin@es demand is invariant over time,
it does not model the actual or useful work and fanction of supply only. Without the
ability to compare designs of multicore computédrat tserve individual users, not only

will the best performing designs not be found, t@sburces will be wasted and there will



be a lack of insight as to what leads to bettefopeting designs. We show that a
structurally different metric is needed for the nggneration of computer systems, such
as multicore computers inside of cell phones.

The overall performance of a CHM that processestiamannel inputs must be
understood as a collection of performance pointat thepresent the variety of
multichannel combinations the system can suppodcoAdingly, in this work, we
develop a new performance meti@apacity which evaluates the performance of CHMs
with multiple heterogeneous channels. Capacity ssirface with dimensionality related
to the number of input streams, or channels, psstedy the CHM. We develop some
fundamental Capacity curves in two dimensions dmmvshow Capacity shapes reveal
interaction of not only programs and data, but &lse interaction of multiple data
streams as they compete for access to resourcasCétM. For the analysis of Capacity
surface shapes, we propose the development of ardkrrharacterization method in
which its output is in the form of a surface aslwBy overlaying demand surfaces over
Capacity surfaces, we are able to identify whegséesn meets its demands and by how
much. Using the Capacity metric, computer perforceamptimization is evaluated
against workloads in the service of individual sserstead of individual applications,
aggregate applications, or parallel applicationg fikst introduce our Capacity metric
for CHMs by drawing an analogy to automobile prdacug motivating that Capacity is
the successor to throughput.

1.1 Automobile Analogy

CHMs have the potential to integrate tens to huiglief heterogeneous processor cores
onto single chips. Often they are used by singéesum real time and in a wide variety of
situations. The design goal is often to integragemauch functionality as possible for
processing within a window of time, but also overw&e variety of anticipated
processing scenarios [1]. Overall functionality ircreasingly characterized as the
processing of multichannel inputs, which resultnmultimodal situations. Multimodal
situations are defined by the modeling of a varietyscenarios that arise from the

intersection of user preferences and the dataahrfrom the Internet. The resultant



system operates in different modes at differenesimnd these modes must be recognized
so that the system can respond to different loasiitugtions.

The processing of multichannel input streams ortioiue computers can be thought
of as analogous to the production of multiple typeautomobiles in a production plant
composed of multiple manufacturing pipelines. Tdnslogy also serves to illustrate how

Capacity is a successor to throughput.

Model-T

N Model-T K Automobiles
—> —>

Figure 1: Batch Production

Automobiles were first produced in batches. In baferoduction, only one
automobile would be assembled at a time. Figurehdws an automobile system
example. The system receives a requeshNdflodel-T automobiles and producé&s
automobiles in a given time interval. The desigmlguf these systems is to reduce the
processing time of each product model. In compsystems, latency over one or more
job types is an important performance metric foigk application computers in which

only one application is being executed at a time.

Assembly Line: Model-T

N Model-T K Automobiles
01 02 O3 >

Figure 2: Single Assembly Line

Batch production was then replaced by assemblg limbich were first invented by
Henry Ford. The motivation was to improve the tlgtmout of the production system by
dividing major tasks into smaller tasks that cdodddone simultaneously. Figure 2 shows
a single automobile pipeline model. The pipelineassumed to produce Model-T
automobiles. The pipeline consists of three stagjesiherej is a stage sequence number.
The input to the model is a demand for cars of tipedel-T, and the output is the

automobiles themselves. The pipeline throughpuindua given time interval is defined



by the duration of the bottleneck stage, or theveki stage in the pipeline. In order to
calculate the throughput of the system, all pipeBtages should be busy during the given
time interval, which means that the input should lb® the limiting factor. This analogy
results in a single value for the throughput metric

The design goal of assembly lines is to increaselymtion throughput. The spilt of
the production cycle into stages makes it possf@ocess multiple requests at the same
time. In this example, while the execution timarafividual models is similar to that of
Figure 1, the throughput of this example systethnge times that of the system in Figure
1, assuming all stages have equal cycle times.,Nextconsider the performance of
multiple heterogeneous assembly lines.

Figure 3 shows a heterogeneous two-pipeline plasme-pipeline produces Model-T
automobiles and the other pipeline produces Modelfomobiles. Here, throughput is
increased by implementing multiple assembly linsigies. Multi-product scheduling on
heterogeneous pipelines has been previously stddreglitomobile production [2]. The
architecture of each pipeline is different, as wiobke expected in the production of
different types of cars with different features. Figure 3, they differ in terms of the
number of stages and the duration of each staggthtistage on the lineis g;j. At the
plant level, some coupling is expected betweerottegall production of the two types of
cars. For example, the stage duration time of tleelét T pipeline could be different
from that of Figure 2 due to starvation that ariesause of the existence of other

pipelines sharing the same inventories or workers.
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Figure 3: Multiple Assembly Lines Plant



In order to achieve the maximum production of thedel-T, production of the
Model-A should be zero. This is the definition of throughpthroughput of automobile
assembly lines is found when individual productigpes are evaluated, resulting in a
single unit of performance. This is analogous tofggenance evaluation of computer
systems where computer architects evaluate perfarenasing parallel programs. Each
program can be multithreaded but runs individualyg so its overall rate of execution is
evaluated. Similarly, microarchitects identify thraximum throughput, usually using a
common work unit such as instructions per cycleeSEhmaxima points can be used to

compare different architectures or an average vednebe generated.

Throughput is distilled into single score valuesxgsaa common work unit. As a result,
throughput can be shown as a straight line (a plamégher dimensions). It connects the
maximum production points of individual product netel This straight line represents
the average production of this plant over a presuroemmon work unit for the
heterogeneous production types. For example, thie “antomobiles” could be used
instead of specific units for the Model-T and thedél-A. This average production
results in a linear relationship as productionh&f Model-T and the Model-A are varied.
This correctly models the production of completelgependent channels in a decoupled
system, but it does not capture the relationshipdifterent production types as they
access the common (shared) plant resources.

From the above discussion, there are three assumspti which computer systems are
evaluated and optimized for throughput. First igttdemand is constant or maximum
thus supply is the only limiting factor. The secassumption is that throughput results
in a single output stream. This, in turn, resuttsai single unit value, described by its
maximum, also regardless of the demand. Finallykwlone by a production plant is not
a function of time and is thereby not related ®itiput stream as a function of time. As a
consequence of these assumptions, throughput dvesadel the useful work that can be
done within a given time interval or the impacttoé type of the product model on the
capabilities of multiple lines(s) that are hetenmggus.

Traditionally, throughput could be used to modeissks of parallelism because the
similarity between elements of the parallel compaia permitted evaluation to take

place over a common work unit. However, in modesmputer systems with multiple,



diverse production streams that persist in the adgerpover long period of time, the
differentiation in the types of production requimsluation and analysis to consider the
effects of workload heterogeneity. Next, we discosr view of performance of the same
plant system in Figure 3.

The performance of this plant can no longer be idensd as distilled to a single
number. To illustrate this concept, for the samanpbystem shown in Figure 3, consider
Figure 4, in which we show the output of the plastmultiple heterogeneous channels.
This plant can produce a wide variety of combinaiof Model-Ts and Model-As in a
given time interval. The production of one typeaatomobile affects the plant’s ability to
produce the other type of automobile. Charactaamadf the production capacity of this
automobile plant as the maximum production of Metieland Model-As requires a set
of points, or a curve. Thus, there is no singleahsional (single-unit, single variable)
metric to model the Capacity of this plant becamiseow processes two input streams

that share some common resources.
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Figure 4: Our View of the Output of Multiple Heterogeneous Assembly Lines Plant

Because it lacks the ability to track interactigdhat occur in higher dimensions,
throughput lacks cause and effect analysis, inodifor example, the effects of
combining different production types on the sanmanplFor instance, assuming that the
supply of the plant does not increase, making nvbodel-Ts requires that resources be
redirected from making the Model-A to making thedd6T. For a plant to increase the

guantity of one model produced, production of tileeo model must be reduced. Here,



production of the Model-A must be reduced in orbeproduce more of the Model-T.
Further, throughput is presumed to be invariantr @arbitrary time intervals, whereas,
production can change with interval size as thati@hships between types produced by a

given plant can change with the period of time avkich production is evaluated.
As a result of the above discussion, throughpubhotanswer these questions:

Question 1:Can this plant satisfy the demand\gfModel-Ts andNa Model-As in
SO0 many days?

Question 2:For a specific increase in one of the supply fleetuwhich product
models can take more relative advantage?

Question 3:How much of the production of Model-A must be reeld for a given
increase in production of the Model-T?

Question 4:What new designs are better for different setsrofluction possibilities?

Each of the following questions has a parallelh@a tlesign of the CHMs that process

workloads in the service of single users:

Question 1:Can this CHM design processes specific quantitiesset of tasks in a
specific time window?

Question 2:What are the effects of adding architectural fieetwn the production of
specific demand streams of a computer system ifmaitaneously processes multiple
output streams? This lends insight to designerstahe cause and effect of design
features in a CHM, to include processor choice,momcations design and scheduler
decisions.

Question 3:How much of one demand stream must be reduceal doren increase
in the production of the other demand stream(s)?

Question 4:What CHM designs are better for different setapmdlication
combinations and rates, workload modesand by how much, compared with other

designs?

1.2 Chip Heterogeneous Multiprocessors (CHMS)
CHMs are increasingly being used to execute mudtidel heterogeneous workloads,
often in the service of single users. Multichanmgluts can be processed at different

rates and in a variety of combinations. Single-usmnputers have a window of time



during which the user would like to see a collettad jobs done. This window is tied to
acceptable performance — something built into hup®aeption, but also the way people
now use their computers on the go. Within that wiad we integrate as much
functionality as we can. Latency, bandwidth, andergly throughput have served
embedded systems and computer architecture destjriowa long time because of the

simple usage of computer devices at that time.
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Figure 5: Input/Output of a Modern CHM

According to the Semiconductor Industry Associat{@&tA) [3], by the year 2015,
future mobile devices will allow dozens of main gessors and data processing engines
to be placed onto an approximate area of an iPfgnd-urthermore, these processors
will likely be heterogeneous [5], [6]. Heterogeneith resources is being utilized not just
to save power consumption but also to improve tbdopmance of different demand
types. Most of the current and potential procesypes are classified into three
categories in terms of specificity: General Purp®secessors (GPPs), Digital Signal
Processors (DSPs), and Media processors. Thesgodate fit the job types that
dominate current mobile device applications suckpEech recognition, mp3 streaming,
video decoding, and text processing, etc. Futurbileaomputing devices have a the
potential to integrate a network on chip (NoC) tonmect the different internal
components together [7]. Figure 5 shows a CHM natgg different processing,
communication, and storage elements onto a sifgpe as well as its multichannel input
and output streams. Multichannel inputs can be gzeed at different rates and in a

variety of combinations.



Also shown in Figure 5, at any given time, theraiset of demand streanis, or
channels. Each set potentially executes concuyremtl a multicore processor; for
example, while the user is surfing the Web, a Skyglé arrives. The arrival of a new
loading situation is identified as a new demandvas: Note that the loading of the
system is mainly a function of external timing, ikaluniprocessors which are sequenced
by the speed at which an instruction stream is gg®ed. Some demand streams may
persist in the system indefinitely. Still othersymreot complete before the next demand
(input) arrives. The interaction of the processiinge with the external timing of inputs
creates a workload which is a product of extermalng from both the user and other
inputs (such as the Internet) as well as internatgssing. In modern computer systems
with multiple, diverse production streams that @ ns the computer over a long period
of time, the differentiation in the types of protioo requires evaluation and analysis to
consider the effects of demand heterogeneity. Tdréopnance of this system can no
longer be considered as distilled to a single numbe

Also shown in Figure 5 is the output of the systelescribed as multiple
heterogeneous streams. Each output stream isitfeeedt type, thus the performande,
of this system is defined as a wide variety of corations of output streams in the given
time interval,l. The production of one demand type affects thdegys ability to
produce the other types of demand.

The overall performance of the CHM that processestichannel inputs must be
understood as a collection of performance pointat trepresents the variety of

multichannel combinations the system can support.

1.3 Our Insight

Our metric is motivated as the successor to thrpuglia an analogy to automobile
pipelines. We develop a Capacity metric as a c@ovea surface) with dimensionality
related to the number of input streams, or chanpetcessed by the CHM. These curves
give the designer the ability to understand thea#f of adding architectural features on
the performance of a computer system that simuttasig processes (produces) multiple
output streams. Significantly, these curves dorestlt in linear relationships as demand
for different production types varies. Distillatiaf rates of production over multiple



production types to a common work unit — such asraabiles, instructions, tasks, or
programs, results in a linear relationship as rafeproduction of more specific types
within those categories varies. But if a straightlwas superimposed on any of our
Capacity curves, the real Capacity of the plantsifghs) being examined will either
underestimate the true Capacity of a given planafgiven set of production values, or it
will overestimate what the plant is capable of.

We illustrate some fundamental Capacity forms dmawshow they may be used as
the basis for evaluation and analysis of Capacityes generated via measurement. Our
Capacity curves are experimentally generated viasomement. Our overall goal is to
motivate the development and use of the Capacityicnfer performance evaluation of
modern CHMSs, specifically, we advocate investigatiato how shapes of Capacity
curves can be used to classify systems and idehofy features of designs can be
manipulated in order to change the shape of tha€pcurves. In order to achieve this,
we show that Capacity surfaces (which we refer $ocarves, as many of our
experimental results are two-dimensional) have @nigs of both magnitude and shape,
and each is required in order to understand wodklperformance. For example, we
found the following types of Capacity curve shajmesur experimentation:

* Balanced — symmetric about a center point;

» Convex — favoring workload streams that are notethix type;

» Concave - favoring mixed workload streams over gtneams;

» Steep — representing a significant change as wadkhoix changes;
* Modal — including multiple local maxima, minima;dn

* Independent — representing a decoupled system

By identifying these fundamental Capacity curvep&saof systems, we will be able
to use Capacity curve's shape to analyze the #gnif features of a CHM. Future
systems are anticipated to have many input streaessilting in Capacity curves of
higher dimensions that cannot be seen by graphemdiniques. Therefore, a higher-
dimension surface analysis will be done. For thalyeis of Capacity surface shapes, we
simply project these surfaces into their two-dimenal (2D) spaces. By doing this, we
intend to facilitate analysis of these higher-disien surfaces. We propose the

development of a demand curve that characterizgeeific loading of a user. Then, we
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will compare the performance of different CHMs byedaying a demand curve over

their Capacity curves, identifying which desigrbeiter able to handle a specific demand.

1.4 Contributions Summary

By developing our Capacity metric, we illustratewh@nd why different processor

organizations cannot be understood as being bettdormers without both magnitude

and shape analysis, in contrast to other metriosh ®s throughput, that consider only

magnitude. The major contributions of this theses a

Development of the Capacity metric as a surface space with
dimensionality related to the number of input stmea or channels,
processed by the CHM.

Techniques for analysis of the Capacity metric.

Since the need for the Capacity metric was dis@ewhile pursuing the

development of Workload Specific Processors, thoskvalso makes the following minor

contributions:

Three foundations were developed in order to estaldn experimental
foundation — a CHM model, a multimedia cell phoraraple, and a WSP.
The second is the definition of Workload Modes, etthwvas the original
objective of this thesis.

The third is to develop, compare, and contrast approaches to workload
mode identification at run time; The Workload Ciésation Model
(WCM) and another model that is based on Hidden kiarModels
(HMMs).

The fourth is to establish a foundation for the lgsia of the Capacity
metric so that the impact of architectural featurea CHM may be better
understood. In order to do this, we developed a &ehCharacterization
Method (DCM) that characterizes the demand of @iBpaisage pattern in
the form of a curve (or a surface, in general).dBing this, we will be able
to overlay a demand curve over Capacity curvesftdrdnt architectures to

compare their performances.
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1.5 Thesis Organization

Our work begins by discussing our observation @EiMs need to be designed and
evaluated to workload modes. Then, we use an autibenproduction example to show
how traditional metrics failed to evaluate the CHiWat process workload modes.

In Chapter 3, we develop three foundational modelsorder to establish an
experimental foundation — a CHM model, a multimed&l phone example, and a
Workload Specific Processor. We contrast thesedations to those of the single-core
computer design.

In Chapter 4, we summarize the relevant researghediormance metrics. Since our
Capacity metric was motivated by the need to evall&SPs, we also include a
discussion of existing workload models and typebasfchmarks. Finally, we discuss our
MESH simulator that has been used to simulate tH¥M€that process heterogeneous
workloads, and show why existing HDL simulatordddito do this.

One of our secondary contributions in this thesighie identification of workload
modes for the purpose of real-time optimization, ve® are focused on fast mode
identification as well as the modeling of those em®that can be used to optimize system
performance. In Chapter 5, we develop our WCM tenidy workload modes at real
time, and then extend it into the more complex HMMe compare the two algorithms
using our multimedia cell phone example.

To meet the central challenge of this thesis, #nelbpment of a new performance
metric that can be used to evaluate the performahttee CHMs that process workloads,
in Chapter 6 we introduce a descriptive, graphieall denotational definition for our
Capacity metric, contrast it with Pareto optimiaati and show some basic forms of
Capacity curves in 2D. Our ultimate goal is to maté the development and use of the
Capacity metric for performance evaluation of modeHMs.

In Chapter 7, we advocate investigation into hovorimation in the shape of the
Capacity curves can be more significant than madeit We show how shapes of
Capacity curves can be used to classify systemsdamtify how features of designs can
be manipulated in order to change the shape dC#pacity curves.

The final chapter closes our thesis by summarittiegkey contributions in this thesis

and including future directions of research.
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Chapter 2

Background

Somewhere, something incredible is waiting
to be known.
Carl Sagal

The major contribution of this thesis is the depet@nt of a Capacity metric, the need
for which was discovered when traditional metriagstsas latency and throughput failed
in pursuit of the thesis’s original goal, which wdssigning single-user, multicore
computers for patterns of workloads. Modern comsuteay potentially integrate tens to
hundreds of heterogeneous processor cores ontie siniggs, or CHMSs, often used in the
service of single users. The input workload of ¢he®mputers is becoming more
situational, defined more by responding to a vardtsituations, oworkload modesthat
arise from the intersection of user preferences dawad arrival from the Internet. A
workload mode is defined as a timed set of apptioatthat simultaneously arrive at the
system in a variety of combinations and at differextes. The sequence of workload
modes exhibited by individual users may revealttepa This opens up the possibility to
design and evaluate CHMs used in the service glesusers as WSPs. Toward that end,
we found a need to rank the performance of diffie@M designs that process workload
modes in order to find optimal designs.

Traditional performance metrics such as latency tanoughput failed to design and
evaluate WSPs. Improving the latency of individapplications within workload modes
is limited by user perception and preferences. Mam@puting power does not always
impact the user's ability to perceive it. Furthermjowhen humans juggle sets of
applications in which data is arriving in real tintieey can only pay attention to so much
information in a fixed amount of time. As a resu#ister processing of some tasks is
wasted on the user, the ultimate judge of perfomeatwWhile throughput dominates

parallel processing, it assumes that the relatipnisétween work and the time interval in
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which it is measured is linear. In other words réases in the time interval corresponds
with increases in the amount of work that can beedim the same time period. This is
representative only when the computer process&s tasa batch style or independently
on a general purpose processor or a homogeneotipnocessor.

Since different CHMs are specialized for differeets of applications, depending on
the computational requirements of these applicatemwell as the architectural features
of the individual cores inside these CHMs, the @enfance of different CHMs may be
ranked differently as different workload modes beéng processed. In other words, one
design may be ranked higher than another, but oty some of the anticipated set of
workload modes for which it is being designed. $pesituations must be exposed in
order to properly evaluate a design, requiring mmf@ermation than single-valued
metrics, such as throughput which models eithdy fabhded systems or averages, neither
of which may occur in real designs. Distilling perhance into single scores requires a
function such as the mathematical means, as wedl esmmon, short time, and work
units. The determination of the appropriate averaged in computer performance
evaluation has long been controversial [8], esfigcecause different means result in
different design rankings. Short time units assutemand is continuous over the time
interval in which performance is measured, resgltman unreal performance. Because
workload modes led us to the need to rank diffedggigns, we found that it was
impossible to rank them without a metric that sitamkously allows us to look at the
different loading situations. As a consequence,rnibed for a new performance metric
that shows how these workload modes can be useslidtuate the performance of
different CHMs is necessary. In contrast to sirgglere metrics, our proposed metric
shows performance as a surface with dimensionaiited to the number of applications
processed by the CHM. The surface includes allipesproduction modes of a CHM.

Next we will first discuss our observation that CkiMieed to be designed and
evaluated against workload modes. Then, we willshsing an automobile production
example demonstrating why traditional metrics fhile evaluate the CHMs that process

workload modes.
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2.1 Single-User Multicore Computers

Multicore, mobile devices are being widely usedsmgle individuals for comprehensive
wireless access to the Internet, often processmgl&neous applications. And yet, the
design and evaluation of CHM computers have yebeooriented toward workloads
instead of toward benchmark suites, even parahelsoWorkloads differ from single
applications distributed over multiple processarthe strictly timed applications that are
consistent with traditional embedded systems becthey arrive as sets that may overlap
and which are distributed over time. In this thesi®e define these timed sets of
applications as workload modes. The external tinmhigvorkload mode arrival is a
primary factor in the potential to optimize. Thwgsigning and evaluating CHMs for
workload modes requires a fast runtime identifaratof persistent changes in loading
that arise from patterns of use in single-user behasomething we initially sought to
develop in order to define and design WSPs. Weddhbat existing performance metrics
such as latency and throughput fail to properhkr@ktM designs that process workload
modes. We focus this chapter on why existing perésrce metrics cannot be used to
rank the performance of this type of computing. Wst introduce the motivation to

design CHMs for patterns of workload modes.

2.1.1 Single-User Usage Patterns
In order to optimize CHMs according to the way indual users use their single-user
computers, we first develop our definition of uspgéterns through several examples.
Usage patterns are first introduced in [1]. Paubletintroduced usage patterns or
scenarios as a design methodology to help designedsl and evaluate the performance
of CHMs [1]. These scenarios model applicationisctionality, concurrency, and arrival
timing pattern. Gheorghita et al. [9] develop tlenaept ofsystem scenariosSystem
scenarios are unique system behavior phases, dailladime Situations (RTS), which
have a similar cost. In order to identify thesequei phases, a classification and
clustering method based on the cost function igl.LiEke overall use of these scenarios is
to optimize the system at design-time, which imtsinould result in performance gains at
run rime. Thus, these scenarios need to be predatteun time. In order to do this,
Gheorghita et al. used the Markov-based predictoeldped by Vandeputte et al. [10] .
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In contrast with the work of Paul et al. [1], thesgenarios cannot be generalized to all
platforms because system scenarios are identifad the execution phases on specific
platforms. This in turn complicates the design spaxploration of embedded systems.
Further, these scenarios are extracted from simgigram phases, so they do not model
multiple co-executing programs. Still further, t@st of predicting these scenarios at run
time is too expensive especially that their predictalso needs an on-line learning or
calibration process. Finally, while the cost fuoatithat classifies scenarios can be
anything, Gheorghita et al. focus only on energysconption [9]. Thus, these scenarios
are not an accurate representation of processinkjoeals.

While the usage pattern examples throughout tlasishare projections of future use,
their implementation is real. Our projected usaggegons have proven accurate in scope,
however, since the latest version of the iPhonewalla greater degree of application
concurrency, to include Web browsing while speakorg the phone [11]. We will

explore considerable work in real usage patterfilprg and discovery in section 4.4.
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Figure 6: The First Usage Pattern

Figure 6 depicts aisage patternin which the user uses the cell phone to call
customers, receive pictures of products, talk anghone, or check a Web page. The
timeline is on the independent axis and applicatiare on the dependent axis. Each

application consists of several tasks, summarizedhe legend below Figure 6 and
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discussed later. Note that as time progressesistiieplaces different requirements on the
cell phone system as different combinations of iappbns execute — a set of
applications are run concurrently, driven by uséenvention and the arrival of data from
the Web. The task progression is also shown inrEigu(e.g. to receive a picture, the
system must first perform a Viterbi decode, follawey rijndael decryption (AES) task,
and finally perform JPEG decode). Because of tatkrbgeneity and concurrency, this
usage model may benefit from execution on a heé&gregus multicore computer. Also
note that aggregate models of workloads are notogppte for such computer usage,
especially when these usage patterns include eftinmng.

Aggregate workloads have been reasonable as longheg represented an
approximation of computer usage, processed asesinglt streams on single processor
computers. For batch execution systems in whichnet is single stream, lower latency
and higher throughput translate to improved peréoroe because their performance is
correctly evaluated using an aggregate model af Warkload. In contrast, the variety of
applications that execute on single-user computdrat process heterogeneous
multichannel input need to be executed on hetemm&multicore processors; aggregate
models of workloads are not appropriate. Situatiomadels of workloads, however, are
appropriate evaluation techniques for this kind coimputer system. This type of
situational loading with user saturation is unigusingle-user, multicore computing, and
results in the need to consider sets of worklohdsdre developed from usage patterns or
the way single users use their computers.

Consider an individual workload mode&m, which results from changes in patterns of
inputs arriving over time. While external timing pacts the workload mode of the chip,
workload modes are not distinctly presented to ghigtem. In contrast to embedded
systems in which external timirgpecifiessystem behavior, workload modes represent
only thepotentialto optimize. This observation implies that chanigesorkload modes
must be identified at runtime. From an architedtypaint of view, the distinction
between a multiprocessor beingwm A vs. wm B is not significant unless there is the
potential to optimize. Multicore computer desigrs heet to fully enter into a model in
which evaluation, design, and optimization are rigd around single-user workload

patterns that exhibit distinct situations.
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Consider another usage pattern, shown in Figur involves a user listening to
music and surfing the Web on the cell phone. Whephane call arrives, the “mp3
streaming” task is suspended by the usage progalihgugh the “surf Web” and “send
picture” tasks persist. Because of the differennlosimations of application sets, input
data, deadlines, and constraints, this usage pattesly exhibit different system
performance from the previous usage pattern, shoviAigure 6, causing the designer to

tune the systems differently, despite each systezawting the same set of applications.
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Figure 7: The Second Usage Pattern

Usage patterns provide not only applications ardsgds to the system under test, but
also arrival timing of workloads consistent witletherceived usage of the system. Usage
patterns model the impact of overlapping data-déeenexecution, fixed response times
for streaming (periodic) inputs, and aperiodic\afitimes of events, and can facilitate
the evaluation of how well the system respondséoarrival of new applications while
others persist in the system. In order to idenpiéysistent changes in loading that arises
from patterns of use in single-user behavior, weelte the basis to model and classify

workload modes.

2.1.2 Workload Modes
A workload mode is a unique set of concurrentlyceiag applications that includes
external timing information that models user demdfath workload mode opens up the

possibility for tuning the system differently. lsa models the effects of task interactions
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on the performance of a CHM. Workload modes arsgited to the system in response
to a mixture of timed external and untimed intereaénts. The external events result
from user—computer interaction and data arrivalFigure 6 and Figure 7, the vertical
dashed lines identify individual workload modes,iathare subsequently numbered at
the top of Figure 6. At each dashed line, the loadhe system is different enough to
warrant consideration for chip level optimizatidime internal events arise from changes
in data that are being processed by existing agpdics as well as the execution
completion of existing application(s). Since themitig of application execution
completion is defined by the architecture, différarchitectures may generate different
workload modes from the same usage pattern.

As discussed in the previous section, usage pattare a sequence of workload
modes. Workload modes need to be predicted in adyeaso that optimal optimizations
can be selected at design time. This in turn walkb result in less identification
overheads at run time. In order to do this, we @kglome design-time knowledge about
workload modes in order to identify them at rundimnd to apply predefined optimal
optimization profiles. This in turn results in a racefficient system in terms of both
performance and energy. Later in this thesis, wesgmt a method of workload mode
identification that exploits some design-time knesde and contrasts it with another
method that is independent of design-time knowlexfgeorkloads and uses HMMs.

Workload mode identification has to happen at bdé¢lsign time and run time. At
design time, for each unique workload mode, we adi an optimization profile that
stores the optimal system parameters such as fiegiveltage of each processor as well
as where each task can be run. Other techniquésasudynamic Voltage and Frequency
Scaling (DVFS) [12], [13], [14] and processor powéate management (on, off, or idle)
can be used for reducing energy consumption. Fyrthéerent scheduling/mapping
mechanisms can also be customized according toé¢héfied workload mode.

At run time, once the workload mode is identifiading the same procedure at design
time, one of the set of optimization profiles thatve been already built at design time is
chosen, depending on the identified workload maateitively, the optimization profile
is not changed during execution unless a new watklonode arrives. More significantly,

changing optimization profile incurs some overhdaater we discuss that the amount of
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overhead depends on the sequence of these modes, fhiere should be a tradeoff
between the amount of incurred overhead and expp@etdormance gains. Further, some
workload modes may be important for chip optimiaatwhile others are not, and this
difference is a direct consequence of the abilityth@ architecture to optimize for a
workload mode. Later we conduct a cost—benefit ymslof our WCM and HMM
models. One significant difference between our W@l HMM is that our WCM s
sup-optimal. In other words, it does not have tnidy all workload modes, in contrast
with HMM which has a very expensive learning phdbkat makes it capable of
identifying most workload modes and thus is ablehange optimization profiles all the
time. We also discuss how identification and optimtion overhead is crucial to chip
optimization.

Since the concept of workload modes is similahtt bf demands for automobiles in
that they both arrive to the system as timed sktseterogeneous content, we use the

same automobile example described in Chapter Li(Eig) to illustrate our thesis.

Table 1: Five Different Automobile Plant Configurations

° Model-T Assembly Line | Model-A Assembly Line

g

Ol Model-T Model-A Model-A Model-T avg.
Ci1 6 3 9 2 10
Cc2 4 8 13 1 13
C3 10 2 6 12
C4 3 3 9
C5 2 2 11

2.2 Automobile Example

The automobile plant, shown in Figure 4, consi$tsvo assembly pipelines, one for the
Model-T and one for the Model-A. Table 1 shows feduction capacity of five

different configurations for the same plant systeluring a day shift. In each

configuration, we assume that the supply and huresources of its pipelines have
changed relative to other configurations to prodoe@me or less of the Model-T and
Model-A products. These configurations range froallyf homogeneous to fully
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heterogeneous designs to show how different plamfigurations perform when different
demands arrive at the system.

For illustration, consider configuration C1. Configtion C1 is a heterogeneous plant
system, in which each pipeline is more specialtoeproduce a specific model type. The
Model-T assembly line can produce six Model-T auibites per hour, and can also be
used to produce only three Model-A automobiles hpmir. The Model-A assembly line
can produce nine Model-A automobiles per hour, eemt also be used to produce only
two Model-T automobiles. Consider another confitjorg C2. We use the same fixed
plant resources to generate an alternative cordigur. Here, the production of the
Model-A assembly line has been improved by deplpyimore workers to produce 13
Model-A automobiles per hour, and can also be use@roduce only one Model-T
automobile per hour. Since the number of workerxed, the Model-T assembly line
can now produce only four Model-T automobiles peurh and can also be used to
produce eight Model-A automobiles per hour. Configions C4 and C5 are
homogeneous, in which both pipelines produce tmeesamount of each model type.
Note that configurations C4 and C5 use the samelipgs as configuration C1.
Configurations C2 and C3 are heterogeneous couwfigums with different production
capacities than that of the other configurationssoAnote that we have chosen these
configurations deliberately — the average number noddels produced by each
configuration is different. The averageyg, is calculated using the arithmetic mean of
the maximum production of each model type when peed individually. Later in this
section we explore different types of mathematimabns. Again, while this example is
hypothetical, it is used for the purpose of illastn.

Since we are interested in the performance of mdiffe plant configurations that
simultaneously process different rates of combameti of model types, we draw the
response time of the five plant configurations four production modes (Model-T,
Model-A), shown in Figure 8. Shown on the dependesis is response time, measured
in hours, as the plant processes the demands thed¢ &rom customer requests and
configures itself for each different production reodtach curve represents a different
candidate configuration. Figure 8 shows curvenfittover each of the production modes.

The curves differ not only by magnitude, but alsotheir shapes. These production
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variation curves show crossover points in whicliedént configurations exhibit different
performance as demands vary. If the curves didanoss, then there would be no
significant difference in optimal performers due pgooduction mode variation. But,
because the curves do cross, the actual input @opthant system results in the

identification of different configurations.

Response Time

(3,1IIJ] [E,;':i] [I]I,E] [1IE,I]]
Production Mode

Figure 8: Performance of Different Configurations Rocessing Different Demands

Interestingly, homogeneous configurations (C4 abjl liehave linearly for the same
set of demands in the order shown on Figure 8,enigtterogeneous configurations (C1,
C2, and C3) behave non-linearly as demand var@ssich a system, there is no clear
optimal configuration because for different prodoictmodes of interest the rank of the
optimal performers changes. As a result, compogggormance metrics may not
appropriately rank such systems. For example, sih@y do not include timing
information and therefore do not cluster individyabs, benchmark suites tend to
aggregate the performance of individual jobs using geometric mean. Computer
architects opt to use the geometric mean to gemeratomposite score of performance
because it balances performance, which is apptepioa general-purpose usage but not
for systems that exhibit distinct situational usage

Here, we further illustrate why traditional comgegperformance metrics fail to rank
the performance of multiple heterogeneous resosysems that process multiple
heterogeneous demand streams. Figure 9 illustiates single-score performance
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metrics are generated. Figure 9(a) shows an autiterfghnt that at some point processes
a demand of two heterogeneous product type streamsand A, that arrive
simultaneously. Note that this demand needs talhéidd in time window,z. In order to
evaluate the production throughpBt,of this plant during time window, using a single
score metric, an artificial procedure of two maieps is adopted. Figure 9(b) and Figure

9(c) show this procedure.

A P =(t/t)*avg.

Tt T_max
EL Plant [

T —

—
A —» Plant | P(7)

At A_max
{—Li’ Plant [

(a) (b) (0

Figure 9: Distilling Performance into a Single Numier

First, the two demand streams need to be separateshown in Figure 9(b), and
evaluated independently over a relatively shoretintervalt,, such as a day, or even an
hour. By selecting a short time interval over whigtoduction is being evaluated,
demand is presumed to be non-zero and time-inagaer the entire time interval.
Further, work is expressed using a common moded,tgpch as automobiles, without
distinction of the type of model. The output frohiststep is the maximum production of
each demand type during the short time interialFigure 9(c) shows the production
throughput of this plant as a relationship betw#en maximum production of the two
demand streams[ _max and A_max expressed in terms of a common model type,
automobiles.

Second, it is also assumed that the average acegied by the two maxima points
can be represented by a linear curve. To transtbisilinear relationship between the
two maximum productions into a single, represemeaticore of the plant performance
functions, such as mathematical means, is needetd that since we use a common

work unit, such as automobiles, we can averagéhtioeighput of different demand types.
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Thus, computer architects use metrics such asukiigin per Cycle (IPC) or Instructions
per Second (IPS) to evaluate throughput. Finalhgesthroughput is measured during a
short time interval and that the model type is taken into account, production
throughput is presumed to be linear with time waetength. As a result, to compute the

production throughput of this plant over the spediftime window,t, the average
performance over the short time interval, is normalized to the length of the time

window, 7, resulting in the same linear relationship.

Table 2: Optimal Configuration Ranking of Table 1

% Production
% P1 P2 _Aithmetic H armonic Geometric
O | 021) @60] AM Rank] HM Rank| GM Rank

C1l 17.8 20.0 18.9 3 18.8 4 18.8 4

C2 10.0 325 213 5 153 1 18.0 3
C3 26.7 11.0 18.8 2 15.6 2 171 1
C4 23.3 18.3 20.8 4 20.5 5 20.7 5
C5 20.0 15.0 175 1 171 3 17.3 2

The major mathematical means are the arithmeticwr(l), geometric mean (GM),
and harmonic mean (HM). The arithmetic mean has lheed to summarize performance
for time-based metrics, whereas the HM is useddte-based metrics. The HM, when
applied to a rate, is equivalent to calculatingttital number of products divided by the
total time. In contrast, the GM can be used foteys that balance the performance of
different task types such as a general-purposeepsoc, but the behavior should first be
normalized with respect to a specific configuratidhus, standard benchmarks such as
SPEC report performance values as speedup retatavstandard, reference machine, the
SPECRAatio. In this way, execution time is factoregt of comparisons, or else
applications that take longer would be given mosegght in comparisons, but this time-
based weighing is important to modeling how indixdtlusers perceive the response time
of a system that processes workloads.

Table 2 shows the response time of the five condigons, shown on Table 1, when
they process two production modes. These produatiotes were selected because they

represent the maximum production of each model tyhen produced individually
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during a single day shift. Thus, some configuradiomould be able to produce these
modes in a day shift while others cannot — theydnaere time. Table 2 also shows the
rank of the average response time of each contigmiacomputed using three different
averages: HM, GM, and AM. Note that using differemathematical means results in
different ranks, as previously predicted. The HMks C2 as the best configuration
because it is better suited to handle these demam#seas the AM ranks C5 as the best
configuration. The GM ranks C3 as optimal. Wheneotllesign factors, such as
scheduling in the case of heterogeneous resouaresconsidered, the rank is also
expected to be different because the heterogeméitgssembly lines opens up the
possibility for multiple scheduling options. Stidlll configurations operate under a fixed
area budget. Intuitively, this observation occuexduse different loading situations
differentiate configurations — the performance ragkof configurations changes from

one loading situation to another, depending onsihecificity of these configurations.

Later in this section, we study the impact of schieéd on the rank of optimal

performers.

Table 3: Optimal Configuration Ranking (More Production Modes)

% Production

E P1 P2 P3 P4 P5 P6| _rthmetic H armonic Geometric
O

@) (0,8) (0,21) (3,100 (6,6) (96) (16) AM Rank HM &k | GM Rank

C1 6.7 17.8 10 10 16.7 20.4 135 2 11.6 3 12.6 4
C2 3.8 10.0 7.7 14.6 20.0 324 14.8 4 9.3 ] 11.9 2
C3 10.0 26.7 15.0 10.0 10.0 11. 13.8 3 12.1 ] 12.8 3
C4 10.0 23.3 13.3 10.0 16.7 18.3 153 5 13.9 14.6 5
C5 7.8 20.0 10.0 6.7 10.0 15.(r 11.6 1 10.1 2 10.8 1

Interestingly, when more production modes are ihetl) the ranking of the same
mean changes. In Table 3, we included four morelymiion modes. Note that the
ranking of all means has changed relative to timking in Table 2. The problem of
ranking different configurations in order to firttetoptimal performers has inspired us to
come up with a new performance metric, Capacity.

Our Capacity metric views performance of the CHMtthrocesses workload modes

as a curve or surface with dimensionality relatedhte number of application types
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within a workload mode. In Figure 10, we apply thisight to the plant example. The
Capacity curves, shown in Figure 10, show all felascombinations of two automobile
models produced concurrently during a day shiftchEaurve represents a different
candidate configuration. Shown on each axis isoaywet model. In order to increase the
production of one model, production of the otherdelamust be reduced. For example,
production of automobiles of the Model-A type mhstreduced to produce more Model-
T automobiles. Thus, for a given increase in prdidacof one model, Capacity shows
how much of the other model(s) must be reduceddlRitcon modes of interest can be
overlaid on these curves. The shape and magnittidecorve or a set of production

modes on the curve (for multimodal curves) reveaine information about the

production system. The analysis of these curveshferpurpose of ranking CHMs that
process workload modes is a major contributiornsf thesis.
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Figure 10: The Production Capacity Curves of the Rie Configurations

Next consider another example in which we point tmuginother problem of using
throughput. Table 4 shows three made-up configumatithat consist of Model-T and
Model-A assembly lines. Note that the productiomtighput of all configurations is the
same when measured using the arithmetic mean ofmtreémum production of each
model type individually. Configuration C1 is a hogemeous configuration in which both
assembly lines, Model-T and Model-A, can produghieModel-A automobiles during a

day shift, and can also be used to produce onlykigel-T automobiles. Configuration
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C2 and C3 are heterogeneous, but they differ insthecture of the internal assembly
lines. Each assembly line in C2 is analogous temerpl-purpose processor in that it
produces almost the same amount of products of eamttel type in unit time. In

configuration C3, each assembly line is specifdspecific model type.

Table 4: Three Different Plant Configurations

f=) Model-T Assembly Line Model-A Assembly Line

5

©l|  Model-T Model-A | Model-A  Model-T | avg.
C1 6 8 8 6 14
c2 10 12 4 2 14
C3 10 4 12 2 14

Figure 11 shows the Capacity curve for the thredigorations, discussed in Table 4.
The Capacity curves show all feasible combinatioh8/odel-A and Model-T models
produced concurrently during a day shift; thisamgthing that throughput cannot show.
Each curve represents a different candidate cordigun. Shown on each axis is a
product model. Note that all Capacity curves hawe $ame maximum points when
considering the production of one model type ain@et which is the definition of
throughput. Also note how the curves are not dttaime and the shape varies as

different rates and combinations of models arriviha plant.
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Figure 11: The Production Capacity Curves When Mapmg to The Best Resource
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Figure 12 plots the response time of each conftguran response to producing four

different demands. Note that response times docrass, thus there is no problem in

ranking optimal performers using an average.

Response Time
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Figure 12: Performance of Different ConfigurationsProcessing Different Demands

Table 5 shows the performance ranking of the thoeefigurations processing

different production modes. Note that the rankimghie same, without distinction of the

mathematical mean used, since there is no crosgoperformance curves.

Table 5: Optimal Configuration Ranking of Table 4

Production
Q P1 p2 P3 P4 _Aithmetic H armonic Geometric
é (0,16) (4,14) (10,12) (12,0 AM Ran HM Rank GM Rank
C1 1.00 1.25 1.63 1.00 1.22 1.17 3 1.19 3
Cc2 1.00 1.25 1.50 1.00 1.19 1.15 2 1.17 2
C3 1.00 1.00 1.00 1.00 1.00 1.00 1 1.00 1

Since configurations C2 and C3 are heterogeneoeistudy the impact of scheduling

demands to resources other than the one that m®vWe best performance for the task

type on the Capacity. Note that the first configimra C1 has no other scheduling options

since it is a homogeneous configuration. FiguresiiBws the Capacity curves when

mapping demands to a resource other than the ah@rbvides the best performance for
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the model type. Interestingly, while the maximurodurction is the same as in Figure 11,
intermediate production modes, especially for G, tatally different. This is another
problem of throughput. It does not show the impattscheduling on different
combinations of inputs because it evaluates thediviotually. Note that throughput
assumes a linear relationship between the two maxirmproductions, similar to C1 and

C2 curves which are not fully heterogeneous.
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Figure 13: The Production Capacity When Mapping Rarlomly

Again, while all mathematical means result in tfeane ranking of the optimal
configurations, the ranking has changed due to ¢hange in scheduling. Now
configuration C3 has become the worst among theethronfigurations, whereas
previously it was the optimal configuration, aswhdn Table 5.

In this chapter we illustrated the need for a nesfggmance metric to evaluate the
performance of the CHMs that simultaneously proclsserogeneous outputs or
workload modes. CHM evaluation for workload modes, contrast with single
applications or aggregate models of workloads, iregua new metric in order to find
optimal designs for specific usage patterns, or WSKe showed that distillation of
multi-type production over a given heterogeneoudtirpipeline plant (design) to a
common work unit, an average, includes a two-foldbfem. First, it precludes the
designer from identifying cases in which the systeam more Capacity than the average

or cannot meet the predicted average productioherevthe non-linear curves rise above
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or fall below the straight line (average) that ascwhen a common work unit for
throughput is used. The other problem is that dkfie mathematical means result in
different rankings due to the fact that performanuoeves, that relate response time or
throughput to a change in demands, do cross. Tdesaver points result due to the fact
that different CHM designs are specialized foreté#int demand types.

In the next chapters, we include both parts of wek, designing and evaluating
CHMs as WSPs using traditional metrics such asitgtend throughput and using our
suggested metric, Capacity. Our overall goal ishow how processor resources affect
the end user of mobile computing devices and, nspecifically, point to where
resources are wasted when resources targeted toamdd incorrect models of
performance. Next, we develop the foundation for olbiservation that CHM designs
need to be evaluated for workload modes.
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Chapter 3

Foundations

Research is creating new knowledge.
Neil Armstrong

In this chapter we develop three foundations thauged to develop our Capacity metric
— a CHM model, a multimedia cell phone example, andVSP. Each of these
foundations has analogies to models that are usetihgle core design, but which are
missing in multicore computer design. Part of cwesis is that WSPs more correctly
capture what mobile computing devices do and they tesult in categorically different
approaches to processor design, something wellyisaught to develop in more detail
but which has become a secondary contributionitotkiesis when that work resulted in
the discovery that single valued metrics failedptoperly rank optimal performing
designs. WSPs are enabled by the presence of tofie®f individual user initiated job-
style applications that arise as users interadt witilticore, mobile devices. Evaluation
of WSPs is what led us to develop the Capacity imdixisting models for single-core
computers, (i.e. those relying on an Register Teanisevel (RTL) and accompanying
benchmarks) cannot be used to develop and evatuaté/SP model. RTL key design
features do not capture those of CHM designs. Andividual benchmarks do not
accurately model the real workload of single-useititcore, mobile devices. Thus, we
needed to develop new examples that permit bendfmgarof single-user mobile
computing devices to replace traditional benchmaaksequivalent model to RTL for the
types of architectures that are projected to idase devices, that is a CHM model, and
finally a WSP model that is to CHMs is what an 1840 an RTL.

3.1 Single-Core Computer Design

Existing models for single core computers such egister Transfer Level (RTL) have

been long dominant in computer systems design, Wenvahey are inappropriate to
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model multicore systems for a three-fold reason:tlie key design features of RTL
design do not capture those of CHMs; (2) traditidsenchmarks do not model the real
workloads of single-user multicore, mobile devicesid (3) since CHMs include

multiple-ISA cores, there is no single ISA at théSHboundary of CHMs. Thus,

Heterogeneous Core Level (HCL) design has becommepelling, as the trend for

computer systems is to integrate heterogeneouscanétdesigns. HCL design requires
the definition of equivalent models to that of lowevel designs, in addition to new
hardware design languages and simulation tools|[124

Program & Data

FSM

Combinational
Logic
Current State
Register
Figure 14: A Single Processing Element (PE)

As an analogy, consider the way a Processing Ele(®&) is designed at the RTL.
Figure 14 shows a single PE as a relationship lestvee Finite State Machine (FSM),
program and data streams, and an Instruction Sehitacture (ISA). A conventional
processor is an FSM that mainly consists of a stgester and a combinational logic.
The primary input to the FSM is a program streand an data stream. In the
combinational logic, the value of the state regise&ombined with the incoming data for
computation. A state register may store data, atruation pointer or the program
counter. In response to the incoming data, the E&MIload the program counter. This
allows dynamic change of execution sequence th&aesn&SMs programmatic designs,
but still their execution is sequential. Computatio a FSM is triggered at the clock

edges. In a synchronous FSM, all of the processimgfined to occur during the clock
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period. Thus, the processing time of the combimatidogic can be determinedpaiori.
In summary, RTL design consists of three key fesgtur

» Computation that is done in combinational logicdi

» Communication that is done on simple wires; and

» State that is held in registers.

Further, two key features characterize the benckenafran RTL design:

* Individualized: benchmarks arrive to the systemvidially; and

* Untimed: benchmarks and their associated dataseteguenced by the

processor speed thus they do not include an extiameareference.

An ISA specifies how the FSM layer is accessed bgfaware program. It includes a
set of control, communication, and computationrungtons that the underlying processor
understands and supports. Thus, ISAs are develafied the processor model is
designed, regardless what software is going towggean this processor model. An ISA
is accessible by the developer or the compilemesgmting a contract between an FSM

and the developer (or compiler).

Workloads

Figure 15: Our View of the Design at the HCL

So far we have shown that RTL design includes tfoaadational models — FSMs,
benchmarks, and ISAs. Such models are missingeatl@L. Figure 15 depicts our view

of the design at the HCL. In the remainder of tbiepter, we develop these three
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foundations for HCL design — a CHM model, a multthaecell phone example, and a
WSP.

3.2 A CHM Model

Since key features of RTL design are inappropriateHCL design, we first establish a
baseline model of a CHM like that of an RTL for 8A. Our model includes the key
elements of computer design. Figure 16 shows oggested CHM model. It shows a
central control processor (CP) that coordinatestakr resource processors, from R1,...,
Rn. We establish a CHM that has some central cojits so that the chip may respond
to persistent changes in loading. Each resourceepsor has its own contribution to the
overall Global Chip State (GCS), denoted as RSnsiter GCS as logically global
runtime state which provides information guiding igshevel Scheduling (CLS)
decisions, and so the time it takes to gather GQSt fme factored into the effectiveness
of a chip-level scheduler. Examples of GCS are rars\bf idle tasks in the system, the
execution progress of running tasks, the availgbaf resources, and the current load on
the memory and bus, etc. The state of each respuocessor (RSi) must be transferred
to the CP if it is to be used in the decision mgkof the CP in a given situation.
Examples of RSi are the frequency and voltage lefghe processor as well as the
progress of running task(s), if any. Because oldlaer communications costs within the
resource processor relative to the communicatiesssowithin the whole chip, and also
in order to reduce loading on the interconnectietwork, RSi (collectively the GCS) is
kept local to the resource processor until glolohleduling is triggered. The CP gathers
the GCS and sends scheduling decisions to compugtiresources, which are the
processing elements used to execute the assigr@tadion functionality. Since the
central controller coordinates all other systenoueses, this is the easiest control flow to
realize.

Note that all application tasks are eligible to pdaced at any of the processing
resources. The main advantage of coordinating jlstes state in this way is the
preservation of a sequential control flow schemefogramming the chip; this is largely
a programmatic solution in which distinct blocks sifftware may be accelerated by
execution on custom hardware or on many blocksaralfel, and often both. Many
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current CHMs fall into this category of design, which a general-purpose processor
serves as the central controller. The main disaaggnof this approach is that the central
controller can be a bottleneck. The system can embcute as fast as the sequential
fractions of software can execute on the CP. Ireginthe software executing on the
central controller must be as simple as possibleéher central controller must have

sophisticated scheduling that tunes the applicatmnthe slave processors so that

throughput can be maintained.

i

Interconnection Network / Bus
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\
R R2 Rn
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—Jp Resource, Global Chip State Scheduling Decisions

(RS, GCS)

Figure 16: A CHM Architecture

Distributed control flow is also possible. In thase where the CHM operates on
several distinct groups of applications, in whigltle group uses multiple programmable
resources, it might be more advantageous to spseifgral controllers in the system, one
per group of applications. This approach lowers dh®unt of system state passed to
each controller since every controller receivey @hé state relevant to its decisions (i.e.
the state relating to the application group thetrodier is managing). A fully distributed
approach in which each processing element makesiaioh about what to run next, can
be useful in systems in which state sharing ovelrgr@atly dwarfs the performance
gains of making a global task mapping choice.
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We view optimization for single-user workload modes the basis of global, chip
level optimization for CHMs. The optimization ofetlthip can be thought of as the need
to optimize globally, and hence we model this usirglobal central controller. However,
we model a state that leads to global decision ngaitie GCS, as logically distributed
among local processors, and the actual global stingdcould be distributed as well. In
either case there will be overhead that synchrendistributed parts of the global
scheduling. We include that overhead in our mo@elr model focuses on the simplest
form of control, the centralized controller withethlistributed state shown in Figure 15.
We will use this architectural model later in theoerimentation. Note that our model is
conceptual; the actual implementation of our carcssr may vary considerably in the
actual architectures, but these variations wilyaxffect physical parameters, such as the
overhead costs.

Here, we summarize the key features of our CHM rhode

» Computation: processors (R1,...,Rn) and the cennatgssor (CP), having
different ISAs, in contrast to FSMs in which comgtign is done in
combinational logic blocks.

* Communication: an interconnection network or buthwdifferent properties
such as communication bandwidth and burst widtlgomtrast with FSMs in
which communication is done on wires.

» State: global state (GCS) and local states (RS} kememories, in contrast
with FSMs in which state is held in regiesters.

» Triggering method: even-driven, time-triggered,aomix of both, in contrast
with FSMs in which triggering is done on the clanicle.

The architecture of our CHM model is based uporomhination of a survey of
existing devices and a projection of where we belithey are evolving. Computer
systems are increasingly becoming multicore. Wheiitiprocessing happens within a
single die/processor, we call that a multicore éechure. Although the focus of our
survey will be on CHMs, we will also investigateisiing homogenous multicore
processors, since it is likely that these typegmfcessors will soon be extended to
include heterogeneous cores with different ISAdo®es a brief overview of existing

homogenous and heterogeneous multicore architecture
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Most multicore designs for desktops, laptops, amess have homogenous cores
that all implement the same ISA. Examples of homoge multicore processors include
IBM’'s POWERG6 dual-core multithreaded processors],[]&7], AMD’s quad-core
Opteron processors [18], Intel's dual-core and eg@@ Xeon processors [19], [20],
Compag’s Piranha 8-core research prototype proceasd Sun Microsystems’ T1 and
T2 8-core multithreaded processors [21], [22]. Averwiew of early homogenous
multicore designs is presented in [23]. Multicoesidns with tens of processors, often
referred to as many-core designs, have recently geduced. Examples of many-core
designs include Tilera’'s Tile64 Processor for nmuéidia processing [24], AMD’s
Radeon and Firestream processors for graphics gsimge[25], [26], NVIDIA's GeForce
and Tesla processors for graphics processing [28], [29], and Intel's Larrabee
processor for visual computing [30]. Many-core @mssors often include programmable
processors, along with on-chip interconnect, bustroers, memory controllers, and
cache. Although homogenous multicore and many-desggns offer some advantages
over CHMs in terms of design reuse and programntgbihey often cannot match the
area, performance, and power benefits of CHMs [BHcause of their heterogeneity
feature, CHM processors can match each applicatidhe core best suited to meet its
performance demands, resulting in performance gaitdMs also, compared with
homogeneous multicores, would use a larger numbesmall low-power (and low-
frequency) cores, thus it can be more area-efficagrd significantly reduce processor
power dissipation, especially when dynamic powenaggment is adopted.

Because of their area, performance and power aalgest several designs for CHM
processors have been developed. AMD’s AcceleratechpDting Initiative [32] and
Intel's Tera-scale Computing Research Program [[#3]] acknowledge the benefits of
CHM designs, but have not yet developed them. Mdsthese designs are targeted
toward specific application domains, such as mtra processing, graphics processing,
and wireless communications. CHM processors include
» Sandbridge Technologies SB3000 processor [35],whés four Sandblaster DSPs,

an ARM9 application processor, on-chip memory, afébntroller, and numerous

peripherals for implementing a variety of handhdddice functions.
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* Texas Instruments DaVinci Digital Media System-dmyf{36], which has a C64x
DSP, an ARM9 processor, multimedia acceleratorscangrocessors, and numerous
peripherals.

» Texas Instruments OMAP3440 Processor [37], whichadareARM Cortex™-A8
processor, Imagination Technologies’ POWERVR SGX®&pbics core, an image
signal processor, an image video audio acceleramar several peripherals.

* Infineon’s MuSIC Processor [38], which has an ARMgessor, four SIMD DSPs,
on-chip shared memory, a multi-layer bus interfacegelerators for wireless
communications, and various peripherals.

* STI's Cell Processor [15], which has a Power PreicgsElement (PPE) with vector
extensions, eight Synergistic Processing Elem&RES§), an element interconnect
bus, and on-chip memory and bus-interface contsolle
Each processor in the Sandbridge SB3000 has its pmvate L1 and L2 cache

memories, making processors loosely coupled. SBal§i®includes a central processor,

which is the ARM9 application processor that faatks programming the other chip
elements. The central processors usually are gemamaose processors and of different
types than the other processing elements on chip application processor has a specific
task, which is to control the functions of the atheocessing elements. Other cores can
run any task since they are homogeneous. Thusmapping model is semi-static. The
T1 DaVinci is similar to the SB3000 in that its pessors are loosely coupled, but it has
no central processor. Each core processor in théndais specialized to do a specific
job. In contrast, OMAP3440, MuSIC, and Cell processshare L2-cache memory, so
their processor cores are tightly coupled. MuSI@ &rell processors are centralized
architectures since they include a central progets facilitates programming the other
chip elements, while OMAP3440 is a distributed eystin which there is no central
controller. While the Cell and MuSIC processorséhawcentral controller, this controller
can be also used to execute other tasks that sarbalexecuted in the other processing
elements, thus its mapping model is partially dyltat®MAP3440 is a dynmaic system
since any task can run on any processor. In thesterss, processor cores are connected

via different bus technologies.
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Table 6: CHM Processors Classification

System Processor Coupling Programming Mapping CommumicatClass
SB3000 Loosely Centralized Semi Statig AMBA Bug A
DaVinci Loosely Distributed Static Multilayer Bus B
OMAP3440 Tightly Distributed Dynamic System Bus C
Cell Tightly Centralized | Semi Dynamic Ring Bus D
MuSIC Tightly Centralized | Semi Dynamic | Multilayer Bus D
Trend Tightly Centralized  Fully Dynamic NoC =

Based upon the above discussion, we extractedkyufeatures from these systems,
processor coupling, programming model, processplieggiion mapping type, and
processor interconnection technology. We clasdily CHM systems in the above-
mentioned list based upon these features. Tablarnarrizes these classes according to
the selected features. Table 6 also includes tige ralakers trend in designing CHMSs.
Note that multicore systems are increasingly bengnuentralized to facilitate global
programming models and thus to extremely explat parallelism feature of multicore
designs. Therefore, some sort of global stategaired to be saved in a shared memory.
This global state makes processors tightly coudgechamic mapping or scheduling has
proven significant performance gains over statibedaling by allowing any task to
execute on any processor. Future systems are experintegrate high-speed networks
to connect chip elements. As increasing transidemsities and larger die sizes enable
increased integration, we envision future CHM pssoe systems with tens to hundreds
of heterogeneous cores including general-purposeepsors, digital signal processors,
graphics processors, and/or multimedia processdwag with programmable hardware
accelerators, fixed-function hardware, on-chip memohigh-speed interconnect
networks, and a wide variety of peripherals. Wedutes trend to build our baseline
CHM model, which we believe will be prevalent indte.

3.3 Multimedia Cell Phone Example

Since our WSPs are enabled by the presence of eawkl (instead of individual
benchmarks) that result from single users, we rieededevelop new examples that

permit benchmarking of CHMs. In contrast to exigtimenchmark suites, our examples
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include the arrival time of applications as well sasne level of concurrency. We first
develop our example — that is a multimedia cellrqghexample — and then we contrast it

with existing benchmark suites.
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Figure 17: Six Cell Phone Applications and their Coponents
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Modern mobile phones, or smart phones, are becomgrgasingly ubiquitous. At
the same time, these devices increasingly aredimdusoftware features such as those in
laptops and desktops. The cell phone example has Heveloped as the basis of a
benchmark suite for CHM systems, and is first idtrced by Paul et al. [1]. The cell
phone is capable of browsing the Web, and has eedaHuman Computer Interaction
features typical of many future — and even currendievices. Together, these make the
resultant system a hybrid of an embedded systena gaisonal computing device.

We extended the cell phone example of Paul etLato[include more functions such
as speech recognition. Moreover, we further deelothe implementation of some
applications to preceisly capture their behaviofsem executed on CHMs. Consider
several applications that can run on a cell phdihe. applications within the cell phone
are able to exhibit a wide variety of behaviorggntg differing needs on the hardware.
We define six possible cell phone applications:girfing the Web, (2) making a phone
call, (3) sending a picture, (4) receiving a pietuf5) speech recognition, and (6)

streaming mp3, as shown in Figure 17.

Table 7: Our Benchmark Classification

Benchmark Type (Y) Complexity (C) Data Dependengy (
FIR/IFFR Streaming Low Size
FFT/IFFT Streaming Low Size
Viterbi Streaming or Job-based Low Size
AES Streaming or Job-based Low Size
MP3 Streaming High Size
Convenc Job-based Low Size
Autocor Job-based Low Content
JPEG Job-based Medium Content
Text Job-based Low Size
FLASH Streaming or Job-based High Content

Each application consists of several tasks, shawiable 7, extracted from the
EEMBC benchmark [39]. For instance, “surfing the®W&akes on an arbitrary number
of JPEG, text, and Macromedia Flash jobs that eeemoncurrently, but the system must
first perform a Viterbi decode. The twelve differdasks, in Table 7, are grouped into
classes. First, we distinguish between streamird) jab-based application behavior.
Second, we look at the application data dependasdlyrelates to run time. An important

distinction between streaming and job-based caieg @ that job-based tasks can always
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use more computational power in order to reducentat, in which the streaming tasks
have no use for extra computational power once loesdare met. An example of a
streaming task is making a phone call. An exampkejob-based task is taking a picture.
Note that some tasks belong to two task classeendi@py upon the contexts in which
they are used. For example, Viterbi is a streanés§ when used to stream data as in a
phone call. However, it is a job-based task wheedusm sending a picture. On an
orthogonal axis, we consider data dependency. A datent dependent task exhibits a
different run time when faced with input data offelient content, but of the same size.
An example of a data content dependent task is MPH& compression, in which run
time is dependent on the content of the picture ihancoded. In contrast, data size
dependent task run times vary with the amount dé dgplied to the input. Many
encryption algorithms’ run times are not dependemtthe content of the file to be
encrypted, but rather only on the file size.

Now, we perform a survey of existing benchmarkesuand show why they fail to
optimize CHMs, in contrast with our example. TheEEPCPU [40] suite includes
scientific and engineering application benchmatiet tare used mainly to characterize
workloads of general-purpose computing [41], [4243]. SPEC compares the
performance of a system (in term of both speedubrate) to a reference machine — this
normalization is eventually used to average thdopmance of different applications
using the geometric mean. Two problems exist iEGBenchmarks. First, SPEC is not
geared toward embedded computing and multimediéicafipns. The other problem is
that SPEC is not able to measure and model powesuoaption.

In contrast with SPEC, MediaBench [43] benchmarargeé toward multimedia and
communications systems [43], [44]. The problem cgdi&Bench is two-fold. First, it
focuses on batch execution systems where individ@rams are evaluated. The other
problem is that MediaBench focuses only on multimexpplications and not embedded
systems, in general.

In contrast with both SPEC and MediaBench, EEMBG@ tiBench benchmarks are
geared toward embedded systems [42]. There arerelites between MiBench and
EEMBC benchmarks. MiBench is a free benchmark, antrast with EEMBC which
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requires a paid membership to have access to stiagesuites [42]. Similar to the other
benchmark suites, these two benchmark suites fotimmtch execution systems [45].

In summary, benchmarks are executed one a timeshwhkia major problem. This
implies that there is no external time referenaelie arrival of these programs.. Another
problem is that the data associated with theseranog are also untimed. Modern
embedded systems applications can often be dedcalkeworkloads consisting of
numerous /O streams, and parallel applications #mer and leave the system at
different times and in a bursting fashion, ratheant in terms of a system with constant
loading or programs executing in isolation. TablesWBnmarizes existing benchmarks
based on key features. Also, it includes our dediniof workloads that arise from the
interaction between individual users and modern ilaobtevices. The definition of
workloads motivates us to develop a new performamegic, Capacity.

Table 8: Existing Benchmarks Summary

Benchmark Concurrency Timed Timed Target
datasets applications
SPEC Multiple Untimed Untimed General purpose
MediaBench Single Untimed Untimed Multimedia
MiBench Single Untimed Untimed Traditional Embedded
EEMBC Single Untimed Untimed Traditional Embedded
Modern Embedded

Several workload models have been proposed forrusaultiprocessor systems, and
are discussed thoroughly in section 4.3. Aside frbenchmarks, researches have
implemented numerical, statistical, and stochasiclels on measured data to come up
with accurate workload models. More interestinglger behavior graphs have been
developed to capture user interactions at highexide However, not all of these models
are tractable for single-user multicore computkrgividual benchmarks do not represent
real workloads. Although user behavior graphs sezine a good choice for emergent
workloads, they do not model the arrival time ofmntoands. Trace driven models incur
overhead in terms of instrumentation setup andatheunt of collected data. Stochastic
models are not scalable while the number of workloeodes and processors increases.
Statistical and numerical models are static modelgontrast to the behavior of users,
and may yield misleading results when using thengnmodel.
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We will use our multimedia cell phone example tofiarally form different usage
patterns, discussed in Chapter 2, which can be lasedin this thesis as benchmarks to

evaluate CHM designs.

3.4 Workload Specific Processors (WSPs)

There is no ISA for CHMs that bridges CHMs to theywihe system is used and will be
programmed. We suggested WSPs to do that. Thuss\&®Ro CHMs what an ISA is to
an RTL. We first perform a survey of existing cortipg categories based on their
performance evaluation models, showing how our WigBslt in categorically different
approaches to processor design.

Computing can broadly be classified into its dominaesearch communities,
characterized by traditional Computer Architectutwad Computer Aided Design.
Computer Architecture has focused on general pergosputing of the kind found in
desktops and laptops, while Computer Aided Desagfbcused on Application Specific
Integrated Circuits (ASICs) and Embedded Computifech community has offshoots,
but the broad goals of these communities can be&sified. In Computer Architecture,
optimization of the design is to a pre-fixed andeag upon set of benchmarks, and in
Computer Aided Design, each design is highly unigie customizable. We describe the
assumptions inherent to each of these categoriesvpm order to illustrate how WSPs
differ. The WSP model of performance evaluatiofaier discussed in Figure 18. We
develop our WSP model by contrasting it to geng@wapose processing (GPP) and
application specific processing (ASP) models. Oefinitions of GPP and ASP models
show the foundations of existing performance euaunatechniques the way they are
designed, not the way they are used.

Figure 18 illustrates the differences between tmee performance optimization
models; the GPP, the ASP and the WSP. Figure 18sstiaat the inputs are conceptually
presented to the GPP sequentially so that appitaitiio not overlap and thus there is no
contention between them. The processor (or the derphmenerates the sequence of
execution by identifying interdependences betweelividual program inputs. Figure 18
also shows that each application starts execuften the previous application completed

execution, in which a downward arrow indicates ltleginning of an application and an
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upward arrow indicates the end of an applicaticecrEinputrepresents a different type
of application. Each application type takes a d#fe execution timeE(App), to
complete. Evaluating the performance of all appiica types produces a set of
performance values that can be normalized to aamrfe architecture as speedup, and
then averaged to produ& This model is appropriate for batch executiort, dmes not
accurately describe the performance of interactreekloads [46]. Even in the case of
multithreaded GPPs, the input to the system ismtisented as a single demand stream.
That also leads to the use of average performaatees. In the uniprocessor world,
SPEC [40] is a popular set of benchmark applicati@PLASH-2 [47] is the analog in

the multiprocessor world.
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Figure 18: Application Arrival Timing of Different Performance Optimization
Models

Next, we consider real-time embedded systems tls&t Application Specific

Processors (ASPs). Figure 18 illustrates that tiputi is an application or a set of
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applications that persist in the system over timmel ghat are considered to arrive
periodically. Thus, real-time embedded systemsiasiggned given upfront specifications
of the applications it will carry out. These systerare designed to meet real-time
demands within a period,, and the execution tim&;, of the application or the set of
applications has to be less than the deadlipeusually leaving some slack time.
Increasing the computation power of these systemsaisteful when the deadlines are
met unless the designer wishes to add more furadiipnto the existing system

functionalities [46]. Thus, today’'s cell phones daot fall into the traditional real-time

embedded systems category. Our new evaluation mMISIPs) addresses the way
processors are used in this design.

Figure 18 also illustrates our WSP model. At anyegi time there is a set of
applications. These applications are presentetidesystem in response to a mixture of
timed, external and untimed, internal events. Tkeereal events result from user-
computer interaction and data arrival. The intemadnts arise from changes in data that
are being processed by existing applications. Tthesarrival of new application(s) or
data, a significant change in the data being psszkdy existing application(s), or the
departure of an existing application(s) defineseaw nMmode of operation. For instance,
App; and App arrived at the system at tinmg, resulting in workload modermy. Later
on, at timer,, Apps and App arrived while App and App were still executing. This
results in a different workload modeynm,. Thus, wm, at time 7, now has four
applications: App App, Apps, and App. In this example, there are four workload
modes generated due to application arrival and rtlgqeawm, was generated due to a
significant change in the data being processedyy.A

In Figure 18, the change in the input data is dshbly using different color contrasts
to show different phases of execution. For exantpke processing of an MPEG file that
has been previously downloaded can result in diffeprocessing requirements that can
persist in the system long enough to result irgaicant program phase. Thus, while the
MPEG application persists in the system for a lpegod of time, optimization of the
whole system requires consideration of the datagoprocessed. Also, webpages have
different time granularities, during which the cemit updates [46], [48]. These updates

may result in on-chip optimizations. Kumar, Tullsand Jouppi divided individual
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program execution into phases that exhibit diffefeghaviors due to the change in the
input data during execution [49].

Figure 18 also shows that time is continuous aiad sbme jobs may persist in the
system indefinitely while others may not completfdpe the next input arrives. For
instance, Apparrived atr;; and departed ats. Meanwhile, applications Apmand App
arrived and finished execution. Again, the downwamew indicates the beginning of an
application and an upward arrow indicates the drah@pplication.

Paul et al. established the foundation for the nMadi®n that emerging computers
have a categorically different relationship witherss by the development of a new
taxonomy that is called the U-A (User-Applicatioigxonomy [46]. The U-A Taxonomy
extends the most widely known taxonomy in compuytthgt is Flynn’s Taxonomy [50],
which categorizes computer architecture into Singistruction, Single Datastream
(SISD), Single Instruction, Multiple Datastream N&), Multiple Instruction, Single
Datastream (MISD), and Multiple Instruction, MulgpDatastream (MIMD). The focus
of Flynn’'s Taxonomy is on the structure of the comegp and not the objectives of the
computer. Thus, an additional classification schdorecomputing that considers the
objective of the computer seems necessary. TheTadfnomy is proposed as a way of
distinguishing the objective of the computer framstructure.

The most common computing structures from Flynr@gdnomy that are realized are
SISD and MIMD. In the U-A Taxonomy, the authors idef four new classes of
computing and further subdivide them accordinghirtrealization as SISD or MIMD
computers, resulting in eight classes of computarsSingle-User (SU) computer is
designed with the presumption that only one pemsitinbe using the computer at any
point in time. In contrast, a Multiple User (MU)roputer is designed to satisfy the needs
of multiple users who share the computer servitéiseasame time. A Single Application
(SA) computer is designed to execute a single egipin at a time. When the single
application is complete, the computer moves onhw riext application. In contrast, a
Multiple Application (MA) computer is designed taexute multiple applications at the
same time; multiple applications are consideredb#o executing in a MA system
concurrently, even though the concurrency can heeaed in a variety of ways.

47



Our WSP model falls under the SUMA-MIMD classificet. The SUMA-MIMD
computer has the objective to execute multiple iappbns concurrently on a
multiprocessor in the service of a single user.iplas of SUMA-MIMD machines
include personal computers and laptops with mdtqures. Because personal computing
devices are increasingly designed to meet portabdemands (on size and power
consumption), SUMA-MIMD computers are starting te tealized as heterogeneous
multiprocessors. SUMA-MIMD computers represent assl of computer for which
performance is not always dominated by latencytanalighput over the application set.
The most obvious way to see this is that the ugmtseptions are inherently limited, so
that more computing power does not always impagtuser’s ability to perceive it. For
example, when humans juggle sets of applicationghich data is arriving in real time,
they can only pay attention to so much informatioa fixed amount of time. As a result,
faster processing of some tasks is wasted on the uwso is the ultimate judge of
performance. Thus, performance must be evaluatéerms of its impact on individual
users.

Figure 19 illustrates the definition of a WSP. Atyagiven time, there is a set of

applications. Each application potentially execui@scurrently on a multicore processor.
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We use time to identify both the arrival of applioas as well as their persistence in
the system as new applications arrive. Workload ewad, at time 7;; hasn; applications
of my application typeswm at time i, hasn, applications ofn, application types, and so
on. Further, each application type &t consists ofs instances, and the cumulative
summation of these instances at any given timequalsn,. Thus, the loading of the
system is a function of external timing, unlike pnoicessors, which are sequenced by the
speed at which an instruction stream is processSadhermore, each user application
consists of several processor tasks that havereiiffecharacteristics, such as Type,
Complexity,C, and Data Dependency, discussed in Table 7. When executed, each task
in a modewm processes associated input d&arom the set. The input data sets also
change with time. Some applications may persishéensystem indefinitely while others
may not complete before the next input arrives.

From an optimization perspective, this results imaltimodal system; the system
operates in different modes at different times tr@$e modes must be recognized so that
the system can respond to different loading sibmati In this thesis, we model
overlapping demands as workload modes and showthevidentification of workload
modes is critical to effective optimization of WSP&e show why they must be
identified using models of the likely behavior tketsystem, in which these models are
derived from single-user models. Next, we discuew Iprior work in performance
metrics and workload analysis has not focused lglesiuser usage patterns that result in

workload modes that include heterogeneity, conagyreand timing features.
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Chapter 4

Prior Work

If there is any one secret of success, it lies in
the ability to get the other person’s point of
view and see things from that person’s angle
as well as from your own.

Henry Ford

Since the primary contribution of this work is tiievelopment of the Capacity metric, in
this chapter we first summarize existing perforneantetrics used in computer systems,
discussing why they fail to properly evaluate thexfprmance of CHMs that process
heterogeneous multi-channel inputs. Because ouracltgpmetric is graphical and
includes the effects of global resource sharingylar to metrics used in networks, we
also include a discussion of metrics in computed aommunication networks. The
development of our Capacity metric was motivatedhgyneed to evaluate WSPs, so we
then include a discussion of existing workload medad types of benchmarks and why
these models and benchmark suites are inappropgoaeyaluate CHMs. Finally, our
Capacity metric needed to simulate workloads on GHBb we discuss our MESH
simulator that has been used in that regard ang sty existing HDL simulators failed
to achieve this goal.

4.1 Performance Metrics

Considerable prior work exists in metrics and eatiin of workloads and multicore
computing. Although prior work has called upon tieed to develop new performance
metrics [51], none has considered breaking outhiterogeneity of workloads or has
modeled heterogeneity impact on the performanceaofCHM that processes a
heterogeneous multichannel workload.

Alameldeen and Wood discuss the need for simplekavased metrics [52].

However, suggested metrics accurately predict padace only if the unit of work is
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representative of the entire system’s functionalityhich is not the case when
multichannel inputs implicitly carry different usitof work. Kumar et al. evaluate the
throughput of CHMs by increasing the demand fotheaaplication type until it reaches
the maximum production [49]. The overall throughmithen evaluated by finding the
average score of the individual throughput scoBag. averaging implies a functional
overlay of the way different demand streams will dmmbined that can obscure the
variety of situations a real system can encout@kadron et al. pointed out that average
values used for many current systems that run pielgirocesses simultaneously (such as
average IPC) can lead to misleading performanceltsedecause they factor out
performance differences that result due to thetimgrdehavior of current systems [51].
Hill and Marty develop a speedup hardware modeholticore systems to complement
Amdahl’'s software model, but assume that the impat single channel [53]. SPECRate
is also a single valued metric [54].

Prior work has also examined the throughput of SEmeous Multithreading (SMT)
and CHM architectures using both parallel progrand multiprogrammed workloads
[55], [56], [57], [49]. Both parallel and multipregmmed workloads provide thread-level
parallelism, but they differ in how threads compfeteglobal chip resources. Threads of
multiprogrammed workloads do not share memory egfegs; this results in more
accesses to the cache memory. Furthermore, thessdthhave different phase patterns
such as ILP and memory accesses, causing inteckererbranch predictors. Kumar et al
[49] statically mapped each thread type to a smeabre, thus multiprogrammed
workloads are less likely to vie for the same pssogg elements on chip. Thus,
evaluating computer architectures using multiprogreed workloads is different from
our evaluation for Capacity metric because the remobthreads of different types is not
fixed to the number of cores on chip and the exenutme is limited by a time window
that is perceived by the user. While parallel aggtions [58], [59], [60] may have the
benefit of sharing the caches and branch predictioey test SMT differently. In contrast
with the multiprogrammed workloads, all threadsaimparallel application have similar
execution patterns. As a result, threads in a lghgbplication may create bottlenecks in
these resources. Traditionally, throughput could used to model these classes of

parallelism, because the similarity between elemeot the parallel computation
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permitted evaluation to take place over a commomkwmit. However, in modern
computer systems with multiple, diverse producstreams that persist in the computer
over long period of time, the differentiation iretkypes of production requires evaluation
and analysis to consider the effects of workloagogeneity.

Existing performance metrics can be broadly classiés either time-based or work-
based metrics. Table 9 summarizes examples of @dash. Time-based metrics, such as
latency and response time, are used to optimizedh®uter systems in which the input
is sequential, or SUSA computers. In the new eraayhputing in which computer
systems are increasingly integrating multicore shipthe service of single users, work-
based metrics, such as throughput and bandwidthnare appropriate to optimize these
systems. In other words, the design goal of singler- multicore computers, or SUMA, is
to process as much work as possible during a winobtime. None of existing work-
based metrics has considered breaking out thedgeteeity of workloads or has modeled
heterogeneity impact on the performance of a CHa pinocesses a heterogeneous multi-
channel workload. For computer systems that nedoetoptimized for both time and
work metrics such as super computers, power consom@and heat dissipation become a
major concern. In contrast, for the systems usesbime domains such as banking the
designer (and the customer) worries about the ggcteliability and availability of the

system more than anything else.

Table 9: Taxonomy of Existing Performance Metrics

m Matters Doesn’t Matter

Matters Power, Power per Area, and | Throughput, and Bandwidth, et
Utilization, etc
Doesn’'t Matter | Latency, and Response Time), Reliability, Availability,

etc Security, and Scalability, etc

)

Through recognition of the architectural couplinfydifferent demand streams in
multicore computing, but at the same time the sejmar of the performance of each type
of demand stream from the perspective of the user,establish the foundation for
analysis of CHMs that service single users, or SUbbputers. With the Capacity

metric, we set up the possibility of analyzing CHsthat resources will not be wasted
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as resource loading, or workloads, can be exedwyeithie computing device, but these

effects might never be seen by the user.

4.2 Performance Modeling of Computer and Communicabn Networks

There is a similarity between our Capacity metried aperformance metrics in
networking:

« Some performance metrics in networking are graphidéor instance,
considerable work has been done on network optimizasing the network load
metric, which is a graphical metric. The shapehef network load metric curves
reveals significant information that helps in Ideancing management; and

* Both measure the effects of global resource intenas on the performance of a
system. Global resource interactions that take ephatile routing a packet,
represented as an overhead, are widely modeledtadibd in networking.

Thus, we review the literature of performance nostin networking to point out
similarities and differences with our work, signifg the potential of our Capacity metric
to be used in communication networks as well.

Performance analysis has an important role in nédwg because it provides
estimates of network behavior in terms of differerdtrics. Depending on the metrics of
interest, designers can select network architestanel protocols. Performance modeling
and evaluation can be done using either simuladioanalytical models. Simulation is
based upon measurement, similar to the way we genewur Capacity curves, while
analytical models are based on a representatian syfstem via a model. Both need to
model performance in terms of a metric.

Two primary metrics are used in the performanceluaw®mn of mobile ad hoc
networks: packet delivery rate and end-to-end deldyese metrics are mainly used to
compare different ad hoc routing protocols. The kvot [61] uses the packet delivery
rate and end-to-end delay metrics as the two pyinmaetrics for evaluating VolP
communication. These metrics are analogous tohitaighput and latency metrics used
in computer systems. Other metrics such as jiftew length, and packet overhead are
also important metrics that can be derived fromphmary metrics. All of these metrics

are single-valued metrics. Each metric is typicallytained via averaging all metric
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values obtained from the monitored flows. Recently directions of research have been
taken in the development of performance metricadbhoc mobile networks. In the first

direction, different types of performance metrics distilled into a single-valued index.

In the other direction, performance is broken domio its components instead of using
averaging. This requires a graphical means to yerformance. Here, we discuss both
directions.

The work of [62] defines anndex for measuring the performance of ad hoc
networking protocols. This performance index dstdifferent performance values that
result from different metrics into a single valumatt can be used to describe the overall
system performance. In order to do this, Ajbar aikins develop a statistical model
that averages the performance of four metrics: gadklivery ratio, end-to-end delay,
jitter, and packet overhead [62]. While this apploenakes comparison easier, but it may
lead to incorrect results because it factors oet plerformance differences between
systems when evaluated against different metrics.

The work in [63], [64] find that distilling perforamce into a single-valued score via
averaging conceals the relationships between pedoce metrics and system
parameters. Moreover, it often leads to misleadiognclusions about system
performance. Note that different routing flows fr@anders to receivers have different
characteristics [65], [66]. As a result, Yuen anctesS [63] present a graphical
representation of performance results. This grapmepresentation can be used to reveal
the different relationships between different parfance metrics and system parameters.
This in turn gives insight about what parametessl leo changes in performance. While
this type of work identifies the significance ofusa and effect analysis in performance
evaluation through the use of graphical metricdps not consider the different types of
work the system is producing and the impact ofwloek type on the performance of a
system.

Considerable work in networking has considereditigact of routing overhead on
the performance of networking systef63], [68], [69], [70]. While overhead modeling
in networking considers the size and type of thekpa control or data, it does not
consider the heterogeneity of the content of thgimal files being sent through the

network.
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While much of the work on the performance evaluatad ad hoc networks has
focused on routing performance, other work has idensd power constraints that limit
routing performance [71]. In general, power is dedi from two primary metrics: packet
delivery rate and delay. This is analogous to tlag we view performance; in order to

correctly model power consumption, Capacity musadmirately modeled first.

4.3 Workload Analysis

The development of accurate workload models of Istnger multicore devices was
required for the development of our Capacity met@ar Capacity metric accounts for
the effects of these features of workloads, whitbutd also be considered in modeling
the workload of CHMs:

» Heterogeneous concurrency: heterogeneous inpute dhre systems as sets of
concurrent applications or workload modes;

* Arrival time: timed arrival of workload modes andietr associated data.
Workload modes occur due to either external evéms occur due to user—
computer interaction or internal events that agige to changes in the data;

» Global resource interactions (represented as oadjhesuch as schedulers,
memory, communication resources, etc.. This is sulteof the above two
features; the overlap between different sets ofceoent, heterogeneous
applications makes global resource interaction nsapeificant to performance.

There is much prior work on workload modeling, Inaine includes the above list of
features when modeling workloads of single-userbiteadevices and uses them as the
foundation of performance optimization of CHM ateltures.

Considerable prior work has recognized the sigafee of workload characterization
for accurate performance evaluation [72], [73], ][7475]. Previous research on
workloads characterization has focused on constigietorkloads using either existing
benchmarks [49] or realistic data collection [7Bkposing the system to a collection of
benchmarks, either one at a time or collectivebesdnot construct a real workload. On
the other hand, previous work that used realisti@ dby observing a specific system for
some period of time has focused on the numbermqfasts, session duration, number of

accessed pages, etc. These parameters do nomntakeonsideration much more vital
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characteristics of the request itself, such asctimeplexity of the request, the number of
simultaneous instances of each request type, otirttee granularity of the request that
may be limited by single-user access patterns,Sme previous work used statistical
models to represent workloads [77], but these aggesinstances do not permit modeling
of individual usage patterns. Finally, most of frevious work has focused on server
workloads [78], [79]. Next, we elaborate more offedent types of workload analysis,

including existing workload modeling and worklodthcacterization techniques.

4.3.1 Workload Models
We group existing workload models in the literatusview into three categories;

Benchmarks, Graphs, and Traces.

A. Benchmarks

Previous research on workloads has focused on rootisg representative workloads
using existing benchmarks [49]. Joshi et al. prepas approach to identify similarities

between programs according to microarchitecturepeddent characteristics [80]. Hoste
et al. use program similarities to predict prograperformance in advance [81]. In

contrast, Vandierendonck et al. develop techniqgieesdentify differences between

benchmark programs [82]. However, exposing theesydb a collection of benchmarks,
either one at a time or collectively, does not tamts a real workload. When models of
single-user usage patterns are used, distinct motiegperation emerge that do not
emerge from a random collection of interacting paogs.

In Chapter 3 we concluded that existing benchmaites such as SPEC, MiBench,
MediaBench, and EEMBC represent the workload ofatclb style execution system.
Thus, they do not model concurrency and extermalng of input arrival. Because
existing benchmark suites focus only on single mogexecutions, existing benchmark
suites cannot be used to evaluate the performanttes HM that process timed sets of

concurrent heterogeneous applications.

B. Graph-Based
Some existing workload models can be used to magelication parallelism. One

popular representation of application parallelismask graphs [83], [84]. These graphs
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are composed of nodes that represent functionsaarsl that show the dependencies
among these functions.

D. Ferrari [85] introduce user behavior graphs. Tioees of a user behavior graph
represent different types of user requests. The associated with probabilities represent
the sequences of user requests. If overlap optias ehosen by the user, the user can
issue as many requests as needed without havimgatiofor the completion of the
existing one. Thus, these requests are simultaheexscuting on the system.

User behavior models are hierarchical. In otherdsphigh-level workloads will be
translated into a stream of low-level workloadsr Bweat, Calzarossa et al. define a
layered framework for the modeling of user behawadels [86]. Markov chain models
can be used to identify dependencies between egaests [87], [88], [76], [89]. Later in
this thesis, we show how Markov chains are toolgdsir recognition of workload
modes in single-user devices. Although user belnayiaphs seem to be a good choice

for emergent workloads, they do not model the attivne of requests.

C. Trace-Driven or Measurement

Both benchmarks and graphs are a representatisystdfm workloads that may include a
large margin of error. Thus, another type of woaklanodels is based on the collection
of traces via measurement. Traces are used toifidéime key characteristics of a real
execution behavior. To capture a real behaviorumate instrumentation need to be
developed. Further, to capture more characteriabcsit the execution behavior there is a
need to insert a large number of checkpoints sinspigh as print statements into the
system. Still further, because the collected degauaually large there is also a need for a
tradeoff analysis between collection overhead éedaccuracy of the model. Moreover,
appropriate techniques have to be developed, doittltan be applied to ensure the
quality of the derived workload model [90], [91].Hlé they are more accurate models of
workloads, trace driven models incur overhead ims$eof instrumentation setup and the
amount of collected data. Next, we survey some lwark characterization approaches

that can be used in that regard.
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4.3.2 Workload Characterization Approaches
There are several workload characterization appesadhat can be used to generate
workload models. We classify them into three groupsmerical, statistical and

stochastic.

A. Numerical

One numerical technique used in workload charagan is clustering [91]. Clustering
is used to reduce the volume of collected data isgodering patterns in data. Two
primary clustering algorithms are: k-means anddnirical clustering [92]. As discussed
earlier, Joshi et al. used both clustering appresicto identify similarities between
programs [80]. Calzarossa and Serazzi [93] appiyiarical fitting techniques to model
the fluctuations in job arrival patterns. Both ¢krsng and fitting techniques are needed

to identify representative arrival patterns.

B. Statistical

Numerous studies have focused on modeling worklbgdsollecting workload traces or
realistic data [94] and developing statistical niede fit these data based on specific
attributes of workloads [77]. However, these apphes fail if the data is not stationary
[95]. For example, Chiang et al. found that colelctiata may not have the same pattern
during different times in the year [94]. S. Hotdwyds that workloads are also different
at different installations and as users learn bétbev to use the system [96]. Moreover,
previous work has focused on less significant systharacteristics such as the number
of requests, session duration, and the numbercafsaed pages, etc. These parameters do
not take into consideration much more vital chaastics of the request itself, such as
the complexity of the request, the number of siamdbus instances of each request type,
or the time granularity of the request.

Descriptive statistics has been widely used toattarize workloads [73], [97], [74],
[98]. This model targets batch and interactiveeyst [91]. For the workload of personal
computers, general descriptive statistics are tsédentify user behavior [99]. But these
aggregate instances do not permit modeling of iddad usage patterns. Moreover, most

of these studies model only the static characiesistf the workload. To model the
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dynamic characteristics of the workload, grapheradl mathematical methods are used.
Thus, gatistical and numerical models are static modaelgpntrast with the behavior of

users, and may yield misleading results when ugiagvrong model.

C. Stochastic

The work of [100] builds a model of instructionggences of individual jobs using a
Markov chain model. Markov chains are composedtafes that represent different
instructions and arcs that represent the possitofitinstruction transition or sequences.
Stochastic models, based on Markov chains, are bge@. Haring [101] to represent
task interactions. Another domain that stochastcl@s are used in is the identification
of phases that are used to represent the exedogibavior of a program. A computer
program is as a sequence of phases that diffegrimst of processing, communication,
memory access patterns. Carlson et al. [102] aeatje execution profile of an
application in order to identify its phases. The@xion profile is defined as a sequence
of clusters of periods that have roughly unifornegassor utilization and separated by
sudden changes in processor utilization. Waheed Yad [103] find by studying
computational fluid dynamics applications that tharacterization of phases can be used
to develop tuning methodologies In general, stanhasodels are not scalable while the
number of workload modes and processors increasestething we discuss thoroughly
in the next chapter.

By focusing on emergent single-user multicore coms, we differentiate from all
other workload approaches in which workloads ameved from stochastic models of
arrival. Usage patterns of single individuals f@aremore tractable than workload models
that arise due to the interaction of many individugying for access to limited resources.
We focus on building a classification scheme wheratehitectures can be categorically
optimized to classes of individual user accessepadt

In general, these techniques can be used to dewekipgle-user model of usage
patterns, which then result in a new form of benatiimg of the form shown in Figure 6.
One purpose of this thesis is to show why this faw is necessary for emerging CHM
computers, which are used by single individualspi@mcessing and communications with
other computers. We do so by focusing on the neexptimize to significant changes in
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workload patterns, or workload modes, and show tiesvoptimization is not likely to be
effective in the absence of more sophisticated $oahbenchmarks that are suited for

emerging WSPs.

4.3.3 A Summary of Workload Modeling Techniques

We summarize the above discussion of workload niagleand characterization
techniques. We classify these techniques basedwonotthogonal factors: (1) task
concurrency and type, and (2) arrival timing. Thieisection between the values of these
factors results in a different performance evabratmodel. Table 10 summarizes our

classification.

Table 10: Performance Evaluation Models Classificabn

Timing Un-timed Timed

Concurrency / Typ€
Single Benchmarks, Traces Stochastic, Statistics
Multiple | Homogeneouy§ Benchmarks, Behavioral Graghs  Stochasti

Heterogeneoup Benchmarks, Behavioral GraphRW/e]g{[eF:le B\ lels [}

Benchmarks are presented to the system in an whtmenner. Further, they are

presented to the system individually or concurser{thultiple copies of the same
benchmark submitted to the system). Recently, pvamk has considered heterogeneous,
concurrent benchmarks. The number of running beacksrmatches the number of cores
and thus these benchmarks are statistically mappedtiese cores. While behavioral
graphs are interesting because they profile the bskavior, which may expose the
system to concurrent tasks, they lack the inclubrarrival time information. Only
stochastic processes can model the arrival timethmse times are not real, they are
based on statistical analysis of collected dataames. Further, there is not a stochastic
model that models heterogeneous concurrency.

Another level of classification that can be conggdeis when the type of architecture
is included. Architectures can be classified apratessors or multiprocessors, similar to
the concurrency and heterogeneity features of afievare. Multiprocessor architectures

are further classified as being either homogeneouseterogeneous. None of the above
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techniques have also considered the overhead aiftang@ng a heterogeneous set of
processors that are especially used to procestesogeneous multi-channel input. As a
result, we needed to develop a workload model ithdtides all of these features and
effects that can be then used to evaluate CHMs.

4.4 User Profiling and Usage Pattern Discovery

Perhaps the greatest potential of the Capacityienstto use it in conjunction with user
profiling. In this way, the resultant Capacity skapcan be used to identify where
performance of the CHM, in effect, is wasted onubker, especially characteristics of an
individual class of user who uses their mobile devin very different ways from other
classes of users. This will ultimately result irpsglaced on Capacity curves/shapes, in
which, above a certain shape, performance of thd1G#l wasted. At this point the
computer designer can use information developethénanalytical model in order to
provide performance to the individual user that adtually have an effect on the user.
Further, since our Capacity metric is used to melkelperformance of CHMs optimized
to single-user usage patterns, usage pattern discos/key. While we are not modeling
real usage patterns, we also survey methods ofeusatjern discovery for the sake of
completeness.

We have previously shown that user access pattérwebpages can result in single
CHM architectures with significant performance eiinces [104]. There are two
primary user profiling approaches. Explicit profdi is done through explicit input from
the users themselves in the form of questionnainésrviews, and polls, etc in order to
capture their interests [105]. Implicit profilingy indirect profiling, is done by observing
the navigation patterns of users using client oveselogs. User profiling commonly uses
machine learning techniques to discover potentisdrests and thus be able to create
useful patterns in the profiles [105].

Once data is collected, the pattern discovery m®actarts. Several methods from
different fields such as statistics, data miningchine learning, and pattern recognition
can be used to do pattern discovery. Kosala andkBkl [106] classify the purpose of
Web usage mining to either understanding the uskawor so that the Web site can be
optimized accordingly [107], [108], [109] or to imgve the website’'s effectiveness
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[110]. Web personalization to user preferencesbieas done using artificial intelligence
techniques in [108], [109].

It is essential to ensure that accurate usagelgsadre established in order to improve
the efficiency of design choices. Hence, therengad to gather as much information as
possible pertinent to a user’s interaction with $igstem in order to identify behavioral
patterns of users that could occur. In future wavk, will investigate these and other
techniques in order to create clusters of userlpsofFor the purpose of this thesis, while
our usage scenarios are artificially made-up, tilmglementation is real, which we think

is enough to show the potential of our new perfaroeametric.

4.5 The Modeling Environment for Software and Hardware (MESH)
The development of WSPs needed to simulate theonpeaihce (or the Capacity) of

CHMs that process workloads result from differessige patterns of our multimedia cell
phone example. Performance simulation of CHMs reguhe manipulation of:

1. Threads instead of instructions;

2. Multiple-ISA processing elements instead of funeébunits;

3. Memories instead of state registers;

4. Complex interconnection networks instead of simphessage-passing channels

or even wires;

o

Chip level (global) dynamic schedulers insteadaihtlows; and

6. Timing that results from the intersection of disereevents running on
heterogeneous processing elements instead of gitdudki cycles

The above list of design elements requires thelsiton tool to manipulate:

a. Global-local state preservation and coordination;

b. The overhead of global resource interactions (sashcommunication and
memory contention, congestion, and synchronization)

c. Task migration between heterogeneous processinteeks; and

d. Different triggering methods

Further, the exploration of these design elemeedsis:

* Quick design space exploration and

» Easy debugging
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Here, we first perform a survey of existing simigdat methodologies, languages, and
tools. Then, we show why each tool fails to simel&HMs. Finally, we include a
discussion of our MESH simulator and contrast thveixisting simulators.

Cycle accurate and instruction accurate simulatansee been used for performance
evaluation of CHMs. As computers integrate morecessing elements, ISSs cannot be
used to simulate the performance of CHMs, not hestause they are slow, but also
because they cannot manipulate the hardware amdasef features mentioned in the
above list. Table 11 summarizes the list of exgstiwols reviewed, classified as
performance specification vs. performance evaluatithose tools that are classified as
performance evaluation they also include perforreaspecifications as well, usually

conducted by a third party tool or language.

Table 11: System Level Performance Languages and 0is

Specification Evaluation
VHDL, Verilog SpecC

NI LabVIEW FPGA | SystemC
JHDL Ptolemy
JHDLBIts ARMN
JBits GEMS

The Hardware Description Languages (HDLs), suchwHE®L and Verilog, have
been long used to describe systems at the RTL. Hneyonly used to describe the
hardware and not the combination of hardware arftivace. Further, they are too
detailed which limits fast design space exploratieor Field Programmable Gate Arrays
(FPGAS), there are tools that combine software oede hardware code to create a
functional design. Examples of these tools are BbWIEW FPGA [111], Java-based
structural Hardware Description Language (JHDL) 2J11[113], JBits [114], and
JHDLBIts [115]. However, these tools are not matuhey still lack modeling some
design features. Further, they are not much diftei®m traditional HDLs because they
still simulate registers, wires, and gates, eteyltlo not describe high-level evaluation

of workloads executing on heterogeneous multicbrnesc
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System-level modeling languages such as SpecCerypland SystemC are built
upon existing programming languages such as C antd €b they do not have dedicated
compilers. They use the compilers built for presérg programming languages. These
languages have different aspects of system modefipgcC is used in Computer Aided
Design (CAD) community. It uses communication refirent for performance modeling
and to link different abstraction levels togethet§]. The goal of SpecC is to eventually
plug its modeled design to automated refinement ymthesis tools [116]. One of the
major drawbacks of SpecC is that it limits useeagibility feature [117].

Ptolemy Il is a java-based tool that is developgdtie Ptolemy Group [118]. It
supports heterogeneous behavioral hierarchy thramghctor-oriented design in which
actors are software components that execute canrtlyr The semantics of a model are
defined by a software component that exists at éaatarchy layer (called the director)
and implements a model of computation. Howeverlertg Il is used in the embedded
software and synthesis community [116], [119]. Thasorder to be used in a different
domain, the designer needs to use more instructions

In contrast, SystemC allows extensions of the lagguo be created by users [116],
[119]. SystemC’s goal is to allow quick design spaxploration by facilitating the
creation of designs with different variants [12Blowever, there is a three-fold major
drawback to using SystemC:

» SystemC is generally used with an HDL where Systenudels the testbench
and the HDL simulator models the system itself.

» Debugging; errors in SystemC code will not be fowmdil runtime during
testing. Further, these errors are C++ errors; they not related to the
modeled system itself, making debugging complicaiedi time consuming.

 SystemC models are even more complex because marice analysis
procedures and the underlying communications stradtave to be specified
by the user.

For these reasons, SystemC and the other systezhl@guages are inappropriate to
simulate CHMs that process heterogeneous, multiaianputs.

Recently several simulation tools targeting muli&csystems have been developed
such as GEMS [121] and ARMn [122]. Both simulatars cycle-accurate. The GEMS
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was initially developed to simulate multiprocessorsdatabase and Web servers. The
ARMN is targeting single-ISA (that is ARM) multiemrsystems. In summary, design
languages and simulation tools described in thitice are inappropriate to model
hundreds of heterogeneous multicore architectureatians and evaluate their
performance in a timely manner.

Because existing simulators failed to simulate gadormance of CHMs that process
workloads, we used our MESH simulator to model ocall phone example in the
experiments of Chapters 5 through 7. The Modelimyifenment for Software and
Hardware (MESH) permits performance and power et@ino when threads execute on
sets of heterogeneous resources under a varietystdm schedulers [123], [124]. MESH
explores CHM design above the level of the ISS, retdesigners deal with threads,
processors, and memories instead of instructiamgtional units, and registers.

MESH enables designers to evaluate the performefieets of design trade-offs in
the numbers and types of processors and commuonsatinechanisms, scheduling
decisions, and software tasks (arrival time andmerity) on the overall performance of
CHM systems. MESH has also previously proven itsueacy and speedy simulation
[125], [126].

MESH increases simulation performance by emulatarget system performance
using annotations inserted within the code. Thes®tations are generated by executing
the same application code on the real platformajiiure data dependent execution. This
approach is called execution-driven simulation veitbss-profiling or back-annotation. It
has been widely used for traditional multiprocessionulation [127], as well as for
simulation of CHM systems [128] [124]. These antiotes capture the computational
complexity of a program’s code. Once the annotatagion is reached, the simulation
kernel determines the physical timing needed t@@esthe code of this region using the
computational complexity values in these annotatidBach piece of code has to be
annotated only once. This allows speeding up tlsggdespace exploration. This process
can be automated using profiling tools [128].

MESH is also capable of evaluating the effects w§ hnd memory contention on
overall system performance. Once a shared res@gooess is accessed, an annotation

must be inserted to determine contention [124].
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The process starts with a program’s source coden,Tthe designer must identify the
locations in the code in which annotations needéaoinserted. Annotations need to
capture the control flow of a program [124]. Theref annotations are usually inserted at
the end of every loop and in every path of the tinan

Schedulers use “consume calls” to resolve the &bglreads of the software to the
physical threads of the chip resources. “Consuniis”’a&present the complexity of a
program fragment. A program fragment is definedthas granularity of software in a
simulation. Therefore, fragments can be as largehasthreads or as fine as the
instructions. In general, fragments are finer thadividual threads and coarser than
individual instructions. If fragments are too cagraccuracy suffers, and if fragments are
too fine, simulation time suffer. Significantly,ghannotation of “consume values” for
program fragments is flexible, and this in turn esldesign space exploration faster.

However, the accuracy of these values is an impbopart of creating a good model.
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Chapter 5

Workload Mode Identification Models

It doesn’t matter how beautiful your theory

is, it doesn't matter how smart you are. If it

doesn’'t agree with experiment, it's wrong.
Richard P. Feynman

The initial objective of this work was to desigrdagvaluate CHMs around our definition
of workload modesghat arise from single-user usage patterns. A akalrallenge for this
type of design is how to model and identify the kiload modes at real time, otherwise
the systems do not have the ability to optimizedistinct situations as they are
encountered. Thus, we analyzed and evaluated twaelmng techniques, a Workload
Classification Model (WCM) and a Hidden Markov MbdelMM), against their ability
to permit dynamic optimization when specific wokibmodes were encountered. We
include experimentation on our multimedia cell phoexample and in so doing

demonstrate why this work resulted in the neeceteelbp the Capacity metric.

5.1 Workload Classification Model

WCM extends prior work in microarchitecture-indegent workload characterization for
individual benchmarks [129] by including timed canent applications. Our initial
procedure is:

Step 1: Characteristic ExtractionEach task typeY, mentioned in Section 2 has a
different working data set§ and complexity,C, classified into three relative classes:
low, medium, and high. Working data sets are furtassified based upon their relative
frequencies of update: cached and non-cached. @bdastic extraction is conducted in
an adhoc manual manner by the system designesigihdeme.

Step 2: Formingwm Vector. Step 1 resulted inm different workload mode

characteristicswm=[wj,...,w,...,Wy] represents the workload characteristics vector of
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length m, characterizing each workload modem in which w; is a workload
characteristic.
Step 3: FormingVl Matrix. Each usage pattern hasvorkload modes. For example, the
usage pattern in Figure 1 has 12 workload madeis the generated matrix of dimension
nxm that represents a usage pattern, in which rowsvaresectors and columns are the
number of instances, of each workload characteristig, in wm.
Step 4: FormingR Vector. We suggested normalized weightsthat correspond to the
task complexity. For instance, baseline JPEG wsig@ad higher weights than text since
JPEG has higher complexity than Text. Different GBEhave different weights due to
data content. Further, cached JPEG has lesser emmyplthan non-cached JPEG.
Generallyr takes values in the range>r > 1.
Normalized complexity weights are generated by diing the cycle budget of each
application by the maximum cycle budget needed rby@plication in the system. We
extend Sim-Profile [130] of SimpleScalar to extrase number of cycles for each
application. Sim-Profile profiles each applicatishen it runs on a different processor
type.
Step 5: Assignin® Vector Values td1 Matrix. Matrix M is then multiplied by weight
vector R. We normalize each column (characteristic) in tharix by subtracting the
mean value and dividing it by the standard devmatithe goal of the normalization is to
put all characteristics on a common scale. Thenljivearly combine the absolute values
in each row (workload mode vectam).
This algorithm is used to identify workload modesuntime, exploiting some design-
time knowledge. The algorithm characterizes theklpad of each mode individually
without considering the prior workloads that migixist in the system before the arrival
of the current mode. We gathered the data usedbyYMCM by observing the workloads
of real-time usage patterns of the single-user gletine example. The workloads are
composed of sets of applications that differ imieiof datasets and arrival times and are
therefore sufficient for the purpose of illustratio

These usage patterns are represented by a data iarrthe format of [time,
application(s)], in which time is the arrival tino¢ application(s). The data array is then
used as an input to a simple execution enginertdats the data array. Each workload
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mode is defined at the arrival timarf vector). The engine identifies all workload
modes in the data array and starts filling Mematrix by computing the number of
instances of each application in different workloaddes. Then it calls the profiler for
each application to compute the complexity of eagplication; this forms thR vector.

Finally, it assigns the complexities to Mathk.
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Figure 20: Workload Mode Characterization

The number of distinguishable workload modes frosystem is too large. Therefore,
to avoid the complexity of handling all of themrah time, several workload modes are
clustered. This clustering is based on the execwast of the workload modes. We build
a vector table that includes all workload modesiified at design time as well as those
identified at run time. Based on the values of @lebal Chip State (GCS), a simple
lookup in the vector table of workload modes cancheried out to find the optimal
optimization profile for the identified workload rde.

Figure 20 shows the normalized average workloadpbexity for each workload
mode in three usage patterns (Figure 6, Figured@ ,Figure 22 are the first, second and
third usage patterns respectively). Each of tie &ind third usage patterns has 12 modes,
while the second usage pattern has only seven médmkload modes are clustered into
a set of uniqgue modes. These normalized complexatie considered as workload mode

unique IDs that can later be used to identify woakl modes at run time. For instance,
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modes 5, 7 and 12 in usage pattern 3 and mode d€aige pattern 1 have relatively the
most complex workloads, while modes 1, 2, 3, 8,@&nd 9 in usage pattern 3, modes 2,
5, 7, 8, and 12 in usage pattern 1 and modes @, dnd 7 in usage pattern 2 have the
lowest workload complexity. High complexity workld& have a higher number of jobs
and more of type streaming while low workloads hBewger jobs and more of types like

text processing.

5.2 Hidden Markov Based Model (HMM)

Our initial WCM model assumed that there was sidfit distance between the time
intervals between modes so sequence does not meierever, if model sequence

matters, this assumption is invalid and a more dexnmodel that cannot take advantage
of design-time modeling of workload modes is regdirHMMs are one such model.

HMMs is a useful framework for modeling state tifinas in a variety of areas such as
speech recognition and bioinformatics [134]. Corepudrchitects also use HMM in

workload modeling of different computer systemsij[13132], [133]. Figure 21 shows a

simple three-state diagram to capture the sequetatonship between workload modes.
Here, we assume that current state depends ontloalprevious state, but not earlier
states, or modes. If sequence matters, our imtiadlel must be modified with three

additional steps (using the notation similar to iRabis [134]), thus forming an HMM:

1-&,i+1 1-8:1,i42 1-812,i+3

ajji+1 Ai+1,i+2

Figure 21: A Simple Three-State HMM Diagram

» Step 3.a: Determining th&, B andz Matrices.A = matrix of transition probabilities
a; for moving from mode wmto mode wm in one time stepB = observation
probabilities of observing a symbol while beingnmode wng andz = the initial mode

probability distribution.
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* Step 3.b: Determining the inter-modes duration ptmbty Matrix X. This step
enhances HMM to be used in our problem space ictwhimode’s inter-arrival time is
unpredictable due to the arrival of external ev8ieps 3.a and 3.b could be done through
user profiling.

e Step 3.c: Running an HMM re-estimate (learning)oaiihm to adjust the HMM
parametersA, B, r) based on the forthcoming workload$ieBaum-Welch algorithm is
one of the popular algorithms used to do thiss&suthe forward-backwaptocedure to
re-estimate the parameters of the model as sonavasliata are available.

Our enhanced HMM model results in a workload madadition table in which the
next workload mode can be predicted based on tirerduworkload mode or chip mode
and the values of the GCS. The data in the workioade transition table is updated at
run time using a learning algorithm. In the nexttem, we experimentally evaluate the
use of the WCM and HMM models used to identify ment changes in the system
loading, modeled as workload modes.

5.3 Experiments

Our goal in the experiments is to compare the Us&/GM and HMM through the
illustration of a single-user CHM with Internet ass. While our example is small, it
includes a representative set of applications ¢hatbe modeled with arrival times that
cause overlap and are differentiated by type, asudsed previously. Our main goal is
the comparison of the use of single-user workloastenmodeling with application-
independent optimization in a CHM.

We start by describing the experimental setup, thiescribe three sets of
experimental results: one that examines the imphotode sequence on modeling, one
that describes how WCM and HMM differ in terms ekdhead, and one that evaluates
several candidate architectures for optimal peréorce.

5.3.1 Example: Our Multimedia Cell Phone
Our cell phone example has been developed as & lbdsa benchmark suite for
heterogeneous multicore systems [1] and is disdugseviously in section 3.3. The

example is modeled using The Modeling Environmemt $oftware and Hardware
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(MESH) simulator, which is discussed in section. 3\ test the example system using
differnet usage patterns. Examples of usage pattased in our experiments are in
Figure 6, Figure 7, Figure 22, Figure 23, and Feg@d. For comprehensive testing
purposes, we include three additional usage pattevhich also use the tasks shown in
Table 7. Note that usage patterns, in generalerdifom each other in terms of (1) the
duration of the pattern, (2) the number of worklgaddes in the pattern, (3) the inter-
arrival times of workload modes within a patterd) the number and complexity of
applications in each workload mode, and finally {%¢ sequence of workload modes.

The five usage patterns developed and used in xperienents depict some of these

differences.
Speech | gt b PP il
Recogn | D:l o A
w B | E E
Web | | | | | | | |
recove | D] ] AR
PiC. : | 1 | : : | | | |
Talkon | o o o immimnlinnlinn
S I I M M T [T
Phone | | | | | | | | |
0 15 30 60 75 90 12C 15C16%5 18C gec.
LEGEND

[ viteroi [JAutoco[ ] op [[] Tx1 [l FrasH [[]aes [[] FIrR [I]FFT [] Convenc
Streaming Task [T T sob Based Task HI1 M concurrent Tasks E

Figure 22: The Third Usage Pattern

Figure 22 shows a usage pattern in which the sstlking on a phone with travel
agencies while browsing the Web for cheap fliglckeis. Note that travel websites
include search functionalities and contain a langenber of photos and Macromedia
Flash files. Further, the user enabled the speecbgnition feature to look up phone
numbers. Note that as time progresses, the usee9ldifferent requirements on the
systems as different combinations of applicatiotecate.

Consider another usage pattern, timeline for whsckhown in Figure 23. In this
usage pattern, the user is talking on a phone avitiend while sharing pictures of her

pets. This usage pattern exercises the systemattfg from the previous usage patterns,
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requiring encoding and decoding of multiple imageshe same time. Finally, consider
the usage pattern shown in Figure 24. In this upadfern, the user is listening to music,

surfing social networking websites, and exchangictures with a friend.

Talk on
Phone

Surf
Web

Send
Pic.
Receive
Pic.

F
]

I T

30 45 60 110 125 Sec.

0
LEGEND

[ viterbi []Autoco [ ] apG [[]7xt [ FLasH [[] Aes[] FIR [T FFT [] convenc
streaming Task L] [T Job Based Task ] (T concurrent Tasks E

Figure 23: The Fourth Usage Pattern

Send 1 : : 1 : : : 1 1 :
pic. -l Mo HD

I | L R —
Surf ! —! . |

| ' ! —

w EFB F & E
Receive | | L i L b
S 1 N 1 N £
TS o 5
Streaming ___+ 1 . L L |

LEGEND 0 10 1530 55 95 120 160175190 210 Sec.

[ vitersi [[JAutoco[ ] opG [[]7xT [ FLasH [[] AEs[] FIR ] FFT [] Convenc
Streaming Task [T T sob Based Task 1 M concurrent Tasks E

Figure 24: The Fifth Usage Pattern

Because of the different set of application setgui data, deadlines and constraints,

different usage patterns may exhibit different esgstperformance, capturing the
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strengths and weaknesses of each architecturefiv@unsage patterns are sufficient to
show that single-user future CHMs open up the bdggito be designed as WSPs, but
we agree that a complete evaluation of a CHM malude tens of different test usage

patterns executing on the same architecture.

5.3.2 Architecture Modeling
Three different processors (AMD K6-2E+, Philips PNXO, and ADSP-BF533) were

chosen for our experiments to model the potentigerdity of the computational
capabilities, power consumption, and area requintsnedf cores in even simple
heterogeneous multicore systems. Based upon théypas that dominate virtually all
cell phone applications, it seems reasonable &cséhiree categories of processor types
to simulate: PNX1700 is the Media processor, AD3&cEHin533 is the DSP, and the
AMD K6-2E+ is the GPP. The ADSP-BF533 is used bsealtiis highly optimized for
DSP applications, such as Viterbi and Convolutioitdle PNX1700 is highly optimized
for media applications such as MP3 and JPEG engaald decoding. The AMD K6-
2E+ is a general-purpose processor that executeplcations fairly well. Although it
consumes more power, the GPP is the second bestecfar image files, which is
interesting because the DSP barely outperform&GiRE for movie files. Both the DSP
and GPP are significantly faster for text procegdimn the Media processor, and the
GPP is the fastest.

The GPP is the worst processor in terms of sizepmwder consumption. It is four
times larger than the media processor and two tierger than the DSP processor. In
terms of power consumption, the GPP consumes ifiwest more power than the Media
processor and almost 20 times more power than 8f¢ processor. Thus, the quantity of
GPP processors available in the system and the taske scheduled for the processor
should be limited in order to consume less enefgyther, the Media processor is
essential for a mobile device due to its small siad excellent performance for image
and movie files. The only disadvantage for the Mepliocessor is its inability to deal
well with text processing. The area and power conion for these processors were
derived from information available from [135], [136137]. These processors are

inadequate for use in a mobile device such as laphehe because of area and power
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requirements. However, they are adequate to ragrédsekey relative system-level design
trade-offs for fixed-area devices, because theycarssistent with each other. Lack of
access to proprietary information makes a detabemination of the processors used in
mobile computing devices impossible.

Our target implementation is a single-chip hetenegeis multiprocessor with a fixed
area budget to be populated by four categories:idMBdocessors (M), Digital Signal
Processors (D), General Purpose Processors (GE lapelevel Cache (C) with a 1024K
cache set aside for data processing. The CentoakBsor (CP), or controller, is used to
run the identification and scheduling algorithmsie$e sets produce a total of 16
different architectures, as described in TableelZacti [138] was used to determine the
cache area and cache power consumption based seléwoted cache size, block size and
technology. We assumed a 65-nm manufacturing tdobpo Also, we assumed the

power consumption of a processor in an idle state20% of its active power
consumption.

Table 12: Modeled Architectures

Architecture | Central Architecture | Central
Processor Processor
1 | 3G G 9 |4M, 4D D
2 | 6D D 10| 6M, 3D D
3 [ 12M M 11| 8M, 2D D
4 |1G, 4D G 12| 10M, 1D D
5 |2G, 2D G 13| 1G,2M,3D | D
6 |1G, 8M G 14| 1G,4M, 2D | D
7 | 2G, 4M G 15| 1G,6M,1D | D
8 | 2M,5D D 16| 2G,2M, 1D | D

The Chip Level Scheduler (CLS) used in these erpaits permits tasks to execute
on processors other than the one that providedélse performance for the task type.
Thus, note thaall the application tasks are eligible to be plaaedny of the processing
resourceskor a multiple-ISA architecture, this requires sapaly compiled copies of the
same task available for the different processoedyespite the requirement for more

memory storage, prior work shows that this typepodgramming of heterogeneous
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multicore chips may result in better performanantistatic scheduling [139]. When the
CLS is triggered, all tasks are candidates forsteithution on the processor resources.
Furthermore, this CLS permits task migration betweares. We do not focus on task
migration due to preemption that arises from Qas8riies, such as in streaming. Rather,
we focus on the migration of tasks to better penfog resources when they become
available. Because tasks, shown in Table 7, arel,smdependent tasks and task
migration in CHMs typically requires complex appchas, we model migration by
simply restarting task execution on the new pramesbhis requires task state rollback.
Our prior work implemented task migration with batck in the MESH kernel and shows

advantages of it [140].

5.3.3 Overhead Modeling

A central question in computer design is: when dz&$ormance overcome the cost of
the overhead and how will this relationship sceb#®ce we seek to understand of the
impact of design-time knowledge of workloads on fthesign of the architecture
(discussed in the next section), we include expembad data for the impact of overhead
on mode identification.

First we analytically model the overhead of both M/@d HMM. We use the Big-O
notation for time and space complexities to desctite behavior of both WCM and
HMM. We also assume that the basic arithmetic dmeran numbers take O(1) constant
time that is the uniform cost model of time andcgpdor example, in step 5, Matifik
of size n*m is multiplied by Matri>xC of size m*1. Matrix multiplication requires three
for-loops resulting in time complexity of n*m*m @(n*m?). The space complexity from
creating the results matrix of size n*1 is O(n).

The learning and searching phases of the HMM reaaigorithms of three orders of
magnitude of time complexity and two orders of magie of space complexity. Elliot et
al. have shown that the HMM can be enhanced to lggteer predictions at the expense
of increasing the space and time complexity of l¢@ning algorithm to O [141].
Therefore, the most expensive step in HMM s tlegdmg phase. It requires algorithms
of at least O(f) of time complexity and O@) of space complexity. However, the most
expensive step in the WCM is step 5. Matrix muidiglion requires time complexity of
O(n*m?) and space complexity of O(n). Generally speakamgnpared with HMM, our
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WCM is two orders of magnitude faster and requine®rder of magnitude less memory.
Thus, HMM is significantly more complex than the WIGnodel, which points in the
direction of the necessity for design-time workloabdels. Next, we experimentally
evaluate overhead. We experimentally model the hwmaat due to: (1) gathering global
chip state, (2) evaluating and sending schedulewsibns, (3) bus contention, (4) cache
memory misses, and (5) task migration.

The architecture used connects processors viakat 33%ee 200-Mhz bus. In order to
capture the effects of contention on the CLS owaihend overall system performance,
the usage of the system bus was carefully mod&lede the bus is designed to primarily
move large continuous amounts of data between theepsors and the memory, it
operates within a burst mode. The burst mode all@ywsocessor to gain bus access for
multiple cycles, allowing the arbitration for thesbto occur much less frequently.

Our simulations perform bus arbitration every 58 loycles. The bus is used every
time a streaming application is running by periaflicsending out a burst of data to the
processor that needs it. The bus is also used éweeythat one task completes its work
and must pass on its output data to a task resmling different processor. Finally, the
bus is used every time the CLS must gather GC®mu the task mapping decision out
from the CP. Bus contention not only affects theeray of individual tasks, it also
interferes with the CLS. We take all of this intocaunt when analyzing the CLS
overhead.

Even though the scheduling task has the highestifyrion the bus, it still has to wait
up to 50 cycles for the current bus burst to cotepl€ince our bus operates in burst
modes of 50 cycles, we make an assumption thaborst is enough to transfer the GCS
of one processor to the scheduling master (50 sycl&2 bits = 200 bytes). Therefore,
the overhead of gathering or sending informatiancive scheduling decision (measured
in processor cycles) is:

((Number of processors * 50 bus cycles) + Bus adida delay of 50 bus cycles).

To ensure fair arbitration, the bus uses a simpttery-based arbitration strategy
outlined in [142] which is implemented within a Heware arbiter. Scheduling decisions
are given highest priority, since they do not use bus for very long, but can be a

bottleneck to other work being done in the syst®&axt is streaming applications,
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making them more likely to gain the bus in the cateontention. We additionally
differentiate the phone call application as morepontant than other streaming
applications, due to its high quality of servicequeement. Finally, streaming
applications have higher priority than job-basegliaptions.

In MESH, global resource contention is modeled am@otations containing shared

resource accesses, as discussed earlier in séchi¢h24].

5.3.4 Workload Mode Sequence

First, we experimentally verify that workload mosgequence has impact on chip-level
optimization. We ask whether the optimization af #ystem to a previous chip mode has
an impact on its ability to identify and respondoptimize to a current workload mode.
A major reason for using HMM is because it modeés éffect of sequence, and WCM is
not useful if workload mode sequence must be ireduch the runtime model. We
measure the overall response time of the systepedsrmance-optimizing overhead.
Optimization overheads are affected by the GCSev#iat includes the previous mode,
or chip mode. Thus, we look at the CLS overheadsedwby different workload mode

sequences, for a total of 25 in all.
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Figure 25: Chip-Level Scheduling Overhead

We chose five different workload modes from Fig@éeThese workload modes
represent five different workload categories: @aurrent job-based tasks (mode 1), (b)
one job-based task (mode 12), (c) one streaming(tasde 4), (d) concurrent job-based
and streaming task (mode 3), and (e) one job-basddne streaming task (mode 8). We
selected a sequence length of two, which is themmuim required to show the impact of
mode sequence on CLS overhead. This results inifffyetht sequence combinations.

Further, three different arrival times of inter-nesdwere chosen; one second,), five
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seconds Aty), and ten secondsAfs). Finally, we ran these experiments using chip
architecture 13 from Table 12.

Figure 25 shows the CLS overhead for the 25 differeode sequences, shown on
the independent axis. On the dependent axis arevibdead values normalized to the
sequence with the highest overhead. Figure 25 shmatrs

* Mode sequence affects scheduler overhEasdt note that the inter-arrival time of
modes matters to the overhead required to optiminelticore architecture from
one mode to the next. For instance, consider megeesce (1,3). Overhead
decreases as the inter-arrival time gets longeagetreral, longer inter-arrival
times (At3) lead to less CLS overhead since longer intevalrtimes typically
mean less execution overlap and thus there ilgssrtunity for the scheduler to
optimize. However, mode sequence alone sometinvasidates this first-order
conclusion. For instance, consider modes 3 ancede, Hbptimization overhead
decreases when inter-arrival time of mode sequé)a® increases from five
seconds to ten seconds, but it does not in modeeseq (4, 3).

» Scheduler overhead is dependent on both task typeuival time When new
streaming tasks arrive to the system that is oeclipy job-based tasks, the
overhead incurred is larger because, in this @as@jng tasks have higher
priorities than existing tasks resulting in preeimpor even migration of running
tasks and that incurs overhead and bus contetiexample is mode sequence
(1, 4) in which a user started a phone call onky sacond after opening Gmail.
This demonstrates that attempts to optimize recuitiipation of how long the
system is likely to remain in a specific mode, Iseeptimization can obstruct
overall performance. This also demonstrates theangf QoS requirements on
chip-level optimization.

Since mode sequence matters, it would seem thatm@lex model must be used to
identify modes, such as HMM. However, if designgiknowledge of architecture can be
used to eliminate the impact of mode sequence, ithisnpossible that the simpler and

potentially more efficient WCM model can be used.
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5.3.5 Overhead and Performance

Table 13 and Table 14 show the average workloadenaehtification overhead for both

identification models, WCM and HMM. Three differemsage patterns were applied to
these models. We look at both the time overhearims of simulation cycles and the

space overhead in terms of bytes.

Table 13: WCM ldentification Overhead

WCM - Identification

UP1 UP2 UP3 UP4 UP5 Average |
Arch.|Time [Space [Time |SpacqTime [SpacqTime |SpacdTime [SpacqTime [Space

(Giga |(Kilo |(Giga |(Kilo |(Giga |(Kilo |(Giga |(Kilo |(Giga | (Kilo |(Giga |(Kilo
Cycles) |Bytes) |Cycles]Bytes]Cycles]Bytes]Cycles]Bytes]Cycles]Bytes]Cycles)Bytes)
1 0.20 14.30] 0.107 10.300.14 ] 11.9¢ 0.19 ] 12.1¢ 0.09 | 9.10] 0.14 | 11.50
2 0.18 13.50] 0.09] 9.6 0.13 ] 11.5¢ 0.16 ] 12.1¢ 0.09 | 8.73] 0.13 | 11.09
3 0.15 ]| 12.20f 0.08] 8.9} 0.10 ] 10.04 0.12 | 11.1¢ 0.08 | 8.11] 0.10 | 10.0§
4 0.21 | 14.60f 0.11 10.400.15]12.24 0.19 | 13.2¢ 0.09 | 9.30] 0.15 | 11.9§
5 0.23 15.20] 0.11] 10.900.15 ] 12.2¢ 0.20 ] 13.1¢ 0.10 | 8.80] 0.16 | 11.98
6 0.20 14.00] 0.09] 9.3p 0.12 ] 10.9¢ 0.19 ] 13.5¢ 0.08 | 8.32] 0.13 | 11.21]
7 0.21 14.50] 0.10]7 10.300.14 ] 12.0Q¢ 0.18 ] 12.3¢ 0.09 | 8.90] 0.14 | 11.569
8 0.22 | 14.90f 0.11 10.400.15 ] 12.14 0.20 | 14.1¢ 0.10 | 9.30] 0.15 | 12.18§
9 0.23 | 15.10f 0.11 10.400.15]12.3¢ 0.21 | 13.3¢ 0.09 | 9.70] 0.16 | 12.1§
10 0.23 15.00] 0.11] 10.400.14 ] 12.0Q 0.22 ] 13.9¢ 0.09 | 9.50] 0.16 | 12.1§
11 0.20 14.30] 0.10] 9.9 0.14 | 11.7¢q 0.19 ] 12.7¢ 0.09 | 7.85] 0.14 | 11.30
12 0.18 13.60] 0.09] 9.5p 0.11 ] 10.5Q 0.16 ] 12.9¢ 0.09 | 8.49] 0.13 | 11.02
13 1 0.26 | 16.30] 0.12] 10.900.16 | 12.89 0.25 | 13.6q 0.10 | 9.80] 0.18 | 12.6§
141 0.26 | 16.20] 0.11] 10.400.15 | 12.59 0.23 | 15.1¢ 0.10 | 8.80] 0.17 | 12.64
15 0.23 15.30] 0.107 10.400.14 ] 12.0Q¢ 0.22 ] 13.3¢ 0.09 | 8.90] 0.16 | 11.94
16 0.26 16.10] 0.12] 11.d00.16 | 12.6Q 0.24 ] 14.6Q 0.10 | 10.1¢ 0.18 | 12.88

The simulation cycles consist of the bus and thec@tes. Table 13 and Table 14
illustrate the amount of identification overheadia@gon between the two models for
different usage patterns of our cell phone exarapéeuting on different architectures.

Table 13 and Table 14 show that the workload mddatification using WCM is, on
average, 34 times faster than using HMM. Furtheg, identification using WCM is on
average 83% more space efficient than using HMMaAsnsequence of reducing the
space overhead by 83%, the cache memory can alsedbeed by 83%. Here, because

the working data set of an identification modelcislled frequently, every time a
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workload mode starts, we assume that the working sket of an identification model fits
into cache. Again, the selected cache area istim@s an individual Media processor’'s
area. For instance, three more Media processorbeamcluded on the chip when using
WCM. Thus, the system improves not only due toefastode identification, but because

there is more space left over to process the aatoddloads.

Table 14: HMM ldentification Overhead

HMM - Identification
UP1 UP2 UP3 UP4 UP5 Average
Arch. |[Time [Space |Time |[SpacqTime [SpacqTime |[Space|[Time [SpacqTime [Space
(Giga |(Kilo (Giga |(Kilo |(Giga |(Kilo |(Giga |(Kilo |(Giga [(Kilo |(Giga [(Kilo

Cycles) |Bytes) |Cycles]Bytes]Cycles)Bytes]Cycles]Bytes)|Cycles)|Bytes]Cycles) |Bytes)

1 9.97 99.90] 2.47] 49.404.86 | 69.7q 9.82 | 98.1J 2.23 | 46.7q 5.87 | 72.84
2 7.89 88.80] 2.06] 45.404.16 | 64.6Qq 7.71 | 87.7 1.90 | 44.3Q 4.74 | 66.16
3 5.39 73.50] 1.51] 38.902.43 | 49.34 5.13 | 72.24 1.33 | 37.8¢ 3.16 | 54.34
4 10.90 | 104.000 2.990 53.905.24 | 72.4Q 9.10 | 91.0q 2.64 | 52.7Qq 6.16 | 74.80
5 12.90 | 114.00 3.00 54.305.39 | 73.5¢ 11.10}100.0¢ 2.83 | 53.3Q¢ 7.04 | 79.12
6 9.36 96.80] 1.80] 42.403.37 | 58.14 9.19 | 94.7d 1.63 ] 41.3Q 5.07 | 66.68
7 10.60 | 103.00 2.47 49.304.93 | 70.3Q 8.80 | 103.0p 2.33 | 47.7q 5.83 | 74.76
8 11.70 | 108.000 2.990 53.905.16 | 71.9¢ 10.10]97.00] 2.57 | 52.1Q 6.49 | 76.58
9 12.40 | 112.000 2.8 53.405.55 | 74.6( 11.30]99.00] 2.58 | 52.6Qq 6.94 | 78.32
10 12.30 | 111.00 2.8 53.404.93 | 70.3Q 10.20}94.00] 2.66 | 51.74q 6.59 | 76.08
11 10.10 | 101.0 2.34 48.404.57 | 67.6Q 8.70 | 89.0 2.17 | 46.6Q 5.58 | 70.52
12 8.21 90.60] 2.02] 45.J02.90 | 53.9¢ 8.03 | 89.00 1.91 ]| 44.1q 4.61 | 64.52
13 17.00 | 130.000 3.3 58.106.51 | 80.7(Q 14.30J117.0¢ 3.12 | 57.5Q 8.86 | 88.66
14 16.80 | 130.000 3.00 54.305.80 | 76.2( 15.10]121.0¢ 2.81 | 52.90 8.70 | 86.98
15 13.20 | 115.00 2.6 51.304.93 | 70.3¢ 11.70|101.04 2.39 | 49.8Q4 6.97 | 77.44
16 16.10 | 127.00 3.49 59.106.15 | 78.4Q 14.40|109.09 3.29 | 58.20 8.69 | 86.34

Table 15 shows the optimization overhead in terisimulation cycles for both
models. Again, we consider the same usage patsghsarchitectures in Table 12. The
results in Table 15 follow the same results trendiable 13 and Table 14.

WCM shows consistently less optimization overheadnt HMM through all
architectures and usage patterns. In our cell plesaenple, using WCM decreases the
optimization overhead by on average 49% comparéd MIMM. While the optimization
overhead is not directly related to the identifimatmodels, the higher identification
overhead results in workload mode overlap. Thiguin, results in greater GCS and thus
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more time to gather, process, and schedule. Irr etheds, the identification process is

the input to the optimization process.

Table 15: WCM vs. HMM Optimization Overhead

WCM Optimization Overhead HMM Optimization Overhead
Arch. (Mega Cycles) (Mega Cycles)

UP1| UP2| UP3|] UP4 UPH UP}] UPP UHIUP4|UPS
1 ]0.342] 0.89 | 0.1} 0.5020.729]0.513]0.133] 0.15] 0.42]0.087
2 10.444] 0.167]0.192]0.213] 0.107] 0.666] 0.2510.2890.541]0.193
3 ]0.612] 0.304]0.336] 0.58 | 0.264 0.918] 0.457]0.5040.7890.343
4 ]0.413| 0.146] 0.17 | 0.3740.104]/0.619| 0.22 | 0.25%0.5090.156
5 ]10.389] 0.118]0.137] 0.308] 0.089] 0.584] 0.177]0.2050.4890.123
6 ]0.549] 0.234]0.274]0.491] 0.111] 0.824] 0.351]0.411§0.73210.299
7 10.449] 0.169]0.201] 0.399| 0.156] 0.674] 0.253]0.301}0.601J0.186
8 ]0.501] 0.205]0.237]0.436] 0.178] 0.751] 0.307]0.3550.6330.24 7
9 ]0.549] 0.233]0.276]0.501| 0.143]| 0.824] 0.35| 0.4140.75¢0.278
10 ]0.588] 0.262] 0.301] 0.521] 0.201] 0.882] 0.394]0.4520.6930.303
11 ]0.599] 0.278]0.328]0.526] 0.213]| 0.898] 0.417]|0.4920.802]0.378
12 ]0.605] 0.294]0.322]0.517] 0.243]| 0.908] 0.442|0.4830.87210.389
13 ]0.505] 0.183]0.215] 0.433] 0.142] 0.758] 0.274]0.3230.6450.204
14 ]0.548] 0.207]0.244]0.488] 0.167| 0.822] 0.31 | 0.36¢0.7320.267
15 ]0.557] 0.228]0.268] 0.478] 0.199] 0.836] 0.342]0.401§0.7990.271
16 ]0.455] 0.153]0.177]0.403] 0.107]0.682| 0.23 | 0.26% 0.61]0.149

This raises the possibility that the architectuae bave an impact on the method used
to identify modes, that the architecture can petht use of the simpler WCM model
because it can respond to individual modes faster taus eliminate the impact of

sequence. We examine this next.

5.3.6 Overall Performance
We applied both identification models (WCM and HMMydividually to three different

usage patterns (workloads) executing on differechitectures of Table 12. Figure 26,
Figure 27, and Figure 28 show the normalized aeeragues of the average response
time, energy consumption, and overhead of the Usage patterns for all architectures in

Table 12. The normalized value is calculated byiddlg each value in a single

82



performance metric (overhead, response time, ansucoed energy) by the highest value
in the same metric. Thus, lower normalized resptingg consumed energy, and overhead
values mean lower actual values. Consumed energgltsilated as the summation of

power consumed by each processor during activedéatime [123].
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Figure 26: The Normalized Average Response Time
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Figure 27: The Normalized Average Consumed Energy

Optimal use of the WCM model requires the ability leverage design-time
knowledge of the individual usage patterns, so éheg¢quence-independent model can be
used. However, we found that even sub-optimal wéen WCM does not identify all
optimization points, can outperform the use of itn@re costly HMM. Furthermore, we

found that different architectures performed sigaifitly different so that future single
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chip multicore architectures should be designedntmlels of design-time single-user

workloads.

Mormalized Average Overhead

i 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16
Architecture

mWCM Overhead mHMM Overhead

Figure 28: The Normalized Average Overhead

On average, over all architectures, the use of WM decreased application
response time by 45% while overall system perfoceamproved 191%. While the
maximum system performance achieved is 256% byitaotare 12, the minimum is
actually 158% achieved by architectures 5, 9, 43,16, and 16. Further, the energy
consumed is decreased by an average of 56%. Thienona@xenergy decrease achieved is
82% by architecture 12. The minimum is 42% achidwedrchitectures 13 and 9.
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Figure 29: Workload Mode Misprediction Rate

Next, we investigate more insight about the refetiop between overhead and
performance. The time overhead introduced by switchetween different optimization

profiles may cause undesired side effects in aesyssuch as degrading the system
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throughput, the amount of work done between twaoseountive workload modes may
negatively impacted due to the time overhead neéaleuvitch to another optimization
profile such as frequency/voltage scaling of preces

Figure 29 shows the workload mode mispredictioe @Htthe WCM and the HMM
identification models of the five usage patternsdib architectures in Table 12. The first
column is for the WCM and the second column istf@ HMM. The misprediction rate
value is calculated by dividing the number of ideed workload modes by the total
number of workload modes. Note that each architechas different total number of
workload modes. As can be seen from Figure 28getien difference in misprediction
rate between the usage patterns and between atoh#® The second usage pattern
(UP2) has the lowest misprediction rate among e disage patterns. This is because
UP2 has relatively larger average inter-arrivaletimtervals between workload modes
and workload modes are more regular in their arryi@ing more time to identify these
workload modes. Further, usage patterns with fewekload modes make identification
faster and more accurate.

The computing power of different architectures lisoaa significant factor in the
accuracy of the identification model. This, in tuatso has a significant impact on the
performance of usage patterns. The computing poWwarchitectures defines the interval
between workload modes as well as the speed otiirgdhe identification model. Note
in Figure 29 that architectures 5 and 10 have ivellgtlower misprediction rates in all
usage patterns. Comparing this observation withrélsalts in Figure 26, Figure 27, and
Figure 28, it shows that the performance of thashitctures is relatively better than
other architectures, though this is not general.iffgtance, note that architecture 6 has a
higher WCM misprediction rate while it results iatter performance values.

For the HMM however, the reduction of the misprédit rate is quite substantial.
On average, the HMM identification model can redtree number of mispredictions by
more than 46%. Figure 29 also shows that our WCMleha@oes not perform well
compared with the HMM model for many usage pattemiile it results in better
performance. The reason for this is that the HMMrioves the prediction rate at the
expense of applying optimizations by requiring mtnee for identification. Thus, the

sup-optimal WCM is more efficient than HMM.
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Another metric that can be used to compare the medels is cache misses. Our
MESH simulator can be used to identify and commaiehe misses. In order to do this,
we need first to use an instruction set simulat86) to generate full memory address
traces. These traces are used to generate métacsiéscribe the memory behavior of
individual program fragments. These metrics areotaiad into the original source code,
which is executed on the hardware architecturegugia MESH simulator. The simulator
can then find the cache hits and misses for eachitacture when used to execute
heterogeneous concurrent applications. This apprizaatroduced by Pieper et al. [143];
it is a derivative of stack distance histogramsowork [143] shows that MESH has a
simulation time two orders of magnitude faster tlegmle-accurate simulators and can

accurately model cache configurations in CHMs.
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Figure 30: Cache Miss Rate

Figure 30 shows the average cache miss rate &V@kl and the HMM identification
models of the five usage patterns for all architesg in Table 12. The cache miss rate is
calculated by dividing the number of cache misseghe total number of memory
references. Note that Figure 30 shows that the WiMel, on average, performs better
than the HMM-based model. This is because the HMiuires more memory and this,
in turn, results in more cache misses, the relalignbetween the data size and cache
misses. Intuitively, note that Figure 30 shows thahitectures with lower cache miss
rates perform better (see Figure 26, Figure 27 Fagudre 28).
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5.4 Analysis
Overall, the costs of the HMM could not be overcdmeeause HMM is, on average, 36

times more costly than WCM. We found that it istbeto miss optimization points using
WCM rather than to incur the cost of finding allsgtble optimization points using
HMM. Given our experimental results, in this sectiwe expand our scalability analysis
of each approach by including the impact of CHMhéectures. We also verify our
analysis.

Heterogeneity is desirable because it can be wsedploit differences in task types,
potentially retiring individual tasks within a wddad mode sooner. However,
completion of a task within a workload mode alscesgnts the possibility for
optimization of the CHM for the remaining applicats in the mode. Heterogeneous
architectures result in more potential optimizatmints within a workload mode than
homogenous architectures due to a much wider yaoietask completion times. Thus,
the impact of executing WCM vs. HMM on a CHM cartqutially be even greater than
the Big-O analysis predicts because of the neadewtify internal optimization points
within workload modes.

We define candidate workload modes (N), which adige to both external changes

in the input stream and internal events on a garehitecture as:

up
N = Zi,\il P,

in which N°" is the number of workload modes in a usage pa(iéR) andp; is the

number of internal events within a workload modat tarises due to the ability of the

hardware to process the mode. For example, thenUHRgure 1 has 12 modes, but the

execution of that usage pattern on different CHMB cesult in different numbers of

candidate modes.

We observe that different higher degrees of muskitag, multiprocessing, and
heterogeneity tend to be generational, and ouryaisais focused on the impact of
workload modes on computing as it moves into the am.

We begin with a homogeneous multiprocessor systbat processes sets of
heterogeneous workloads. This can be consideresgmrelay computing, in which multi-
core personal computers process multimedia appitatfrom the Internet, in which

homogeneous groupings can be exploited. Each gofupomogeneous tasks within
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application sets represents internal optimizatiomfs. Thus, for workload moden this
systemp; = Hj, in whichH; > N”. Here,N” is the number of processors on chip &his
the number of groups of homogeneous tasks witlemtbrkload mode. The completion
of each task grouping represents the potentialptimize remaining tasks within the
workload mode.

Next, we consider a heterogeneous workload thateisented to a CHM system. Note
that this type of system, which many consider tehgefuture of computing [144], results
in far more candidate workload modes due to therbgeneity in the architecture.
However, this same heterogeneity can also beneéitatl potential performance while
satisfying space and power constraints [49]. Halletasks and all processor resources
have the potential to be heterogeneous, even theogle subsets of tasks and processors
may be homogeneous. Still, the completion of anglsitask in the system can create the
potential to optimize. For example, a group of hgereeous tasks may be scheduled to
execute on a single processor in sequence insfeaditing for an array of processors.
Tasks may be migrated to better performing reseudeen they become available, even
when there are fewer tasks in the system thanabtaiprocessor resources. Thpis,in
the worst case, equals all of the tasks in a mirdes all of the processors in the system;
pi =N;™*NP, in whichN" is the number of tasks within a single workloaddeo

Note that as the number of processors in a CHMeas®s, overhead is expected to
increase with heterogeneity due to increased patenptimization points, but also
decreases if there are more processors overdll,' atecreases if more processing power
can retire tasks sooner. Thus, we expect to sebeag increase with different classes of
heterogeneity, but reduce slightly as the numberotessors increases. We also expect
this effect to be more dramatic for HMM than for WAICsince HMM is already orders of
magnitude more complex than WCM, irrespective efititernal optimization points that
arise due to heterogeneity of the CHM.

We computed the number of candidate modes for eachitecture in our
experimentation, and compared the predicted ovdrloédaboth the WCM and HMM
models. We classified architectures by degreestdrbgeneity and ordered them by the
total number of processors within those classes. résults are shown in Figure 31 and

Figure 32, which compare the predicted and measavedhead trends of WCM and
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HMM. We grouped the architectures in Table 12 anittdependent axes as A, B, and C:
(A) architectures are fully homogeneous (one premetype), (B) architectures are semi-
heterogeneous (two processor types), and (C) aathres are fully heterogeneous (all
three processor types). Note that architecturesaoh group are rearranged to show the
increase in the number of processors. The overiseaxpressed in orders of magnitude.

Our estimations focus only on the usage patterasho Figure 6.
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Figure 31: Measured, Analytical and Our Predicted HMM Overhead

Figure 31 and Figure 32 confirm that our analybit tincludes internal modes is
more accurate than the Big-O analysis of sectidh that considers only external
workload modes. As architecture heterogeneity esxs (from class A to class C), the
incurred overhead when using HMM increases expaagntwhile WCM overhead
increases only linearly. It also confirms that las hnumber of processors increases within
a group, overhead decreases since the numberohahioptimization points decreases as
task groups are retired sooner. Compared with teasored overhead, our prediction
model has only a 4% margin of error, while the Bignodel has 36%.

Overall, we note that as computing moves toward GHMth large numbers of
processors of many different types, there existsmapelling need to design to models of

single-user workload modes.
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5.5 Summary
As we move into the next era of computing in whilkh complexity of applications and
architectures grows, computers need to be optintiaetorkload modes that arise from
single-user usage patterns. In this chapter, wediat designing WSPs by defining and
identifying workload modes and optimizing CHMs tes$e modes at real time. Toward
that end, we faced the following key challenge: alihidesign is better, given the
processing times of all workload modes executingach design? Therefore, there was a
need to rank these designs in order to identify WWSFor that purpose, we used
traditional single-valued performance metrics (dpmdly, response time and power
consumption) to compare the performance of diffedesigns.
Here, we summarize some observations that put ptimal design ranking in
guestion:
1. Interestingly, for the same architecture, increg$he demand for one task type in
a workload mode may result in a better overallgrenince. This is because the
overhead generated by this specific combinaticiasks (arrived during a
specific time and sequence in the usage pattesmler. The implication of this
is that by using single-valued metrics, we preclimse effects from the
designer. The overhead of identifying and procepsgiarkload modes has the
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most interesting observations in this chapter. &laee several factors that
contribute to the magnitude of overhead. The factoat are related to the type of
workload modes are mainly the degree of concurrémamnber of tasks), the
degree of heterogeneity (types of tasks within &iead mode), the granularity
of workload modes arrival time, and the sequencgarkload modes.

2. Further, for the same architecture, different optidesign ranking results when
processing different workload modes. Thus, by usingle-valued metrics, we
factor performance differences of different worldaoaodes out. This also means
not just that the best performing design may naheebest performer for all
workload modes in a usage pattern but, more iniagkg, may not meet all of
them within the specified time interval.

3. While we used the geometric mean to come up wiimgle-valued score, we
expect the other mathematical means to resultditiadal different optimal
design rankings due to the fact that performancesas different workload
modes are being processed, as discussed in CRRadteis variation occurs not
only because CHMs are specialized for differenesypf workload modes, but
more significantly because of the different valoésverhead incurred due to the
arrival of a different combination of work types.

4. When it comes to architectures, multiprocessintgrogeneity, and other
architectural features such as communication aoldecaizes all of these define
the magnitude of overhead.

The most interesting question to ask is: whichglegeature leads to better or worse

performance? Again, single-valued metrics precthtecause and effect analysis

from the designer. It also precludes the effecthefinteractions of multiple
architectural features.

In the next chapters, we use our Capacity metridentify these WSPs. In Chapter 6,

we define our Capacity metric, and in Chapter 7shew how and why the optimal
design ranking of the architectures in this chapgemaccurate in contrast with our

Capacity metric.
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Chapter 6

Capacity Metric

Be sure you put your feet in the right place,
then stand firm.
Abraham Lincol

In order to properly evaluate and rank CHM desitpas process multiple, heterogeneous
channels, the main contribution of this thesis he tntroduction of a descriptive,
graphical, and denotational definition of our Capametric. We previously introduced
the Capacity metric by analogy with automobile plaroduction. Here, we contrast our
Capacity with Pareto optimization and show somechiasms of Capacity curves. Thus,
we motivate the continued development and use efCpacity metric for performance
evaluation of modern CHMs. Specifically, we advecaivestigation into how shapes of
Capacity curves can be used to classify systemsdamtify how features of designs can

be manipulated in order to change the shape dC#pacity curves.

6.1 Definition

Capacity is a surface that shows the productiosilbday of combinations of different
types of outputs for a given plant over some irdeof time. When two types of outputs
are considered, Capacity results in a curve. Ifgheduction of the different types of
outputs does not vary with each other over timentthe Capacity curve results in a
collection of rates of production. The Capacityggrahows the maximum amount of one
type that can be obtained for any specified pradodevel of the other type(s), given the
resources available as well as the way the diftepeoduction types compete for those
resources. Mathematically, a Capacity curve candbBned as a function in two
variables:
{T|A or A|T: P(0)}
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in which T is the production variable (or function) of Model-A is the production
variable (or function) of Model-AP is a specific production plant design, ands a
given time interval in which we measure Capacity tgllecting the production
combination of different output types: Model-T avddel-A. Note that the production of
Model-T, T, is given by the value of the production of ModelA, and vice versa. Later
in this section, we define the function for a Catyacurve.

According to this mathematical denotation, Capadtyves are generated for a
specific plant design during a time window usingaswement. In other words, the
production of one model type is measured for dffiérdevels of production of the other
model type(s) for the same design. The measuremehides the overhead of sharing

resources between different output streams.

6.1.1 An lllustrative Example

For illustration, consider the plant example intsec 1.1. Assume that the Model-T
assembly line can produce four Model-T automohiles hour, and can also be used to
produce only two Model-A automobiles per hour. TMedel-A assembly line can
produce six Model-A automobiles per hour, and cdao &e used to produce only two
Model-T automobiles. We generate all productionsgmkties of combinations of the
Model-T and Model-A outputs for this plant. Figu88 shows the Capacity of this plant

during a time window of one hour in the form ofua\e.

Model-A
O = ML B n =] O W

Model -T
Figure 33: A Capacity Curve
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A Capacity curve shows all possible combinationsaaf automobile models that can
be produced simultaneously during a given time wdFor a plant to increase the
guantity of one model produced, production of tileeo model must be reduced. Here,
production of automobiles of Model-A must be redude order to produce more of
Model-T. Capacity represents how much of the Matlehust be reduced for a given
increase in production of the Model-T.

Assuming that the supply of the plant does notease, making more Model-Ts
requires that resources be redirected from makimglé#tA to making Model-T. All
points on the Capacity curve are efficient. Heradlepoints on the curve (such as A, B, C,
and D) are points of maximum productive efficienityother words, no more output can
be achieved from the given inputs. All points imsttie curve (such as E) are feasible but
productively inefficient, and all points outsideethurve (such as F) are unfeasible with
the given resources and time window and thus unattke. Note that point E is
dominated by point A or point C, whichever is thedual of interest. The user can choose
between combinations or points on the Capacity e&uRoint A is when Model-A is
prioritized, point D is when Model-T is prioritizeth the middle of the curve (such as
point C) an intermediate mix is achieved, and sthfo

The example used above represents one form of @aplicepresents a disparity in
the heterogeneity of assembly lines in producing tiko models. That is, as a plant
specializes more and more in one model, the cogir@ducing that model increases
because we are using more and more resources¢higisa efficient in producing it. The
cost of producing successive units of the ModeliT increase as resources that are more
and more specialized in for Model-A production areved into Model-T production. If
costs are constant, a straight-line Capacity cusveroduced. This case reflects a
situation in which assembly lines are not speaaigor homogeneous in their production
of different models) and can be substituted foreather with no added cost. Products
requiring similar resources will have an almostigint Capacity curve, and therefore
almost constant costs. The Capacity curve woulceappowed toward the origin, with
costs falling as more is produced of each respectivdel. Here greater specialization in
producing successive units of a model drives dawrcast. Later on in this paper, we

investigate some of Capacity forms in computeresyst
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Therefore, Capacity curves can represent how adgdimé specialization that favors
production possibilities of one model, assume tloel®d-T, shifts the curve more toward
the Model-T axis, biasing production possibilities that direction. Similarly, if one
model makes more use of one assembly line anceifCpacity of that assembly line
improves faster than other assembly lines, imprargnpossibilities might be biased in
favor of that model.

If the productivity or supply of assembly lines reases, the plant’s Capacity to
produce both models increases. This increase ydeedults in an outward Capacity
curve. Conversely, a limitation in the productidntiee assembly lines, like the lack of
supply in inventories, might move the Capacity eumnward, reflecting a reduction in a
plant’s total productive Capacity. In the experintsesection, we find more relationships

between design features and Capacity curves.

6.1.2 Capacity Function
The reduction in the production of a given moderesents a cost. This cost is measured
in the ratio of the number of units of the secormblal reduced for the production of one
or more units of the first model. In the contextGdpacity, cost is directly related to the
shape of the curve. Unless the curve is a stréilght the cost varies all along the curve.
In Figure 33, producing more units of the ModeliT general, results in a reduction of
the number of units of the Model-A produced. Inséiregly, at point B, the plant can
produce more of the Model-T without any reductiarnthe production of the Model-A;
thus the cost is zero. Therefore, Capacity repteseow much of the Model-A must be
reduced for a given increase in production of thed®-T. This ratio of costs can be
determined using curve slopes at different pointthe curve

As shown in Figure 33, as the production of Modelsgs (or falls) the production of
Model-A may fall (or rise). The production of onariable may determine the production
of the other, but there is no explicit formula @re in terms of the other such thatf@
or T=f(A). This is because of the fact that our defimtiof Capacity may result in a
multi-valued function. Thus, the Capacity curve dam represented by an implicit
function:

f(T,A) =0
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The curve described biT,A) = 0 has tangent line at the point, @) given by the
equationA = a + A'(t) . (T - t), in which A'(t) solves the equation given by
differentiating the original equation with respé¢atT, treatingA as a function ofl and
using the standard rules, and finally substituthga;, T=t;.

The slopeA'(t), at a point{, &) is given by the partial derivative of the one rabd
production with respect to the other model productiThe slope numerically describes
the rate at which output of one model can be tanstd into output of the other. Again,
unless the curve is a straight line, the rate gaak along the curve resulting in a
multiple-valued function. Capacity curves are gatet by measurement. But with
sufficient experiments using them to model systehesy also have the potential to form
the basis of analytical analysis. One reason fervdriable cost rate along the curve is
that heterogeneous resources include quantizafiect® such as workers being unable to
finish a product in the remaining time of their fehiFurther, integrating different
guantities of different model types onto heterogerseproduction resources incurs a
different amount of overhead that impacts the messproduction due to starvation that
arises because of the existence of other pipelsieming the same inventories.
Interestingly, Capacity determines the cost ofgraéing more of one model type on the
production of the other model type(s), which is stling that cannot be displayed using
a single performance score. Various numerical nothexist for solving implicit
functions. Later on in this chapter, we introduce own analysis.

Here, we used only a two-model example for simgiiion, necessary for graphical
analysis. If one model is of primary interest,alers can be represented as a composite
model. In addition, the example can be generaliedhe n-model case using n-D
analysis. The tradeoff between the production €fednt types of commodities in an
economic system has been investigated using Papétoality [145]. Next, we contrast

our definition of Capacity with the concept of Rareptimality.

6.2 Capacity vs. Pareto
We show how Capacity is different than Pareto usiegsame automobile plant example.

We first define Pareto optimality for the aboveambbile plant example consisting of
two assembly lines, Land La, which produce two automobile models, Model-T and

Model-A. The outputs of the two automobile modésttmay be produced by the plant:
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Ka=A(L7", La®)
Kr=T(Lt", La")

in whichL{ is a pipeline originally designed to produce autbites of type but can also
be used to produce automobiles of typ& and T production functions can be simply
thought of as the allocation of the assembly lib@sproduce different quantities of
different model types and are assumed to be inioigalh other words, allocating more
assembly lines to produce specific model typesmees the production of that model.
Given an initial combination of output models, abe in the allocation of input
models to resources that makes at least one ontpdél better off without making any
other outputs worse off is called a Pareto improseimA combination is defined as a
Pareto efficient or Pareto optimal when no furtRareto improvements can be made.
Thus, for the production of the two automobile mede be Pareto efficient we require
that we cannot increase the production of one medeh that more of one is produced

without giving up some of the other. This can alédively expressed as:

Max A(Lt", La™)
such that T(', La") > T*

in which T* is the level of production of that model which moset be reduced. This is a
multi-objective optimization problem that can béved mathematically using the method
of Lagrange. By doing this, we get from this anelykat the slope of both curves, A and
T, must be equal at a Pareto efficient point. Eaalve represents a relationship between
the production of one type and an optimization fiomcsuch as utility of labor or capital.
Note that in order to achieve the maximum of fumctA, T* should be zero; this is the
definition of throughput in the assembly line protlon of automobiles in which
individual production types are evaluated, resglim a single unit of performance. This
is analogous to performance evaluation of compwgstems in which computer
architects evaluate performance using parallel narmg. Each program can be
multithreaded but they run individually and so theverall rates of execution are
evaluated. Similarly, microarchitects identify thiaximum throughput, usually using a

common work unit, such as instructions per cycleese maximums can be used to
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compare different architectures or an average veduebe generated. In contrast to our
Capacity metric, throughput is distilled into siegicore values using a common work
unit. The effects of combining different productitypes on the same plant and cause and
effect analysis are missing from throughput. FurthbBroughput is presumed to be
invariant over arbitrary time intervals. In contta€apacity surfaces can change with
interval size as the relationships between typeslymed by a given plant can change
with the period of time over which production isa&ated.

For illustration, consider the plant example inufg4. We use the same fixed plant
resources to generate an alternative configuratitmre, assume that the production of
Model-T assembly line has been improved by deplpymore workers to produce six
Model-T automobiles per hour, and can also be ueepdroduce only two Model-A
automobiles per hour. Since the number of workeifsxed, the Model-A assembly line
can now produce only four Model-A automobiles peuh and can also be used to
produce only two Model-T automobiles.

Figure 34 portrays the differences between Pafétdemcy and our Capacity metric.
Figure 34(a) shows the Pareto curve as a relatipmsiween design configurations such
as the production capabilities of individual asshntines and the production of the two
automobile models. Each point on the curve is Bag#icient and represents a different
plant configuration. Therefore, the performanceach plant design is distilled into one
single point (K, Ky). Note that the performance metric in Pareto i®@obiles, so this
point can be averaged in order to come up withnglsiscore for each plant design.
Interestingly, since each design is representedrity one single production value, the
output curve is concave, assuming the gradualloeatlon of workers from Model-T to
Model-A results in a gradual decrease in the prodaocof Model-T while Model-A
increases. Figure 34(a) also shows the mechanibmd®@areto optimality. It shows that
each model type is individually produced by plaahftguration, Pi, and the output is
represented using a common type that is automobiles

In contrast, Figure 34(b) shows Capacity curve aselationship between the
production of the two automobile models. In thisegaeach plant configuration is
represented by a separate curve. Figure 34(b)daslall production possibilities of the

same design for two different plant configuratioNste in Capacity curves, different sets
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of production possibilities or modes have differargnitudes and curve types: convex,
concave, or a straight line, in contrast to theeRaproduction curve in Figure 34(a),
which shows a regular shape over all productionloations. This is due to the fact that
Capacity includes all production possibilities hetsame design. It includes the cost of
increasing the demand for one model type on thdymtion of the other model type(s).
And this requires that both model types simultasgoaompete for plant resources, as

shown in the bottom part of Figure 34(b).

Ka Design II B,  wawaa Design I
8 ' Design II
'8 s
| i ——— = Throughput
|
|
Designl | b
|
i |
|
| -
: »
8 Kr 1 6 8 Kr
— |
Nt Model-T !
—»{| P, |—> :
KrAutomobiles ! Nyt Model-T —1
] : P o
1 > 1 K1 Model-T
— 1 —
Na Model-A i R
| p, . : Na Model-A T K Model-A
K Automobiles 1
1
1 1
(a) (b)

Figure 34: (a) Pareto Optimization vs. (b) Capacity

Also note that on the curves of Figure 34(b) wetiast Capacity curves with
throughput. Throughput is shown as a straight (@eplane in higher dimensions). It
connects the maximum production points of individmaodels. This straight line
represents the average production of this plant avyeresumed common work unit for
the heterogeneous production types. For exampdeynit “automobiles” could be used
instead of specific units for Model-T and Model-Ahis average results in a linear
relationship as production of Model-T and Model+# &aried. This correctly models the
production of completely independent channels imheaoupled system, but it does not

capture the relationships of different productigipets as they access the common
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(shared) plant resources. In the experiments secive show many directly measured
Capacity curves that do not result in linear relahips, as demand for different
production types varies. Accordingly, for a givest 8f production values, any linear
relationship will either underestimate the true &aty of a given plant, or it will
overestimate what the plant is capable of.

In summary, Capacity includes the relationship leetwdifferent production types
that can be produced by a given plant or desiguisTh tells which design is better at
what range of production possibilities (or modes) &y how much. For example, the
production of Design | is two times that of Deslgwhen an intermediate mix of Model-
Ts and Model-As is needed. If the production of Medel-T is prioritized, Design |
achieves 33% more production than Design II, wiesign Il achieves 33% more
production when the Model-A is prioritized, whereBareto models the impact of
(design) variables on what is presumed to be axecfrelationship between models
being produced. Thus, it only tells which desigrbédter at a specific combination of
production types. Further, it cannot answer thesgjol: can this plant satisfy the demand
of Nr Model-Ts andNa Model-As in so many days, since it does not shosvtreakdown
of performance for different combinations of muiéinel input streams?

Further, Capacity includes the effects on productiboverhead, or resource sharing,
as different production types compete for resourcésis, Capacity curves lend insight
into the cost of combining different production égpon a common set of resources.
Capacity shapes reveal the interaction of not pnbgrams and data, but the interaction
of multiple data streams as they compete for actesssources on a CHM. Eventually
analytical techniques will be developed so thatigiess may better understand the
origins of those inefficiencies and how designs neaynpensate for them. Next, we
develop some fundamental forms of the Capacity imetr order to illustrate how

Capacity shapes can be used to better understaighder multi-type production.

6.3 Capacity Form

In this section, we introduce some fundamental foahthe Capacity metric. Ultimately
the Capacity metric will have its greatest potdnttaen Capacity curves and surfaces
can be developed and compared analytically. Considme fundamental forms of the
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metric in Figure 35, in which Capacity measures flmeformance of two demand
streams, or channels, JPEG and, text processinghwhight represent elements on
webpages being processed by a single user on dentwvice. On the independent axis
is the number of JPEG images (JPEGS) to be pratessd on the dependent axis is a
number of text files. Note that the dependent atépendent axes are interchangeable,
one production, P, can be considered to be a function of the other,
P(text)=f1(P(JPEG))and P(JPEG)=f2(P(text)).The functional relationship between the
maximum processing potential of different input mhels describes the Capacity of a
CHM. We describe some idealized forms that thicfiemal relationship can take on for

single and dual core CHMs that process the twordlarof text and JPEG.

A — 1dz
2sd
2sc
2dz

— — — 2dc

Text Files

JPEG Images

Figure 35: Fundamental Forms of Capacity Curves

First, consider the Capacity of a single cou®)(system that ideally processes
unlimited combinations of text and JPEG; thererarguantization effects and there is no
penalty for switching from processing one typergfut to the other. The Capacity of this
ideal uP is shown on Figure 34 akcore_dynamic_zero_overhead (Ldwhich is a
straight line, formed between two maximums. The imax of each type is the
throughput when the core is always processing thdy type. The production of the two
demand streams on the idealized single core desigelated by a constar®(text) =

C*P(JPEG) in whichC = max(JPEG)/max(text)= JIXThis constant-value relationship
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is a consequence of the idealized resource shandgjuantization effects as the system
switches between processing different combinatainsputs.

Next, consider a homogeneous two-core processarhich tasks are mapped to
restricted cores, for example, one core processstext and the other processes only
JPEG images, and this processing is completelyugged. Figure 34 shows the Capacity
for this system2core_static_decoupled (2sds two straight lines that are parallel to
each axis and terminate at a poifmax(JPEG), max(text)) or (J,XJhis point is the
maximum production of each core for each input typhich is the same as the
processing potential of the single core on thaetyp the absence of any demand for
processing of the other type of input. The lines iadependent of each other because
there is no relationship between the productiodREG and text because each has 100%
of its own processor resource and there is no rshaf any resources in this ideally
decoupled system. This system has exactly doukl€#pacity of the singleP system.

It has two cores of the same type compared witlsithgleuP system and the total area in
the box doubles that of the straight line of thegk core system. In each of these
systems, throughput can be used to model the ésistedtures of the overall system
Capacity. In theldz system, the two streams can be combined and aadbrdg the
decoupled system, throughput can be used to mduaelmaximum production of
completely independent channels. The Capacity af sgstems, however, must include
the effects of sharing resources such as commuomsamnetworks, schedulers, and
memories as multiple cores come together to foaystem.

A more realistic Capacity curve i&core_static_coupled (2sc)n which input
channels are presumed to be statically mappedoepsor resources, but there is some
cost due to resource sharing. This shape asymallgt@pproaches the ideal boxed area
of the two-core decoupled system2xd and the measure of the penalty, or overhead,
due to coupling is captured in how far the curveiales from the ideal boxed shape.
Several works in communication systems addresddietification of the curve knee
[146]. Resource sharing can be considered to blegma#s to communications sharing.
Processing of one channel type is a function ofatteial demand for the processing of
the other channel type, however, in this caseralaionship does not result in a straight

line. Rather, a convex curve is shown, in whiclréhis a single mode and all effects of
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resource sharing can be considered to be lumpedhi#t single mode for the purposes of
this illustration. For now, the presumption of hageoeity in both the cores and the
effects of resource sharing on the different irgpes serve to keep this analysis simpler,
as it results in symmetric curves.

Next, consider another idealized CHM in which thput streams can be dynamically
mapped to either of two processor resources asuive,2core_dynamic_zero_overhead
(2dz) Again, the production of the two demand streaars loe related to each other by
the constant, C. Now, the Capacity of the two-&y&em can be considered to be double
the Capacity of the single-core systettZ, which is once again a highly idealized
situation. The combination of the two cores is td@af processing double the demand
of each input type taken individually, and all gsinn between. As scheduling and
resource sharing becomes less ideal, a system asi2hore_dynamic_coupled (2dc)
occurs. Here, the system can process maximumsatdr ieaput type, which are the same
as for the idealized two-core system. But now, iffierént combinations of inputs are
considered, the system shows Capacity less thamdda 2dz system because of the
effects of sharing resources in the coupled CHMsiAgle modal, concave shape is
shown for the2dc curve, reflecting a maximum amount of overheadafignvhen the
different input streams are balanced. This refl@aralties due to task migration; the
same design feature that facilitates greater pialettt process situations in which the
inputs are less balanced, at the extremes, prodisogeatest penalty when the inputs are
most balanced.

The curves of most interest are tBsc and 2dc curves because they include the
effects of system coupling. Tl2sccurve is convex while thedc curve is concave. Also,
the maximum values that can be processed for umbadaloads differ considerably.
There is information in both the values and thgskaof the curves. This information can
be related to some observations about the oveyates organization. As analytical
understanding of the shapes of Capacity curvesrgssgs, we expect to find an
additional relationship between system charactesisand the sizes and shapes of
Capacity curves and discover what design featueesl Ito: different extremes for
unbalanced loads, convex and concave shapes fac®agurves, multiple modes as

multiple overheads interact, and asymmetry for ogeneous cores and overheads.
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These will be the basis of future analytical reasgrabout Capacity curves. In the
remainder of this thesis, we show how Capacity esircan be analyzed and how
experimental generation of the Capacity metric loarused to compare different CHMs.
In the experiments section we quantify the amounperformance gains that can be

expected over that of traditional design.

6.4 Capacity Metric Analysis

As illustrated in section 6.3 in which fundamenshlapes of the Capacity metric are
discussed, the overall magnitude Capacity metfferdiaccording to the flexibility of the
scheduler. In general, the more chip-level schedullave the flexibility to schedule tasks
on any resource in the system, the higher the matmiof the Capacity curve will be
when loads are unbalanced. Thus, magnitude cahdoglit of as a means of measuring
scheduler flexibility. The overall shape of thevaior surface, whether it is more convex
or concave, can be thought of as a measure of #lyethre system handles load balance.
In general, the more convex a curve or surfachesmore the system is suited to handle
balanced loads and the more concave a curve acguid, the more it is suited to handle
unbalanced loads. If a curve or surface is morealinit can approach an ideal system.
However, this can also reflect a system that istlygloaded, since it can so easily handle
any load that is presented to it.

The 2-D Capacity curves shown in section 6.3 ail baly single modes — there was
only one peak in the curves. However, in generapacity curves or surfaces will have
multiple modes. We show examples of multimodal earnin the experiments section.
These modes result when there is a cancellati@ctedf one design feature with another.
For example, burst width can facilitate an unbag@hsystem, while a certain processor
core type can facilitate a balanced system, bugetledfects do not cancel out perfectly.
Thus, there may be multiple peaks, or modes, irCiédygacity curve or surface. Modeling
and understanding these effects are some of thé impsrtant concerns of single-user
multicore designs, since maximum performance isrofinly achieved when designers
have better understanding of how specific desigrisams interact. Finally, the slope
defines the cost of increasing the demand for ondaintype on the production of the
other model type(s). This is an important featurat tgives the designer the ability to
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trade off not just between design choices but hlstiveen the usage preferences. In

addition to these features, we will explore theeptial for others.

6.5 Experiments

We used The Modeling Environment for Software amatdware (MESH) simulator
[124], discussed in section 4.5. Further, we ukedsame processors described in section
5.3.2. Since overhead is an important factor ineb&uation of multiprocessor designs,

and we included it in our models, we used our moflelverhead in section 5.3.3.

Multiple tasks concurrently execute on multiple PEs

JPEG Text Flash
Images Files Frames
\\ : /,
A v
Scheduler MEM
System 1/O I I
> > T — 1
| | GPP u DSP { Media
Simulation (MESH)
Capacity

Figure 36: Experimental Setup Summary

Within a fixed area, we generated four differenthéectures as combinations of
number of processors, type of processors and LRecsizes. Our model parameters are:
(1) four different CHM architectures (Archl: 2G, 4BM, 128K of cache; Arch2: 1G,
4D, 6M, 192K of cache; Arch3: 2G, 2D, 6M, 192K afcbe; and Arch4: 2G, 4D, 3M,
192K of cache) (2) three different burst widths)f(B6-, 32- and 64-byte], (3) three
different communication bandwidths [(C): 0.4GBy&s/s 0.96GByte/sec; and
1.2GByte/sec], and (4) two chip-level schedulerstydamic scheduler that maps tasks to

the best available processors, permitting task aimym, and a static scheduler that maps
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each task to a specific processor(s) specifie@sigd time does not allow task migration.
We modeled these schedulers in MESH. Further, wdeted three types of demand
streams: JPEG, Text and Frames, each with diffeveriting set sizes. Finally, Capacity
is measured during two time intervadlshalf second and one second. In general, the time
interval will affect the shape of the Capacity asysince the balance of processing is
subject to change. The total number of design @sois 72. Figure 36 summarizes all
design features.

The way we determine the time intervals during Wwh@apacity is measured is by
running each task type on all architectures. Thgimmam time needed by a task type is
the selected time interval. Since architectureseh@ifferent performance for different

demand modes, different architectures may haveréift time intervals.

Maximum execution time of a task in the sys
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Figure 37: Normalized Execution Time

Figure 37 shows the concept behind our approachshtiws that for a specific
architecture, the maximum time spent in a taskas of task. Other tasks on the system,
such as task complete the execution in a shorter time thanh dh#aski leaving a slack

time. Thus, the system can do more of the sametygekduring this slack time, as its
demand is less than its supply, or the systemtibeing used to its full Capacity within

that time interval. This approach is a type of exen normalization.
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6.5.1 Results and Discussions

In this section, we include and discuss several aetxperimental results. We first focus
only on two inputs, JPEG and text. We generatedCalpacity curves of all designs,
totaling 72 different CHM designs. We show soméhafse curves to give insight about
the cause and effect of different design parametershe system Capacity. While

viewing these curves, we classify them based oie et

a) Burst width feature

Figure 38 shows two Capacity curves of a CHM déferated by increasing the bus burst
width from 16B (B1) to 32B (B2). The CHM consists2§5, 4D, and 6M processors and
128K of L2-cache memory. Each processor has its lolwvoache memory. In this CHM,
as the bus’s burst width is changed from 16B (B132B (B2), the system changes from
favoring balanced loads to unbalanced loads, sintdathe difference between the
concave and convex shapes of 2de and2sccurves discussed previously. The B2 curve
is the more ideal shape for the overall designgeaice task migration is included, but

the burst width impeded this result unless it wasggenough.
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Figure 38: Capacity When Burst Width Increases

b) Processor type and number features
Figure 39 shows two Capacity curves for two différarchitectures (Arch2 and Arch3).
In Arch3, we increased the number of GPP and Medigessors, while reducing the
number of DSPs. Note that adding this feature ekt and JPEG but not their mix.
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The slope of the Capacity curve of Arch2 dropsdiaian that of Archl. DSP processors
have medium performance for processing both tedt EG, thus they perform better
than GPP and Media when a mix of text and JPE@irsglproduced.
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Figure 39: Capacity When More GPP and Media Added ad DSPs Reduced
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Figure 40: Capacity When More Media Processors Addkand DSPs Reduced

In Figure 40 we show the effects of increasingrthmber of Media processors while
reducing the number of DSPs. Figure 39 shows twpaCity curves for architectures
Arch3 and Arch4. Compared with Arch4, the numbeMeafdia processors in Arch3 has
increased by two times while reducing the numbed®Ps by the half. Note that adding

this feature favors JPEGs but not text because dMpdicessors perform better than

108



DSPs in JPEG processing but worse in text proogssinte that the two curves differ
not just in terms of magnitudes, but also in shapég slope of the Capacity curve of

Arch3 drops slower than that of Arch4 resultingrinonvex shape.

c) Cache size feature
Figure 41 shows the Capacity of the CHM of FiguBenden the cache size increases by
1.5 times. As a consequence, the chip area hasased. Figure 41 shows too little
improvement in Capacity because the selected wgrket sizes of the text and JPEG
tasks are small. However, this feature favors JPHEG® because their processing can be

considered to be internally I/O bound more than pegcessing.
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Figure 41: Capacity When Cache Size is Doubled

Figure 42 shows two Capacity curves for two diffeérarchitectures (Archl and
Arch2) differentiated by increasing the cache d$ipen 128K to 192K at the expense of
the number of processors on chip. Interestinglg, @apacity of both architectures to
produce only text files is the same then the cudiesrge significantly. In general, Arch2
shows major performance improvement because teetedl size of working data sets of
tasks is larger. Thus, the increase in the cadteslslps in improving the performance.
Note that in the case of producing text only, iasiag the cache size does not result in
any improvement because the working set size offiles is already smaller than JPEGs.
Again, increasing the cache size favors the prooiuaif task types with larger working

data sets.

109



23 1 ——Archl

20 | —Arch2

0

0 I2 ill é IS 1ID 1I2 1I4 1I5 1I3
JPEG
Figure 42: Capacity When Cache Size Increased (LeBsocessors)

d) Communication bandwidth feature
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Figure 43: Capacity When Communication Bandwidth Ircreased

Figure 43 shows the Capacity of the CHM of Figur@ @ which the overall
communication bandwidth increases. C1 is 0.4GBésG@a is 1.2GB/s. In each case, the
system approaches the straight line of an ideakzstem even though the processing of
input channels is coupled via competition for glolesources such as schedulers and
memories. The two curves in Figure 42 overlap atlibginning and then diverge. This
asymmetry results because communications Capdédgte JPEG more than text. With
respect to a given amount of text processing, JBEGessing can be considered to be
internally I/O bound more than text is with respiect fixed amount of JPEG processing.
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However, if the region of interest over which tlwotCHMs are being evaluated is
limited to the maximum number of text and a smaiimber of JPEG inputs, the two
systems do not differ. In general, Capacity cunmds be asymmetric. The asymmetry
arises from the heterogeneity of both the inputttwedarchitecture.

e) Multiple feature interactions
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Figure 44: Capacity (Larger vs. Smaller WSS)
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Figure 45: Capacity When Cache Size Increased (Sanmeocessors)

In Figures 44 through 46, we use the same system Figure 42 in which the overall
communication bandwidth increased from C1 is 0.43B/C2 is 1.2GB/s. The Capacity
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curve of the system approaches the straight liree Hve picked this example to show
how different architectural features interact. Byarging other features, we show how
the Capacity curve shape changes from being abktriane.

In Figure 44, we used larger working data setsbioth JPEG and text tasks. We
increased the working set size until we startedgde the shape of the Capacity curve
changed from a straight line to a convex. This drothe Capacity is caused because of
the overhead generated due to using larger worltatg sets. The size of the working
data sets determines the space and time delaysseslas well as memories. Note that
this change only affected the intermediate mixobfj

In Figure 45, we increased the cache size by hfedj while keeping the same
processors on the chip. The shape of the Capaaitie changed from a straight line to a
concave. This increase in the Capacity is causeduse of the increase in the cache
memory size. Intuitively, increasing the cache memsze increases the production of
each task type. Interestingly, note that this cleaaffected only the intermediate mix of
jobs. Since cache size increased, we are now aldeote the data of both types in the

cache memory.
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Figure 46: Capacity When Cache Size Increased (Laey WSS)

Using a different view, in Figure 46 we combineé tBapacity curves of Figure 44
and Figure 45 in one figure. We can see that ttl#esy has changed from favoring
balanced loads (when processing larger working sitis) to unbalanced loads (when the

112



cache memory has increased.) For such a systengetigner not only can analyze

causes and effects, but can also find solutioexigting problems in the system.

f) Scheduling feature
Figure 47 and Figure 48 show two Capacity curvesguswo different chip level
schedulers: dynamic and static. The CHM consist2@f 4D, and 6M processors and
128K of L2-cache memory. The two figures are dédfeérated by the selected working set
size; it is smaller in Figure 47 and larger in Feyd8.
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Figure 47: Capacity of Different Schedulers (SmalleWSS)
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Figure 48: Capacity of Different Schedulers (LargetWSS)
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Figure 47 shows that both schedulers resulted @lmothe same Capacity curves,
because the working set size is small, which in taakes task migration occur less. In
contrast, when using larger working size sets,din@amic scheduler outperforms the
static scheduler especially when more JPEGs amtupeal, as shown in Figure 48. Note
that other results (shown in Appendix A) show tbhatnmunication bandwidth, cache

size, and burst width significantly impact the peniance of dynamic schedulers.

g) Time window interval
Figure 49 shows the Capacity when the time windowhich we measure Capacity is
doubled. Note that doubling the time window doesresult in double Capacity because
of the overhead generated due to resource shamshguaning heterogeneous concurrent
tasks. Again, increasing the window of time favdmiemogeneous inputs. The
heterogeneity of inputs incurs more processing, reamcation, and storage memory

overhead.
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Figure 49: Capacity When the Time Window Is Doubled

6.5.2 Experiments Summary

The experimental results, shown in this sectiopregent different forms of Capacity
curves. These curves give the designer the altditynderstand the effects of adding
architectural features on the performance of a aerpsystem that simultaneously

processes multiple output streams. Significanthgsé curves do not result in linear
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relationships as demand for different productiopety varies. Distillation of rates of
production over multiple production types to a coommwvork unit, such as automobiles,
instructions, tasks or programs, results in a limetationship as rates of production of
more specific types within those categories varkst if a straight line were to be
superimposed on any of our Capacity curves, the Capacity of the designs being
examined would either underestimate the true Capatia given design for a given set
of production values, or it would overestimate winat plant is capable of.

For each design, Pareto optimization or throughgaut only show the maximum
production of individual tasks in the form of a t@rcor single value that is generated by
taking an average. For example, when throughpavauated using a common work
unit, such as Instructions per Second (IPS), itlead to erroneous insight. For example,
in Figure 38, if the maximum production of eacheyip only considered, the Capacity
curve of B2 is better than that of B1. Note thisni true when we consider specific
combinations of tasks that might be most importanthe end user of the design. For
example, for an intermediate mix of tasks, the eun¥ B1 shows better Capacity than
does B2.

Here, we summarize some observations from our erpats about the effects of
different architectural features:

* Burst Width increasing the burst width favors unbalanced do&thrrower
widths give multiple heterogeneous tasks a moralechance to share the
communication media. Otherwise some tasks may gcthigocommunication
media for a longer time without the need for tloaiy time, impeding the
execution of other tasks. Wider widths favor honragmis tasks because they
have same communication and memory access pat@itmey. factors such as
the size of the working set of the same task tgfs® determine the optimal
value of the burst width. Thus, there is an optiwale of the burst width for
each workload type.

» Communication Bandwidtlincreasing the communication bandwidth ideally
results in greater system Capacity. However, @ edpresents an overhead in
terms of time, area and power consumption. Thuseasing the

communication bandwidth only makes sense whendireed Capacity
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overcomes the incurred overhead. For instancegritauction of tasks that
require less 1/0 accesses takes less advantagerfooeasing the
communication bandwidth.

Processor Number and Typacreasing the number of processors of a
specific type favors the type of tasks that takearaalvantage of this
processor type, shifting the Capacity curve toviaedaxis of that task type.
This results in different shapes of the Capacityeua convex shape occurs
when processor types do very well for both taslesymnd a convex shape
occurs when processor types favor different tapksy The magnitude of the
curve depends on the number of processors onldbipever, note that
increasing the number of processors incurs moreheae due to the
increased complexity of synchronizing and contngjlthese processors, in
addition to other costs such as the die area amgmpconsumption, etc.
Cache Memory Sizéncreasing the cache memory size ideally resulbsetter
system Capacity. Its advantage is more obvioughfuge tasks that have
larger sets of working data and greater I/O requéets. Since we model a
fixed-area chip area, increasing the cache menmmes at the expense of
reducing the number of processors. This trade+wdfysis results in different
Capacity curve shapes.

Scheduler Typedynamic schedulers for CHMs generally outperfstatic
schedulers because they allow task migration andrmic decisions in
response to the system loading and previous amdrdwhip state. Note that
the making of dynamic decisions and task migraith@ar overhead that has
an inverse effect on the system’s Capacity. Dynaoiedulers often result in
multimodal Capacity curve shapes because of toisrrad overhead.

Time Interval because of the effects of overhead incurred ksecafithe
interaction of multiple heterogeneous inputs vyimgheterogeneous global
resources, doubling the time interval may resuless double Capacity, in
contrast with the assumption of throughput in whigrk and time have a
linear relationship. The ratio of the Capacityhe time interval length

depends on several factors including the type aklead. In other words, for
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a system with a homogeneous input, the ratio agpesato be linear,
resulting in an almost straight-line Capacity cush@pe, similar to the
concept of throughput. In general, the increadbertime interval length
favors unbalanced loads, resulting in a convexashap
Interestingly, note that when multiple architectufeatures interact, multimodal
shapes result. While in this chapter we focusedRIEGs and text task types, we include
in Appendix A one more task type, that is GIF. @aal is to show how the type of input
changes the system’s Capacity and thus be abladsify these effects into patterns. For
the sake of completeness, in Appendix B we showQhpacity of this three-input
channel system as a surface, although the way wakyznthe Capacity surfaces is by
holding one input constant at a time. For instaac&,D surface can always be reduced to
a collection of 2-D curves. In general, an n-D scef can always be reduced to a
collection of f-1)-D surfaces, which can then be analyzed as caletin Appendix C,
we include the values of overhead incurred dueifferdnt combinations of inputs, and
explain why multimodal Capacity curve shapes result
In the next chapter, we demonstrate the usefuloessir metric through a Capacity
shape analysis. We show that information in thepshaf the Capacity curves can be

more significant than magnitude.
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Chapter 7

Shape Analysis

Concentrate all your thoughts upon the
work at hand. The sun’s rays do not burn
until brought to a focus.

Alexander Graham Bell

Capacity is distinguished from other performancéricebecause it emphasizes shape as
well as magnitude. In this chapter, we show thiirmation in the shape of the Capacity

curves and surfaces can be more significant thayninale is.

7.1 Why Single-Valued Performance Metrics Fall

In this section we show how attempts to distillfpenance to pure magnitude, or single-

valued metrics, can result in ambiguity or idenation of incorrect optimal designs.

7.1.1 Survey of Single-Valued Performance Metrics
We first perform a survey of some popular, singhsed metrics that have been used to
compare curves that consist of discrete points:
(a) The average d@l data points on the curve. The average is measutedns of
the model type on the dependent axis,
(b) The maximum production of each model type. Hig® includes the average of
the maximum production of each model type, usisgramon output type,
(c) The area under the curve, measured in terrtiteeahodel type on the dependent
axis, and
(d) Pair-wise (point-to-point) comparison or lesgtiare method. The pair-wise
method cannot be used in our case because théseofgCapacity sets (or more
precisely, the numbers of values in multisets)ifiécent designs are unlike; we

include it for the sake of completeness.
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Our goal is to show how our Capacity metric sucseadhen single-valued
performance metrics fail in evaluating the perfonce of the CHM that processes a
multi-channel heterogeneous input. Thus, we exarhow our metric compares to the
metrics in items (a), (b) and (c) of the above. [i&te consider our metric to be more
successful when it properly ranks designs frommogtiperformers to lesser performers.
Admittedly, such comparisons can be somewhat arlyind subject to interpretation. In
fact, we demonstrate this when we show that comwesit means result in ambiguity,
which is what prompted us to develop our new mefiiws, we use workload analysis to
show how some designs fit certain workloads bdttan others and how those designs

cannot be identified in rank order using singledeal metrics.

7.1.2 Comparison Analysis

We first generate the Capacity curves for the desstbat we have discussed in Table 12.
Then we apply the different single-valued perforoemetrics in order to rank the
performance of these designs. For the purpose isfsiction, we initially select the
Capacity curves for only three designs. Three dasiye sufficient for our purposes,
because they show how single-valued performanceiasetail to identify optimal
designs. We measure the Capacity of these desigpsotiuce JPEG images and text
files, which are examples of data-size dependedtdata-content dependent execution,

respectively [1].
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Figure 50: The Capacity Curves of Three Different @signs
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Figure 50 shows the three Capacity curves as aarghip between the production of
JPEG images and text files. On the independent @fxike figure is the production of
JPEGs and on the dependent axis is the produdtimxifiles. Design A refers to design
4 in Table 12, which consists of one General Pwgésocessor (GPP) and four DSP
processors. Design B refers to design 7, which istsnef two GPPs and four Media
processors. Finally, Design C refers to design l&ckv consists of six DSP processors.
More discussion about the architecture of thesgydess included Chapter 5.

Next, we compare the Capacity metric to the sivglered performance metrics by
asking which metric identifies the best performidgsign. Here, we define the best
performing design as the design that has the gre@&pacity during a specific time unit
amongst all designs on hand. This also impliestti@abest performing design is the one
that has the shortest response time to processoéwerkload modes.

A. Averaging All Points
The first method is to average all points (or sufggbdemands) on the Capacity curve of
each design and then compare the average of diffeteves. These points represent the
production rate of JPEGs and text files. Since amnot simply average the production
of JPEGs and text files because they are of diftecemplexities, we must instead
average the time required to produce these demame that the required time to
produce any demand on the Capacity curve is the itmerval during which Capacity is
measured. Hence, we select the maximum producgoradds amongst all three designs.
For instance, the maximum production of JPEGs whemran produce 15 text files is 50,
as shown in Figure 50. Design C can produce thmeathel during the specified time
interval, while Design A and Design B need moreetito produce the same demand.
Thus, for a design, these maximum demands maydzkiped during the time interval or
need more time to be produced. Then, for each dWegig average the execution time of
these maximum demands on that design.

Note that the best design varies as curves cragste=50 shows crossover points in
which different designs exhibit different perfornsanas demands vary. The crossover
points result because different CHM designs areiafieed for different demand modes.

If the curves did not cross, then there would besigmificant difference in optimal
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performers due to demand mode variation. But, tedlie curves do cross, the actual
input to the system results in the identificatidrdibferent optimal designs.

Averaging requires the use of means. There are threnary mathematical means:
Arithmetic Mean (AM), Harmonic Mean (HM), and Geame Mean (GM), previously
discussed in Chapter 2, in which we also showectiftemstances in which AM, HM,
and GM can be used to average speeds (Demands/Tihw)is applied to equal
demands, but with different execution time, wherdd$ is used when demands are
different but execution time is equal. The GM canused for both time-based and rate-
based behavior, but the behavior should first bemabzed with respect to specific
machines. Since the design goal of CHMs is to apgénthe response time of individual
demand modes, the HM is the most appropriate nleatfis case, a better performing
design is one that does more in a given intervhlclvthe way users experience modern
is computing. But, since the usage of the apprtprizean has long been controversial in
computing [8], [51], and since the geometric meamy far the most common method

used in the evaluation of single-core architectunesinclude all means in our analysis.

Table 16: Response Time for all Production Modes

Demand| Response Time
Mode |[A B C
(0,95) |1.65 1.00 1.8
(1,85) |16 100 17
(5,70) | 165 1.00 185
(12,50) | 1.55 1.90 1.00
(15,48) | 1.4 175 1.00
(23,26) | 145 1.85 1.00
(27,15) |1.00 1.65 1.70
(30,7) |16 100 175
(32,5) |165 1.00 160
(34,2) |1.55 1.00 165
(36,0) |145 1.00 170

Table 16 includes the response time of each design used to produce different
demands. Note that some designs can produce a damaste during one time unit (the
optimal design for this demand), while others ne®ate time to complete this demand.

The time interval over which a response is measigeth important consideration in a
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metric for CHMs, and its impacts will be discussednore detail later. Table 17 shows
the rank of the average response time of each mesignputed using the three different
means (AM, HM, and GM).

Note that using different means results in differamks, as previously predicted. HM
ranks Design A as the best architecture becaius®dtter suited to handle the increase in
demands, since HM ranks architectures based ondbéity to execute more demands
per time unit (rates), whereas AM and GM rank Dedfgas the best architecture. The
arithmetic and geometric means rank different perys as optimal, even though they
rank same architectures at the top. Thus, sindlgedameans already result in ambiguity
in ranking optimal performing designs, and this wastovered in the work on workload
modes as presented in section 2.2. Without a pmagans of ranking optimal performing
designs, it did not make sense to continue pursinagwork in more depth.

Table 17: Optimal Design Ranking

Architecture Arithmetic Harmonic Geometric
Mean Rank Mean Rank Mean Rank

A 1.54 2 1.20 1 1.45 3

B 1.25 1 1.25 2 1.10 1

C 1.70 3 1.40 3 1.30 2

In summary, the traditional mathematical means lrasuambiguousrankings of
optimally performing designs. Averaging, in gengrplecludes the designer from
identifying cases in which the system has more €igpthan the average or cannot meet

the desired production.

B. Bounded Area

One of the best known techniques in curve compayit both discrete and continuous
functions, is area difference. Mathematically, #rea under a curve is calculated using
the definite integral. Thus, the area bounded betwe/o curves can also be found using
the integral of the difference between their fumies. Because our Capacity curves are
measured and not computed and fitting these datg asfunction is an approximate that
may include a significant error margin, we use nuca¢ approaches to calculate the

integral of discrete data.
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Numerically, the trapezoidal rule is a well-knowechnique for calculating the
definite integral. The trapezoidal rule works byajximating the region under the curve.
It is one of a family of formulas for numerical eégration called Newton—Cotes formulas.
Simpson’s rule is also another member of the samngly. Newton—Cotes formulas
differ only in terms of their computation speed.

When the trapezoidal rule is applied on the thrapaCity curves shown in Figure 49,
all curves have the same area, therefore theirdifiesence is zero. This can be seen by
inspection. Thus, according to this metric, alliges are equivalent.

The area difference between curves is zero becauses cross, allowing areas
under each curve to be alike. This also meansthimmetric collectively cancels out the
effects of design specialization and does not sivch design is really better. While
integral is feasible at higher dimensional surfatleis metric also results in ambiguous

results.

C. Maxima Points

The third single-valued metric we consider is thaximum production of each model
type, or maxima points. According to this metricediyn B is the optimal design and
Design C is the worst deign.

This metric is similar to the throughput metricvitnich the performance of different
task types is individually evaluated and then ageda Also note that some other designs
(not shown) may have equal maximum points evenghdhbey are vastly different when
they process an intermediate mix of work types. iRstance, consider two designs that
are only different in terms of the adopted schedulpolicy. Schedulers may have the
same performance in terms of Capacity when thegga® a homogeneous input, while
they differ when they process a heterogeneous jinpithave shown an example of this

in Figure 13. Thus, this metric also leads to ambig results.

7.1.3 Summary

We have shown how single-valued performance mele@as to either incorrect ranking
or ambiguity. All three different single-valued mes$ resulted in different rankings.
Harmonic mean, which is the most appropriate meddcording to our design goal,
found that Design A is the optimal design, in castrto the other mathematical means.
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Whereas, the maxima points’ metric found that Dedgis the optimal design. On the
other hand, the bounded area metric found thatedigns are equivalent. The major
reason behind this ambiguity is that curves crossylting in crossing areas that are in
favor of specific designs over others. Single-vdlueetrics factor out these areas of
comparison.

Designs A and B prefer the production of unbaladoads. This is more obvious in
Design B, in which the system performs very wellewtproducing only text or JPEGs.
As the demand increasingly becomes an intermedaateof text and JPEGs, Capacity
degrades (i.e. a fewer number of jobs are produdedyign A performs better than
Design B when a mix of tasks is produced, but rfqyens very differently from Design
B when it is processing only text or JPEGs. In castt Design C prefers the production
of balanced loads. As the demand is becoming meterdgeneous, the Capacity
gradually decreases.

The only metric that describes the performancehe$e designs to produce different
types of jobs, as we just described, is the cunaps. The shape of the Capacity curve of
Design A and B is a convex, while it is a concawve Design C. The shape of the
Capacity curve of Design A is a convex with lesgutarity than that of Design B. The
abnormality is originated from the effects of oweail on the system Capacity. Note that
the curve of Design A at some production regiondpoed less than it should ideally
have because of the overhead generated when hagipgcific combination of jobs. One
reason for that is the overhead of task migrationmemory and communication
contention. Later on we include a deep analysithefeffects of overhead in creating
multimodal curve shapes.

Single-valued performance metrics fail to find ami designs because they do not
consider the relationship between the system’s ymibah capabilities of specific
workload modes and match them to the actual demaladsed on the system. We bridge
this gap by developing an algorithm to charactedemands in the form of a curve and
overlay these curves over the Capacity curves. Whapacity curves match demand

curves, they are optimal designs, regardless af nhagnitude.
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7.2 Our Approach: Demand-Capacity Matching

In order to show the usefulness of our Capacityrimete first need to characterize the
demand for a system. Because the demand for m@iéks is not, itself, single-valued,

characterization of demand needs to be in the fofrworkloads, or distributed sets of
concurrent jobs that result in collections of distiloading situations.

7.2.1 Demand Curve Generation
In order to generate demand curves, we first dgvatoalgorithm to identify all possible
demands in a specific usage scenario. The ideshtdEmands are then used to draw a

demand curve.

A. Demand Collection Method (DCM)

We use an enhanced version of the Workload Chaizatien Method (WCM),
discussed in Chapter 5, to generate all possibigadds exposed by a single-user usage
scenario. Demand generation is conducted in ancadianual manner by the system
designer.

Step 1: Type ExtractiorEach task typeY, represents a dimension on the curve. Tasks
with different working data set§, and complexitiesC, can be considered different types
of tasks.

Step 2: Forminglm Vector.Step 1 resulted im different task types within a demand
mode @m). dm=[Y3,....Y,...,Yx] represents the demand vector of lengthin which; is
a task type.

Step 3: FormingV Matrix. Each usage scenario hademand modes. The number of
demand modes is a function of the length of theetimindow in which demands are
characterized as well as the sequence of demavdss the generated matrix of
dimensionnxm that represents a usage scenario, in which roeslar vectors and
columns are the number of instancg®f each job typeY,in dm.

Step 4: AppendM Matrix. Step 3 is repeated for different time window'sgénas
well as for different sequences of demands.

In order to convert the generated demand modesantm-d graph, matriM is

represented in the form of a multiset. Each satesgmts a demand mode (or vector) that
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is shown as a point on an n-d spacemAltisetis similar to a set except for allowing
duplicate values to exist. Since our demands aoedened and duplicates may exist, we
chose to use a multiset type of collections.

Note that our DCM algorithm is similar to the WCNparithm, but for different
applications. While WCM was used to identify workib modes at runtime, utilizing
some design-time knowledge, the DCM is used to geaall possible demands exposed
by a usage scenario. We should also point outhleaterms workload modes and demand
modes are interchangeable. While we previously ighet [147] using the term
workload modes for demands placed on the CHM, wee levolved and now more
correctly distinguish this as demand modes, sitcers have claimed the term workload
modes for different purposes, such as power opéitiwas [131]. Thus, we developed the
term demand modes, while defining our Capacity imetr

B. Time Window Selection and Demand Sequence
One key part in our DCM algorithm is the inclusimitime, something that reflects a real
workload. In order to do this, we divide the usagenario into equal time intervals
during which demand modes need to be collectede,Hbe time interval is selected by
running each scenario on all architectures. Theimax time needed by a demand mode
is the selected time interval. Since architective@ge different performance for different
demand modes, different architectures may haveeréift time intervals. This is
analogous to the way we specify the time intervalray which we measure Capacity, as
discussed in section 6.5.1. This approach is a ¢ygxecution normalization. By doing
this, we define a sliding window over our scenauwing which we collect demands. For
different sliding window sizes we expect differeleimands to arrive during this window.
Another key part in our DCM is the sequence of dwisa By evaluating the
overhead generated due to different mode sequeweebave shown in Chapter 5 that
the sequence of demand modes matters to systerarrparfce; for different mode
sequences different amounts of overhead is incurfé@refore, when demands are
collected we consider all demand sequences foerdift time intervals. The number of

sequences is!, in which n is the number of modes in the scenario. For instathe
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scenarios shown in Figure 51 and Figure 52 havensides each. Next, we discuss these

scenarios and use our DCM to generate all dematuised by these scenarios.

C. Example: Usage Scenarios

Here, we discuss two usage scenarios. While ounasics are fictional, the data
collected from these scenarios is real. In botmades, the mobile device is used only to
surf webpages.

Figure 51 depicts a usage scenario of a teenagertieline is on the independent
axis and webpages are on the dependent axis. Esuybage consists of several tasks that
arrive the system in the form of timed sets. Thiesis are summarized in the legend
below the figure. This usage scenario models amplainput of modern computers in
which multiple applications possibly run concurigrand arrive at different times. Note
that as time progresses, the user places diffeegpirements on the system as different
combinations of applications execute. A set of iagibns are run concurrently, driven
by user intervention and the arrival of data frdra Web. The task progression is also
shown in the same figure (e.g. to download a pa;ttine system must first perform a
Viterbi decode and then JPEG decode).
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Figure 51: A Teenager Scenario
Consider another usage scenario of a businesswamawn in Figure 52. Because of

the different combinations of application sets,unhgata, deadlines, and constraints, this

usage scenario may exhibit different system perdowwe from the previous usage
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scenario of Figure 51, causing the designer to theesystem differently, despite each
system executing the same set of applications.eltigterences come from the type of
webpages surfed by the user as well as the atmaalg of jobs. For instance, the user in
the scenario of Figure 51 uses his or her mobilgcdeto access social networks and
entertainment webpages. This type of webpage ligsatit requirements than that of the
second scenario, in which the businesswoman accéissacial webpages most of the
time. These differences do not just exist in time sind complexity of content, type of
content, and number of jobs, but also in the artiv@ng of data that affects the response
of the system to the frequency of changes in thatistream [48].

While our scenarios consist of webpages only, taybe considered representative
workloads of other applications. For instance, sandnd receiving text and image
messages in our multimedia cell phone exampleudsed in Chapter 3, behave the
same. We used only webpages because other cek aipgtications are periodic, such as
processing voice packets and MP3 frames. Sincee thpplications are periodic, their
demand is constant and therefore it is not inter@sio include them. The Capacity
metric is most useful in systems that have colbedtiof data-size-dependent and data-

content-dependent execution.
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Figure 52: A Businesswoman Scenario
Using our DCM algorithm, we generate all demandshef scenario in Figure 50.

Since the demands consist mainly of three job typed, JPEG, and GIF), the DCM

results in a 3-D demand space. The data used bglgorithm were extracted using an
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online tool (Webpage Analyzer) [148]. For simplétmon, we project this 3-D space into
its 2-D spaces. Future systems are anticipatechte many input streams, resulting in
demand curves of higher dimensions that cannotele@ &y graphical techniques. By
projecting an n-D space into its 2-D spaces, walit@e analysis of these higher-
dimension spaces. Initially, we have computed thmee intervals during which we
collect demands by running this scenario onto kineet designs described in section 7.1.
We have also considered all mode sequences.

In Figures 53 through 55, we show demands in 2-gail\ these 2-D spaces are the
projection of a 3-D space. On each plane, we slhh@iset of demand modes generated
due to this specific usage scenario. Some of tdegeands are aligned vertically. This
means that for the same value of the independeiatla there may be multiple values of
the dependent variable. This is because demandsofoe type of jobs may be repeated
during a specific scenario but in different comhio with other job types. For instance,
consider a demand that consists of two text fifesfave JPEGs, and another demand that
consists of two text files and four JPEGs. For shene amount of text files, there are
different amounts of JPEGSs. This repetition magp alscur in more than one variable in a
demand that consists of more than three variafibs. red line curve represents the
maximum demand modes. For each value on the indepéraxis, there is only one
unique maximum correspondent value on the deperaldat We fit these maximum
values using a curve that simply connects theseegalWe refer to this curve as the

maximum production curve.
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Figure 53: Text-JPEG Capacity Plane

129



Our final goal is to identify a demand curve, samito the concept of Capacity
curves. The demand curves are analogous to howlea system would carry out the
actual, required demand, a system with perfect €igp@ meet required workloads in all
situations the system is expected to encounteh motwaste. In order to do this, having
all possible demands the system needs to servieecam generate different types of
curves such as the maximum and minimum demand suiMee demand curve is the

target workload limit that the system must meet.
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Figure 54: Text-GIF Capacity Plane
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Depending on the design goal of the system, thegesmay create different types
of demand curves. For instance, the designer magsehto design a system to meet the
most frequently repeated demands, demands thas nsay be most interested in, or
demands that exhibit a high access to caches.Heopurpose of illustration, we next
extend our DCM algorithm to generate another type&l@mand curves, which is the
occurrence frequency curve.

D. Occurrence Frequency Curve

One alternative is the design to the most freqyeetheated demands, or the occurrence
frequency curve. There are different ways to idgrithe occurrence frequency curve
from the set of demands that we have. One appreoacladopt is to use a weighted
version of our DCM algorithm to identify clusterd§ demands. Each cluster is

represented by only one demand mode on the curve.
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Figure 56: Maximum Demand vs. Occurrence Curves

For that purpose, normalized complexity weightsgaeerated by dividing the cycle
budget of each application by the maximum cyclegaticheeded by an application in the
system. We extend Sim-Profile [130] of SimpleSc#taextract the number of cycles for
each application. Sim-Profile profiles each appiara when it runs on a different

processor type. We enhance our DCM algorithm blything two more steps:
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Step 5: FormingC Vector.We suggested normalized weighdsthat correspond to the
task complexity. These values are extracted agsimguthe modified version of the Sim-
Profile.

Step 6: AssigningC Vector Values tdM Matrix. Matrix M is then multiplied by
weight vectorC. We normalize each column (task type) in the mdiyi subtracting the
mean value and dividing it by the standard devmtithe goal of the normalization is to
put all task types on a common scale. Then, waltlpecombine the absolute values in
each row (demand mode vecthbn).

Demands with equal complexities are clustered tmgetThe clusters with a larger
number of elements (demands modes) can then betexkld-igure 56 shows the same
curve of Figure 51 but is overlaid over the occacee frequency curve. While curves
intersect in some demand modes, they diverge iarethAgain, the most appropriate

curve depends on the system design goal.

7.2.2 Curves Match Fit
The final step in our approach is to match Capaaityes to demand curves. There are
several techniques in the literature that can leel s match curves, especially in image
processing and pattern recognition [149], but bseawe project both Capacity and
demand surfaces into 2-D curves, matching 2-D auivgraphically applicable.

The match fit should ensure that all demand modesa@vered by the Capacity curve
(the design can support all demand modes), buteasame time, the distance between
the two curves should not be too far because ttigssive Capacity may come at the

expense of power consumption and waste in systsourees.

7.3 Experiments

The purpose of these experiments is to show howCayracity metric, in combination
with demand curves, succeeds to identify optimabigies when single-valued
performance metrics led to ambiguity or identifioatof wrong designs. The formation
of demand curves emerged from the observationttieashape of the Capacity curve has
information about the loading preference of a desjge. the demands that it can
support). In our experiments, we also aim at amadyzhe effects of overhead on the

Capacity curve shape. We conclude with some digmuss

132



7.3.1 Experimental Setup

We use the same experimental setup in sectionTh.only change is that instead of
using the scenarios, discussed in section 5.1,hasbenchmarks to evaluate the
performance of the designs, summarized in Table wi®,use the set of scenarios
discussed in section 7.2.1. As discussed earligrisnchapter, the reason for this change
is because the scenarios of section 5.1 were gedeaacording to our multimedia cell
phone example, discussed in section 3.3, whiclhuded applications that have constant
demands. The most interesting applications areethbsit have different demand

requirements at different times.

7.3.2 Results
We first use the same example in Figure 50 to show our Capacity metric leads to

different results. In order to do this, we overldne same Capacity curves shown in
Figure 50 over the demand curves generated fronsaamarios, discussed in section 7.2.
The optimal design is the one with a Capacity cuhat matches the demand curve. In
Figures 57 through 59, we overlay the Capacity ewfvDesign A, Design B, and Design

C, respectively, over both maximum and occurreneguency demand curves.
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Figure 57: Overlay Demand Curves Over Design “A’s'Capacity Curve

First note that our demands are balanced loadstbfjbb types. As expected, Figure
57 and Figure 58 show that Design A and Design@eprunbalanced loads, loads that
are mostly of one type of jobs, while they cannaidoce some mix of text and JPEG
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files, especially those that have more jobs of lgtles. This is because Design A has a
GPP processor that is the best fit for producixg fikes and four DSPs that is the second
best fit for the production of JPEGs. Design B vere better in producing unbalanced
loads because it has two GPPs and eight Media ggsoce that are the best performing
processors for text files and JPEGSs, respectivdya result, Design B is a worse fit than
Design A because the demand curve includes momntad loads. In general, both

designs could not match any of the demand curves.
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Figure 58: Overlay Demand Curves Over Design “B’s’Capacity Curve
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Figure 59: Overlay Demand Curves Over Design “C'sCapacity Curve

In contrast, Figure 59 shows that Design C was #bleover all demands of the

occurrence curve and almost all demands of the maxi curve. Note that Design C
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performs better when the system receives balarasds] This is because it has six of
DSP processors that are the best performing procefs a mix of JPEGs and text files.
The DSP outperforms Media processors in procegsikidiles and outperforms GPPs in
processing JPEGs.

Back to our discussion in section 7.1, in which k&e shown that single-valued
metrics lead to different rankings, using the HMyieh is the most appropriate metric
according to our design goal, we found that De€igis the worst design, similar to the
ranking of the arithmetic mean. Using the geometrgan, we found that Design C is the
second worst design of the three designs. The nexioints’ metric also found that
Design C is the worst design. Finally, the boundesh metric found that all designs are
equivalent. In contrast, for specific loading sitoas, our Capacity metric found that

Design C is the optimal design.
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Figure 60: JPEG-GIF Capacity Plane

Now consider other demand and Capacity planes.r&ig0d shows Capacity and
demand curves as a relationship between the prioduct JPEGs and GIF images. On
the independent axis is the production of JPEGs @mdhe dependent axis is the
production of GIF images. Note that we show in figsre the maximum demand curve
only. Also note that we include all Capacity cureéPesign A, Design B, and Design C

on the same figure.
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Now consider the demands generated from anothgreuseenario shown in Figure
56 (a businesswoman scenario). Again, we used diiM Dnethod to generate all
demands exposed to the system due to this scei&eo. we fitted these demands using
the maximum demand curve. Similar to Figures 56ugh 58, in Figures 60 through 62
we overlay the capacity curves of Design A, Dedigrand Design C over the demand
curve generated by the businesswoman scenario.g@alrfrom this experiment is to
show how optimal design ranking changes as receiemslands change. Here, we view
only one plane of the demand surface: the JPEGsptare. Note that by looking at the
maximum demand curve itself, you can see that aradterizes an unbalanced system
loading when most demands are either JPEGs offilest This is intuitive because the
content of the webpages browsed in this scenarather text (such as the content of
Twitter, WSJ, or Gmail) or image (such as the conté Facebook, CNN, or BBC).
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Figure 61: Overlay Demand Curves Over Design “A’s'Capacity Curve
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Figure 61 and Figure 62 show that the Capacityedigh A and Design B almost fits

all demands. The only difference between thesegdess that Design A has an excessive

Capacity that is not needed by this type of demadihis excessive Capacity may cause

an overhead on the system, such as more powerrmoeasu

Figure 63 shows that Design C is the worst desapabse it does not fit all demands,

while for some demand combination it has an exeges€iapacity. Thus, the optimal

design for this type of demand is Design B. Intengsy, the Capacity curve of Design B

is a convex that favors unbalanced loads; thiarin mmatches the type of demand.
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Figure 63: Overlay Demand Curves Over Design “C’s'Capacity Curve

Here, we find four interesting observations froras experiments aside from which

design fits the demand curve more.

The Capacity curve (JPEG—-GIF plane) of Design &adsncave that
approaches the shape of a straight line. Thisdause Design C is a
homogeneous processor (it has six DSP core prasgssal both demand
types (JPEGs and GIF) are of the same type oftfadisshare some common
processing requirements in, for example, the way #re migrated, access
shared resources, etc. Thus, production of diftgamtypes can be replaced
for each other at almost the same rate.

Second, the shape and magnitude of the curveseplane are not the same
as on other planes. For instance, when producifg3Bnly, Design A and
Design B produced fewer JPEGs in the JPEG-GIF mlanmgpared with the
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production of JPEGs in the JPEG—text plane. InrashitDesign C produced
more JPEGs in the JPEG-GIF plane, again compatédhé production of
JPEGs in the JPEG—text plane. The presence obihiy &0 process an
additional input stream results in an overheadnenehe absence of data on
that input stream.

» Third, demand curves also have different shapdgdaal the type of the
system loading. This in turn makes shape and magminatching between
Capacity and demand curves possible.

* Finally, the Capacity curves (JPEG — GIF planed)edign A and Design B
are asymmetric (or not ideal), exhibiting multimbslaapes. The asymmetry
is caused when multiple overheads interact dukd@xistence of
heterogeneous cores that process a combinatiogt@fdgeneous inputs.
Overhead occurs when multiple processors are pdilysar logically joined
in the formation of a system and include, for exEnpommunications
(busses and networks), scheduling, protocols, mgstaaring, I/O sharing,
and caching. Next, we analyze the effects of oxa&dhon the Capacity of the

system.

7.3.3 Overhead Effects
Overhead has long been thoroughly studied in coemparchitecture in the essence of
performance facilitation. While a primary goal Haen to reduce or hide the effects of
overhead, future successful CHM design may welliregmore exposure of the effects
of overhead in specific situations. Examples fat thre: the inclusion of more caches at
the expense of other system resources, increasggdmmunication bandwidth at the
expense of area and power consumption, and dewglopore computationally complex
schedulers in terms of processing time and memuages We have studied in Chapter 5
the cost of overhead on system optimization. Weetedso modeled overhead in section
5.2, including different elements that contribuddle overall system overhead.

Figure 64 shows both the Capacity curve of Desigrardl the overhead curve
generated, while measuring the same Capacity ctaeh curve has different scale. The

scale for the Capacity curve is on the left, wihile scale of the overhead is on the right.
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We use normalized values of overhead to show havh@ad varies along with different

combinations of demands.
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Figure 64: Capacity vs. Overhead

Note here several interesting observations:

* Overhead increases when different types of inpist.eior instance, the
overhead incurred due to optimizing the systemetoahds that are
homogeneous (either JPEGs or GIF images) is relgtigwer than that of
other demands. Optimizing different types of jobeaurrently costs more
because they require more complex optimizatiordgliteon to exposing
different requirements on the processing, commuioicand storage
resources.

* The cost of optimizing the system to produce oRiGs is more than the
cost of optimizing the system to produce only Gifages.

* Increasing the number of jobs on the system ineeti®e incurred overhead.
Note that as we are producing more JPEGS, the eadrimcreases.

* More interestingly, for some combination of demarm&rhead increases
exponentially because the system at these poiffessfrom communication
and memory contention due mainly to task migratibote that the choice of
doing task migration at these points hurts theesyst Capacity because of the
incurred overhead; the gained performance did wetamme the increase in

the overhead.
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Note that the incurred overhead differs for the sa@®mt of tasks when architectures

change. For instance, Design C incurs less overfsamvn in Appendix C) compared

with Design A and Design B, especially when prorgsa homogeneous input, because

it is a homogeneous processor.

7.3.4 Experiments Discussion

Here, we summarize some observations from our erpats:

Optimal design ranking is a function of the typergfut demands. Our initial goal
was to show how future multicore mobile devicesentvbe designed to
workloads that result from specific usage scenafopursuing this goal, which
we partially fulfilled, we found that single-valug@arformance metrics lead to
ambiguity because they do not include the naturgarkloads in their
calculations. By developing the Capacity metric,mare able to integrate it with
the definition of single-user usage scenarios deoto identify optimal designs
for these scenarios.

Different combination of demand types in the sapenario have different
optimal design ranking. This is intuitive and falisder the category of the
previous point in this list.

Overhead is a key feature in design. We have &lswis in these experiments
how overhead affects the shape of the Capacityecaind the system performance
overall. A solid model of overhead modeling is rexch addition to the Capacity
curves in order to make the right optimization dixis.

Power, area, and resource utilization should bécithp considered. They are
already implicitly considered because there arddito the numbers and types of
processors considered in our examples. It may mafha¢ several designs match
the same demand, the optimal design now is thel@teonsumes less power
and utilizes system resources more efficiently gicample.

In this chapter we illustrated why single-valuedfgenance metrics fail to evaluate the

performance of the CHMs that simultaneously proteterogeneous outputs or demand

modes. In contrast, our Capacity metric was ablénd optimal designs for specific

usage patterns, or Workload Specific ProcessordA8)NS
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Chapter 8

Conclusions and Future Research Directions

As for accomplishments, | just did what | had
to do as things came along.
Eleanor Rooseilt

In this work we introduced a Capacity metric to laate the performance of Chip
HeterogeneousMultiprocessors (CHMs) that simultaneously procdmterogeneous
outputs. Our metric is motivated as the successothtoughput via an analogy to
automobile pipelines. Our Capacity curves are expartally generated via measurement
and are generally not linear when two input streamnesprocessed. Thus, we showed that
distillation of multi-type production over a givelesign (plant) to a common work unit,
an average, precludes the designer from identifgesges in which the system has more
Capacity than the average or cannot meet the peeldaverage production, in which the
non-linear curves rise above or fall below theighaline (average) that occurs when a

common work unit for throughput is used.

8.1 Summary of Contributions

We make several contributions in this work to idgnbptimal designs or WSPs. We
classify these contributions into primary and selaoy ones. Our primary contribution is
the development of the Capacity metric.

Our metric is motivated as the successor to thrpughia an analogy to automobile
pipelines that produce single types of cars as emetpwith the Capacity of plants that
produce multiple types of cars, using multiple pipes. We developed the Capacity
metric as a curve in two dimensions (or a surfacehigher dimensions) with
dimensionality related to the number of input stieaor channels, processed by the
CHM. These curves give the designer the abilityutalerstand the effects of adding
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architectural features on the performance of a aterpsystem that simultaneously
processes (produces) multiple output streams. fgigntly, these curves do not result in
linear relationships, as the demand for differemdpction types varies. Distillation of
rates of production over multiple production tygesa common work unit, such as
automobiles, instructions, tasks or programs, tedul a linear relationship as rates of
production of more specific types within those gatées varies. But if a straight line was
superimposed on any of our Capacity curves, theCapacity of the plants (designs)
being examined will either underestimate the tragdcity of a given plant for a given
set of production values, or it will overestimatbawthe plant is capable of.

We illustrated some fundamental Capacity forms simalved how they may be used
as the basis for evaluation and analysis of Capacitves generated via measurement.
Our overall goal is to motivate the development aisg¢ of the Capacity metric for
performance evaluation of modern CHMs; specificallye advocate investigation into
how shapes of Capacity curves can be used to fglagsitems and identify how designs
features can be manipulated in order to changstthpe of the Capacity curves. In order
to achieve this, we showed that Capacity surfae@e lproperties of both magnitude and
shape, and each is required in order to understankioad performance.

This work also makes the following secondary ctwitions that made our primary

contribution possible:

1) Three Foundations at the Chip Heterogeneous Cexel
We developed three foundations that we used tololeveur Capacity metric: a CHM
model, a multimedia cell phone example, and a WEB#sting models for single core
computers (i.e. those relying on an Register Teansevel (RTL), Instruction Set
Architectures (ISAs), and accompanying benchmades)not be used to develop our
Capacity metric because: (1) RTL key design featule not capture those features of
CHM designs, (2) individual benchmarks do not aately model the workload of
single-user mobile devices, and (3) there is ngtlgach an ISA for CHMs. Thus, we
needed to develop:

a) A multimedia cell phone example that permits thadmnarking of single-user

mobile computing devices, to replace traditionaidbenarks,
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b) A CHM model equivalent to RTL for the types of atebtures that are projected
to be in future mobile devices, and

c) A WSP. WSPs are to CHMs is what an ISA is to an RFart of our thesis is
that WSPs more correctly capture what mobile comgudlevices do and that
they result in categorically different approachesptocessor design. WSPs are
enabled by the presence of collections of individuser initiated job-style

applications that arise as users interact with icar mobile devices.

2) Workload Modes Definition and Identification

We defined workload modes, derived from modelsinfle-user access patterns, as a
means of design orientation and performance opéatioz for future single-user CHMs.
Through experimentation on our cell phone exampk @dditional analyses, we found
that a workload classification model that leverageskload models of user patterns can
outperform the more costly Hidden Markov Model (HMNDur ultimate goal is to show
how the design of multicore architecture to moalsingle-user usage patterns and their
associated workload modes will be necessary ascoinaplexity of applications and
architectures grow in future designs. Thus, we adi® WSPs as a new means of
orienting single-user CHMs.

We also developed a Workload Classification Mod®ICM) to identify workload
modes at runtime. We analyzed and evaluated the \@@contrasted it to a HMM. We
included experimentation on our cell phone examplestrating how WCM is, on
average, 34 times more time efficient and 83% nspece efficient than HMM is, while
improving overall performance by an average of 1%¥ being, on average, 56% more
energy efficient. We found that even sub-optima 0§ WCM can outperform HMM,

further supporting the need for design-time worllozodels.

3) Capacity Metric Analysis Foundation

In addition to the development of the fundamentab&ity curve shapes, we established
a foundation for analysis of the Capacity curvestlsat the impact of architectural
features in a CHM may be better understood. Inrai@éo this, we developed a Demand
Characterization Method (DCM) that characterizesdbmand of a specific usage pattern

in the form of a curve (or a surface in generaly.d®ing this, we were able to overlay
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demand curves over Capacity curves of differenthitectures to compare their

performance and thus identify optimal performingides.

8.2 Future Research Directions

This research focused on the development of a refonnance metric, Capacity, to
correctly evaluate the performance of the CHMs pinatess workloads. The overall goal
is to identify optimal designs for specific usagdterns that result from individual users
accessing multicore mobile devices; the basis wed ts define these designs was WSPs.
One of the key challenges in this research is¢h&bility of our metric with the growing
number of inputs and processing elements. Heresumemarize two key challenges for

future work.

8.2.1. Multi-Dimensionality Analysis
The Capacity metric results in a surface with nafisions modeling the interaction of n

multichannel streams as they compete for resouBig$ace analysis needs to be done in
order to extract features in a feature vector. tFeatnalysis is necessary in order to give
insight to designers about the cause and effedesign features in a CHM to include
processor choice, communications design, and stredacisions. Future systems are
expected to have many channels of inputs, and gra@pbomparisons of the Capacity
metric will not scale beyond three dimensions. Wiiile breakdown of performance into
multichannel input streams is required in orderutwerstand how real user demand
affects the design of CHMs, this breakdown musmaltely result in a means by which
numerical analysis can be used as a basis of casopdor performance.

8.2.2 User Profiling
Since Capacity metric was originally emerged fradme need to optimize CHMs to

workload modes that result from individual usersmigsnulticore mobile devices, single-

user usage profiling is essential for discoveriagl usage patterns or workloads. In this
way, Capacity curves can be used to identify faheaser where performance does not
meet, exactly matches, or excessively meets hidsnaed by how much. In Chapter 4,
we performed an extensive survey of existing methmd user profiling that can be used

in that regard.
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Appendix A

Capacity Curves

In Chapter 6, we focused on two input types, JPBG text. Here, we analyze more

results of our Capacity metric by including a thingut type, GIF images. Thus, we show

how different architectural features interact witle type of input by analyzing the

Capacity curvis shape and magnitude. Our goal is to have moighingbout the effects

of these features and to be able to classify teffeets into patterns.

Here, we summarize some interesting observatioos flour experiments by

comparing the results in this Appendix to thoseCbfapter 6. We mainly compare the
Capacity curves of GIF-text, JPEG-GIF, and JPEG-{Elxe JPEG—text curves are
shown in Chapter 6 and the GIF—text and JPEG—Gi¥esuare shown in this Appendix.

Our observations give more insight about the effetthe input type on the Capacity.

Burst Width JPEG—-GIF inputs took the most advantage fromeasing the
burst width, compared with JPEG—text and GIF-textreasing the burst
width favors unbalanced loads. Thus, since GIFHMEG input types have
approximately similar communication and memory asqaatterns, wider
widths favor this type of inputs more.

Communication BandwidtdPEG—GIF inputs took the most advantage from
increasing the communication bandwidth as well bsedheir processing
requires more 1/0O accesses. Because both input tygee approximately
similar performance on different processor typles,shape of the curve
approaches a straight line.

Processor Number and Tygder the JPEG—GIF inputs, changing the number
and type of processors, results almost in the s2apacity curve shape
because the selected processor types performavadbth task types. The

minor change in the shape happens because offtaeedt overhead values
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that result from the interaction of different atelstural features. However, the
magnitude of the curve changes according to thebeumf processors.

Cache Memory Sizéncreasing the cache memory size has shown more
advantage for JPEG—GIF because their processingresgnore 1/0 accesses.
However, because GIFs are animated, they took ashrantage when cache
size increased, making the Capacity curve shifatovthe GIF axis.
Scheduler Typadynamic scheduling matters only when we have
heterogeneous inputs. Because JPEG-GIF inputs@elmmogeneous than
GIF-text and JPEG—text inputs, dynamic schedulhayws less advantages
for the JPEG—-GIF, compared with the static schedAlso note that the
incurred overhead that is shown in the form ofrthdtimodality of the
Capacity curve shapes is greater in the GIF-textI®EG—text inputs
because they are heterogeneous.

Time Interval the ratio of the Capacity to the time intervaidéh has
increased in the JPEG-GIF plane compared with thetéxt and JPEG—text
planes. As pointed out before, this ratio incredsesnbalanced loads. Since
GIF and JPEG have approximately similar performancéhe different
processor types on chip, the ratio approaches teear, resulting in an

almost straight-line Capacity curve shape.

Again, note that when multiple architectural feagimteract, multimodal shapes

result.
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Figure 65: Capacity When Burst Width Increased
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» Burst width feature
Figure 65 shows two Capacity curves of a CHM déferated by increasing the bus burst
width from 16B (B1) to 32B (B2). The CHM consists2§s, 4D, and 6M processors and
128K of L2-cache memory. In the GIF-text Capaciiyve, as the bus’s burst width is
changed from 16B (B1) to 32B (B2), the system clearfgom favoring balanced loads to
unbalanced loads. Whereas, in the JPEG-GIF Capaugitye the architecture favors
balanced loads. Also note that doubling the bursithwresults almost in the double

Capacity.

* Processor type and number features

Figure 66 shows two Capacity curves for two différarchitectures (Arch2 and Arch3).
In Arch2, we increased the number of GPP and Medimessors, while reducing the
number of DSPs. Note that adding this feature fatbe mix of text and GIF but not
their mix. The slope of the Capacity curve of Arah@ps faster than that of Archl. DSP
processors have medium performance for processitigtext and GIF thus they perform
better than GPP and Media when a mix of text arfé i&being produced. On the other
hand, both architectures show almost same perfarenarnen processing JPEGIF;

this is because both types of jobs require the sproeessing, but differ in term of

memory requirements. GIF images are animated tieysrieed more memory accesses.
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Figure 66: Capacity When More GPP and Media Added ad DSPs Reduced
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In Figure 67 we show the effects of increasingrtbmber of Media processors while
reducing the number of DSPs. The figure shows twpaCity curves for architectures:
Arch3 and Arch4. Compared with Arch4, the numbeMeafdia processors in Arch3 has
increased by two times, while reducing the numbhé&®Ps by half. Note that adding this
feature favors GIFs and text since Media procegser®rm better than DSPs in GIF and
text processing. Note that the two curves differ jost in terms of magnitudes, but also
shapes. The slope of the Capacity curve of Archipslrfaster than that of Arch4,

resulting in a convex shape.
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Figure 67: Capacity When More Media Processors Addkand DSPs Reduced

For the JPEG-GIF Capacity curve, again both praces®dels perform the same for

both job types, but JPEGs have less memory reqaimesbecause they are static images.

e Cache size feature
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Figure 68: Capacity When Cache Size Is Increased ¢81e Processors)
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Figure 68 shows the Capacity of the CHM of Figusenhen the cache size increases by
1.5 times. As a consequence, the chip area hasased. The figure shows too little

improvement in Capacity because the selected wgrket sizes of the text, GIF, and

JPEG tasks are small. However, this feature fa@ls and JPEGs more since their

processing can be considered to be internally d@nd more than text processing.

Figure 69 shows two Capacity curves for two diffe¢rarchitectures (Archl and
Arch2) differentiated by increasing the cache d$ipen 128K to 192K at the expense of
the number of processors on the chip. Interestjrigly Capacity of both architectures to
produce only text files is the same then the cudresrge significantly. In general, Arch2
shows major performance improvement because tleetsdlsize of working data sets of
tasks is larger. Thus, the increase in the cacdteslslps in improving the performance.
Note that in the case of producing text only, iasieg the cache size does not result in
any improvement because the working set size dffiies is already smaller than GIFs.

Again, increasing the cache size favors the proouaif task types with larger working

data sets.
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Figure 69: Capacity When Cache Size Increases (LeBsocessors)
For the JPEG-GIF Capacity curve, capacity has asa@ almost equally for both tasks

because again they perform equally when executediffarent architectures; only GIFs

need more memory accesses because they are animated
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* Communication bandwidth feature
Figure 70 shows the Capacity of the CHM of Figurenhen the overall communication
bandwidth increases. C1 is 0.4GB/s and C2 is 1.2GBie two curves in the GIF-text
Capacity curve overlap at the beginning and thewerde. This occurs because
communications Capacity affects GIF more than téuth respect to a given amount of
text processing, GIF processing can be considerdet tinternally I/O bound more than

text is with respect to a fixed amount of JPEG pssing.
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Figure 70: Capacity When Communication Bandwidth Ircreased

» Scheduling feature
Figure 71 and Figure 72 show two Capacity curvesguswo different chip level
schedulers: dynamic and static. The CHM consist2@f 4D, and 6M processors and
128K of L2-cache memory. The two figures are dédfeérated by the selected working set

size; it is smaller in Figure 71 and larger in Feyid2.
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Figure 71: Capacity of Different Schedulers (SmalleWSS)
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Figure 71 shows that both schedulers resultedmosil the same Capacity curves,
because the working set size is small, which in taakes task migration occur less. In
contrast, when using larger working size sets,din@amic scheduler outperforms the
static scheduler, as shown in Figure 72. Note ftiytamic schedulers result in

multimodal shapes because of the incurred overhead.
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Figure 72: Capacity of Different Schedulers (LargetWSS)

* Time window interval
Figure 73 shows the Capacity when the time windowhich we measure Capacity is
doubled. Note that doubling the time window doesresult in double Capacity because
of the overhead generated due to resource shamshguaning heterogeneous concurrent
tasks. Again, increasing the window of time favdmiemogeneous inputs. The
heterogeneity of inputs incurs more processing, mamcation and storage memory
overhead. Note that for the JPEG—GIF Capacity ¢cudwabling the time interval results
almost in double capacity even for the mixes ofjobhis is because both tasks perform

almost the same on all processors.
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Figure 73: Capacity When the Time Window Doubled
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Appendix B

3-D Capacity Surfaces

When a CHM is evaluated for its ability to proc@sshannels of input, an n-D Capacity
surface results. The way we analyzed an n-D Capaugiface in this thesis is by holding
one input constant at a time. In that way, dimamaity can be reduced. For instance, a
3-D surface can be always reduced to a collectio@-D curves. In general, an n-D
surface can always be reduced to a collectionnef){D surfaces, which can then be
analyzed as collections. For the sake of complstenee extend our example of Chapter
6 to include three input channels: JPEG, text, Fliagh frames. Since 3-D surfaces can
be graphically analyzed, we view the Capacity of xample by looking at the shape of
the surface. We use this example to point out howamalysis of high dimensionality is
effective.

Future systems are expected to have many chanrielapots, and graphical
comparisons of the Capacity metric will not scaégdnd three dimensions. While the
breakdown of performance into multichannel inputeats is required in order to
understand how real user demand affects the dedigpHMs, this breakdown must
ultimately result in a means by which numerical lgsia can be used as a basis of
comparison for performance. Sammon Mapping [150] loa used to transform higher
dimensional spaces into smaller ones. Kiviat diagrdl151] can be used to facilitate
depiction of the Capacity metric in higher dimemsioln computer architecture, little
research has been done on visualization of sinomatesults, because computer
architects usually distill the performance of diéfiet architectures into single values.
Tools that can be used to explore an n-dimensipagbrmance data [152] aim at the

clustering and reduction of multidimensional periance data [129].
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Figure 74: 3-D Capacity Surfaces

Figure 74 shows two different views of two 3-D Ceipasurfaces that result when
the same heterogeneous CHM is differentiated byeasing the bus burst width from
16B (B1) to 32B (B2) and is evaluated for its dpito process one more demand stream,
or frames such as those found in Macromedia Fldete that the shapes of the curves on
the JPEG—-text plane are not the same as the pseWapacity curves, even in the
absence of the frames channel. The presence aibihigy to process an additional input
stream results in overhead, even in the absendatafon that input stream. The convex
and concave shapes in the Text-Frames plane, showigure 74(b), suggest that the
system changes from favoring balanced loads tolanbed loads, with respect to frames
and text. But Figure 74(a) suggests that the peitg®f text with respect to a variety of
combinations of JPEG and frames takes on a moedizéd, linear, shape, regardless of
burst width. The JPEG—frames plane (not includadiws asymmetry in system Capacity
curves. All of the shapes suggest that multipldoi@c contribute to a less than ideal
shape, overall. In general, the more factors tli@ctthe interaction of multichannel
inputs, the less regular the resulting Capacityesiwill be and the more modalities will
contribute to those irregularities. While 3-D seda can be graphically analyzed, our
analysis of higher dimensionality by breaking ab surface into a collection of its 2-D

curves is more applicable.
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Appendix C

Overhead Modeling

We have studied in Chapters 5 through 7 the effeftsoverhead on system
optimization. Here, we include a detailed analydiesverhead. We include the different
values of overhead incurred due to different comtbams of inputs, and provide
reasoning for why multimodal shapes result. Wed#idi overhead into its main elements
modeled in section 5.2: (1) chip level schedulihgttincludes collecting the GCS and
making and sending scheduling decisions, (2) caioierin memories and buses, (3)

cache misses, and (4) the overhead of task migratio

Table 18: Overhead of the System in Figure 64

Overhead (Mega Cycles)
Workload Mode ]
(JPEGs, GIFs) | Chip Level | Global Resource | Cache Task

Scheduling Contention Misses| Migration
(0,10) 0.342 0.1 0.118 0.213
(3.8) 0.512 0.17 0.304 0.436
(6,9) 0.444 0.192 0.264 0.308
(9,7) 0.433 0.236 0.346 0.501
(12,5) 0.489 0.237 0.367 0.68
(15,4) 0.549 0.274 0.89 0.502
(18,6) 0.512 0.276 0.233 0.491
(21,2) 0.501 0.237 0.205 0.399
(24,0) 0.449 0.201 0.169 0.377

Table 18 shows the overhead for the Capacity cofvieigure 64. Note how these
values incurred due to the arrival of a specifimbmation of demands are tied to the
shape of the Capacity Curve on Figure 64.
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