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We ask the question: how can Web sites and data aggregators continually release updated statistics, and
meanwhile preserve each individual user’s privacy? Suppose we are given a stream of 0’s and 1’s. We propose
a differentially private continual counter that outputs at every time step the approximate number of 1’s seen
thus far. Our counter construction has error that is only poly-log in the number of time steps. We can extend
the basic counter construction to allow Web sites to continually give top-k and hot items suggestions while
preserving users’ privacy.
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1. INTRODUCTION

Web sites such as online retailers, search engines, and social networks commonly pub-
lish aggregate statistics about their users to realize valuable social and economic utili-
ties. Moreover, the published statistics are continually updated over time as new data
arrive. Such practices are ubiquitous and we name a few examples below. Sites such
as Amazon, IMDB, Delicious, and Flickr recommend popular items or content to users
to enhance their browsing experience and engage their interests. Search engines such
as Google and Yahoo help a user to auto-complete her search query by suggesting the
most frequent search terms matching the prefix specified by the user. During political
campaigns, Web sites survey the population and continually update the support rates
for candidates.

Releasing aggregate information about users may seem harmless at first glance.
However, previous work has shown that such statistical disclosures can expose sen-
sitive information about an individual user [Dinur and Nissim 2003; Dwork and
Yekhanin 2008]. In particular, sites that continually update the published statistics
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over time can give even more leverage to the adversary and result in more severe
privacy leakage [Calandrino et al. 2011].

In this article, we ask the question “how can we guarantee the users’ privacy when
a Web site must continually publish new statistics as new data arrive?” Indepen-
dent from our work, Dwork et al. also consider essentially the same problem, and
they phrase the problem as “differential privacy under continual observation” [Dwork
2010a; Dwork et al. 2010a, 2010b].

The setting we consider is different from the traditional setting in which differential
privacy was studied. The traditional setting assumes a static input database, and a
curator who must answer k interactive queries or publish some sanitized statistics
of the database non-interactively. In our setting, the input database is dynamic and
evolves over time, and a mechanism must update the published statistics as new data
items arrive. Therefore, traditional differentially private mechanisms either fail to
apply directly to our setting, or result in an unsatisfactory loss in terms of utility or
privacy if applied naively.

1.1. Contributions

Differentially private continual counter with poly-log error. We consider the continual count-
ing problem. Assume that the input stream σ ∈ {0, 1}N is a sequence of bits. The
bit σ (t) at time t ∈ N may denote whether an event of interest occurred at time t, for
instance, whether a user purchased an item at time t. At every time step t ∈ N, the
mechanism must output an approximate count of the number of 1’s seen thus far.

We design an ε-differentially private continual counter with small error. Specifically,
for each t ∈ N, with probability at least 1 − δ, we guarantee O( 1

ε
· (log t)1.5 · log 1

δ
) error.1

In an independent work by Dwork et al. [2010a], they also show a similar upper bound
of O( 1

ε
· (log t)1.5) (omitting the δ term). The above upper bound is almost tight, since

Dwork et al. [2010a] show that any ε-differentially private mechanism will for some
stream, with probability at least δ, make an error of at least �( 1

ε
(log T + log 1

δ
)) at some

time before T.
Our mechanism achieves time unboundedness, that is, the mechanism does not re-

quire a priori knowledge of an upper bound on the time for which it will run, and
provides guarantees even when it is run indefinitely. This represents an improvement
over the work by Dwork et al. [2010a]; to the best of our knowledge, their mechanism
needs to know an upper bound on the number of time steps.

Pan privacy. Dwork et al. first introduced the notion of pan privacy [Dwork 2010a;
Dwork et al. 2010b]. A mechanism is pan private if it can preserve differential privacy
even when an adversary can observe snapshots of the mechanism’s internal states, for
instance, in subpoenas. We show how to modify our mechanism to achieve pan privacy,
without incurring any loss in the asymptotic guarantees (Section 6).

Consistency. Some applications require that the mechanism is “consistent,” that is,
there must exist a valid stream that agrees with the output of the mechanism. This
means that the mechanism must output integer counts, and furthermore, the count
must increase by either 0 or 1 with each time step. In Section 5, we show how to
transform our mechanism to achieve consistency such that with high probability, for
all time steps t the resulting error bound is O( 1

ε
· (log t)2.5).

1For large values of t, we can actually get a better bound O( 1
ε

· (log t)1.5 ·
√

log 1
δ
). To get a high probability

statement, we can set δ := 1
poly(t) and the corresponding error becomes O((log t)2/ε).
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Applications. Our continual counter construction has immediate practical applica-
tions. As mentioned earlier, it is a common practice for Web sites to suggest to users
the most popular movies, news items or photos. In Section 7, we show how Web sites
can continually make such top-k or hot items suggestions in a differentially private
manner. Moreover, we show that our techniques can be generalized to construct a
differentially private mechanism that answers multidimensional range queries.

The counter is also an important primitive in numerous data streaming algorithms
[Demaine et al. 2002; Manku and Motwani 2002; Metwally et al. 2005]. Our differ-
entially private continual counter is an initial step towards designing a broad class of
streaming algorithms that continually report outputs over time.

1.2. Related Work

Most closely related work. Independent from our work, Dwork et al. show a similar
result in a recent paper [Dwork et al. 2010b]. They also construct a differentially pri-
vate continual counter with error O( 1

ε
· (log t)1.5) where t is the number of timesteps.

Moreover, they show a lower bound of �(O( 1
ε

· (log t)), indicating that the upper bound
is almost tight. A preliminary version of the result was revealed at the SODA’10 con-
ference [Dwork 2010a] in an invited talk by Dwork. The preliminary result contains
a slightly looser upper bound: a differentially private continual counter with error
square root in the number of 1’s seen thus far.

Xiao et al. [2010] use wavelet transforms to achieve differential privacy for
databases. Although their motivation is different from ours, their construction uses
a similar principle to our Binary Mechanism (Section 3.4), and hence they can also
achieve the same error bounds as this paper and Dwork et al. [2010b]. However, they
only consider the offline setting. They extend the wavelet framework to multidimen-
sional databases, while we extend our Binary Mechanism for the same application in
Section 7 to achieve the same error bounds. In terms of error bounding techniques,
they consider the variance of the error involved, while we prove comprehensive high
probability statements concerning the error using measure concentration techniques.

The offline setting of our problem is a special case of linear counting queries (each
of a query is simply the sum of bits from a prefix of the stream). Li et al. [2010] use
linear algebra techniques to answer linear queries in a differentially private manner.
When applied to our problem, their techniques also achieve the same error bound.

Dwork et al. [2010a] recently propose the notion of pan privacy, that is, how to
achieve differential privacy even in the presence of intrusions, in which the adversary
is allowed access to the mechanism’s internal states. Dwork et al. used the notion of
pan privacy in the continual counter mechanism [Dwork 2010a; Dwork et al. 2010b],
and showed how to make their counter mechanism resilient against a single unan-
nounced intrusion. Inspired by their techniques, we also convert our mechanism to
a pan private version that is immune to a single unannounced intrusion or multiple
afterwards announced intrusions.

Differential privacy in the traditional setting. In the traditional setting, a trusted curator
who holds a large dataset must respond to queries interactively or publish sanitized
statistics about the data noninteractively. The notion of differential privacy was first
proposed and studied by Dwork [Dwork 2006; Dwork et al. 2006]. An extensive liter-
ature has since emerged, studying the different tradeoffs between utility and privacy.
To better understand the motivation and state-of-the-art of this line of research, we
recommend the readers to these excellent survey papers by Dwork [2008, 2009, 2010b].

Researchers have also applied theoretical results in differential privacy to real-
world applications. For example, McSherry and Mironov show how to build privacy
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into the Netflix database published for the Netflix contest [McSherry and Mironov
2009]. Korolova et al. [2009] show how to release search logs and click logs privately.

Consistency. Hay et al. [2010] consider boosting the accuracy of differentially pri-
vate histogram via consistency. Their idea is to first construct a differentially private
output, and release the closest output that satisfies some consistency rules (such as
monotonicity). They show that this strategy can reduce the error for some cases where
the output is a sorted sequence of numbers. However, in their application, the sensitiv-
ity of the output is constant, which is not the case for our problem, because changing
the first bit of the stream will change the answer for every time step. Our approach to
achieve consistency is different. We first use the Binary Mechanism to achieve low er-
ror, and in Section 5 we give a simple rounding procedure to achieve consistency with
the same error bound.

Attacks against privacy. A complementary line of research is attacks against pri-
vacy. Narayanan and Shmatikov [2008] show how to de-anonymize the Netflix dataset.
Jones et al. [2008] show how to break the privacy of query log bundles. More relevant
to this work, Calandrino et al. [2011] recently demonstrate that by observing continual
updates from Web sites such as Amazon over a period of time, an adversary can learn
individual user behavior at a fine level of granularity. Our work is partly inspired by
the problem they expose.

2. PRELIMINARIES

2.1. Continual Counting Mechanism

We consider streams of 0’s and 1’s. Formally, a stream σ ∈ {0, 1}N is a bit-string of
countable length, where N := {1, 2, 3, . . .} is the set of positive integers. Specifically,
σ (t) ∈ {0, 1} denotes the bit at time t ∈ N. We write [T] := {1, 2, 3, . . . , T} and σT ∈
{0, 1}T is the length T prefix of the stream σ . We will use the term item to refer to a bit
in the stream.

At every time t, we wish to output the number of 1’s that have arrived up to time t.

Definition 2.1 (Continual Counting Query). Given a stream σ ∈ {0, 1}N, the count
for the stream is a mapping cσ : N → Z such that for each t ∈ N, cσ (t) :=

∑t
i=1 σ (i). We

write c instead of cσ when there is no risk of ambiguity on the stream σ in question.

We now formally define the notion of a continual counting mechanism which contin-
ually outputs the number of 1’s seen thus far.

Definition 2.2 (Counting Mechanism). A counting mechanism M takes a stream
σ ∈ {0, 1}N and produces a (possibly randomized) mapping M(σ ) : N → R. More-
over, for all t ∈ N, M(σ )(t) is independent of all σ (i)’s for i > t. We can also view M(σ )
as a point in R

N. When there is no risk of ambiguity on the stream σ in question, we
drop the dependence on σ and use M(t) to mean M(σ )(t).

Definition 2.3 (Time-bounded Mechanism). A counting mechanism M is un-
bounded, if it accepts streams of indefinite lengths, that is, given any stream σ ,
M(σ ) ∈ R

N. Given T ∈ N, a mechanism M is T-bounded if it only accepts streams
of lengths at most T and returns M(σ ) ∈ R

T . In other words, the mechanism needs to
know the value T in advance and only looks at the length T prefix of any given stream.

We would like the mechanism to be useful, that is, its output should well approxi-
mate the true count at any point in time. We formally define the notion of utility as
follows.
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Definition 2.4 (Utility). A counting mechanism M is (λ, δ)-useful at time t, if for
any stream σ , with probability (over the randomness of M) at least 1 − δ, we have
|cσ (t) − M(σ )(t)| ≤ λ. Note that λ may be a function of δ and t.

Remark 2.5. Our definition of utility covers the usefulness of the mechanism for a
single timestep. A standard union bound argument can be applied if the utility for
multiple timesteps is required.

2.2. Differential Privacy

Intuitively, a mechanism is differentially private if it cannot be used to distinguish
two streams that are almost the same. In other words, an adversary is unable to de-
termine whether an event of interest took place or not by observing the output of the
mechanism over time. For example, the adversary is unable to determine whether a
user purchased an item at some time t.

Definition 2.6 (Differential Privacy). Two streams σ and σ ′ are adjacent if they dif-
fer at exactly one time t. A (randomized) counting mechanism M is ε-differentially
private (or preserves ε-differential privacy) if for any adjacent streams σ and σ ′, and
any measurable subset S ⊆ R

N (or S ⊆ R
T for T-bounded mechanisms), Pr[M(σ ) ∈

S] ≤ exp(ε) · Pr[M(σ ′) ∈ S].

Remark 2.7. In Dwork et al. [2010b], a stream of objects from some set X are con-
sidered. In their setting, a stream σ is a point in XN. For user-level privacy, two
streams are considered to be adjacent if they differ only in the presence or absence
of any number of occurrences of some element x ∈ X . For event-level privacy, two
streams are adjacent if they differ at only one time step. Hence, in this article, we
consider event-level privacy.

2.3. Tools

In the design of differentially private mechanisms, the Laplace distribution is often
used to introduce random noise [Dwork 2006; Dwork et al. 2006]. We use Lap(b ) to
denote the Laplace distribution with mean 0 and variance 2b2. Its probability density
function is x �→ 1

2b exp(−|x|
b ).

Dwork et al. showed that if we mask the true answer of a query with Laplace noise
proportional to the sensitivity of the query function, such a mechanism preserves dif-
ferential privacy for static databases [Dwork 2006; Dwork et al. 2006]. This is stated
formally in Fact 1.

Fact 1 (Laplace Distribution Maintains Differential Privacy). Let a, b ∈ R and |a −
b | ≤ �. Let γ ∼ Lap(�

ε
) be a random variable having Laplace distribution. Then, for

any measurable subset S ⊆ R, Pr[a + γ ∈ S] ≤ exp(ε) · Pr[b + γ ∈ S].

In the constructions that we propose, the noise may not come from a single Laplace
distribution, but rather is the sum of multiple independent Laplace distributions. We
now derive a property of the sum of independent Laplace distributions.

LEMMA 2.8 (SUM OF INDEPENDENT LAPLACE DISTRIBUTIONS). Suppose γi’s are
independent random variables, where each γi has Laplace distribution Lap(bi). Sup-

pose Y :=
∑

i γi, and b M := maxi b i. Let ν ≥
√∑

i b2
i and 0 < λ < 2

√
2ν2

b M
. Then, Pr[Y > λ]

≤ exp(− λ2

8ν2 ).
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PROOF. We use moment generating functions in a Chernoff-like argument. For each
γi, the moment generating function is

E[exp(hγi)] = 1
1−h2b2

i
, where |h| < 1

bi
.

Using the inequality (1−x)−1 ≤ 1+2x ≤ exp(2x), for 0 ≤ x < 1
2 , we have E[exp(hγi)] ≤

exp(2h2b2
i ), if |h| < 1

2bi
.

We next use a standard calculation. For 0 < h < 1√
2b M

, we have

Pr[Y > λ] = Pr[exp(hY ) > exp(hλ)]
≤ exp(−hλ)E[exp(hY )]

= exp(−hλ)
∏

i

E[exp(hγi)]

≤ exp(−hλ + 2h2ν2).

By assumption, 0 < λ < 2
√

2ν2

b M
. Setting h := λ

4ν2 < 1√
2b M

, we conclude that Pr[Y >

λ] ≤ exp(− λ2

8ν2 ).

COROLLARY 2.9 (MEASURE CONCENTRATION). Let Y, ν, {bi}i and b M be defined as

in Lemma 2.8. Suppose 0 < δ < 1 and ν > max
{√∑

i b2
i , b M

√
ln 2

δ

}
. Then, Pr[|Y | >

ν

√
8 ln 2

δ
] ≤ δ.

To simplify our presentation and improve readability, we choose ν :=
√∑

i b2
i ·

√
ln 2

δ

and use the following slightly weaker result: with probability at least 1−δ, the quantity

|Y | is at most O
(√∑

i b2
i log 1

δ

)
.

3. TIME-BOUNDED COUNTING MECHANISMS

In this section, we describe mechanisms that require a priori knowledge of an upper
bound on time. In Section 4.2, we show how to remove this requirement, and achieve
unbounded counting mechanisms.

3.1. Simple Counting Mechanisms

To aid the understanding of our contributions and techniques, we first explain two
simple constructions.

Simple Counting Mechanism I. The mechanism is given a stream σ ∈ {0, 1}N, a differen-
tial privacy parameter ε > 0, and an upper bound T on time. At each time step t, the
mechanism samples a fresh independent random variable γt ∼ Lap( 1

ε
), and releases

αt = c(t) + γt, where c(t) is the true count at time step t. It is not hard to see that the
above mechanism is O(Tε)-differentially private, and at each time step, the error is
O( 1

ε
) with high probability. Alternatively, one can substitute ε′ = ε/T, and add much

bigger noise ∼ Lap( 1
ε′ ) at every time step. In this way, we get ε differential privacy;

however, now the error at each time step is O( T
ε

).
Simple mechanism I is a straightforward extension of the Laplace mechanism

proposed by Dwork et al. [Dwork 2006; Dwork et al. 2006]. Basically, at every time
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step, the mechanism answers a new query, and randomizes the answer with fresh
independent noise. The down side of this approach is that the privacy loss grows
linearly with respect to the number of queries, which is t in our setting.

Simple Counting Mechanism II. In essence, Simple Counting Mechanism II produces a
“sanitized” stream by adding independent Laplace noise to each item in the stream.
Suppose the mechanism is given a stream σ ∈ {0, 1}N and a differential privacy param-
eter ε > 0. For each time step t ∈ N, the mechanism samples an independent random
variable γt with Laplace distribution Lap( 1

ε
). Define αt := σ (t)+γt. Then, the mechanism

M gives the output M(σ )(t) :=
∑

i≤t αi at time t. A similar idea has been proposed as a
survey technique by Warner [1965].

It is not hard to see that Simple Mechanism II can be implemented with O(1) words
of memory and is unbounded and ε-differentially private. We use Corollary 2.9 to
analyze the utility of the mechanism. Fix some time T. Observe that M(σ )(T)−cσ (T) =∑

t≤T γt =: Y . In this case, all γt ∼ Lap( 1
ε
). Hence, all bt := 1

ε
.

THEOREM 3.1. Let 0 < δ < 1, ε > 0. the Simple Counting Mechanism II is ε-
differentially private, and is (O(

√
t

ε
· log 1

δ
), δ)-useful at any time t ∈ N.

PROOF. Fix t ∈ N. Observe the error at time t is the sum of t independent Lap( 1
ε
)

distributions. Hence, Corollary 2.9 gives the required high probability statement.

3.2. Intuition

We will describe the Two-Level Counting Mechanism and the Binary Counting Mecha-
nism. Informally, the Two-Level Mechanism achieves ε-differential privacy and O(T

1
4 )

error. The Binary Mechanism is a further improvement, and achieves O((log T)1.5)
error while maintaining ε-differential privacy. We now explain the intuitions for the
Two-Level Mechanism and the Binary Mechanism.

A framework for describing mechanisms. We will describe our counting mechanisms us-
ing a common framework. Recall that the job of the mechanism is to output an approx-
imate count at every time. However, from now on, we will think of our mechanisms as
releasing noisy “p-sums” instead of counts. One can think of p-sums as intermediate
results from which an observer can estimate the count at every time step herself.

Definition 3.2 (p-sum). A p-sum is a partial sum of consecutive items. Let 1 ≤ i ≤
j. We use the notation �[i, j] :=

∑ j
k=i σ (k) to denote a partial sum involving items i

through j.

Furthermore, once we add noise to a p-sum�, we obtain a noisy p-sum denoted as �̂.
The mechanisms we consider will release noisy versions of these p-sums as new

items arrive. When an observer sees the sequence of p-sums, she can compute
an estimate for the count at each time step, in particular, by summing up an
appropriate selection of p-sums. For example, if an observer sees a noisy p-sum
�̂[1, k] = �[1, k] + noise released at time step k, and another noisy p-sum �̂[k + 1, t] =
�[k + 1, t] + noise released at time step t, then she can estimate the count at time t by
summing up these two noisy p-sums, that is, �̂[1, k]+�̂[k+1, t]. Notice that the observer
needs to be able to do this not only for a specific time t, but also for every time step
in N.
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Table I. Informal Intuition for the Two-Level Mechanism and the Binary Mechanism

Mechanism
Each item Each count is Asymptotic error (while

appears in ? p-sums the sum of ? p-sums maintaining ε diff. priv.)

Simple I O(T) O(1) O(T)
Simple II O(1) O(T) O(

√
T)

Two-Level O(1) O(
√

T) O(T
1
4 )

Binary O(log T) O(log T) O((log T)1.5)

Note: For simplicity, we omit the parameters ε and δ from the bounds.

Now we rethink Simple Mechanism I using this framework. The noisy p-sums
released are noisy versions of the true count for each time step, that is, {�̂[1, t] =
�[1, t] + noise}1≤t≤T , where �[1, t] = c(t) is the true count at time t. In this case,
the �̂[1, t] itself is the estimated count at time t; and therefore can be regarded as a
sum of noisy p-sums (with only one summand). Notice that item σ (1) appears in O(T)
of these p-sums. This means that when you flip item σ (1) in the incoming stream,
O(T) of these p-sums will be affected; this is the reason why the privacy loss is linear
in T.

Now consider Simple Mechanism II. The noisy p-sums released are noisy versions
of each item �̂t = �[t, t] + noise, where �[t, t] = σ (t) is the t-th item itself. In this case,
each item appears in only one p-sum, however, each count is the sum of O(T) p-sums.
More specifically, to estimate the count at time t, the observer sums up t noisy p-sums
�̂1, . . . �̂t. As each noisy p-sum contains some fresh independent noise, the noises add
up. In fact, over t time steps, the error would be O(

√
t) with high probability.

Observation 1 (Informal). Suppose a mechanism M adds Lap( 1
ε
) noise to every

p-sum before releasing it. In M, each item in the stream appears in at most x p-
sums, and each estimated count is the sum of at most y p-sums. Then, the mechanism
M achieves x · ε differential privacy. Moreover, from Corollary 2.9, the error is O(

√
y

ε
)

with high probability. Alternatively, to achieve ε-differential privacy, one can scale ap-
propriately by having ε′ = ε

x . Now if the mechanism instead adds Lap( 1
ε′ ) noise to each

p-sum, we achieve ε-differential privacy, and O( x
√

y
ε

) error with high probability.

Goal. It is evident that an inherent tension exists between utility (i.e., small error)
and privacy, and our challenge is how to strike a balance between the two conflicting
goals. We would like to achieve the following goals.

— Each item appears in a small number of p-sums . Intuitively, this limits the influence
of any item and guarantees small privacy loss. More specifically, when one flips an
item in the incoming stream, not too many p-sums will be affected.

— Each count is a sum of a small number of p-sums . Each noisy p-sum contains some
noise, and the noises add up as one sums up several noisy p-sums. However, if each
output count is the sum of a small number of noisy p-sums, the accumulation of
noises is bounded. In this way, we can achieve small error.

3.3. Two-Level Counting Mechanism

Using the Simple Counting Mechanism II as a building block, we describe the Two-
Level Counting Mechanism. The idea is that when items from the stream come, we
group them in contiguous blocks of size B. Within a block, we run the Simple Counting
Mechanism II. On top of that, we run another Simple Counting Mechanism II, treating
each block as a single element.

ACM Transactions on Information and System Security, Vol. 14, No. 3, Article 26, Publication date: November 2011.
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Algorithm 1: Two-Level Mechanism D
Input: An upper bound T, a differential privacy parameter ε, and a stream σ ∈ {0, 1}T

Output: At each time step t, output estimate D(t).
Initialization: Each αi and βi are initialized to 0.
for t ← 1 to T do

αt ← σ (t) + Lap( 1
ε
)

Let t = qB + r where q, r ∈ Z and 0 ≤ r < B.
if r = 0 then

βq :=
∑t

i=t−B+1 σ (i) + Lap( 1
ε
)

end
Output

D(t) ←
q∑

i=1

βi +
t∑

i=qB+1

αi (1)

end

Two-Level Mechanism: the p-sum view. One good way to understand the Two-Level
Mechanism is to consider it under the p-sum framework. Notice that in Algorithm 1,
each βq = �̂[(q−1)B + 1, qB] is a noisy p-sum, and each αt = �̂[t, t] is also a noisy p-sum
(for a single item). It would suffice if the mechanism simply released the set of noisy
p-sums: {

βq|1 ≤ q ≤ �T/B
} ∪ {αt|1 ≤ t ≤ T} ,

as an observer can reconstruct the approximate count at any time step from these
noisy p-sums, according to Equation (1) of Algorithm 1.

Observe that each item σ (t) appears in at most two p-sums: at most one of the β ’s
and at most one of the α’s. Specifically, let q :=

⌈ t
B

⌉
, then σ (t) appears in only βq and αt.

Hence, we can conclude that the counting mechanism preserves 2ε-differential privacy.
From Equation (1), it is not hard to see that the estimated count at any time t is

the sum of at most �t/B
 + B noisy p-sums. In particular, if we let B =
√

T, then
the estimated count at any time is the sum of at most 2B noisy p-sums. According to
Observation 1, the error is roughly O(T

1
4 /ε) with high probability.

We formalize this intuition with the following theorem.

THEOREM 3.3. The Two-Level Counting Mechanism is 2ε-differentially private.
Furthermore, for each t ∈ N, the Two-Level Counting Mechanism with block size B

is (O( 1
ε

·
√

t
B + B · log 1

δ
), δ)-useful at time t.

PROOF. The differential privacy argument is straightforward. As mentioned we
have, each item in the stream σ (t) appears in at most 2 noisy p-sums. Therefore, if
we flip σ (t), at most 2 noisy p-sums will be affected.

We now prove the utility part of the theorem. Observe that at any time t = qB + r
where q, r ∈ Z and 0 ≤ r < B, the error D(t) − cσ (t) is the sum of K = q + r independent
Laplace distributions Lap( 1

ε
). Since t

B ≤ K ≤ ( t
B + B), it follows as in the proof for the

Simple Counting Mechanism II that, at time T, the Two-Level Counting Mechanism
is (O( 1

ε
·
√

t
B + B · log 1

δ
), δ)-useful at time t.

Given T ∈ N, we can set B :=
⌊√

T
⌋

to form a T-bounded counting mechanism.
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Algorithm 2: Binary Mechanism B
Input: A time upper bound T, a privacy parameter ε, and a stream σ ∈ {0, 1}T .
Output: At each time step t, output estimate B(t).
Initialization: Each αi and α̂i are (implicitly) initialized to 0.
ε ′ ← ε/ log T
for t ← 1 to T do

Express t in binary form: t =
∑

j Bin j(t) · 2 j.
Let i := min{ j : Bin j(t) �= 0}.

αi ←
∑
j<i

α j + σ (t) (2)

// previous value (if any) of αi is overwritten

// αi = �[t − 2i + 1, t] is a p-sum of involving 2i items

for j ← 0 to i − 1 do

α j ← 0, α̂ j ← 0

end

α̂i ← αi + Lap(
1
ε ′ ) (3)

// α̂i is the noisy p-sum �̂[t − 2i + 1, t]

Output the estimate at time t :

B(t) ←
∑

j:Bin j(t)=1

α̂ j (4)

end

COROLLARY 3.4. Let 0 < δ < 1 and ε > 0. For each T ∈ N, there is a T-bounded
counting mechanism that preserves 2ε-differential privacy and is (O( 1

ε
· T1/4 · log 1

δ
), δ)-

useful at each time t ∈ [T].

Finally, we point out that the Two-Level Mechanism can actually be implemented
with O(1) memory.

CLAIM 1. The Two-Level Counting Mechanism can be implemented with O(1) words
of memory.

PROOF. At any time t = qB + r where q, r ∈ Z and 0 ≤ r < B, the mechanism only
needs to store the following values:

∑q
i=1 βi, �[qB + 1, t] and

∑t
i=qB+1 αi.

3.4. Binary Counting Mechanism

We could extend the idea of the Two-Level Counting Mechanism to a Multi-level
Counting Mechanism, and compute the optimal number of levels given T, the upper
bound on time. However, we take a better approach called the Binary Mechanism.
The idea is that at any time t, the counting mechanism internally groups the items
that have arrived to form p-sums of different sizes. The precise grouping of the
items depends on the binary representation of the number t, hence the name Binary
Mechanism.
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Fig. 1. Intuition for the Binary Mechanism.

Given any number t ∈ N, let Bini(t) ∈ {0, 1} be the ith digit in the binary representa-
tion of t, where Bin0(t) is the least significant digit. Hence, t =

∑
i Bini(t) · 2i. Informally,

if Bini(t) = 1, then there is a p-sum involving 2i items. We formally describe the Binary
Mechanism in Algorithm 2.

Binary mechanism: the p-sum view. The best way to understand the Binary Mechanism
is to think in terms of the p-sum framework described earlier. Basically, instead of
outputting the estimated counts, the mechanism could equivalently release a sequence
of noisy p-sums which provide sufficient information for an observer to estimate the
count at each time step t.

The intuitiion is best explained using a binary interval tree as shown in Figure 1.
Each leaf node in the tree represents a time step, and each interior node represents
a range. Intuitively, we “release” a p-sum corresponding to each node in the tree. To
recover the sum of time steps 1 through t, it suffices to find a set of nodes in the tree
to uniquely cover the range [1, t]. It is not hard to see that 1) every time step appears
in only O(log T) p-sums; and 2) every contiguous range [1, t] can be represented with a
set of O(log T) nodes in the tree.

Implementing the Binary Mechanism with small memory. Observe that the mechanism only
needs to store p-sums required for estimating the count at a future point in time,
henceforth referred to as active p-sums. The mechanism can safely discard p-sums
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that are no longer needed, henceforth referred to as inactive p-sums. For example, at
t = 2k where k ∈ N, the only active p-sum is �[1, t]. All other p-sums computed between
time 1 and t will no longer be needed after time t = 2k. In the Binary Mechanism,
we save the active p-sums in variables α j’s. We reuse these variables, and let new
and active p-sums overwrite old and inactive ones. As a result, we only need to track
O(log t) p-sums and their noisy versions at time t.

To be more concrete, we describe what happens when a new item arrives at time
t by making an analogy to a binary counter incremented from t − 1 to t. Let i be the
position of the least significant non-zero bit in t. Then t − 1 has i − 1 trailing 1’s in its
binary representation, and a carry occurs at position i when t − 1 is incremented by
1. At the end of time t − 1, the mechanism stores p-sums α j of sizes 2 j for each j < i.
During time step t, the mechanism performs the update αi ← ∑

j<i α j + σ (t). Now αi is
a new p-sum of the most recent 2i items ending at time t. The mechanism adds noise
to αi with fresh randomness, and stores the corresponding noisy version α̂i. Since the
p-sums α j for j < i are no longer needed, they (together with their noisy versions) are
set to 0.

Differential Privacy. Consider an item arriving at t ∈ [T]. We analyze which of the
p-sums would be affected if σ (t) is flipped. It is not hard to see that the item σ (t) can
be in at most log T p-sums. In particular, it can be in at most 1 p-sum of size 2 j, where
j ≤ log T. Observe that each noisy p-sum maintains ε

log T -differential privacy by Fact 1.
Hence, we can conclude the ε-differential privacy of the Binary Mechanism.

THEOREM 3.5 (DIFFERENTIAL PRIVACY). For T ∈ N, the Binary Mechanism pre-
serves T-bounded ε-differential privacy.

Utility. We next consider the usefulness of the Binary Mechanism. Each estimated
count B(t) is the sum of at most log t noisy p-sums, and each noisy p-sum contains fresh,
independent Laplace noise Lap( log T

ε
). Therefore, the error at time t is the summation of

at most O(log t) i.i.d. Laplace distributions Lap( log T
ε

). We use Corollary 2.9 to conclude
the mechanism’s usefulness.

THEOREM 3.6 (UTILITY). For each t ∈ [T], the T-bounded Binary Mechanism is
(O( 1

ε
) · (log T) · √

log t · log 1
δ
, δ)-useful at time t ∈ [T].

4. UNBOUNDED COUNTING MECHANISMS

Previously, we mainly considered time-bounded mechanisms, that is, the mechanism
requires a priori knowledge of an upper bound on the time. We now describe how to
remove this assumption and derive unbounded counting mechanisms from the Binary
Mechanism. The first approach, referred to as the modified Binary Mechanism, adds
varying noise to each p-sum.

The second approach, referred to as the Hybrid Mechanism, gives a generic way
to convert any time-bounded mechanism M into an unbounded one by running two
mechanisms in parallel: (1) an unbounded mechanism that only outputs counts at
time steps t being powers of 2; (2) a time-bounded mechanism M to take care of items
arriving at time steps between successive powers of 2.

4.1. Modified Binary Mechanism

The time-bounded Binary Mechanism needs to know T, an upper bound on time, in
order to decide the magnitude of noise added to each p-sum. How do we decide an
appropriate magnitude of noise to add without knowledge of T? One idea is to add
varying noise to each p-sum, depending on the length of the p-sum.
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The modified Binary Mechanism. The modified Binary Mechanism works the same way
as the Binary Mechanism, except for the magnitude of noise we add to each p-sum.
Suppose we add Lap( ai

ε
) noise to a p-sum consisting of 2i elements, where ai > 0. In

other words, replace Equation (3) in Algorithm 2 with the following:

α̂i ← αi + Lap(
ai

ε
)

We leave the ai’s as undetermined parameters for now, and work out the suitable
values below.

THEOREM 4.1 (DIFFERENTIAL PRIVACY ). For T ∈ N, the modified Binary Mech-
anism preserves T-bounded (ε

∑
i≤K

1
ai

)-differential privacy, where K = log2 T + O(1).
Moreover, if the series

∑
i

1
ai

converges to some value A < ∞, then the modified Binary
Mechanism preserves ε A-differential privacy.

THEOREM 4.2 (UTILITY ). The modified Binary Mechanism is (O( 1
ε

·
√∑k

i=0 a2
i ·

log 1
δ
), δ)-useful at time t, where k := max{i : Bini(t) = 1} = log2 t + O(1).

Remark 4.3. Using Theorems 4.1 and 4.2, and scaling ε, we can conclude that there
is a T-bounded counting mechanism that preserves T-bounded ε-differential privacy,

and is (O( 1
ε

· log 1
δ
) · ∑K

i=0
1
ai

·
√∑K

i=0 a2
i , δ)-useful at time T, where K := log2 T + O(1).

Hence, loosely speaking, with fixed privacy parameter ε, the error is
∑K

i=0
1
ai

·
√∑K

i=0 a2
i ,

and the best choice of ai’s should minimize the above error term. In fact, the error

term
∑K

i=0
1
ai

·
√∑K

i=0 a2
i is minimized when all ai’s are equal, and this is exactly our

time-bounded Binary Mechanism, where ai = log T for all 1 ≤ i ≤ K.

We next give different choices of ai’s to obtain unbounded counting mechanisms with
different guarantees.

COROLLARY 4.4. Let 0 < δ < 1, ε > 0. Suppose θ > 0, and set ai := (i + 1)1+θ .
There is an unbounded counting mechanism that preserves ε-differential privacy and
is (O( 1

θε
· (log t)1.5+θ · log 1

δ
, δ)-useful at time t.

In Corollary 4.4, if we choose θ > 0 to be arbitrarily small, there will be a factor of 1
θ

in the error. Instead, we choose ai to be a function that is slightly super linear in i.
For n ∈ N, define κ(n) := max{r ≥ 0 : ln(r) n ≥ 1} = �(log∗ n). Recall that log∗ is

defined in terms of base 2 logarithm.
For n ∈ N, define the function Ln(n) :=

∏κ(n)
r=0 ln(r) n = n(ln n)(ln ln n)(ln ln ln n) · · · .

CLAIM 2. Let K ∈ N. Then,
∑K

i=1
1

Ln(i) ≤ �(log∗ K) and√∑K
i=1 Ln(i)2 ≤ O(K1.5Ln(log K)).

PROOF. The second statement is trivial, since for K ≥ 3,
√∑K

i=1 Ln(i)2 ≤
√

KLn(K)2 =
K1.5Ln(ln K).

For r ≥ 0, define S(r) := {i ∈ N : κ(i) = r}. Then,
∑K

i=1
1

Ln(i) ≤ ∑κ(K)
r=0

∑
i∈S(r)

1
Ln(i) .

We next show that for each r ≥ 0,
∑

i∈S(r)
1

Ln(i) ≤ 2. Observe this implies immediately
that

∑K
i=1

1
Ln(i) ≤ 2κ(K) = �(log∗ K).
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Algorithm 3: Logarithmic Mechanism L
Input: Differential privacy parameter ε, and a stream σ ∈ {0, 1}N.
Output: ∀k ∈ Z, at time t = 2k, output estimate L(t).
Initialization: β ← 0.
foreach t ∈ N do

β ← β + σ (t)
if t = 2k for some k ∈ Z then

β ← β + Lap( 1
ε
)

Output L(t) ← β

end
end

Define a := min S(r) and b := max S(r). Observe that Ln(a) ≥ 1. Hence, if a = b , then∑
i∈S(r)

1
Ln(i) = 1

Ln(a) ≤ 1 < 2. We assume a + 1 ≤ b .

Define for x ∈ [a, b ], the function f (x) :=
∏r

j=0 ln( j) x. Observe that for all i ∈ S(r),
Ln(i) = f (i). Moreover, f is monotonically increasing, and we have the indefinite inte-
gral

∫ dx
f (x) = ln(r+1) x + C. Therefore, we have∑

i∈S(r)
1

Ln(i) = 1
Ln(a) +

∑b
i=a+1

1
f (i) ≤ 1 +

∫ b
a

dx
f (x) = 1 + ln(r+1) b − ln(r+1) a ≤ 2,

where the last inequality holds because for all i ∈ S(r), 0 ≤ ln(r+1) i < 1.

COROLLARY 4.5. Let 0 < δ < 1, ε > 0. Set ai := Ln(i + 1). There is an unbounded
counting mechanism, such that for any t ∈ N, it preserves O(ε log∗(log t))-differential
privacy, and is (O( 1

ε
) · log1.5 t · Ln(log log t) · log 1

δ
, δ)-useful at time t.

4.2. Hybrid Mechanism

The modified Binary Mechanism is unbounded, and achieves guarantees similar to the
Binary Mechanism, but with a slight penalty in the error term (under fixed privacy
parameter ε). We now describe a better approach that achieves time unboundedness
and meanwhile provides the same asympototic bounds as the Binary Mechanism.

The idea is to have an unbounded mechanism which only reports the estimated
counts at sparse intervals, in particular, when t is a power of 2. We would expect such
a mechanism to have better guarantees than one that has to report at every time step.

So what do we do when t is not a power of 2? We know the approximate count ĉ1 for
the time period [1, T] where T = 2k for some nonnegative integer k. Suppose we also
know the approximate count ĉ2 for the time period [T +1, t] where T +1 ≤ t ≤ 2T. Then
we can estimate the count at time t as ĉ1 + ĉ2. Therefore, it remains for us to count the
1’s between [T, t] for any t ∈ [T + 1, 2T], We can simply apply a T-bounded mechanism
(e.g., the Binary Mechanism) for this task.

Logarithmic Counting Mechanism. We now design an unbounded mechanism called the
Logarithmic Mechanism which reports the count only when the time t is a power of 2.

The idea for the Logarithmic Mechanism is quite simple. The mechanism internally
keeps a value β which is initialized to 0. β is used to keep track of the approximate
count at any point in time. As an item comes in, its value is added to β. At t equal to a
power of 2, the mechanism adds fresh randomness to the value β (on top of randomness
previously added), and outputs β.

If t is a power of 2, it is clear that the accumulated error at time t is a sum of O(log t)
independent Laplace distributions Lap( 1

ε
). Hence, we have the following guarantee

from Corollary 2.9.
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Algorithm 4: Hybrid Mechanism H (with Mechanism M).

Input: Differential privacy parameter ε, a stream σ ∈ {0, 1}N, Logarithmic Mechanism L, and a
time-bounded mechanism M.

Output: For each t ∈ N, output estimate H(t).
Initialization: T ← 1.
Initiate the mechanism L with privacy parameter ε

2 on stream σ .
foreach t ∈ N do

Feed σ (t) to mechanism L.
if t = 2k for some k ∈ Z then

Output H(t) ← L(t)
T ← t
Initiate an instance of the T-bounded mechanism MT with time upper bound T,
privacy parameter ε

2 and stream σ (T) ∈ {0, 1}T , where σ (T)(τ ) := σ (τ + T) for τ ∈ [1, T].
else

τ ← t − T
Feed σ (T)(τ ) := σ (t) to mechanism MT .
Output H(t) ← L(T) + MT(τ )

end
end

// At time t, T is the largest power of 2 no bigger than t.
// σ (T) is the sub-stream of σ for the duration [T + 1, 2T].
// MT is a time-bounded mechanism that runs for [T + 1, 2T].

THEOREM 4.6. The Logarithmic Counting Mechanism is unbounded, preserves ε-
differential privacy and is (O( 1

ε
) · √

log t · log 1
δ
, δ)-useful at time t = 2k for all k ≥ 0.

Logarithmic Mechanism: the p-sum view. The Logarithmic Mechanism also has a p-sum
interpretation. Equivalently, one can think of it as releasing the noisy p-sums α̂0 =
�̂[1, 1], as well as α̂k = �̂[2k−1 + 1, 2k] for every k ≥ 1, Now an observer can estimate
the count at time t = 2k as

∑k
i=0 α̂i.

Hybrid Mechanism. We combine the Logarithmic Mechanism and a time-bounded
counting mechanism to process a given stream σ . We run one copy of ε

2 -differentially
private Logarithmic Mechanism, which reports an approximate count when t is a
power of 2. Suppose the Logarithmic Mechanism has reported count L(T) at T = 2k

for some nonnegative integer k. For time t in the range T + 1 ≤ t ≤ 2T, we run an
ε
2 -differentially private T-bounded counting mechanism denoted as M to count the
number of 1’s in the range [T + 1, t]. We write τ = t− T. At time t, let M(τ ) be the num-
ber of 1’s in [T + 1, T + τ ] reported by the T-bounded counting mechanism M. Then,
the hybrid mechanism reports L(T) + M(τ ) at time t. The detailed Hybrid Mechanism
is presented in Algorithm 4.

THEOREM 4.7. Assume that given any ε > 0 and 0 < δ < 1, Logarithmic Mecha-
nism L is ε-differentially private and is ( f (ε, t, δ), δ)-useful at time t. Similarly, assume
that given any ε > 0, the T-bounded mechanism M is ε-differentially private and is
(g(ε, T, τ, δ), δ)-useful at time τ ∈ [T], where g is monotonically increasing with T and
τ . Then, the Hybrid Mechanism described above is unbounded, preserves ε-differential
privacy, and is ( f ( ε

2 , t, δ
2 ) + g( ε

2 , t, t, δ
2 ), δ)-useful at time t.
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PROOF. We first note that the ε
2 -differentially private Logarithmic Counting Mech-

anism is run in parallel with at most one instance of the ε
2 -differentially private time

bounded counting mechanism at any time. Hence, the Hybrid Counting Mechanism is
ε-differentially private.

Suppose at time t = 2k (for some non-negative integer k), the Logarithmic Counting
Mechanism has reported some count L(t). From the assumption, we know that with
probability at least 1 − δ

2 , the error of H(t) := L(t) is at most f ( ε
2 , t, δ

2 ).
Consider T + 1 ≤ t ≤ 2T. We write τ := t − T. Suppose the T-bounded counting

mechanism MT reports MT(τ ) at time t. From the assumption, with probability at
least 1 − δ

2 , MT(τ ) has error at most g( ε
2 , T, τ, δ

2 ) ≤ g( ε
2 , t, t, δ

2 ).
We conclude that with probability at least 1 − δ, H(t) := L(T) + MT(τ ) has error at

most f ( ε
2 , t, δ

2 ) + g( ε
2 , t, t, δ

2 ).

COROLLARY 4.8 (HYBRID MECHANISM). If we instantiate the Hybrid Mechanism
using the Binary Mechanism as the T-bounded mechanism, the resulting Hybrid Mech-
anism is unbounded, preserves ε-differential privacy, and is (O( 1

ε
) · (log t)1.5 · log 1

δ
, δ)-

useful at time t.

For simplicity, in the remainder of the paper, when we refer to the Hybrid Mecha-
nism, we mean the Hybrid Mechanism instantiated with the Binary Mechanism.

Hybrid Mechanism: the p-sum view. One can also interpret the Hybrid Mechanism nat-
urally using the p-sum framework. Basically, one can equivalently think of the Hybrid
Mechanism as releasing the union of the noisy p-sums of the Logarithmic Mechanism
and the Binary Mechanism. From this set of noisy p-sums, an observer can compute
the approximate count at every time step t ∈ N.

5. CONSISTENCY

The mechanisms we have described so far could report count values that are not inte-
gral and hence definitely cannot correspond to any stream of 0’s and 1’s. One could of
course round any reported value to the nearest integer. However, this does not neces-
sarily mean that the values reported by a mechanism throughout different time steps
correspond to any valid stream.

We now formally define the consistency of a continual counting mechanism, and
describe an approach to transform any counting mechanism into a consistent mecha-
nism.

Definition 5.1 Consistent Mechanism. A counting mechanism M is consistent, if for
any stream σ , for all t ∈ N, M(σ )(t) − M(σ )(t − 1) ∈ {0, 1}. If M is randomized, this
means Pr[M(σ )(t) − M(σ )(t − 1) ∈ {0, 1}] = 1. We use the convention M(σ )(0) := 0.

Consistent Rounding. We describe a straightforward way to transform any counting
mechanism M into a consistent mechanism M̂. For ease of presentation, we assume
that M reports integer values (this can be done by first rounding reported values to
integers, introducing error of at most 1

2 ). The consistent rounding procedure is simple.
Given any stream σ , we set M̂(σ )(0) := 0, and feed σ into M. For each t ∈ N, if
M(σ )(t) > M̂(σ )(t−1), then M̂(σ )(t) := M̂(σ )(t−1)+1, otherwise M̂(σ )(t) := M̂(σ )(t−1).

From the construction, at each time step, the mechanism M̂ either increases the
reported value by 1 from that in the previous time step, or does not change the re-
ported value. It is therefore consistent. Moreover, rounding is performed online. There
are more sophisticated offline rounding procedures such as Pool-Adjacent-Violators
Algorithm (PAVA) [Yeganova and Wilbur 2009] to achieve consistency from noisy
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data. However, we note that even in the offline setting, PAVA does not give better
asymptotic error bounds than our simple rounding method. The next lemma shows
that our consistent rounding transformation does not introduce further error.

LEMMA 5.2 (CONSISTENT TRANSFORMATION PRESERVES ERROR). Suppose M is
a counting mechanism that returns integer values. Suppose that an instance of M is
run on some stream σ that produces an output M(σ ) satisfying the following condition.

— There exists a nonnegative error function E(t) that is monotonically increasing in t
such that for all t ≥ 0, |cσ (t) − M(σ )(t)| ≤ E(t).

Then, the above consistent rounding procedure produces an output M̂(σ ) that satis-
fies the same error bound, that is, for all t ≥ 0, |cσ (t) − M̂(σ )(t)| ≤ E(t).

PROOF. We prove the Lemma by induction on t. Since cσ (0) = M(σ )(0) = M̂(σ )(0),
we trivially have |cσ (0) − M̂(σ )(0)| = 0 ≤ E(0).

Assume that for some t ≥ 0, |cσ (t) − M̂(σ )(t)| ≤ E(t).
Observe that if |cσ (t + 1) − M̂(σ )(t + 1)| ≤ |cσ (t) − M̂(σ )(t)|, then the result follows

because E(t) ≤ E(t + 1).
There are two cases where |cσ (t + 1) − M̂(σ )(t + 1)| > |cσ (t) − M̂(σ )(t)|.
Case 1. M̂(σ )(t + 1) − 1 = M̂(σ )(t) ≥ cσ (t) = cσ (t + 1). This implies that M(σ )(t + 1) >

M̂(σ )(t). Since we assume M returns integer values, it follows that M(σ )(t + 1) ≥
M̂(σ )(t+ 1) ≥ cσ (t+ 1). Hence, |cσ (t+ 1)−M̂(σ )(t+ 1)| ≤ |cσ (t+ 1)−M(σ )(t+ 1)| ≤ E(t+ 1).

Case 2. M̂(σ )(t + 1) = M̂(σ )(t) ≤ cσ (t) = cσ (t + 1) − 1. This implies that M(σ )(t + 1) ≤
M̂(σ )(t) = M̂(σ )(t + 1) < cσ (t + 1). Hence, we also have |cσ (t + 1) − M̂(σ )(t + 1)| ≤
|cσ (t + 1) − M(σ )(t + 1)| ≤ E(t + 1).

This completes the inductive step.

In order to apply Lemma 5.2, we need the output M(σ ) to satisfy the error bound
for all values of t. However, Corollary 4.8 only gives a high-probability statement
for a single value of t. This can be resolved by a simple application of union bound.
For each t, we use failure probability δt := �( δ

t2 ). Observing that
∑

t∈N δt = �(δ) and
O(log 1

δt
) = O(log t + log 1

δ
), we have the following corollary.

COROLLARY 5.3. The Hybrid Mechanism M preserves ε-differential privacy, and
for any 0 < δ < 1, for any stream σ , with probability at least 1 − δ, the following error
bound holds: for each t ∈ N, |cσ (t) − M(σ )(t)| ≤ O( 1

ε
) · (log t)2.5 · log 1

δ
.

Hence, Lemma 5.2 and Corollary 5.3 show that the rounding procedure gives a con-
sistent counting mechanism M̂ with the same error bound.

6. ACHIEVING PAN PRIVACY

The mechanisms described thus far are not designed to resist intrusions in which the
adversary can learn snapshots of the mechanism’s internal states. We now consider
how to add pan privacy, that is, the ability to resist intrusions into the mechanisms.

6.1. Pan Privacy Definitions

Dwork et al. first formalized the notion of pan privacy [Dwork 2010a; Dwork et al.
2010b] to deal with intruders who can observe snapshots of the mechanism’s internal
states, for instance, in a subpoena. We have to assume some notion of “atomicity,”
that is, an intrusion can happen only when the mechanism has finished its update at
a certain time step. During the update, the mechanism has to store the true value of
new item σ (t) somehow, and intrusion at this point would clearly break the privacy.
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Definition 6.1 (Pan Privacy against Single Unannounced Intrusion). Suppose I is
the set of the internal states of a mechanism M. Given a stream σ and an unan-
nounced intrusion at time t, we can view the output M(σ ) of the mechanism as an
element (it, s) ∈ I × R

N, where it represents the knowledge gained in the one single
intrusion at time t. A counting mechanism M is ε-pan private (or preserves ε-pan pri-
vacy) against single intrusion if for any adjacent streams σ and σ ′, any time t and any
measurable subset S ⊆ I × R

N, Pr[M(σ ) ∈ S] ≤ exp(ε) · Pr[M(σ ′) ∈ S].

Definition 6.2 (Pan Privacy against Multiple Announced Intrusions). Suppose I is
the set of the internal states of a mechanism M. Let K ⊂ N be a subset of size k that
represents the time steps at which intrusions are made. We assume that an intrusion
is not known in advance, but the mechanism is aware of an intrusion immediately
after it has happened. Given a stream σ and the intrusion times K, we can view the
output M(σ, K) as an element (i, s) ∈ Ik ×R

N, where i represents the knowledge gained
in the k intrusions. A counting mechanism M is ε-pan private (or preserves ε-pan
privacy) against multiple intrusions if for any adjacent streams σ and σ ′, any K ⊂ N,
and any measurable subset S ⊆ I|K| × R

N, Pr[M(σ, K) ∈ S] ≤ exp(ε) · Pr[M(σ ′, K) ∈ S].

6.2. Pan Privacy against Single Unannounced Intrusion

Recall that all our mechanisms fall within the p-sum framework described in
Section 3.2. We now describe a generic technique for transforming any ε-differentially
private mechanism in the p-sum framework into an ε-pan private mechanism resilient
against a single unannounced intrusion, with only a constant-factor loss in the
mechanism’s utility. The techniques used here are similar to those proposed by Dwork
et al. [Dwork 2010a; Dwork et al. 2010a].

A mechanism in the p-sum framework releases a sequence of noisy p-sums from
which an observer can estimate the count at each time step. One way to implement
such a mechanism is described in Algorithm 5.

Basically, if �̂[t1, t2] is a noisy p-sum the mechanism intends to release, then the
mechanism initializes a corresponding counter βt1,t2 at time t1. For t1 ≤ t ≤ t2, βt1,t2 =
�[t1, t] at the end of t. In other words, the mechanism internally keeps track of the
accurate count for the duration [t1, t]. At the end of time t2, βt1,t2 = �[t1, t2]. Now the
mechanism adds noise to the counter, and reveals the noisy p-sum �̂[t1, t2].

Remark 6.3. If we implement the Binary Mechanism or the Hybrid Mechanism us-
ing the above approach, it is not hard to show that only O(log t) counters are needed at
time t. In other words, at any time t, |S| < O(log t).

We now examine how our current mechanisms fail to achieve pan privacy, and show
how to remedy the problem. Notice that if an intrusion happens at time t1 ≤ t < t2, then
the adversary can learn �[t1, t] and privacy is obviously broken. The way to resolve this
is to initialize the counter with some noise Lap( 1

ε
). Basically, replace Equation (5) with

the following for an appropriate choice of a.

βt,t′ ← Lap(
a
ε

)

Specifically, we choose the magnitude of noise a as below. Suppose the original mech-
anism intended to add Lap( a(t1,t2)

ε
) to the p-sum �[t1, t2]. Then we initialize the counter

βt1,t2 with noise Lap( a(t1,t2)
ε

).

THEOREM 6.4 (PAN-PRIVACY AGAINST SINGLE UNANNOUNCED INTRUSION). This
procedure can convert all counting mechanisms which fall within the p-sum framework
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Algorithm 5: One way to implement any mechanism in the p-sum framework.
Let P denote the (possibly infinite) set of all noisy p-sums the mechanism intends to output.
Initialize: S ← ∅.
// S is the set of currently active p-sums
foreach t ∈ N do

// Initialize a counter for each

// relevant p-sum starting at t:
foreach noisy p-sum �̂[t, t′] ∈ P do

βt,t′ ← 0 (5)

S ← S∪ {βt,t′ }
end
foreach βt1,t2 ∈ S do

// Add the current item to all relevant counters

if t1 ≤ t ≤ t2 then
βt1,t2 ← βt1,t2 + σ (t)

end
// Output noisy p-sums ending at t
// and remove these counters from memory

if t = t2 then
Output �̂[t1, t2] = βt1,t2 + Lap( a

ε
) with appropriate choice of a

S ← S\{βt1,t2}
end

end
end

into pan private versions with the same privacy guarantee and the same asymptotic
error guarantee.

PROOF. This procedure achieves ε-pan privacy due to the following observations.
Suppose the intrusion happens at time t1 ≤ t ≤ t2, the adversary learns the internal
state βt1,t2 = �[t1, t] + Lap( a

ε
) in addition to the noisy p-sum �̂[t1, t2] = �[t1, t2] + Lap( a

ε
) +

Lap( a
ε
) output at time t2. This is equivalent to revealing the noisy p-sums �̂[t1, t] :=

�[t1, t]+Lap( a
ε
) and �̂[t+1, t2] := �[t+1, t2]+Lap( a

ε
) to the adversary. Note that changing

any single position in the stream can only affect at most one of �̂[t1, t] and �̂[t + 1, t2].
Hence, this mechanism achieves ε-pan privacy if its non-pan private version achieves
ε-differential privacy.

As a result of the given modification, each noisy p-sum output by the mechanism now
has two independent Laplace noises, one added at the time the counter was initialized,
the other added at the time of output. Hence, from Corollary 2.9, this would only lead
to a constant factor

√
2 increase in the error bound.

6.3. Pan Privacy Against Multiple Announced Intrusions

We can apply the same idea for multiple intrusions, as long as the mechanism is aware
of the intrusions immediately after they are made.

We initialize each counter βt1,t2 with fresh Laplace noise Lap( a
ε
). Whenever we detect

an intrusion, we add fresh Laplace noise Lap( a
ε
) to each active counter in memory.
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THEOREM 6.5. If we modify the Hybrid Mechanism using the above approach, the
resulting mechanism is unbounded, preserves ε-pan privacy against multiple intru-
sions, and is (O(

√
k+1
ε

) · (log t)1.5 · log 1
δ
, δ)-useful at time t, where k is the number of

intrusions made before time t.

PROOF. Observe that k intrusions means that a p-sum breaks into k+1 p-sums, each
having the same privacy guarantee ε as before. Hence, ε-pan privacy is achieved.

Moreover, k additional copies of independent Lap( a
ε
) are added to the original p-sum.

Hence, from Corollary 2.9, there is a factor
√

k + 1 associated with the error.

7. APPLICATIONS

The counter is a fundamental primitive in many streaming algorithms [Demaine et al.
2002; Manku and Motwani 2002; Metwally et al. 2005]. We believe that our differen-
tially private continual counter construction will inspire the design of a wide class of
differentially private streaming algorithms.

7.1. Recommendation System

Our counting mechanism also has immediate practical applications. For example, it
is a common practice for Web sites such as IMDB, Delicious and Digg to suggest the
most popular movies, bookmarks or news items to visitors. Our construction can be
extended to suggest top-k items or hot items in a differentially private manner.

Continual top-k suggestions. Let U := {1, 2, . . . , m} denote the universe of possible items.
Let σ ∈ UN denote a stream of incoming items. Specifically, σ (t) ∈ U denotes the item
at time t ∈ N. At time step t ∈ N, the top-k items are the k most frequent items that
appear in the stream σ in the first t time steps.

At every time step t ∈ N, the continual top-k mechanism K outputs a tuple K(σ )(t) ∈
Uk, an approximation of the top-k items seen thus far.

We say that two streams σ, σ ′ are adjacent if they differ at exactly one time step t ∈
N. A continual top-k mechanism is ε-differentially private if for any adjacent streams
σ and σ ′, and any measurable subset S ⊆ (Uk)N, Pr[K(σ ) ∈ S] ≤ exp(ε) · Pr[K(σ ′) ∈ S].

We can use the continual counter construction to give continual top-k suggestions
in a differentially private manner. To achieve this, the mechanism K internally runs
m differentially private continual counters, to keep track of the approximate count
of each item thus far. We assume that each continual counter is instantiated using
the Hybrid Mechanism described in Section 4.2. At each time step, the mechanism K
ranks the items according to their approximate counts as suggested by the m counters,
and outputs the resulting top-k.

More formally, we “split” the stream σ into m different indicator streams σ1,
σ2, . . ., σm. If σ (t) = i ∈ U , then σi(t) := 1 and σ j(t) := 0 for all j �= i. The mecha-
nism K instantiates m ε-differentially private continual counters H1, . . . ,Hm using the
Hybrid Mechanism, and feeds the indicator stream σi to the counter Hi for each i ∈ U .
At time t, the mechanism K computes the ranking according to the approximate counts
{H1(t),H2(t), . . . ,Hm(t)}, and outputs the resulting top-k items.

The mechanism K described above preserves 2ε-differential privacy, and achieves
good accuracy in the following sense.

CLAIM 3. The above continual top-k mechanism K is 2ε-differentially private. Fur-
thermore, at any time t ∈ N, for any two items i, j ∈ U if the true counts of items i and
j differ by �( 1

ε
· (log t)1.5 · log 1

δ
), then with probability 1 − δ, the ranking computed by

mechanism K preserves the correct ordering of i and j at time t.
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PROOF. For 2ε differential privacy, observe that flipping one item in the original
stream σ affects two of the counters among H1, . . . ,Hm. The usefulness argument
follows directly from Corollary 4.8.

Continual hot items suggestions. Hot items can be considered as a variation of top-k
queries. Using a similar idea, we can design a mechanism that continually outputs hot
items suggestions in a differentially private manner. Basically, we run m differentially
private continual counters to keep track of the approximate count for each item, and
compute the hot items list according to their approximate counts. In this way, we can
achieve the same guarantees as suggested by Claim 3.

Finally, note that the mechanisms described in this section can be augmented to
achieve pan privacy using techniques described in Section 6.

7.2. Multidimensional Range Query

We can generalize our techniques to multidimensional range query. Multidimensional
range queries are widely used in practice. In particular, database SQL queries are
often by nature multidimensional range queries.

Example. Consider a medical database consisting of demographics information such
as age and salary, and whether the patient is diabetic. Suppose medical researchers
would like to study how demographics influence the chance of having diabetes. There-
fore, the database allows medical researchers to make multidimensional range queries
such as:

select count(∗) where age > 50 and salary > 10K and diabetic = true

When the database is evolving, for instance, entries are being collected and added
to the database over the course of time, time can also be considered as a special di-
mension. For example, at time t, if a medical research wishes to make a query over all
existing records, we can essentially express the query as follows:

select count(∗) where age > 50 and salary > 10K and diabetic = true and time added ≤ t

As medical information is privacy sensitive, we wish to support such analytics with-
out harming each individual’s privacy. Our mechanism described below allows the
medical researchers to make an arbitrarily large number of queries, such that the
error associated with each query is independent of the number of queries.

Generalized definitions for multidimensional range query. In general, we formulate the
problem as below. Suppose we have a d-dimensional database σ : [T]d → {0, 1}, where
the outcome bit represents a predicate of interest, e.g., whether the patient is dia-
betic. Below, we treat the database as a static one, although the algorithm also readily
applies to evolving databases, as we can think of time as a special dimension.

We wish to support range query of the following form. Consider the set of hyper-
rectangles. Formally, B := {I1 × I2 × · · ·× Id ⊆ [T]d : ∀i ∈ [d], ∃1 ≤ si ≤ ti ≤ T, Ii = [si, ti]}.
For each B ∈ B, we would like an estimate of cσ (B) :=

∑
x∈B σ (x).

Given a database σ , a mechanism M returns M(σ ) : B → R, which can also be
viewed as a point in R

B. Two databases σ and σ ′ are neighbors if they differ at exactly
one point x ∈ [T]d.

As before, a mechanism M is ε-differentially private if for any two neighboring
databases σ and σ ′, any measurable S ⊆ R

B, Pr[M(σ ) ∈ S] ≤ exp(ε) · Pr[M(σ ′) ∈
S]. Similarly, a (randomized) mechanism M is (λ, δ)-useful for query B ∈ B if with
probability at least 1 − δ, |M(σ )(B) − cσ (B)| ≤ λ.
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Fig. 2. Intuition for multidimensional range query.

Construction for multidimensional range query. We use the same technique as for the Bi-
nary Mechanism in Section 3.4. Recall that for the one-dimensional case, we release
a series of p-sums corresponding to all nodes in the binary interval tree depicted in
Figure 1. For each dimension i, let Ii be the set of intervals in [1, T] corresponding to
the p-sums used in the Binary Mechanism, i.e., nodes in the binary interval tree as in
Figure 1. In particular, if T is a power of 2, then there are exactly T

2 j intervals of length
2 j. In general, |Ii| = O(T).

Let I := I1 ×I2 ×· · ·×Id. Each (I1, I2, . . . , Id) ∈ I can be identified with the rectangle
I1 × I2 × · · · × Id ∈ B, henceforth referred to as a basic rectangle. The idea is that for
each basic rectangle B ∈ I, the mechanism computes cσ (B) and releases a noisy p-sum
�̂(B) := cσ (B) + Lap( 1

ε
).

As mentioned earlier, any multi-dimensional range query can be thought of as a
rectangle in multi-dimensional space. Furthermore, it is not hard to see that any
rectangle can be broken down into O(log T)d basic rectangles. For example, Figure 2
illustrates a two-dimensional case. A 2-dimensional range query is made, i.e., B =
[2, 5]× [3, 5]. As shown in the figure, the rectangle B can be broken down into 2×3 = 6
basic rectangles. Therefore, the answer to the range query can be obtained by summing
up the noisy count corresponding to each of these basic rectangles.

We now perform the privacy and utility analysis. Recall that in any dimension i,
any single point x ∈ [T] is involved in O(log T) intervals in Ii. Moreover, any interval
in [1, T] can be expressed as the disjoint union of O(log T) intervals in Ii. Therefore,
we can conclude that changing any single entry in the database σ can affect at most
O(log T)d noisy p-sums, and any rectangle B ∈ B can be expressed as the disjoint union
of O(log T)d rectangles in I, each of which contributes an independent copy of Lap( 1

ε
)

to the error for query B.
Using the p-sum framework, it follows that the resulting mechanism is O(log T)d · ε-

differentially private, and moreover for every B ∈ B, is (O( 1
ε
) · (O(log T))0.5d · log 1

δ
, δ)-

useful for query B. After rescaling ε, we have an ε-differentially private range query
mechanism.
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THEOREM 7.1. Let ε > 0. For static databases of the form σ : [T]d → {0, 1}, there
exists a range query mechanism M that is ε-differentially private, and for each rectan-
gle B ∈ B, and 0 < δ < 1, the mechanism M is (O( 1

ε
) · (O(log T))1.5d · log 1

δ
, δ)-useful for

query B.

8. CONCLUSION AND OPEN PROBLEMS

We consider how a Web site or data aggregator can privately and continually release
new statistics when the database is evolving over time. We propose an ε-differentially
private continual counter which has only poly-log error with respect to time.

This represents an exciting and important new setting for differential privacy, as
numerous Web sites adopt the practice of releasing new user statistics over time. A
promising direction for future work is the design of a broad class of private streaming
algorithms which continually output data. In particular, as counting is a basic building
block in many streaming and statistical algorithms, it would be interesting to explore
how our basic counting primitive aids the design of other streaming and statistical
analysis algorithms.

Another open problem is to explore whether there exist any functions that are par-
ticularly difficult to release privately in the continual setting, but easy to do so in the
offline setting.

It would also be interesting to implement the theoretic results and study their fea-
sibility in real-world applications.
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